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ABSTRACT

Large language models (LLMs) often fail to recognize their knowledge bound-
aries, producing confident yet incorrect answers. In this paper, we investigate how
knowledge popularity affects LLMs’ ability to perceive their knowledge bound-
aries. Focusing on entity-centric factual question answering (QA), we quantify
knowledge popularity from three perspectives: the popularity of entities in the
question, the popularity of entities in the answer, and relation popularity, defined
as their co-occurrence frequency. Experiments on three representative datasets
containing knowledge with varying popularity show that LLMs exhibit better QA
performance, higher confidence, and more accurate perception on more popu-
lar knowledge, with relation popularity having the strongest correlation. Cause
knowledge popularity shows strong correlation with LLMs’ QA performance, we
propose to leverage these signals for confidence calibration. This improves the
accuracy of answer correctness prediction by an average of 5.24% across all mod-
els and datasets. Furthermore, we explore prompting LLMs to estimate popularity
without external corpora, which yields a viable alternative.

1 INTRODUCTION

Large language models (LLMs) (Achiam et al., 2023} [Yang et al., 2024; |Dubey et al.| [2024)) often
hallucinate—producing fluent but factually incorrect answers which is unacceptable in safety-critic
domains such as healthcare. Accurately identifying when LLMs produce correct answers not only
helps determine when to trust their outputs, but also enables adaptive retrieval-augmented generation
(RAG)—performing retrieval only when they do not know the answer—thereby enhancing both the
effectiveness and efficiency of RAG (Ni et al.,|2024a). A reliable model should have a clear percep-
tion of its knowledge boundaries—knowing what it knows and what it does not. This requires its
confidence in an answer, reflected in the generation probability, to align with the actual likelihood of
the answer being correct (Jiang et al.,2021). While many studies have examined LLMs’ perception
level of their knowledge boundaries and found that they tend to be overconfident (Lin et al.| 2022
Tian et al.} 2023)), the underlying factors influencing the perception remain poorly understood.

A natural hypothesis is that a model’s perception level can be influenced by the popularity of the
knowledge—i.e., how frequently the model has encountered it during training. When asked about
popular knowledge, the model may be more likely to respond both correctly and confidently. Prior
work (Mallen et al.,|2023) has shown that LLMs achieve better QA performance on more popular
questions. This raises a key question: how do the model’s confidence and its alignment with QA
performance vary with knowledge popularity?

To investigate this, we focus on entity-centric factual QA (Mallen et al.|, 2023 |Yuksekgonul et al.,
2023)) where both the question and the answer contain an entity because this enables us to quan-
tify the popularity of knowledge based on entities. Specifically, we assess knowledge popularity
from the following three perspectives: 1) Question popularity Pop,: popularity of the entity in the
question. 2) Ground-truth answer popularity Pop .;: popularity of the entity in the ground-truth an-
swer. 3) Ground-truth relation popularity RPopsr: the co-occurrence frequency of the question and
ground-truth entities. Higher entity popularity suggests more accurate entity representations. Rela-
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tion popularity directly influences the model’s ability to comprehend associations between entities,
but is costly to collect.

Since ground-truth answers are unavailable in real-world scenarios, we also examine model-
generated answers. Specifically, we investigate whether the popularity of the generated answer
(Popg,) and the relation popularity between the generated and question entities (RPopg,) reflect
the model’s QA performance, confidence, and perception level. We focus in particular on their
correlation with QA performance, as a strong correlation could allow these signals to be used for
calibrating the model’s confidence.

We conduct experiments on three entity-centric factual QA datasets—Movies, Songs, and Basket-
ball—constructed from Wikidata knowledge triplets by |Yuksekgonul et al. (2023). Some ques-
tion examples can be seen in Figure [I| We quantify entity popularity by the number of Wikidata
language editions in which an entity appears. Relation popularity is measured by the number of
Wikipedia documents where both entities are mentioned together. We use two representative open-
source models—LLaMA3-8B-Instruct (Dubey et al.| 2024) and Qwen2-7B-Instruct (Yang et al.,
2024)—as well as the black-box model ChatGPT (Achiam et al., [2023)).

Results on Popg,, Popgr, and RPopgy show that LLMs demonstrate better QA performance, higher
confidence, and more accurate perception of their knowledge boundaries on more popular knowl-
edge. Although LLMs are generally overconfident, the extent of overconfidence diminishes as
knowledge popularity increases, since QA performance improves more rapidly than confidence.
Among the three popularity measures, RPop; shows the strongest correlation with QA accuracy,
confidence, and perception level most of the cases. Interestingly, question popularity correlates more
strongly with confidence than with QA performance, implying that LLMs may become overconfi-
dent simply due to familiarity with the question.

Regarding generated answers, RPopg,, shows a strong positive correlation with QA performance,
confidence, and perception level, while Pop, exhibits a weaker correlation. Notably, RPop, shows
even stronger correlation with QA performance than RPopgp, while Pop, correlates more weakly
than Pop,p. We further analyze the reason and reveal that when LLMs make errors, they tend to
generate more popular entities that co-occur less frequently with the question entity compared to
ground-truth answers, indicating a tendency toward over-generalization. This is consistent with the
findings of Zhang et al.| (2024b)).

Based on these findings, we propose to leverage popularity features (i.e., Popg, Popg,, and RPopg,)
to calibrate confidence which aims to improve the effectiveness of confidence in predicting answer
correctness. Given that computing knowledge popularity requires access to external corpora and
incurs additional collection costs, we also investigate prompting the model to estimate popularity
on its own. Results show that Pop, and Popg, provide modest gains in calibration. In contrast,
RPopg, provides substantial gains. Combining all these three types of popularity yields the best
calibration performance, boosting answer correctness prediction by an average of 5.24% across
all models and datasets. Moreover, leveraging model-estimated popularity also performs well for
confidence calibration. The choice between external corpora and self-estimation ultimately hinges
on the trade-off between performance and efficiency.

2 RELATED WORK

Existing research on model knowledge boundary perception focuses on assessing model confidence
and can be mainly classified into four categories.

