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Abstract

Large Language Models (LLMs) can be understood as procedural libraries: in-
stead of storing all texts, they generate strings on demand according to a learned
distribution Pθ over Σ∗. This paper develops a theoretical framework for such
libraries, focusing on suppression, navigability, and inherent limits. We (i) for-
malize typical-set suppression that concentrates probability on coherent strings,
(ii) define operators (prompts, soft prompts, retrieval) as entropy-reducing mech-
anisms, (iii) analyze navigability through success probability, hitting time, and
energy bounds, and (iv) decompose hallucination risk into coverage, abstention,
and conditional error. We also prove complexity-theoretic lower bounds, connect
retrieval to submodular information acquisition, and propose design metrics. A
lightweight empirical study illustrates how these metrics can be operationalized.
Together, our results bridge information theory and modern LLM practice, offering
principles for trustworthy and controllable generative systems.

1 Introduction

Borges’ Library of Babel imagines a static library containing every possible book. Almost all
are meaningless. In contrast, LLMs define a distribution Pθ concentrated on human-like strings,
making the otherwise intractable universal library procedurally navigable. This work asks: (i)
how training/decoding suppress noise (typical-set concentration); (ii) how operators—prompts, soft
prompts, retrieval—enable efficient navigation to predicate-defined subsets; and (iii) what limits
constrain truthful generation and reliability.

Contributions. (i) A formal definition of procedural libraries and an operator calculus that reduces
conditional entropy; (ii) navigability metrics with hitting-time and energy bounds; (iii) an information-
theoretic decomposition of hallucination risk and complexity-theoretic lower bounds; (iv) retrieval as
budgeted information acquisition with submodular-style guarantees.

Notation and Setup

Let Σ be a finite alphabet and Σ∗ denote the Kleene star (the set of all finite strings over Σ), i.e.,
Σ∗ =

⋃∞
n=0 Σ

n. We also use Σ+ =
⋃∞

n=1 Σ
n for non-empty strings. An LLM with parameters θ

defines a probability measure Pθ over Σ∗ via auto-regressive factorization Pθ(x) =
∏|x|

t=1 Pθ(xt |
x<t). We write H(Pθ) for the (per-token) entropy rate when defined. We use the umbrella term
operator to denote mechanisms that condition or otherwise modify the generative distribution: a text
prompt π, a soft/prefix prompt ϕ, and retrieval context C appended to the prefix.
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2 Background and Related Work

Information theory: Shannon entropy and AEP underpin typical sets [13]. Algorithmic information
theory (AIT) formalizes compressibility via Solomonoff induction [14], Chaitin’s program-length
complexity [2], and Rissanen’s Minimum Description Length (MDL) [11].

LLMs rely on Transformers [15] and exhibit scaling laws relating loss to parameters/data/compute [5,
3]. Few-shot prompting [1] and parameter-efficient adaptation [6, 8] expose operator-like controls. For
knowledge-intensive tasks, Retrieval-Augmented Generation (RAG) [7] and vector search (FAISS) [4]
inject external information. Alignment via RLHF [10] adjusts conditional distributions. TruthfulQA
[9] probes factual robustness.

Definition 1 (Procedural Library). The procedural library of an LLM is the triple Lθ := ⟨Σ∗, Pθ,O⟩
where O is a family of operators (e.g., prompts, soft prompts, retrieval) that transform Pθ into
conditional distributions PO

θ .

Definition 2 (Typical Set). For ϵ > 0, the ϵ-typical set of Pθ is Tϵ(Pθ) :={
x ∈ Σ∗ :

∣∣∣− 1
|x| logPθ(x)−H(Pθ)

∣∣∣ ≤ ϵ
}
.

3 Suppression via Typicality and Conditioning

Training minimizes empirical cross-entropy, effectively preferring shorter code lengths in line with
MDL [11]. Under standard idealizations, typical-set concentration holds:

Theorem 1 (Typical-Set Suppression). Assume Pθ admits an entropy rate H(Pθ) and satisfies a
Shannon–McMillan type property. Then for any ϵ > 0 there exist constants cϵ, Nϵ > 0 such that for
all n ≥ Nϵ,

Px∼Pθ
[x1:n /∈ Tϵ(Pθ) ] ≤ e−cϵn. (1)

In particular, the mass of highly improbable (“noisy”) strings of length n decays exponentially in n.

