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Abstract

Access to 3D point cloud representations has been widely facilitated by LIDAR
sensors embedded in various mobile devices. This has led to an emerging need
for fast and accurate point cloud processing techniques. In this paper, we revisit
and dive deeper into PointNet++, one of the most influential yet under-explored
networks, and develop faster and more accurate variants of the model. We first
present a novel Separable Set Abstraction (SA) module that disentangles the
vanilla SA module used in PointNet++ into two separate learning stages: (1)
learning channel correlation and (2) learning spatial correlation. The Separable SA
module is significantly faster than the vanilla version, yet it achieves comparable
performance. We then introduce a new Anisotropic Reduction function into our
Separable SA module and propose an Anisotropic Separable SA (ASSA) module
that substantially increases the network’s accuracy. We later replace the vanilla
SA modules in PointNet++ with the proposed ASSA module, and denote the
modified network as ASSANet. Extensive experiments on point cloud classification,
semantic segmentation, and part segmentation show that ASSANet outperforms
PointNet++ and other methods, achieving much higher accuracy and faster speeds.
In particular, ASSANet outperforms PointNet++ by 7.4 mIoU on S3DIS Area 5,
while maintaining 1.6 x faster inference speed on a single NVIDIA 2080Ti GPU.
Our scaled ASSANet variant achieves 66.8 mloU and outperforms KPConv, while
being more than 54 x faster.

1 Introduction

Among the various 3D object representations, point clouds have been surging in popularity, becoming
one of the most fundamental 3D representations. This popularity stems from the increased availability
of 3D sensors, like LiDAR, which produce point clouds as their raw output. The growing presence
of point cloud data has been accompanied by the development of many 3D deep learning methods
[28, 41, 19, 38, 22]. Even though these methods achieve impressive performance, they are generally
computationally expensive (Figure 1). With the integration of LiDAR sensors into hardware-limited
devices, such as mobile devices and AR headsets, interest in efficient models for point cloud
processing has grown significantly. Given the limited computational power of mobile devices and
embedded systems, the design of mobile-friendly point cloud-based algorithms should not only focus
on providing good accuracy, but also on maintaining high computational efficiency.

When processing point cloud data, one can always opt to convert the data into representations that are
more accessible to deep learning frameworks. Popular options are multi-view methods [34, 5, 42]
and voxel-based methods [6, 47]. Converting to these representations generally requires additional
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computation and memory, and can lead to geometric information loss [23]. It is therefore more
desirable to operate directly on point clouds. To that extent, we are currently witnessing a surge in
point-based methods [27, 28, 41, 19, 38, 22]. The first of such methods was introduced by Qi et al.
through the seminal PointNet [27] architecture. PointNet operates directly on point clouds, without
the need for an intermediate representation. Despite its efficiency, PointNet merely learns per-point
features individually and discards local information, which restrains its performance. As a variant of
PointNet, PointNet++ [28] presents a novel Set Abstraction module that sub-samples the point cloud,
groups the neighborhood, extracts local information via a set of multi-layer perceptrons (MLPs),
and then aggregates the local information by a reduction layer (i.e. pooling). Figure 1 shows how
PointNet++ outperforms the pioneering PointNet [27] by a large margin. PointNet++ also obtains
better accuracy than the graph-based method DeepGCN [19], and does so with a 100X speed gain.
PointNet++ provided a good balance between accuracy and efficiency, and was therefore widely
utilized in various tasks like normal estimation [8], segmentation [26, 14], and object detection [32].
After PointNet++, graph-based [33, 39, 41, 19], pseudo-grid based [37, 20, 25, 38] and adaptive
weight-based [40, 21, 7, 44], became the state-of-the-art in point cloud tasks. As shown in Figure
1, nearly all of these methods improve performance at the cost of speed. In this work, we focus
on designing point cloud networks that are both fast and accurate. Inspired by its success, both in
terms of the accuracy-speed balance and its wide adoption, we take a deep dive into PointNet++. We
conduct extensive analysis of its architectural design (Section 3.1) and latency decomposition (Figure
2). Interestingly, we demonstrate that both its efficiency and accuracy can be improved sharply by
minimal modifications to the architecture. These modifications lead to a new architecture design that
is faster and more accurate than currently available point methods (shown in --- in Figure 1).