Probabilistic Confidence. This line of research treats the generation probability of the answer as
the confidence of the model (Guo et al.l |2017; |Desai & Durrett, |2020; Jiang et al., 2021; [Kadavath
et al., 2022} |Si et al.|, 2022} [Kuhn et al.l [2023). |Guo et al.| (2017)) examined early neural networks
(e.g., ResNet (He et al.| 2016))) and found them to be overconfident, proposing temperature scaling
as a remedy. Later, Desai & Durrett| (2020) showed that BERT-style models tend to be relatively
well-calibrated, while Jiang et al.|(2021) found that pre-trained language models such as T5 (Raffel
et al., 2020) remained overconfident. More recent work has turned to LLMs, with studies showing
that they, too, exhibit overconfidence (51 et al., | 2022; |Lin et al., 2022} Tian et al., 2023).
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Verbalized Confidence. LLMs have been shown to express their confidence verbally (Lin et al.,
2022; |Yin et al., 2023 [Tian et al., 2023} |Xiong et al., 2023} |Yang et al.l 2023 N1 et al., 2024a).
Some studies (Yin et al., 2023} N1 et al. |2024a) found that LLMs often fail to recognize their
knowledge limitations verbally and tend to be overconfident. Xiong et al.| (2023)) systematically
studied black-box approaches for estimating LLM confidence. Beyond prompting-based methods,
some studies aim to train LLMs to verbalize more accurate confidence (Lin et al., 2022} |Yang et al.,
2023 |Zhang et al.| [2024a).

Consistency-based Confidence. If the model is confident in its answer, it should maintain consis-
tency across multiple generations. Recent studies have used self-consistency across generations as
a proxy for LLM confidence (Manakul et al., [2023} Kuhn et al., 2023). Zhang et al.[(2023) extended
this by evaluating the consistency of answers across multiple semantically equivalent inputs and
across different models. Ding et al.|(2024) further adapted this approach to the multilingual setting.

Confidence Estimation via LLM Internal States. LLMs’ internal states have shown to be effec-
tive in evaluating the factuality of their self-generated content (Su et al., [2024; |Chen et al., 2024;
Wang et al.| [2024; Ni et al.l 2025). Specifically, |Su et al.| (2024) and |Chen et al.| (2024) focused
on internal states after generation, Wang et al.| (2024) examined those before generation, and Ni
et al.| (2025) explored leveraging LLMs’ internal states to enhance their perception of knowledge
boundaries from efficiency and risk perspectives.

We focus on probabilistic confidence for the following reasons: 1) Both the model’s generation
probabilities and its knowledge acquisition arise from the same training objective, and are expected
to align with each other. 2) Models without specialized training often struggle to verbalize con-
fidence accurately (Ni et al., [2024b); consistency-based methods require multiple generations and
incur high inference costs; and internal-state-based approaches require access to hidden representa-
tions and additional training. In contrast, probabilistic confidence is readily accessible and has been
shown to perform well, especially when answers are short (Ding et al., 2024)).

3 TASK DESCRIPTION

Entity-Centric QA. We focus on entity-centric

@) Movies knowledge because it allows us to measure
fﬁ Who is the director of the movie [Movie Name]? J knowledge poplﬂaljlty thI'Ol]gh entities. In en_tlty_
- centric QA, questions and answers are derived
1@ Songs from knowledge triples in the form of (subject,
Who is the performer of the song [Song Name]? J relation, object), where the question queries the

@) Basketball relation of a given subject, and thg modql is
- _ expected to generate the corresponding object.

Where is the birthplace of the basketball player [Player Name]? . . .

} Examples of knowledge triples are provided in

Table [T} with their transformed question forms
Figure 1: Question examples for each dataset. ~ shown in Figure[T]

LLM Knowledge Boundary Perception. The model’s perception of its knowledge boundaries is
evaluated by the alignment between its confidence and actual QA performance. QA performance
is measured by whether the generated answer contains the ground-truth answer, and confidence is
reflected in generation probability of the answer tokens (see Section §[2). Specifically, for a question
q and a model M, the confidence c is computed as:

T

c= TZP(QHQQ)’ (D

i=1

where {g1, ..., gr} is the generated tokens.
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4 How DOES KNOWLEDGE POPULARITY AFFECT LLMS’ PERCEPTION
LEVEL?

In this section, we investigate how Pop,, Popgr, and RPopgy influence LLMs” QA performance,
confidence, and perception level.

Table 1: Data size for each dataset, along with the corresponding subject, relation, and object types.

Datasets Count Subject Relation Object
Movies 10,964 Movie Directed by Director
Songs 2,157 Song Performed by  Performer

Basketball 13,309 Player  Birthplace City

Table 2: Definitions of notations about knowledge popularity where pop. means popularity.

Notation Definition

Popg, Popularity of entities in the question

Popgr Popularity of entities in the ground-truth answer
RPopg;r  Relation pop. between question and ground-truth entities
Popg, Popularity of entities in the generated answer

RPop;.  Relation pop. between question and generated entities

4.1 EXPERIMENTAL SETUP

Datasets. |Yuksekgonul et al.| (2023)) constructed entity-centric QA datasets based on Wikidat
using the number of sitelinks on a page as a proxy for entity popularity. They showed that this
measure strongly correlates with an entity’s frequency in the training data. Building on this, we
conduct experiments on their datasets to ensure reliable entity popularity measurement. We select
three representative datasets—Movies, Song, and Basketball—because they exhibit clear differences
in knowledge popularity. Specifically, question popularity ranks as Movies ; Songs ; Basketball,
while ground-truth answer popularity follows Movies | Songs | Basketball. Table[T]lists the knowl-
edge triplets and data counts for each dataset, and Figure [T] presents example questions. We apply
data filtering to ensure reliable results, as detailed in Section §A]

Entity Popularity. Following Mallen et al.| (2023); |Yuksekgonul et al.|(2023)), we define the popu-
larity of an entity by the number of sitelinks it has—i.e., the number of Wikipedia pages in different
languages that link to it.

Relation Popularity. As Wikipedia is the primary high-quality source for Wikidata, we estimate
relation popularity based on Wikipedia content. Specifically, for each entity pair, we measure rela-
tion popularity by counting the number of documents in the Wikipedia dump-|in which both entities
co-occur. This reflects relation popularity in the model’s training data, as it shows a strong correla-
tion with QA performance (see Table 3).

LLMs. We conduct experiments on three representative LLMs: two open-source models, Llama3-
8B-Instruct (Dubey et al.,|2024) and Qwen2-7B-Instruct (Yang et al.,2024), as well as a black-box
model, ChatGPT (i.e., GPT-3.5-Turbo-1106) (Achiam et al., | 2023).