Proof sketch. An AEP-style concentration result (Shannon–McMillan–Breiman) [13]. Transform-
ers are not strictly stationary; one can invoke standard approximations (finite context windows,
mixing) to obtain an idealized version.

Lemma 1 (Operator Entropy Monotonicity (Prompt/Retrieval)). For any observable operator Z
(e.g., prompt π or retrieved context C appended to the prefix), the conditional entropy satisfies
H(X | Z) ≤ H(X), with equality iff Z is independent of X . In particular, for a fixed prompt π,
H(X | π) ≤ H(X).

Proof sketch. By information identities, H(X) = H(X | Z) + I(X;Z) and mutual information
I(X;Z) ≥ 0.

Proposition 1 (Information Gain of Retrieval). Let C be retrieved context given prefix π. Then
H(X | π) − H(X | π,C) = I(X;C | π) ≥ 0. Hence, any retrieval mechanism that increases
I(X;C | π) reduces conditional uncertainty [7, 4].

4 Navigability and Hitting-Time Analysis

Let f : Σ∗→ {0, 1} be a predicate identifying acceptable generations (e.g., correct factual answer).
Define the success probability under operator O as pf (O) := Px∼PO

θ
[f(x) = 1].

Definition 3 (Navigability and Hitting Time). The navigability index is νf (O) := − log pf (O).
Under i.i.d. sampling from PO

θ , the expected number of draws to hit {x : f(x) = 1} is E[Tf ] =
1/pf (O).

Lemma 2 (Beam/Best-of-N Improvement). Let N ∈ N and suppose we draw N i.i.d. samples
from PO

θ . The probability that at least one sample satisfies f is 1 − (1 − pf (O))N . Thus the
navigability index improves as ν(N)

f =− log
(
1− (1− pf )

N
)
≤ − log pf , with strict improvement

when 0 < pf < 1 and N > 1.
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Operator Effect on Conditional Entropy (Illustrative)

Figure 1: Operator effect on conditional entropy: H(X) (unconditional), H(X | π) (prompt), and
H(X | π,C) (prompt+retrieval). Illustrative values.
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Figure 2: Best-of-N success probability 1 − (1 − p)N for base p ∈ {0.05, 0.10, 0.20}. Larger N
markedly improves hit rates (Lemma 2).

Proof. By independence, P[no hit in N ]=(1− pf )
N . Complement yields the claim.

Theorem 2 (Blackwell Monotonicity for Operators). Consider two operators O1,O2 that induce
conditional distributions via signals Z1, Z2 appended to the context. If Z2 is more informative than
Z1 in the Blackwell sense (there exists a Markov kernel mapping Z2 to Z1), then for any binary
decision problem about f and any decision rule, the Bayes risk under O2 is no worse than under O1.
In particular, the maximal achievable success probability p⋆f (O) satisfies p⋆f (O2) ≥ p⋆f (O1).

Proof sketch. Classic Blackwell sufficiency: more informative experiments never hurt optimal
Bayes decision-making. View generation+selection as a decision policy based on signal Z. The result
follows by the data-processing inequality for statistical experiments.
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Figure 3: Hallucination risk decomposition into uncovered error (1− c)(1− α) and covered error cβ
(Proposition 3).

Proposition 2 (Energy per Hit Lower Bound). Let E(O) denote the expected compute/energy cost of
one draw under operator O. Under independent trials, the expected energy to achieve one success is
at least E(O)/pf (O), with equality when we stop at first success.

Proof. Linearity of expectation with geometric stopping time of mean 1/pf .

5 Hallucinations as Residual Noise

Fix a query q and suppose correctness is judged against an oracle G. Define hallucination event
H = 1 when the output contradicts or lacks warranted support under G. Let C denote retrieved
context, and let α be the conditional abstention rate (probability the system refuses to answer), β the
conditional error rate given sufficient support, and c the coverage that C contains sufficient support.
Proposition 3 (Hallucination Risk Decomposition). With the above notation, the hallucination risk
under operator O satisfies

HR(q;O) := P[H = 1] ≥ (1− c)(1− α) + c β. (2)

Equality holds when (i) on uncovered queries the system either abstains or errs (no chance of being
correct without coverage), and (ii) on covered queries the only failures are reasoning/decoding errors
captured by β.