Contributions. (1) We demonstrate that the MLPs performed on the neighborhood features in
the Set Abstraction (SA) module of PointNet++ reduce the inference speed. We introduce a new
separable SA module that processes on point features directly allowing for a significant improvement
in inference speed. (2) We discover that all operations for processing neighbors in the SA module are
isotropic which limits the performance (accuracy wise). We present a novel Anisotropic Reduction
layer that treats each neighbor differently. We then insert Anisotropic Reduction into our Separable
SA and propose the Anisotropic Separable Set Abstraction (ASSA) module that greatly increases
accuracy. (3) We present ASSANet by replace the vanilla SA in PointNet++ with the proposed ASSA.
ASSANet shows a much higher accuracy and a faster speed compared to PointNet++ and previous
methods on various tasks (point cloud classification, semantic segmentation, and part segmentation).
We further study two regimes for up-scaling ASSANet. As shown in Figure 1, our scaled ASSANet
outperforms the previous state-of-the-art with a much faster inference speed. In particular, scaled
ASSANet achieves better accuracy than the graph-based method DeepGCN [19] with an increase in
speed of 294 x, the pseudo grid-based method KPConv [38] (54 x faster), the adaptive weight-based
method PosPool*(S) [22] (9x faster), and the efficient 3D method PVCNN [23] (2x faster).

2 Related Work

Projection-based methods. Due to the unstructured nature of point clouds, convolutional neural
networks (CNNs) that tend to work impressively well on grid stuctured data (e.g. images, texts and
videos) fail to apply directly on point clouds. One common solution for processing point clouds is to
project them into collections of images (views) [34, 5, 42] or 3D voxels [0, 47, 36]. Common CNN
backbones (using 2D or 3D convolutions) can be subsequently utilized to perform these intermediate
representations. Although projection-based methods allow for utilizing the well studied convolutional
neural networks to point-cloud applications, they are computationally expensive as they are associated
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Figure 2: Latency Decomposition of PointNet++. We show the inference run time decomposition
of PointNet++ under different numbers of points as input on one NVIDIA GTX2080Ti GPU.

with additional cost of constructing intermediate representations. Moreover, the projection of point
clouds causes loss of important geometric information [23].

Point-based methods. Pioneering work explored the possibility of processing point clouds directly.
Qi et al. proposed PointNet [27] that leverages point-wise MLPs to extract per point features
individually. To better encode locality, Qi et al. further presented Set Abstraction (SA) to aggregate
features from the points’ neighborhood, and a hierarchical architecture named PointNet++ [28]
that learns multilevel representations and reduces the required computations. After PointNet++,
numerous point-based methods considering neighborhood information were proposed. Graph-based

methods [33, 15,41, 39, 19, 18, 29] represent point clouds as graphs and process point clouds with
graph neural networks. Pseudo grid-based methods project neighborhood features onto different
forms of pseudo grids such as tangent planes [37], grid cells [1 |, 46, 20, 25, 38] and spherical grid

points [49] which allow convolving with regular kernel weights like CNNs. Adaptive weight-based
methods perform weighted neighborhood aggregation by considering the relative positions of the

points [40, 21, 7, 22] or point density [44]. These methods rely either on designing sophisticated and
customized modules, which usually require expensive parameter tuning for different applications
[38, 20, 24], or on performing expensive graph kernels [4 1, 19] that achieve better performance than

PointNet and PointNet++ at the expense of computational complexity.