Answer Generation. For all the models, we use greedy search, selecting the token with the highest
probability at each generation step. An example can be seen in Figure 20

Metrics. For each question ¢;, we measure answer correctness using accuracy acc;, where the gen-
erated answer is considered correct if it contains the ground-truth answer. The model’s confidence
¢; is defined as the generation probability of the answer, as described in Section §3] Alignment is

'nttps://query.wikidata.org/sparql
https://huggingface.co/datasets/wikimedia/wikipedia
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Table 3: LLMs’ QA performance, confidence, alignment and the correlations between knowledge
popularity and accuracy, confidence, and alignment across different datasets.

Accuracy Confidence Alignment

Datasets ~ Models Acc.  Pop, Popgr RPopgy Conf. Pop, Popgr RPopgr Align.  Popp  Popgr RPopgr

Llama3 72.65 0317 0220 0357 90.68 0.404 0.367 0.509 7550 0.404 0.347 0.501
Movies Qwen2 4285 0433 0299 0494 8232 0413 0.371 0.507 53.63 0.386 0.279 0.440
ChatGPT 94.78 0.134 0.069  0.130  98.80 0.210 0.230 0.280 9485 0211 0.228 0.279

Llama3 3897 0277 0.164 0517 79.74 0369 0.210 0.502  53.04 0.182 0.093 0.361
Songs Qwen2 2582 0362 0.255 0.541 78.00 0.300 0.200 0.345 4297 0.230 0.180 0.392
ChatGPT 7336 0.171 0266 0399 9484 0249 0.295 0.381 7528 0.232  0.340 0.399

Llama3 1337 0.118 0293  0.231  60.09 0.173 0.063 0.055 46.21  -0.052  0.104 0.097
Basketball Qwen2 9.90 0.014 0.348 0.151 7476 0.151 0.076 0.009 3235 0.126  0.189 0.105
ChatGPT 34.89 0.288 0.215 0.353  79.06 0.351 0.054 0270 5043 0201 0.164 0.303

| ChatGPT on Movies 100 ChatGPT on Songs \ ChatGPT on Basketball
0.98 " 0.95 09
0.96 f/ 090 — 08
0.85 ——
— 0.7 .
0.94 ; — ,
4 / %080 3 _—
= / = icha -
5092 ’,?\ / 075 B os _—
\/
0901 4 ¢ 0.70 - el
0.83] ~® Accuracy 065 %/ —e— Accuracy 0.4 —e— Accuracy
- Confidence V Confidence 03 Confidence
0.86 Alignment 0.60 Alignment s Alignment
0.5 2%
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Figure 2: QA performance, confidence, and alignment of ChatGPT across question popularity.

then computed as 1 — |acc; — ¢;|. To examine the relationship between knowledge popularity and
QA performance, confidence, and alignment, we use Spearman correlation coefficients (Hauke &
Kossowski, [2011)), which range from -1 to 1. The sign indicates the direction of the correlation,
while the absolute value reflects its strength.

4.2 RESULTS AND ANALYSIS

LLMs’ QA performance, confidence, and perception levels across different datasets, along with
the Spearman correlation coefficients between knowledge popularity and accuracy, confidence, and
alignment are shown in Table[3] We observe that:

1) LLMs achieve better QA performance and higher confidence on more popular knowledge.
All three types of popularity are positively correlated with both QA performance and confidence.
For QA performance and confidence, we conduct the following analyses respectively.

For QA performance, relation popularity generally shows the strongest correlation, as expected,
while question popularity exhibits a stronger correlation than answer popularity in most cases. This
suggests that learning through co-occurrence is especially effective for acquiring knowledge, and
that familiarity with the question contributes more to answering correctly than familiarity with the
answer. However, on the Basketball dataset, answer popularity shows the highest correlation for
both LLaMA3 and Qwen2. This dataset is challenging because both the question and relation have
low popularity. The models are often unfamiliar with the question entity and generate a popular
city name instead—a behavior consistent with knowledge overshadowing (Zhang et al.l 2024b).
ChatGPT does not exhibit this pattern, likely due to a stronger mastery of the relevant knowledge.

For confidence, question and relation popularity are strongly correlated in most cases, while answer
popularity has a weaker impact. Notably, question popularity consistently correlates strongly with
confidence and, in 7 of 9 cases, more than with QA performance. This suggests that LLMs may
become more confident simply because familiarity with the question, even if they do not know the
answer. On the Basketball dataset, confidence shows little correlation with answer popularity across
all three models. We hypothesize that the models are generally familiar with city names, and thus
do not exhibit higher confidence for samples with more common answers.

2) LLMs better perceive their knowledge boundaries on more popular knowledge. To better
understand this, we analyze how the gap between confidence and QA performance changes with
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Table 4: Correlations between LLMs” QA performance and Popg,, Popg,, and RPopg,.

Datasets Models ~ Pop, Popg, RPopg,

Llama3 0317 0.100  0.637
Movies Qwen2 0433 0.087  0.756
ChatGPT 0.134 0.083  0.208

Llama3  0.277 0.257  0.621
Songs Qwen2  0.362 0.188 0.666
ChatGPT 0.171 0.218  0.351

Llama3 0.118 0.116  0.245
Basketball Qwen2  0.014 0.116 0.106
ChatGPT 0.288 -0.164  0.293

increasing knowledge popularity. Due to space constraints, we just present this gap for ChatGPT as
question popularity increases, shown in Figure[2] We observe that although LLMs are consistently
overconfident, their QA performance improves more rapidly than confidence as question popularity
increases, thereby narrowing the gap. Results for other models, as well as analyses based on other
popularity, are included in the Appendix and exhibit similar trends. As shown in Table [3} among
the three types of popularity, relation popularity typically shows the strongest correlation.