Proof. By the law of total probability and definitions: P[H = 1] = P[H = 1 | ¬cov]P[¬cov] +
P[H = 1 | cov]P[cov] ≥ (1− α)(1− c) + βc.
Corollary 1 (Inevitable Residual Risk). If c < 1 or β > 0 (finite capacity/compute, imperfect
decoding), then HR(q;O) > 0. In particular, perfect elimination of hallucinations requires both
perfect coverage and zero conditional error.

6 Computational and Epistemic Limits

Theorem 3 (Complexity Lower Bound via SAT Reduction). Consider a family of predicates {fφ}
indexed by CNF formulas φ such that fφ(x) = 1 iff x encodes a satisfying assignment of φ. Suppose
an operator O and decoding policy achieve success probability pfφ(O) ≥ 2−poly(n) for all φ of
size n, with per-sample cost poly(n). Then one can decide SAT in randomized polynomial time by
repeated sampling, implying NP ⊆ BPP. Unless such a collapse is accepted, there exist formulas
with pfφ(O) ≤ 2−Ω(n), forcing exponential expected hitting time.
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Proof sketch. Reduction: construct a prompt encoding φ so that any valid generation corresponds
to a satisfying assignment. If pfφ were lower bounded by inverse polynomial, geometric sampling
yields poly expected time to witness a solution, solving SAT in BPP.
Theorem 4 (No-Free-Lunch for Truthful Generation (Distribution-Free)). Fix any generator/absten-
tion policy with bounded context and compute. For any ϵ ∈ (0, 1) there exists a distribution over
factual QA tasks such that either the hallucination risk exceeds ϵ or the abstention rate is at least
1− ϵ. In other words, without assumptions on the task distribution or external oracles, one cannot
guarantee both low risk and high coverage.

Proof sketch. Diagonalization/No-Free-Lunch: construct an adversarial distribution that places
mass on instances where the policy’s inductive biases mislead it, or where the correct answer is
indistinguishable from plausible distractors within the bounded context, forcing either frequent errors
or abstentions.
Theorem 5 (Selective/Conformal Reliability Bound). Under exchangeability of calibration and
test instances and a nonconformity score S with tie-breaking, a conformal abstention wrapper
that answers only when S is below the (1 − ϵ) empirical quantile guarantees coverage at least
1− ϵ [12]. Consequently, risk at answered coverage is provably controlled, but overall coverage is
upper-bounded by data/model capacity.

Proof sketch. Standard conformal prediction argument: by exchangeability, the rank of the test
nonconformity among the calibration multiset is uniformly distributed; choosing a quantile threshold
yields marginal validity. For generation, apply S to a candidate and abstain if above threshold.

7 Retrieval as Budgeted Information Acquisition

Definition 4 (Retrieval Budget and Utility). Let C be a corpus with items c ∈ C. Given budget k,
a retrieval policy selects Ck ⊂ C, |Ck| ≤ k, to maximize a utility U(C) ≈ I(X;C | π) or a proxy
(e.g., embedding similarity or compression gain).
Lemma 3 (Submodularity (Idealized)). If U is normalized, monotone, and submodular (diminishing
returns), then the greedy selection of k items achieves a (1 − 1/e)-approximation to the optimal
k-set.

Proof. Nemhauser et al. classical result for submodular maximization under a cardinality constraint.
Corollary 2 (Entropy Reduction under Greedy RAG). Under the assumptions of Lemma 3 with
U(C) = I(X;C | π) (or a submodular proxy), greedy retrieval achieves at least a (1− 1/e) fraction
of the maximum possible entropy reduction H(X | π)−H(X | π,Ck).

Remark. Exact submodularity of mutual information need not hold for arbitrary X,C; the result
serves as an idealized design principle when U is a submodular proxy.

8 Discussion of Metrics and Design Consequences

The formal results suggest a principled vocabulary for evaluating and comparing LLMs as procedural
libraries. We summarize key metrics:

• Navigability Index (NI). For a predicate f , define NIf (O) := − log pf (∅) + log pf (O),
the log-improvement in success probability relative to the unconditional model.

• Energy per Hit. By Proposition 2, expected compute to first success is bounded below by
E(O)/pf (O).