Efficient Neural Networks. Efficient neural networks is a class of architectures that target mobile
and embedded systems applications. These networks are usually designed to provide a balance
between accuracy and efficiency (e.g. latency, FLOPs, memory, and power). MobileNet [9] utilizes
depth-wise separable convolutions to reduce the required FLOPs and latency of a regular CNN
for image processing. Depth-wise separable convolutions disentangle convolutions into learning
channel correlations using point-wise convolutions and learning spatial correlations using depth-
wise convolutions. Other efficient neural networks usually leverage either depth-wise separable
convolutions with better designed architectures to improve performance [31, 4, 48] or study new
efficient operations to replace the regular convolutions [24, 43]. In 3D, efficient neural networks
include ShellNet [49], PVCNN [23], Grid-GCN [45], RandL.A-Net [10], SegGCN [17] and LPNs
[16]. ShellNet [49] and SegGCN [17] speed up the pseudo grid-based methods by aggregating
neighborhood features through efficient 1D convolutions or fuzzy spherical convolutions on the
predefined pseudo grids like shells. PVCNN [23] and Grid-GCN [45] reduce the time spent in
querying a neighborhood by combining voxelization in point-based methods. RandLLA-Net [10]
reduces the subsampling complexity by leveraging random sampling and further improves the speed
by operating on a large-scale point cloud directly without chunking. LPN [16] improves the speed
of convolving neighborhood features by a simple group-wise matrix multiplication. Nevertheless,
all efficient methods mentioned above require performing convolutions on neighborhood features,
which we deem through extensive experiments as unnecessary. Therefore, our algorithm achieves
much faster speeds compared to these methods (ref to Section 4). It is also worthwhile to mention
that our method can be made even faster with the voxelization trick in PVCNN and Grid-GCN to
further reduce the latency of neighborhood querying. We leave that as future work.

3 Methodology

3.1 Preliminary: PointNet++

PointNet++ [28] improves PointNet [27] by providing two main contributions: (1) developing a
U-Net [30] like architecture to process a set of points, which are sampled in a metric space in
a hierarchical fashion. This mechanism captures multi-scale features and reduces the required



computation. (2) Developing a Set Abstraction (SA) module to process and abstract the locality from
the local neighbors to a new set of points with fewer elements. The SA module is used as the basic
building block to be stacked to form the backbone of PointNet++.

Analysis of the Set Abstraction Module. As illustrated in Figure 3a, the vanilla SA module
proposed in PointNet++ consists of two parts: point subsampling and feature aggregation, . The
subsampling layer takes a point cloud X = {P, F'} as an input and leverages iterative farthest-point
sampling to acquire X', a subset of X. P and F' denote the coordinates and features, respectively.
The feature aggregation block is built for learning locality from local neighbors and is composed of a
grouping layer, an MLP block, and a reduction layer. The grouping layer obtains the neighborhood
composed of K neighbors for each point in X’ using the ball query, with X as the support set. The
resulting point neighborhood is denoted as A/ (X’), which contains K repeated features. The MLP
block consists of L layers of MLPs, and each MLP is followed by a Batch Normalization (BN [12])
layer and a ReLU activation. By default, PointNet++ sets L = 3. The number of feature aggregation
blocks inside one SA module, referred to as depth D in this paper, is set to D = 2. The reduction
layer (a.k.a, pooling) aggregates the neighborhood information by a reduction function, e.g. mean,
max, or sum. The feature aggregation is formulated as shown in Equation (1):

£ = R ({MLPs((p; — pi)l[f})lj € N()}) ()
where R is the reduction function across the neighborhood dimension, which is used for aggregating
the neighborhood information. p;, !, N'(i) and || denote the coordinates, the features in the I*" layer
of the network, the neighborhood of the i*" point, and the concatenation operator across the channel
dimension, respectively. The main issues with the vanilla SA module are: (1) the computational
cost is unnecessarily high. MLPs are unnecessarily performed on the neighborhood features, which
causes a considerable amount of latency in PointNet++. One straightforward remedy is to use MLPs
to learn a feature embedding on the point features directly instead of doing so on the neighborhood
features. This reduces the FLOPs of each MLP by a factor of K. (2) All operations on neighbors are
unnecessarily isotropic. In other words, the MLPs and the reduction layer treat all local neighbors
equally. This severely limits the representation capability of the network.