5 ANALYSIS OF MODEL-GENERATED ANSWERS

In real-world scenarios, ground-truth entities are often unavailable. This motivates us to investigate
whether the popularity of model-generated entities—along with their relational popularity with the
question entity—correlates with the model’s QA performance, confidence, and perception level. We
focus particularly on the relationship between popularity and QA performance, as a strong correla-
tion could enable us to leverage these signals for confidence calibration. The experimental settings
are the same as those in Section § ]

5.1 RESULTS AND ANALYSIS

Table [] shows the Spearman correlation coef-
07 ficients between LLMs’ QA performance and

. 7 BPopgr knowled larity based del- ted
_ v 7 ’ nowledge popularity based on model-generate
i gz % % EI;PZ;"GT entities. Due to space constraints, results on
2 04 % % ERPopg, LLMs’ confidence and perception levels are pro-
3 03 % % vided in Table[7)in the Appendix. We observe the
5 following.
©o0.2 % % 7
1l - y
0.1 % // l% The popularity of generated entities (Popg,.)

and their co-occurrence with question entities
Movies Songs Basketball (RPopg,) positively correlate with LLMs’ QA
) ) ) performance, confidence, and perception level in
Figure 3: Comparison of the correlation be- gt cases. RPopg, typically shows the strongest
tween ChatGPT’s QA performance and ground-  ¢qrrelation, outperforming both Pop,, and Popg,.
truth vs. generated answers: Popgr vs. Popge, In contrast, Popy, often exhibits the weakest cor-
and RPopgy vs. RPopg,. relation. These findings are similar to the results
based on ground-truth entities, as discussed in Section §|§

Popg,. shows a weaker correlation with QA performance compared to Pop; while RPop, exhibits
a comparable or even stronger correlation than RPopsy. We present the comparison for ChatGPT
in Figure 3] while results for other models can be obtained by comparing Table 3] and Table ] To
better understand this, we perform a more detailed comparison between model-generated answers
and ground-truth answers. We only focus on cases where the model makes mistakes since the
generated answer matches the ground-truth answer otherwise and analyze in Section §[5.2}
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5.2  WHAT DO LLMS GENERATE WHEN THEY HALLUCINATE?

We focus on the differences in popularity between model-generated answers and ground-truth an-
swers when the model makes errors (See Figure EI), as well as the differences in their co-occurrence
frequency with the question entity (See Figure[5).

LLMs tend to generate entities that are more
220 @Liams common and less frequently co-occur with the
B question entities than ground-truth answers
BAcc-0 & GT Ans when they hallucinate. As shown in Figure 4]
for incorrectly answered samples, the generated
60 I
20 m%lm%l 4
Movies Songs Basketball

%
S

=
S

BBAcc=0 & Gene Ans
e entities are often more popular than the ground-
truth entities. So the popularity gap between cor-
rect and incorrect answers is smaller for gener-
ated entities than for ground-truth entities, lead-
ing to a weaker correlation between Popg, and
QA performance. This may be because the
model tends to overgeneralize—once it learns
high-frequency answers, it tends to use them in
many similar contexts.

%
%
.
7
-
i

Popularity

100

Figure 4: Popgy, Popg,. in incorrectly answered
samples and Popg (also Popg, ) in correctly an-
swered samples.

In incorrectly answered samples, model-generated answers typically co-occur less frequently with
question entities compared to ground-truth answers, as shown in Figure[5] As a result, the correlation
between RPopg, and QA performance is stronger than that of RPopgr, because the difference in
RPop,. between correct and incorrect samples is greater than that of RPopgy.

6 CONFIDENCE CALIBRATION WITH KNOWLEDGE POPULARITY

Given that Popg,, Popg,, and RPops,—especially
RPop.—are strongly correlated with QA per-

A mLlama3 mQwen2 ChatGPT
formance, we propose to use these signals for

confidence calibration, i.e., improving the effec- 9
tiveness of confidence in predicting answer cor-
rectness. Since obtaining these signals typically ="
requires external corpora and incurs additional 5 0
costs, we also explore whether LLMs can assess
knowledge familiarity on their own. 60 I
50 .
6. ] KNOWLEDGE Movies Songs Basketball

POPULARITY ACQUISITION . . .
Figure 5: Proportion of incorrectly answered

Corpora-based Popularity. As outlined in samples where RPopg, is less than RPopgy.
Section §[3] we get popularity from external corpora.

Model-generated Popularity. To eliminate reliance on external corpora and reduce the overhead
of collecting popularity, we investigate whether LLMs can self-assess their familiarity with a given
the entity or the relation. Familiarity is measured on a 10-point scale, where 1 denotes the lowest and
10 the highest level. The model is asked to provide its familiarity score accordingly. We provide the
model with varying numbers of corpora-based popularity examples to examine whether supplying
such examples helps the model produce more accurate familiarity. We present examples under both
zero-shot and few-shot settings and all these prompts can be found in Section §[Hin the Appendix.

6.2 BASELINES

We use representative confidence estimation methods that do not require access to model parameters
as our baselines.

* Verbalized Confidence (Verb) (Yin et al., 2023) instructs the model to verbally assess whether it
can answer the question correctly. The prompt can be seen in Figure 2T]in the appendix.
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* Self-consistency (Consis) (Manakul et al.,|2023) estimates the model’s confidence by measuring
the semantic consistency of multiple sampled answers. The core idea is that if the model knows
the correct answer, multiple sampled answers should be semantically consistent. For each ques-
tion, we sample 10 additional responses with a temperature of 1.0. For ChatGPT, due to cost
constraints, we limit sampling to 3 additional responses. Semantic consistency is assessed using
Qwen2.5-32B-Instruct (Yang et al.,|2024)).

* Probabilistic Confidence (PC) (Kumar et al.,[2024) takes generation probabilities for the tokens
in the answer as the model’s confidence. This is the confidence we have been using throughout
the paper, and the one we aim to calibrate. Details can be seen in Section § 3

6.3 DATA CONSTRUCTION

For each sample in the datasets, we construct a data pair {z,y}, where y is a binary correctness
label: y = 1 if the generated answer contains the ground-truth answer, and y = 0 otherwise.
To study the effect of each type of popularity on confidence calibration, we construct  using the
following features: 1) PC+Pop, 2) PC + Popg,, 3) PC + RPopg,, and 4) PC + ALL — PC
and all these three types of popularity. We also use each type of popularity itself as = to study its
effectiveness in answer correctness prediction.

6.4 ANSWER CORRECTNESS PREDICTION

Based on the constructed =, we predict a binary judgment on correctness, as shown below.
§=E&(x), 2)

where & represents the binary classification function and § means the predicted correctness (i.e., 1
for correct and O for incorrect).