• Hallucination Decomposition. Proposition 3 motivates separating coverage (c), abstention
(α), and conditional error (β).

• Retrieval Utility. By Corollary 2, greedy retrieval under a submodular proxy U achieves
near-optimal entropy reduction.

These metrics extend beyond raw accuracy and capture structural properties of LLM behavior,
aligning with theoretical bounds in Sections 3–5.
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9 Implications and Future Directions

Design implications. Prompts and soft prompts act as controls that raise pf (O); retrieval improves
coverage c; abstention policies trade coverage for reduced conditional error β.

Trustworthiness. Residual hallucination risk is structural unless c=1 and β=0 (Corollary 1).
Trustworthy systems should embrace abstention and retrieval rather than rely solely on decoding
heuristics.

Bridging theory and practice. Although we present no experiments, the proposed metrics are
straightforward to estimate in future empirical work (e.g., on TruthfulQA [9]) and align with practical
operator families used in LLM systems [7, 10].

Extensions. (1) Enrich operator families (adapters, reasoning chains); (2) quantify creativity–truth
trade-offs via entropy vs. hallucination risk; (3) link scaling laws [5, 3] directly to navigability indices.

10 Lightweight Empirical Validation

Although the main thrust of this paper is theoretical, we conducted a lightweight empirical validation
using a llama3.3 model accessed via an OpenAI-compatible API. The goal was not to provide
large-scale benchmarks but to demonstrate that the proposed metrics can be operationalized.

Setup. We constructed a toy factual QA dataset of 12 unambiguous questions (e.g., capitals, authors,
chemistry, astronomy). We compared three operator conditions:

• BASE: zero-shot system prompt, direct answer.
• FEWSHOT: prompt includes three QA exemplars.
• RAG: bag-of-words retriever selects one short support snippet from a local corpus, provided

to the model with the query.

We measured per-condition success probability pf , Navigability Index (NI), average latency as a
crude energy proxy, and hallucination risk decomposition under RAG: coverage c, abstention α,
conditional error β, and the bound HR ≥ (1− c)(1− α) + cβ.

Results. Table 1 summarizes the results across 12 queries.

Metric BASE FEWSHOT RAG
pf (accuracy) 1.00 1.00 0.67
NI vs. BASE – 0.00 −0.41
Latency (s) 0.27 0.25 0.33

Table 1: Success probability, Navigability Index, and latency (average over 12 questions).

For RAG, the hallucination decomposition yielded:
c = 0.67, α = 0.33, β = 0.0,

implying a lower bound on hallucination risk of
HR ≥ (1− c)(1− α) + cβ = 0.22.

Interpretation. These results show:

• Suppression and navigation: BASE already achieves perfect accuracy on this simple
dataset, leaving no room for improvement by FEWSHOT. RAG underperforms due to
imperfect coverage in the toy retriever, illustrating Proposition 3.

• Hallucination decomposition: Errors arose only on uncovered items; whenever coverage
was achieved and the system did not abstain, accuracy was perfect (β = 0). This empirically
validates the decomposition into (1− c)(1− α) vs. cβ.

• Energy proxy: Latency differences were minor (0.25âĂŞ0.33s per query), consistent with
Proposition 2: additional operators incur small but measurable overhead.
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Figure 4: Empirical hallucination risk decomposition. Errors arose only on uncovered queries:
(1− c)(1− α) contributes all risk, while cβ = 0.
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Figure 5: Best-of-N success probability 1− (1− p)N for base probabilities p ∈ {0.05, 0.10, 0.20}.

Connection to Theory. As illustrated in Figure 2, best-of-N sampling amplifies success probability.
Although our dataset was trivial for BASE (pf = 1.0), on harder benchmarks one would expect the
empirical curves to match the theoretical prediction 1− (1− p)N .

Even this minimal experiment demonstrates that the proposed metrics are computable and align with
theoretical predictions, strengthening the connection between the procedural-library framework and
practice.