Latency Decomposition. Figure 2 shows the latency decomposition of PointNet++ [28] with
different numbers of points as input. Here, the latency, which is the overall run time for the inference
stage, was measured using a single Nvidia GeForce RTX 2080Ti GPU and one Intel(R) Xeon(R)
CPU E5-2687W v4 @ 3.00GHz. We note here that latency is measured on the same hardware setting
throughout this work. The latency of PointNet++ can be decomposed into three main contributing
factors: (1) point subsampling, (2) grouping, (3) actual computations. The actual computations
of PointNet++ mainly come from processing neighborhood features by MLPs shown in Equation
1. Note that we consider the time spent on data access implicitly in each part. Point clouds with
four different input sizes were studied: 1024, 4096, 10, 000, and 15, 000. The first two input sizes
are commonly encountered in classification tasks [2], and the last two are usually input sizes for
patch-based segmentation [28, 38] and LiDAR-based object detection [32]. Clearly, computations
contribute to the majority of latency (over 70 %). This suggests that the computational complexity
could be the major speed bottleneck for networks involving PointNet++.

3.2 Anisotropic Separable Set Abstraction (ASSA)

In this section, we gradually introduce the modified vanilla SA modules. Initially, we focus on
speeding up vanilla SA. This is achieved through proposing two modules, namely, PreConv SA
module and Separable SA module. Later, we focus our attention on improving the accuracy by
proposing an Anisotropic SA module.

PreConv Set Abstraction module. Vanilla SA repeatedly performs shared MLPs on point neighbor-
hood features. To solve this issue, we modify the feature aggregation layer in vanilla SA, and propose
PreConv SA to performs all MLPs on point features directly (not on the % local neighbors) before
the grouping layer. The PreConv SA is shown in Appendix Figure S1, and its feature aggregation is
formulated as follows:

f/ = MLPs (f)) . £ ' =R ({f] | j e N(0)}) 2)
PreConv SA reduces the required FLOPs by K times. PreConv SA speeds up PointNet++ by ~ 55%

(15,000 points), as shown in Section 5.1. Additionally, PreConv SA is equivalent to vanilla SA in the
case where the (p; — p;) term is not included in Equation (1). Proof is available in the Appendix.
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Figure 3: Comparison of proposed Anisotropical Separable Set Abstraction (ASSA) module
and the Vanilla SA module. (a) Vanilla SA [28] applies MLPs on neighbor features. (b) The
proposed ASSA module separates the MLPs before the grouping layer and after the reduction layer.
Therefore the MLPs are applied directly on the point features not on the neighbor features. ASSA
also replaces the reduction layer in vanilla SA with a new Anisotropic Reduction layer. X, N, C| K
are the input point cloud, the number of points, the number of input features, and the number of
neighbors. The shortcut layer in blue line is the residual connection with a linear mapping. (c) and
(d) Show the point cloud feature patterns (activations) before and after the first ASSA module. The
proposed ASSA module helps capture better geometric relationships. Refer to Section 5.1 for details.

Separable Set Abstraction module. Next, we present Separable Set Abstraction (refer to Appendix
Figure S1), which is more accurate than PreConv SA, yet requires the same latency. The aggregation
layer in Separable Set Abstraction is formulated by:

£7° = MLPs (£]) £+ = £7° + MLPs (R ({£/°* | / € N (0)}) ®)

The main idea of Separable SA is borrowed from depth-wise separable convolutions [9], where the
regular convolution is split into one point-wise convolution (MLPs), one depth-wise convolution
(channel shared convolution), and then another point-wise convolution. Separable SA evenly sepa-
rates the MLPs before the grouping layer and after the reduction layer and further adds a residual
connection between the outputs of the two parts of the MLPs. The main reasons why the Separable
Set Abstraction module is better than PreConv are: (1) after reduction MLPs further process the
aggregated neighborhood information; (2) The residual connection not only stabilizes training, but
also provides better feature embedding by fusing the aggregated local information with the point
information. Another minor change from PreConv SA to Separable SA is that we query the neigh-
borhood using the subsampled point cloud X’ as the support set to further reduce the computational
complexity of the second aggregation block.