Single-feature Prediction. For the setting where = contains only a single feature, we select a
threshold X that maximizes prediction accuracy on the training set, and apply this threshold to per-
form binary classification on the test data. This can be formualted as:

1 ifx> A,
Y=o otherwise,

3)

Multi-feature Prediction. For the setting where = contains multiple features, we perform binary
classification using a lightweight MLP network, as defined below:

P(j=1) =0 (MLP(z)), 4)

where o refers to the softmax function, z € R4x" represents the input features, d is the count of
input features (e.g., d=2 for PC+Popg) and h means the model’s hidden dimension. We use a 3-
layer MLP with 64, 32, and 2 neurons in each layer, respectively. The activation function in MLP is
ReLU. We employ cross-entropy loss as the training objective:

N

Leg=—Y yilog(P) + (1—y:)log(1 — Py), )
=1

where y; is the ground-truth correctness for the i-th training sample, IV is the count of training
samples, and P; denotes P(f; = 1). Detailed training parameters can be found in Section §@

Metrics. We use answer correctness prediction accuracy as the metric. To reduce the impact of
randomness, all our reported results are the averages obtained from three random seeds: (0, 42, 100).

Datasets and LLMs. We use the same data and LLMs as in Section § We randomly split
each dataset into two equal parts for training and testing and select the checkpoint with the high-
est prediction accuracy on the training set. Detailed settings can be found in Section § [D]in the
Appendix.
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Table 5: Accuracy of answer correctness prediction. Bold denotes the highest score in either
corpora-based or self-generated knowledge popularity. Self-generated knowledge popularity is ob-
tained under the zero-shot setting.

Movies Songs Basketball Ave
Features Llama3 Qwen2 ChatGPT Llama3 Qwen2 ChatGPT Llama3 Qwen2 ChatGPT
Baselines
Verb 65.58 45.93 83.41 40.22 29.58 69.25 51.58 50.49 48.89 53.88
Consis 82.21 74.61 96.00 77.62 86.31 83.72 53.76 52.10 71.77 76.01
PC 83.20 79.77 95.95 75.20 83.02 79.11 65.49 66.36 77.87 78.44
Corpora-based Knowledge Popularity
Pop, 71.68 70.62 88.24 66.35 76.84 68.00 56.25 50.90 69.32 68.69
Popg. 73.09 58.86 94.22 63.38 74.57 74.41 60.54 60.33 64.86 69.36
_RPopg, ____8966__ 8792 9603 _ 8271 8959 = 8l46 _ 67.03 5964 _ 6474 = 79.86

PC+ALL 9332 9247 9637 8146 8811 8271 7193 6818 7859  83.68

Self-generated Knowledge Popularity
PC+Pop, 83.91 80.60 95.87 77.85 84.82 79.50 65.30 67.31 78.43 79.29
PC+Popg, 84.02 80.24 95.59 75.20 83.02 78.56 68.40 67.49 78.21 78.97
PC+RPop;.  85.30 80.20 95.80 79.65 84.04 79.81 66.17 67.90 77.59 79.61
PC+ALL 85.95 81.40 95.84 78.87 86.07 80.05 67.69 68.08 78.70 80.29

6.5 RESULTS AND ANALYSIS

Results on corpora-based knowledge popularity. Results based on knowledge popularity from
external corpora is shown in the upper half of Table[5] We observe that: 1) Compared to the model’s
confidence, RPop,, more accurately reflects answer correctness, outperforming all baselines in 6
out of 9 cases. In contrast, Pop, and Popg, individually show limited effectiveness in predicting
correctness. 2) All three types of popularity contribute to calibrating the model’s confidence,
with their combination yielding the most effective results. In most cases, augmenting PC with
each type of popularity improves upon PC, with PC+RPop, achieving the highest average accuracy
among them. Notably, combining all three types leads to the most effective calibration, consistently
outperforming PC and yielding an average accuracy improvement of 5.24% across diverse datasets
and models. Further analysis and case studies are provided in Section § [E|

Results on model-generated knowledge popularity. The prediction accuracy based on model
self-generated knowledge popularity under the zero-shot setting can be found in the lower half of
Table 5] It show that: 1) All three types of self-generated popularity contribute to confidence cali-
bration. On average, all three signals can calibrate PC, and their combination achieves the best cali-
bration effect, obtaining the optimal value in 6 out of 9 cases. However, the model’s self-generated
signals yield weaker calibration effects compared to corpus-based knowledge popularity. The choice
between corpus-based popularity and self-generated popularity depends on the trade-off between
effectiveness and efficiency. 2) LLMs can not estimate popularity better with few-shot learning
compared to zero-shot. Detailed analysis can be found Section § [Cin the Appendix.

7 CONCLUSION

In this paper, we investigate how knowledge popularity—measured through entity and relation
popularity—affects LLMs’ QA performance, confidence, and perception of their knowledge
boundaries, and explore its utility for confidence calibration. We find that LLMs perform better,
express higher confidence, and demonstrate more accurate perception on more popular knowledge,
with relation popularity having the strongest influence. We further show that the popularity and
co-occurrence of model-generated answers also positively correlate with QA accuracy. Leveraging
these popularity signals for confidence calibration yields an average 5.24% improvement in
predicting answer correctness. To reduce reliance on external corpora, we also demonstrate that
model-estimated popularity can serve as a viable alternative, offering a practical trade-off between
performance and efficiency.
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ETHICS STATEMENT

We approach ethics with great care. In this paper, all the datasets and models we use are open-source.
Our analysis of knowledge popularity does not introduce any harmful information. Moreover, our
proposed method can help accurately determine whether the model’s answer is trustworthy, prevent-
ing users from being misled by incorrect responses.

REPRODUCIBILITY STATEMENT

All datasets used in this paper are publicly available, and the popularity signals were constructed
based on these datasets. The detailed procedure is described in Section The three LLMs
employed in this study are widely adopted models. Furthermore, for training, we only used a
lightweight MLP network, which requires minimal computational resources. Furthermore, all
prompts used in this paper are provided in Section ??.
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A DATA FILTERING

The model’s generated response may be empty or fail to find a corresponding entity in Wikidata. To
ensure comparability of results across different models on the same dataset, we filter out data where
any model’s generation is empty or the generated entity cannot be found in Wikidata. Additionally,
for the Movies and Songs datasets, we filter out cases where the question entity, ground truth entity,
or model-generated entity appears in more than 6,000 documents. This is because entities in these
two datasets typically do not appear in more than 6,000 documents, and those that exceed this
threshold often introduce noise. For example, "Queen” appears more than 6,000 times but is not
exclusively used as a band name. We filter these cases to obtain an accurate co-occurrence counts.
After filtering, the remaining data sizes for the Movies, Songs, and Basketball datasets are 8,184,
852, and 13,136, respectively.