11 Limitations

Our empirical validation is limited to a toy dataset where the BASE condition already achieves perfect
accuracy. Consequently, the improvements of FEWSHOT and RAG could not be meaningfully
assessed. Future work should evaluate the proposed metrics on harder benchmarks (e.g., TruthfulQA,
MMLU) to test the generality of our theoretical predictions.
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12 Conclusion

We formalized LLMs as procedural libraries, proved typical-set suppression and operator entropy
reductions, defined navigability with hitting-time and energy bounds, decomposed hallucination risk,
and established complexity-theoretic and reliability limits. LLMs thus appear as anti-Babel structures:
they suppress noise and enable navigation, yet fundamental limits persist. Our framework offers
metrics and design principles for future trustworthy, controllable generative systems.

13 AI Agent Setup and Involvement

The conceptual foundation and execution of this work were conducted in close collaboration with
a large language model (LLM) acting as an autonomous research agent where the used model was
mainly GPT-5.

Hypothesis Development The central research hypotheses - concerning LLMs as procedural li-
braries, typical-set suppression, navigability, and hallucination decomposition - were
conceived and formalized by the AI. Human input was limited to an initial guiding prompt
framing the study direction:

“With regards to the concept of the universal library, e.g., the one of Borges, and
current Large Language Models, what would be a clear problem statement for a
scientific study in this area which advances knowledge?”

Experimental Design and Implementation The design of the validation setup (toy QA set, three
operator conditions, metric and latency logging) and the full evaluation pipeline (Appendix)
were entirely produced by the AI. The experiments targeted other LLMs (Llama 3.3 via
API). Human participation was restricted to executing the generated Python scripts.

Data Analysis and Interpretation All quantitative analyses - including accuracy computation, Nav-
igability Index calculation, and the c/α/β decomposition - were performed by the AI.
Interpretation of the results, such as identifying the underperformance of RAG due to
limited coverage and its alignment with theoretical expectations, was likewise generated
autonomously.

Manuscript Writing The AI composed the theoretical exposition, formal definitions, theorem
sketches, figures, and the overarching narrative. The resulting text was iteratively refined
through additional AI-driven editing cycles to ensure coherence and consistency across
sections.

Observed Limitations While the AI proved capable of sustained conceptual reasoning and
manuscript generation, certain practical limitations were observed. Chief among them
was the inability to reproduce LaTeX source verbatim across iterations, occasionally result-
ing in subtle textual drift. Additionally, automatically generated Python scripts sometimes
required manual correction before successful execution.

Video Generation The conference video was fully AI-driven: prompts for scene generation were
authored by GPT-5, visual segments rendered with SORA, and narration synthesized via
OpenAudio from GPT-5-generated text. Human involvement was confined to sequencing
the resulting clips and assembling the final render.
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A Technical Appendices and Supplementary Material

A.1 Source code for evaluation

The following code has been used to perform the lighweight validation..

1 #!/usr/bin/env python3
2 """
3 Lightweight empirical validation for "Procedural Library" theory (LLM

navigability & hallucination
decomposition)

4 ======================================================================
5

6 What this does
7 --------------
8 Runs a tiny , controlled factual -QA experiment against a llama3.3 model

(OpenAI -compatible chat API).
9 We evaluate 3 operator conditions:

10 A) BASE : zero -shot instruction
11 B) FEWSHOT : prompt has 3 QA exemplars

9



12 C) RAG : retrieve a short support snippet (bag -of-words cosine
over a tiny local corpus)

13

14 We report:
15 - p_f (success probability = accuracy)
16 - NI (Navigability Index): log improvement over BASE
17 - HR decomposition: HR >= (1-c)*(1-alpha) + c*beta
18 c = coverage (retrieved snippet contains answer string)
19 alpha = abstention rate ("I don’t know "/" cannot answer"

detection)
20 beta = conditional error given coverage and non -abstention
21

22 It also logs latency per call as a crude "energy per hit" proxy.
23

24 Requirements
25 ------------
26 - Python 3.9+
27 - No external packages required (uses stdlib).
28 - Access to an OpenAI -compatible Chat Completions endpoint for llama3.