Anisotropic Separable Set Abstraction module. PreConv SA and Separable SA cut down compu-
tational complexity at the expense of accuracy, e.g. Separable SA leads to a reduction of 3 mIoU on
S3DIS Area 5 compared to PointNet++ (Section 5.1). There are two reasons for the drop in accuracy.
First, the geometric information is not well encoded in the current variants of the SA module. The
geometric information can be represented by any relative information (edge information) between
the neighbor and the center, e.g. the relative position (p; — p;) in PointNet++. The experiments
in Section 5.1 show that geometric information is essential for point feature embedding. Second,
the reduction layer is an isotropic operation that treats each neighbor the same and thus leads to a
sub-optimal representation. Recall in a depth-wise separable convolution, the depth-wise convolu-
tion uses different weights to summarize features from a 3 x 3 receptive field. However, simply
introducing the depth-wise convolution kernel to point neighborhood aggregation does not work, as:
(1) the neighbors are not necessarily ordered for the sake of efficiency; (2) the convolution kernel
is shared by all points and neighbors and leads to poor neighborhood aggregation where the local
geometric varies. We propose an efficient geometric-aware Anisotropic Reduction layer to effectively



aggregate the point neighborhood information. The term "Anisotropic" indicates that our reduction
layer considers each neighbor differently. We insert Anisotropic Reduction into the separable SA
module and present our final variant of the SA module, the Anisotropic Separable Set Abstraction
(ASSA) module, and show it in Figure 3b. The feature aggregation of ASSA is formulated as:

£7e* = MLPs(f!)
Az £7°|| Ayi £ | Az £7°8 )
R U R e ECh)

r

Ax;j = x5—x;, Ay;; and Az;; are the relative positions between the neighbor j and the center 4 in the
x,y, z dimension, respectively. The relative positions are used as scaling weights for aggregating the
features across the neighborhood dimension, and they are normalized by the radius of the ball query 7.
The neighborhood features are scaled by the three corresponding relative positions individually. The
three scaled neighborhood features are then concatenated together and passed into the reduction layer.
To reduce the computational complexity caused by the concatenation of the three scaled features, we
set the last MLP before reduction as a bottleneck layer. This layer reduces the number of channels
by a factor of 3. The output of the reduction layer is then processed by another MLP block and is
added to the output before reduction. Due to channel mismatch, the output of before grouping MLPs
is mapped by a linear layer LN (a.k.a the shortcut layer) before the addition. We highlight that our
Anisotropic Reduction does not rely on any heuristic grouping (as done in PosPool [22]), and we
make full use of the information from the neighborhood features. The pseudo code for ASSA in
PyTorch-like style is available in the Appendix.

It is worth noting that all MLPs in ASSA are processed on the point features directly, not on the
neighborhood, which greatly reduces the computations compared to Equation (1). In particular, for
one aggregation block with L = 3 MLPs, ASSA roughly reduces the FLOPs consumed in vanilla

SA by: ngigiﬁfé{xﬁéx = ~ K times. Typically, K is around 32. All of our SA variants are

permutation invariant, which favors 3D deep learning on point clouds. More details of the ASSA
module and its comparison with previous modules are provided in the Appendix.

3.3 ASSANet

We now replace the vanilla SA module in PointNet++ [28] with our proposed ASSA module. All
other parts are kept the same as PointNet++, including the number of SA modules (4), the number of
aggregation blocks in SA (D = 2), the layers of MLPs in an aggregation block (L. = 3), the channel
sizes, the neighborhood querying configurations (ball query algorithm with maximum neighborhood
size K and radius r) and the subsampling configurations (farthest point sampling). The modified
architecture of PointNet++ is referred to as ASSANet. Section 4 shows that ASSANet can achieve
much higher accuracies compared to PointNet and PointNet++ and is faster on various vision tasks.

3.4 Scaling ASSANet

Since the ASSANet is much faster than both PointNet++ [28] and the state-the-of-art networks, we
now present two ways to up-scale ASSANet to improve its accuracy: width scaling and depth scaling.
We show the performance of each scaling regime in the ablation study presented in Section 5.2.