=
5

R-Pop

o9
g

ngs
asketball

P(RIO) 0

0.204
0.162 [ 5.01

0.002 35 94.2 Acc.
0.002

A

0.107
P(RIA)
0.03a

NMI

Figure 6: QA performance and NMI calculated based on ChatGPT. R-Pop means relation popularity,
where P(R|Q) and P(R|A) denote the co-occurrence proportion of question and answer entities
relative to their individual occurrences in documents.

B ANALYSIS ON RELATIONSHIP STRENGTH

We hypothesize that the strength of the relationship between entities may also influence the model’s
learning. Specifically, when the subject and object frequently co-occur but are also commonly as-
sociated with other entities, the model may struggle to learn their specific relationship. We use
normalized mutual information to quantify relationship strength and find that stronger relationship
contributes to better QA performance. Normalized mutual information is computed as:

NMI(X,Y) = & (6)
H(X)H(Y)
where I(X,Y) is defined as:
— P(xivyj)
I(X,Y) = P(z,y;)log 5———7-~, )
;; 7 Pai)P(y;)

and H(X) and H(Y') serve as regularization terms to mitigate the influence of the sizes of n and m,
as well as the magnitude of probability values. Their formulations are:

n

H(X) ==Y P(x:)log P(x,), (8)
H(Y) == P(y;)log P(y;). )
j=1

Specifically, for a dataset converted from knowledge triplets D = {s;,r,0;}7;, we define X =
{s1,...,8,}and Y = {o1,...,0,}. We estimate P(s;), P(0;), and P(s;,0;) using a Wikipedia
dump of d documents, where P(s;) and P(o,) are the proportions of documents containing s; and

13
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Figure 7: The prediction accuracy obtained by performing confidence calibration using knowledge
popularity generated from different numbers of examples. Each point represents the average predic-
tion accuracy of the model across three datasets.

0;, respectively, and P(s;, 0;) is the proportion containing both. If i # j, we set P(s;,0,) = 0, as
we focus only on the relationship between s; and o;.

The results based on ChatGPT are shown in Figure [ We observe that, compared to the movies
dataset, the question entity co-occurs more frequently with the ground-truth entity in the songs
dataset, yet the model’s QA performance is lower. This can be attributed to the lower NMI in the
songs dataset, driven by a low P(R|A). This indicates that, besides the question entity, the answer
entity also co-occurs with many other entities through various relations. This may interfere with the
model’s memory of the relationship between the question entity and the answer entity.

C EFFECTS OF FEW-SHOT LEARNING ON POPULARITY GENERATION

Examples selection. For a given dataset, we sort all samples by popularity in ascending order, re-
move duplicates, and divide the popularity values into 10 equal intervals, assigning values from 1 to
10 in ascending order. Each sample is then assigned to its corresponding interval, updating its pop-
ularity accordingly. For 3-shot, we randomly select one sample from the intervals with popularity
values of 2, 5, and 8. For 5-shot, we randomly select one sample from the intervals with popularity
values of 1, 3, 5, 7, and 9. For 10-shot, we randomly select one sample from each of the 10 intervals.

Results. Figure [7|shows the average prediction accuracy of Conf-QG-R across three datasets us-
ing model-generated popularity under different shot settings. As the number of examples increases,
prediction accuracy does not improve, while inference cost rises. Therefore, we recommend prompt-
ing LLMs to assess their familiarity with entities and their relationships in a zero-shot setting. Due
to API costs, we first conduct experiments on LLaMA3-8B-Instruct and Qwen2-7B-Instruct and
find that increasing the number of samples in the prompt does not yield more effective knowledge
popularity. Therefore, we only perform 0-shot and 3-shot experiments on ChatGPT.

D DETAILED PARAMETER SETTINGS

Inference. For all the models, we use greedy search, selecting the token with the highest proba-
bility at each generation step. For open-source models, our experiments are conducted on a single
80GB A800 GPU.

MLP Training. For both corpora-based and model-generated popularity, we train the model using
the Adam optimizer with a learning rate of 2e-3 and a batch size of 8. The intermediate layer has a
dropout rate of 0.4, and training runs for 100 epochs. All experiments are conducted on two 16GB
V100 GPUs. We select the checkpoint with the highest prediction accuracy on the training set for
evaluation on the test set.

14



Under review as a conference paper at ICLR 2026

Class Balancing for The Basketball Dataset. Since the MLP fails to learn meaningful patterns on
the basketball dataset for Llama3 and Qwen2—consistently classifying all samples as incorrect due
to the overwhelming imbalance—we extract all correctly answered samples and randomly sample
an equal number of incorrect ones (seed = 0) to ensure balanced learning across both classes. The
training set and the test set are evenly split from the sampled dataset.

E CASE STUDIES

We compare PC and PC+ALL on LLaMA3 for answer correctness prediction to illustrate how
knowledge popularity works in confidence calibration. The imperfect alignment between the
model’s confidence and its actual performance arises from two main factors:

* Overconfidence: The model generates incorrect answers with high confidence. When classifica-
tion relies on generation probabilities, such answers are incorrectly labeled as correct.

* Conservativeness: The model generates correct answers with low confidence. When classifica-
tion relies on generation probabilities, such answers are incorrectly labeled as incorrect.

We collect the samples misclassified by PC but successfully calibrated by PC+ALL. These fall into
two categories:

* Overconfidence Group: Samples where the model generates an incorrect answer, PC incorrectly
classifies them as correct, while PC+ALL correctly identifies them as incorrect.

* Conservativeness Group: Samples where the model generates a correct answer, PC incorrectly
classifies them as incorrect, while PC+ALL correctly identifies them as correct.

We compute the knowledge popularity for each group, and the results appear in Table[6] The results
show that in the overconfidence group, PC+ALL achieves calibration by leveraging low knowl-
edge popularity despite the model’s high confidence. In contrast, in the conservativeness group, it
achieves calibration through high knowledge popularity.