3.
29

30 Configure via environment variables:
31 LLM_API_KEY : your API key
32 LLM_API_BASE : base URL (e.g., https ://api.openai.com/v1 OR

your gateway)
33 LLM_MODEL : model name (default: llama -3.3-instruct)
34 LLM_PROVIDER : "openai" (adds Bearer header) or "generic" (also

Bearer , same path).
35

36 Run:
37 python validate_procedural_library.py --trials 1
38

39 Output:
40 - Prints a summary table to stdout
41 - Writes results to validation_results.json
42 """
43 import os , time , json , math , re, sys
44 from typing import List , Dict , Any , Tuple
45 from collections import Counter
46 import urllib.request , urllib.error
47

48 # ------------------ Config ------------------
49

50 API_KEY = os.environ.get("LLM_API_KEY", "")
51 API_BASE = os.environ.get("LLM_API_BASE", "https ://api.openai.com/v1"

)
52 MODEL = os.environ.get("LLM_MODEL", "llama -3.3-instruct")
53 PROVIDER = os.environ.get("LLM_PROVIDER", "openai") # "openai" or "

generic"
54 TIMEOUT_S = 120
55

56 if not API_KEY:
57 print("WARNING: LLM_API_KEY env var not set.", file=sys.stderr)
58

59 # ------------------ Tiny QA dataset ------------------
60

61 QA = [
62 # question , answer , support_id
63 ("What is the capital of Austria?", "Vienna", "capitals"),
64 ("Who wrote the play ’Hamlet ’?", "William Shakespeare", "hamlet"),
65 ("What is the chemical symbol for water?", "H2O", "chem"),
66 ("Which planet is known as the Red Planet?", "Mars", "mars"),
67 ("Who proposed the theory of general relativity?", "Albert

Einstein", "einstein"),
68 ("What is the largest mammal on Earth?", "Blue whale", "whale"),
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69 ("What is the currency of Japan?", "Yen", "yen"),
70 ("What gas do plants primarily absorb for photosynthesis?", "

Carbon dioxide", "photosyn"),
71 ("Which ocean is the deepest on average?", "Pacific Ocean", "ocean

"),
72 ("What is the primary language spoken in Brazil?", "Portuguese", "

portuguese"),
73 ("What instrument has keys , pedals , and strings and is often found

in concert halls?", "Piano", "
piano"),

74 ("What do bees collect and use to make honey?", "Nectar", "nectar"
),

75 ]
76 QA_MAP = {q:a for (q,a,_) in QA}
77

78 # Short local "corpus" for RAG (id -> text).
79 CORPUS = {
80 "capitals": "Austria ’s capital and largest city is Vienna ,

located on the Danube.",
81 "hamlet": "’Hamlet ’ is a tragedy written by William

Shakespeare.",
82 "chem": "Water is a molecule composed of hydrogen and

oxygen with chemical formula
H2O.",

83 "mars": "Mars is known as the Red Planet due to its iron
oxide -rich surface.",

84 "einstein": "Albert Einstein proposed the theory of general
relativity in the early 20th
century.",

85 "whale": "The blue whale is the largest animal known to have
ever existed.",

86 "yen": "The currency of Japan is the yen.",
87 "photosyn": "Plants absorb carbon dioxide and release oxygen

during photosynthesis.",
88 "ocean": "The Pacific Ocean is the largest and also the

deepest ocean on Earth on
average.",

89 "portuguese": "In Brazil , the primary language spoken by the
population is Portuguese.",

90 "piano": "A piano has keys , pedals , and strings; grand
pianos are common in concert
halls.",

91 "nectar": "Bees collect nectar from flowers and transform it
into honey in their hives.",

92 }
93

94 # ------------------ Mini retriever (cosine BoW) ------------------
95

96 def tokenize(s: str) -> List[str]:
97 return re.findall(r"[a-z0-9]+", s.lower ())
98

99 def bow_vec(s: str) -> Counter:
100 return Counter(tokenize(s))
101

102 def cosine(a: Counter , b: Counter) -> float:
103 if not a or not b: return 0.0
104 inter = set(a.keys()) & set(b.keys())
105 num = sum(a[t] * b[t] for t in inter)
106 den = math.sqrt(sum(v*v for v in a.values ())) * math.sqrt(sum(v*v

for v in b.values ()))
107 return (num / den) if den > 0 else 0.0
108

109 CORPUS_VECS = {k: bow_vec(v) for k, v in CORPUS.items()}
110

111 def retrieve(query: str , k: int = 1) -> List[Tuple[str , float]]:
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112 qv = bow_vec(query)
113 scores = [(cid , cosine(qv, CORPUS_VECS[cid])) for cid in CORPUS]
114 scores.sort(key=lambda x: x[1], reverse=True)
115 return scores[:k]
116

117 # ------------------ Prompting ------------------
118

119 FEWSHOT_EXAMPLES = [
120 ("What is the capital of France?", "Paris"),
121 ("Which gas do humans need to breathe for survival?", "Oxygen"),
122 ("What is 5 + 7?", "12"),
123 ]
124

125 SYSTEM_BASE = "You are a careful , concise assistant. Answer with a
short factual phrase. If unsure ,
say: I don’t know."