Width Scaling Regime. In width scaling regime, we modified the channel size of ASSANet.
ASSANet is built upon PointNet++ [28], which uses hand-crafted channel sizes for each convolution
layer. To make the scaling more programmable and user-friendly for the scaled ASSANet, the output
of each feature aggregation block inside one ASSA module is set to have the same channel size, and
is then concatenated as the output of the module. After this modification, we can easily study the
effect of width scaling on the accuracy and the speed, by simply changing the initial channel size C'

Depth Scaling Regime. The second way to scale is to increase the depth of the network, which can
be achieved by changing the number of aggregation blocks D stacked in each ASSA module. D
is set to 2 by default in ASSANet. We can decrease D to 1 to make ASSANet faster or increase
D to improve its accuracy. Among all width or depth scaled versions of ASSANet, we emphasize
ASSANet (L), a large ASSANet network with C' = 128 and D = 3. In most of the experiments, we
compare ASSANet and ASSANet (L) with the state-of-the-art.



Methods mlIOU Inference Speed

4 Experiments % instances/second

PointNet [27] 41.1 185.0
We studied the accuracy and speed of DeepGCN [19] 52.5 0.8
ASSANet and ASSANet (L) on S3DIS PointCNN [20] 57.3 124.1
semantic segmentation [|], ShapeNet Grid-GCN [45] 57.8 123.5
part segmentation [3], and ModelNet40 PVCNN [23] 59.0 89.8
point cloud classification [2]. To enable PosPool*(S) [22] 61.3 21.0
a fair comparison, the same data process- SegGCN [17] 63.6 29.3
ing and evaluation protocols adopted by KPConv [38] 65.4 1.2 (24.2)
the state-of-the-art method PosPool [22] PosPool* [22] 66.7 8.3
were used in our experiments. PointNet++ [25] 556 116.6

. ASSANet 63.0 (+7.4) 188.6 (1.6x)

4.1 3D Scene Segmentation ASSANet (L) 66.8 (+11.2) 65.6

Setups. We conducted extensive exper- Table 1: S3DIS scores (mIoU) on Area-5. ASSANet
iments on the Stanford large-scale 3D  outperforms PointNet++ and other methods with much
Indoor Spaces (S3DIS) dataset [1]. Fol- higher accuracy and faster speed. ASSANet (L) performs
lowing [20, 23, 22], we trained all our better than the state-of-the-art KPConv [38] and PosPool*
models on Area 1, 2, 3, 4, and 6 and [22] while being over 7.9x faster.

tested them on Area 5. We optimized all

of our networks using SGD with weight decay 0.001, momentum 0.98 and initial learning rate (LR)
0.02. We trained the models for 600 epochs and used an exponential LR decay. At each inference
time, a single RTX 2080Ti GPU was used to measure the speed for each method using a batch size of
16; each item in the batch has 15, 000 points (16 x 15, 000). If the batch size was too large to feed
into the GPU, we lowered the batch size. Note that we focus on the speed since FLOPs and the model
parameter size are not indicative of the actual latency [24, 23 ]. The inference speed is calculated
as the number of instances evaluated in one second (ins./sec.). The average speed over 200 runs is
reported. Other methods were measured in a similar manner. Note that KPConv [38] has to compute
the pseudo kernels for each point cloud during data preprocessing. For a fair comparison, we show
the speed of calculating the pseudo kernels on the fly. We also include the speed of KPConv with
preprocessed pseudo kernels in () in the table.

Comparison with state-of-the-art. Table 1 compares the proposed ASSANet and ASSANet (L)
with PointNet++ [28] and the state-of-the-art on S3DIS. ASSANet outperforms PointNet++ by 7
mloU and is 1.6 x faster. ASSANet also achieves much better accuracy than the two efficient point
cloud processing algorithms PVCNN [23] and Grid-GCN [45], while also being over 1.5x faster.
ASSANet (L) achieves state-of-the-art performance with a mloU of 66.8% on S3DIS, with very high
speed. ASSANet (L) is 294 x faster than the graph-based method DeepGCN [19], 54.6 x faster than
the state-of-the-art pesudo grid-based method KPConv [38], 7.9 faster than the state-of-the-art
adaptive weight-based method PosPool* [22], and 2.2 faster than the best-performing efficient
method SegGCN [17]. Note that PosPool* refers to PosPool with sinusoidal position weight, and that
PosPool* (S) denotes the small model.