Although PC+ALL achieves strong calibration performance, it also introduces some over-calibration
issues by misclassifying samples that were correctly predicted by PC, as shown in Figure [§] How-
ever, the number of correctly calibrated samples significantly exceeds the over-calibrated ones.
Moreover, we show some cases on the Movies dataset for Llama3. Figures[0]and Figure[I0]illustrate
cases where knowledge popularity effectively calibrated the model’s confidence, while Figure [IT]
shows a failure case. All the results in this section are obtained with seed=0.

Datasets Group PC Popg Popge RPopge
Overc. 091 47.05 20.08 1.03

Movies e, 078 2434 2322 1291
Sones | Overc. 091 3801 1304 1889
g Conse. 078 131.00 1550  103.00
Baskethal]  OVere: 078 10268 1069 0.97

Conse. 0.62 234.83  10.59 11.47

Table 6: Knowledge popularity of samples that are misclassified by PC but correctly classified by
PC+ALL. Overc. refers to the Overconfidence group, in which the model generates an incorrect
answer but PC classifies it as correct. Conse. refers to the Conservativeness group, in which the
model generates a correct answer but PC classifies it as incorrect.

From Figure[I0] we can see that the model generated an incorrect answer with a probabilistic confi-
dence of 0.95, which is significantly higher than the classification threshold for confidence (;0.85),
leading to it being classified as correct. However, knowledge popularity reveals that the question
pop, generated answer pop, and relation pop are 16, 20, and 1, respectively, all below the dataset’s
average levels. This indicates that both the question and the generated entity are relatively uncom-
mon and rarely co-occur. As a result, the classification outcome was corrected to incorrect. Simi-
larly, in Figure[T0] the model exhibits low probabilistic confidence for a correctly generated answer,
leading to a misclassification as incorrect. However, its knowledge popularity was relatively high,
resulting in a correction to the correct classification.
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@Same @Win @Fail

Basketball 74 - 10

Movies

Figure 8: The difference in answer correctness prediction on LLaMA3 between using PC+ALL and
using PC. Blue indicates that both methods make the same prediction, yellow indicates cases where
only PC+ALL predictes correctly, and red indicates cases where only PC predictes correctly.

Question: Who is the director of the movie The Star Maker
Ground-Truth Answer: Giuseppe Tornatore

Generated Answer: Giuseppe Tornatore

Correctness:

Confidence: 0.68

Confidence Threshold: 0.85

Correctness Prediction: X

Knowledge Popularity: [Q-Pop: 15, G-Pop: 62, R-Pop: 15]
Average Popularity: [Q-Pop: 26, G-Pop: 40, R-Pop: 15]
Correctness Prediction After Calibration: ﬁ

Figure 9: The case where Llama3-8B generates incorrect answers with high confidence on the
Moveis dataset and is corrected by low knowledge popularity.

Question: Who is the director of the movie Itinéraire d'un enfant gaté
Ground-Truth Answer: Claude Lelouch

Generated Answer: Coline Serreau

Correctness:

Confidence: 0.95

Confidence Threshold: 0.85

Correctness Prediction:

Knowledge Popularity: [Q-Pop: 16, G-Pop: 20, R-Pop: 1]

Average Popularity: [Q-Pop: 26, G-Pop: 40, R-Pop: 15]
Correctness Prediction After Calibration:

Figure 10: The case where Llama3-8B generates correct answers with low confidence on the Moveis
dataset and is corrected by high knowledge popularity.

Question: Who is the director of the movie The Celluloid Closet
Ground-Truth Answer: Rob Epstein

Generated Answer: Rob Epstein

Correctness:

Confidence: 0.99

Confidence Threshold: 0.85

Correctness Prediction: £

Knowledge Popularity: [Q-Pop: 16, G-Pop: 15, R-Pop: 0]
Average Popularity: [Q-Pop: 26, G-Pop: 40, R-Pop: 15]
Correctness Prediction After Calibration:

Figure 11: The case where Llama3-8B generates correct answers with high confidence on the
Moveis dataset and is misled by low knowledge popularity.

Figure [IT] presents a case of error correction. While similar misclassifications may occur, the pro-
portion of correctly corrected samples (6.0%) is significantly higher than that of miscalibrated ones
(1.2%), demonstrating the reliability of knowledge popularity in confidence calibration.

F PROMPTS
We display all the prompts used in this paper here and show some examples.

QA prompt. We just ask the model to give a short answer without any other words. The example
is shown in Figure 20]
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Prompts for knowledge popularity generation. Examples for instructing LLMs to provide ques-
tion entity popularity, generated answer popularity, and the popularity of their relationship can be

found in Figure 22|23|2423|R26|R7}

G THE USE OF LARGE LANGUAGE MODELS

LLMs were used solely for grammar correction and sentence polishing. All content and experi-
ments in this paper were conducted entirely by humans, and any model-polished text was manually
reviewed.

Accuracy Confidence Alignment
Datasets Models Q-Pop G-Pop Co-Occ Q-Pop G-Pop Co-Occ Q-Pop G-Pop Co-Occ

Llama3-8B  0.317  0.100 0.637 0404 0.324 0.653 0404 0.231 0.667
Movies Qwen2-7B 0433  0.087 0.756  0.413 0.345 0.679 0386 0.021 0.607
ChatGPT  0.134  0.083 0.208 0.210 0.233 0304 0211 0.231 0.304

Llama3-8B  0.277  0.257 0.621 0.369  0.188 0.680  0.182  0.207 0.358
Songs Qwen2-7B 0.362  0.188 0.666  0.300 0.246 0.511 0.230  0.058 0.405
ChatGPT  0.171  0.218 0.351 0.249  0.305 0.445 0232 0.297 0.326

Llama3-8B  0.118  0.116 0.245 0.173 -0.034 0.010 -0.052 0.083 0.163
Basketball Qwen2-7B  0.014  0.116 0.106 0.151 0.114 0.068 -0.126 -0.015  0.018
ChatGPT  0.288 -0.164  0.293 0351 -0210 0.257 0201 -0.107 0.241

Table 7: Spearman correlation coefficients for Accuracy, Confidence, and Alignment scores with
the popularity of question entities, generated entities, and their co-occurrence.

1 Llama3-8B on Movies 1 Llama3-8B on Songs 1 Llama3-8B on Basketball
— —+— Accuracy
e Confidence
0.8 / 08 0.8 Alignment
5061 & g 06 /7,,,,,7——77 3 0.6
= = =
Z 04 Z 04 /\ Z 04
—e— Accuracy —e— Accuracy - —
02 Confidence 02 Confidence 02 o
Alignment Alignment o
0. 0. 0.
15 20 25 30 35 40 45 50 55 5 10 15 20 25 50 7.5 100 125 150 17.5 20.0 225 25.0
Question Popularity Question Popularity Question Popularity

Figure 12: The QA performance, confidence, and alignment of Llama3 under different question
popularity.