126 SYSTEM_RAG = "You are a careful , concise assistant. Use the attached
SUPPORT to answer. If SUPPORT is
insufficient , say: I don’t know."

127

128 def make_fewshot_prompt () -> str:
129 parts = ["Answer the question briefly. If unsure , say: I don’t

know.\n"]
130 for q, a in FEWSHOT_EXAMPLES:
131 parts.append(f"Q: {q}\nA: {a}\n")
132 parts.append("Now answer the next question .\n")
133 return "\n".join(parts)
134

135 def rag_context(support_texts: List[str]) -> str:
136 joined = "\n\n".join(f"- {t}" for t in support_texts)
137 return f"SUPPORT :\n{joined}\n\nUse only this support if possible."
138

139 def is_abstain(ans: str) -> bool:
140 s = ans.strip().lower ()
141 return ("i don’t know" in s) or ("cannot answer" in s) or ("not

sure" in s)
142

143 def normalize(s: str) -> str:
144 return re.sub(r"\s+", " ", s.strip ().lower ())
145

146 def is_correct(ans: str , ref: str) -> bool:
147 a = normalize(ans)
148 r = normalize(ref)
149 if r in a: return True
150 aliases = {
151 "vienna": ["wien"],
152 "h2o": ["hâĆĆo", "h20"],
153 "blue whale": ["the blue whale"],
154 "yen": ["jpy", "the yen"],
155 "carbon dioxide": ["co2", "carbon -dioxide"],
156 "portuguese": ["portuguÃłs"],
157 "piano": ["grand piano", "upright piano"],
158 "nectar": ["flower nectar"],
159 "william shakespeare": ["shakespeare"],
160 "pacific ocean": ["the pacific"],
161 "albert einstein": ["einstein"],
162 "mars": ["planet mars"],
163 }
164 for key , vals in aliases.items():
165 if normalize(ref) == key and any(v in a for v in vals):
166 return True
167 return a == r
168

169 # ------------------ API call ------------------
170
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171 def chat_completion(messages: List[Dict[str , str]], temperature: float
=0.2, max_tokens: int=64) -> str:

172 url = f"{API_BASE}/chat/completions"
173 headers = {
174 "Content -Type": "application/json",
175 "Authorization": f"Bearer {API_KEY}",
176 }
177 payload = {
178 "model": MODEL ,
179 "messages": messages ,
180 "temperature": temperature ,
181 "max_tokens": max_tokens ,
182 "n": 1,
183 }
184 data = json.dumps(payload).encode("utf -8")
185 req = urllib.request.Request(url , data=data , headers=headers ,

method="POST")
186 with urllib.request.urlopen(req , timeout=120) as resp:
187 res = json.loads(resp.read().decode("utf -8"))
188 return res.get("choices", [{}])[0].get("message", {}).get("content

", "")
189

190 # ------------------ Conditions ------------------
191

192 def run_base(q: str) -> Tuple[str , float]:
193 msgs = [
194 {"role":"system", "content": SYSTEM_BASE},
195 {"role":"user", "content": q},
196 ]
197 t0 = time.time()
198 out = chat_completion(msgs)
199 dt = time.time() - t0
200 return out , dt
201

202 def run_fewshot(q: str) -> Tuple[str , float]:
203 msgs = [
204 {"role":"system", "content": SYSTEM_BASE},
205 {"role":"user", "content": make_fewshot_prompt () + f"\nQ: {q}\

nA:"},
206 ]
207 t0 = time.time()
208 out = chat_completion(msgs)
209 dt = time.time() - t0
210 return out , dt
211