4.2 3D Object Classification

Setup. As a common practice, we benchmark ASSANet on the ModelNet40 [2] object classification
dataset. We adopted a similar training setting as that of S3DIS except that we used LR 0.001 and a
cosine LR decay. At the inference time, a single RTX 2080Ti GPU was used to measure the speed for
the classification task using 16 x 10, 000 points as input.

Comparison with state-of-the-art. Table 2 compares ASSANet and ASSANet (L) with the state-of-
the-art. ASSANet outperforms PointNet++ by 1.7 units in overall accuracy and is 2.1 faster than
PointNet++. ASSANet (L) achieves on par accuracy as the state-of-the-art methods KPConv [38]
and PosPool* [22] while being 5.0x and 4.4 faster, respectively.

4.3 3D Part Segmentation

Data. ShapeNetPart is a commonly used benchmark for 3D part segmentation. The networks were
optimized using Adam [13] with momentum 0.9. The other training parameters were the same as



Methods OA Inference Speed

% instances/second

PointNet [27] 89.2 483.8
SpiderCNN [46] 90.5 <2757
PointCNN [20] 92.5 183.4
PosPool*(S) [22] 92.6 48.8
DGCNN [41] 92.9 11.6
KPConv [38] 92.9 (30.1)
Grid-GCN [45] 93.1 172.0
PosPool* [22] 93.2 27.6
PointNet++ [28] 90.7 275.7
ASSANet 92.4 (+1.7) 586.4 (2.1x)
ASSANet (L) 92.9 (+2.2) 153.2

Table 2: Comparison of our ASSANet and
ASSANet (L) with other methods on Mod-
elNetd0 point cloud classification. AS-
SANet outperforms PointNet++ with 1.7
higher overall accuracy (OA) than PointNet++
and is 2.1 times faster. ASSANet (L) achieves
on par accuracy with the state-of-the-art while
maintaining a high speed.

Methods mloU Inference Speed
% instances/second
PointNet [27] 83.7 1883.5
PosPool* (S) [22] 85.1 107.7
DGCNN [41] 85.2 151.4
LPN [16] 85.7 190.6
PosPool* [22] 85.8 58.0
PointCNN [20] 86.1 626.4
RS-CNN [21] 86.2 <350.4
KPConv [38] 86.2 (56.3)
PointNet++ [28] 85.1 350.4
ASSANet 85.4 (+0.3) 782.5 (2.2x)
ASSANet (L) 86.1 (+1.0) 438.5 (1.3%)

Table 3: Comparison of the part-averaged
IoU (mIoU) of our ASSANet and AS-
SANet (L) with other methods on
ShapeNetPart part segmentation. Both
of ASSANet and ASSANet (L) outperform
PointNet++ with a higher speed. ASSANet
(L) achieves a comparable accuracy as the
state-of-the-art while being much faster.

ModelNet40 experiments. The speed of each method was measured with an input of 16 x 2048
points. We report the part-averaged IoU (mloU) as the evaluation metric for accuracy.

Comparison with state-of-the-art. Table 3 shows that ASSANet again outperforms PointNet++
with a sharp increase (2.2x) in speed on the ShapeNetPart part segmentation dataset. ASSANet (L)
also achieves 1 unit higher mloU than PoinetNet++ with a 1.3 faster speed. Additionally, ASSANet
(L) attains on-par accuracy, 86.1% mloU, with the state-of-the-art and is much faster. For example,
ASSANet (L) is nearly 7.8 x faster than KPConv [38].