Qwen2-7B on Movies Qwen2-7B on Songs Qwen2-7B on Basketball
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Figure 13: The QA performance, confidence, and alignment of Qwen2 under different question
popularity.
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Figure 14: The QA performance, confidence, and alignment of Llama3 under different answer pop-

ularity.
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Figure 15: The QA performance, confidence, and alignment of Qwen2 under different answer pop-

ularity.
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Figure 16: The QA performance, confidence, and alignment of ChatGPT under different answer

popularity.
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Figure 17: The QA performance, confidence, and alignment of Llama3 under different relation

popularity.
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Figure 18: The QA performance, confidence, and alignment of Qwen2 under different relation

popularity.
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Figure 19: The QA performance, confidence, and alignment of ChatGPT under different relation
popularity.

Question: Who is the director of the movie The Intouchables
Answer:

Input:
Answer the following question with one or few words.
Response: Eric Toledano

Figure 20: A question-answering example for Llama3.

Input:

Judge whether the following answer (this is your self-generated answer) about the question is correct. If you
are sure the answer is correct, say certain. If not, please say uncertain. Just give your judgement without any
other words.

Question: Where is the birthplace of the basketball player Jiang Xingquan?

Answer: Beijing.

Response: Uncertain.

= )

Figure 21: An example for verbalized confidence.

1 to 10, where 10 means you are highly familiar with it, and 1 means you have little to no knowledge about it.
Your answer needs to be a precise integer. Provide only the number, without any additional explanation.
Number:

Question: Rate how familiar you are with the movie 'The Intouchables'. The familiarity is rated on a scale from
Response: 8

(x zx=0 )

Figure 22: An example of obtaining question popularity on the movies dataset using LLaMA3 in a
zero-shot setting.

to 10, where 10 means you are highly familiar with it, and 1 means you have little to no knowledge about it.
Your answer needs to be a precise integer. Provide only the number, without any additional explanation.
Number:

Question: Rate how familiar you are with the director 'Eric Toledano'. The familiarity is rated on a scale from 1
Response: 4

(w zxse )

Figure 23: An example of obtaining generated answer popularity on the movies dataset using
LLaMA3 in a zero-shot setting.
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Question: Rate how familiar you are with the relationship between the movie 'The Intouchables' and the
director 'Eric Toledano'. The familiarity is rated on a scale from 1 to 10, where 10 means you are highly familiar
with their relationship, and 1 means you know little to nothing about it. Your answer needs to be a precise
integer. Provide only the number, without any additional explanation.

Number:

Response: 8

Figure 24: An example of obtaining relation popularity on the movies dataset using LLaMA3 in a
zero-shot setting.

ﬁuestion: Rate how familiar you are with the movie 'Swept Away'. The familiarity is rated on a scale from\
to 10, where 10 means you are highly familiar with it, and 1 means you have little to no knowledge about it.
Your answer needs to be a precise integer. Provide only the number, without any additional explanation.
Here are some examples:
The movie: Matchstick Men
Number: 2
The movie: Kick-Ass
Number: 5
The movie: Skyfall
Number: 8
Rate how familiar you are with the movie 'Swept Away'. The familiarity is rated on a scale from 1 to 10, where
10 means you are highly familiar with it, and 1 means you have little to no knowledge about it. Your answer
needs to be a precise integer. Provide only the number, without any additional explanation.
Number:

wponse: 3 /

Figure 25: An example of obtaining question popularity on the movies dataset using ChatGPT in a
3-shot setting.

ﬁuestion: Rate how familiar you are with the director 'Guy Ritchie'. The familiarity is rated on a scale froh
to 10, where 10 means you are highly familiar with it, and 1 means you have little to no knowledge about it.
Your answer needs to be a precise integer. Provide only the number, without any additional explanation.
Here are some examples:
The director: James McTeigue
Number: 2
The director: Guy Ritchie
Number: 5
The director: Jodie Foster
Number: 8
Rate how familiar you are with the director 'Guy Ritchie'. The familiarity is rated on a scale from 1 to 10,
where 10 means you are highly familiar with it, and 1 means you have little to no knowledge about it. Your
answer needs to be a precise integer. Provide only the number, without any additional explanation.
Number:

wponse: 7 /

Figure 26: An example of obtaining answer popularity on the movies dataset using ChatGPT in a
3-shot setting.
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Question: Rate how familiar you are with the relationship between the movie 'Swept Away' and the director
'Guy Ritchie'. The familiarity is rated on a scale from 1 to 10, where 10 means you are highly familiar with
their relationship, and 1 means you know little to nothing about it. Your answer needs to be a precise integer.
Provide only the number, without any additional explanation.

Here are some examples:

The movie: Kick-Ass; The director: Matthew Vaughn

Number: 2

The movie: Eraserhead; The director: David Lynch

Number: 5

The movie: Heat; The director: Michael Mann

Number: 8

Rate how familiar you are with the relationship between the movie 'Swept Away' and the director 'Guy
Ritchie'. The familiarity is rated on a scale from 1 to 10, where 10 means you are highly familiar with their
relationship, and 1 means you know little to nothing about it. Your answer needs to be a precise integer.
Provide only the number, without any additional explanation.

Number:

Response: 7

Figure 27: An example of obtaining relation popularity on the movies dataset using ChatGPT in a
3-shot setting.

21



	Introduction
	Related Work 
	Task Description 
	How Does Knowledge Popularity Affect LLMs' Perception Level? 
	Experimental Setup 
	Results and Analysis

	Analysis of Model-Generated Answers
	Results and Analysis
	What Do LLMs Generate When They Hallucinate? 

	Confidence Calibration with Knowledge Popularity
	Knowledge Popularity Acquisition
	Baselines
	Data Construction
	Answer Correctness Prediction
	Results and Analysis

	Conclusion
	Data Filtering
	Analysis on Relationship Strength 
	Effects of Few-Shot Learning on Popularity Generation 
	Detailed Parameter Settings 
	Case Studies 
	Prompts 
	The Use of Large Language Models