5 Ablation Study

Aggregation mloU  Speed
% ins./sec.
An ablation study was conducted on S3DIS -

[1] Area-5. We show the effectiveness of the Vanilla SA 55.6 116.6
proposed SA variants and the effect of the ~ PreConv SA 48.7 180.9
two scaling regimes on ASSANet. Separable S/_\ (SSA? . 524 180.0
SSA + Relative Position 58.5 184.0

. . SSA + Attentive Pooling[10]  59.0 142.0

5.1 Ablation on Proposed SA variants SSA + PosPool[27] 62.0 168.4

Table 4 shows the speed and the accuracy of Anisotropic Separable SA 63.0 188.6

the proposed PreConv Set Abstraction (SA)

module, the Separable SA module, and the Table 4: Ablation study of the proposed SA vari-
Anisotropic Separable SA (ASSA) module ants. All proposed SA variants achieve a faster speed
compared to the vanilla SA. All of our pro- than the vanilla SA. Our ASSA further improves the
posed SA modules lead to a sharp increase accuracy of the Separable SA module and outperforms
(over 1.6x) in inference speed. The pro- other methods, while also being faster.

posed Separable SA module can boost the

accuracy of PreConv by 3.7 mloU, which verifies the effectiveness of separable MLPs and residual
connections. Comparing the ASSA module with the Separable SA module, one can clearly see
the importance of encoding the geometric information and the effect of the anisotropic operation
to achieving higher accuracy. Additionally, we provide a comparison of our proposed Anisotropic
Reduction with the Attentive Pooling used in RandLA-Net [ 10] and the PosPool proposed in [22].
Our method clearly outperforms both of these methods in terms of accuracy and inference speed.
We also test simple addition of the relative positions A, + A, + A, as the weights of the reduction
layer, denoted as Relative Position, the obtained performance is worse than the proposed Anisotropic
Reduction. To further show the benefits of the proposed ASSA module, we visualize the feature
patterns before and after the ASSA module in Figure 3. ASSA module helps capture better geomet-
ric relationships among points constituting the point cloud (for example, in the second and fourth




examples in the first row of Figure 3d, one can see that the ASSA module allows the network to
learn relationships between the tail of the plane and its wings). Appendix provides a more detailed
overview and a further set of examples of feature patterns visualization.

5.2 Ablation on Scaling Regimes

We now study the effects of ablating the width and depth of a network on its accuracy and inference
speed. The initial channel size of the network is referred to as width (denoted by C'), whereas the
number of aggregation layers inside a single SA module is referred to as depth (denoted by D).

Width scaling. Figure 4 (left) shows the effect of the width scaling regime. When the width of the
network is small, increasing the width leads to a significant improvement in accuracy. For example,
simply increasing the width C from 3 to 8 sharply improves the accuracy from 41.21 mloU to 53.95
with a negligible drop in speed. However, when the network is wide enough (C > 128), increasing
the width further only leads to a marginal improvement in accuracy, yet reduces the speed noticeably.

Depth scaling. Figure 4 (right) shows the effect of the depth scaling regime. We study the depth
scaling with C' = 128, which is the sweet point of width scaling. When the network is shallow, with
a depth of D < 3, increasing the depth leads to an obvious increase in accuracy. However, depth
scaling rapidly saturates as the depth increases. Depth scaling leads to a linear reduction in speed.

Effect of Width Scaling Effect of Depth Scaling
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Figure 4: Effect of Width (left) and Depth Scaling (right). Increasing either the width or the depth
leads to an improvement in accuracy and drop in inference speed.

6 Conclusion

In this paper, we dove deeper into the architecture of PointNet++. We noticed that PointNet++
suffers from a computational burden attributed to the MLPs that process the neighborhood features in
the set abstraction (SA) module. We also found out that the accuracy of PointNet++ is limited by
the isotropic nature of its operations. To solve these issues, we proposed a PreConv SA module, a
Separable SA module, and finally an Anisotropic Separable SA (ASSA) module that aim to reduce the
computational cost and improve the accuracy. We then replaced the vanilla SA module in PointNet++
with our ASSA module and proposed a fast and accurate architecture, namely, ASSANet. Extensive
experiments were conducted to verify the presented claims and showed that ASSANet achieves
largely improved accuracy and much faster speed on various point cloud tasks, such as classification,
semantic segmentation, and part segmentation. We also studied up-scaling ASSANet. The scaled
ASSANet set new state-of-the-art on various tasks with faster speeds. For future work, one could
leverage both random sampling [10] and voxelization tricks [23, 45] to further improve the inference
speed. Alternatively, one could consider studying compound scaling, like that in EfficientNet [35].
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