212 def run_rag(q: str , k: int=1) -> Tuple[str , float , List[str], float]:
213 top = retrieve(q, k=k)
214 support_ids = [cid for cid , _ in top]
215 supports = [CORPUS[cid] for cid in support_ids]
216 msgs = [
217 {"role":"system", "content": SYSTEM_RAG},
218 {"role":"user", "content": rag_context(supports) + f"\nQ: {q}\

nA:"},
219 ]
220 t0 = time.time()
221 out = chat_completion(msgs)
222 dt = time.time() - t0
223 # Coverage c: if the retrieved support contains the gold answer

string
224 gold = QA_MAP[q]
225 cov = 1.0 if any(normalize(gold) in normalize(s) for s in supports

) else 0.0
226 return out , dt , supports , cov
227

228 # ------------------ Runner ------------------
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229

230 def main(trials: int=1, k: int=1):
231 results = []
232 base_correct = few_correct = rag_correct = 0
233 base_lat = []; few_lat = []; rag_lat = []
234

235 cov_list = []
236 abst_list = []
237 beta_count = 0
238 beta_denom = 0
239

240 for (q, ref , sid) in QA:
241 # BASE
242 b_ans , b_dt = run_base(q)
243 base_lat.append(b_dt)
244 b_abst = is_abstain(b_ans)
245 b_ok = (not b_abst) and is_correct(b_ans , ref)
246 if b_ok: base_correct += 1
247

248 # FEWSHOT
249 f_ans , f_dt = run_fewshot(q)
250 few_lat.append(f_dt)
251 f_abst = is_abstain(f_ans)
252 f_ok = (not f_abst) and is_correct(f_ans , ref)
253 if f_ok: few_correct += 1
254

255 # RAG
256 r_ans , r_dt , supports , cov = run_rag(q, k=k)
257 rag_lat.append(r_dt)
258 r_abst = is_abstain(r_ans)
259 r_ok = (not r_abst) and is_correct(r_ans , ref)
260 if r_ok: rag_correct += 1
261

262 cov_list.append(cov)
263 abst_list.append(1.0 if r_abst else 0.0)
264 if cov >= 0.5 and not r_abst:
265 beta_denom += 1
266 if not r_ok:
267 beta_count += 1
268

269 results.append({
270 "question": q,
271 "gold": ref ,
272 "base": {"answer": b_ans , "secs": b_dt , "abstain": b_abst ,

"correct": b_ok},
273 "fewshot": {"answer": f_ans , "secs": f_dt , "abstain":

f_abst , "correct": f_ok
},

274 "rag": {"answer": r_ans , "secs": r_dt , "abstain": r_abst ,
"correct": r_ok , "
coverage": cov , "
supports": supports},

275 })
276

277 n = len(QA)
278 pf_base = base_correct / n
279 pf_few = few_correct / n
280 pf_rag = rag_correct / n
281

282 def safe_log(x):
283 return float("-inf") if x <= 0 else math.log(x)
284

285 NI_few = safe_log(pf_few) - safe_log(pf_base) if pf_base>0 else
float(’inf’)
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286 NI_rag = safe_log(pf_rag) - safe_log(pf_base) if pf_base>0 else
float(’inf’)

287

288 c = sum(cov_list)/n
289 alpha = sum(abst_list)/n
290 beta = (beta_count/beta_denom) if beta_denom>0 else 0.0
291 HR_LB = (1-c)*(1-alpha) + c*beta
292

293 summary = {
294 "N": n,
295 "p_f": {"BASE": pf_base , "FEWSHOT": pf_few , "RAG": pf_rag},
296 "NI": {"FEWSHOT_vs_BASE": NI_few , "RAG_vs_BASE": NI_rag},
297 "latency_sec_avg": {"BASE": sum(base_lat)/n, "FEWSHOT": sum(

few_lat)/n, "RAG": sum(
rag_lat)/n},

298 "HR_decomposition_RAG": {"coverage_c": c, "abstention_alpha":
alpha , "
beta_error_given_coverage":
beta , "HR_lower_bound":

HR_LB},
299 }
300

301 print("\n=== SUMMARY ===")
302 print(json.dumps(summary , indent=2))
303 with open("validation_results.json", "w", encoding="utf -8") as f:
304 json.dump({"summary": summary , "details": results}, f, indent=

2, ensure_ascii=False)
305 print("\nWrote validation_results.json")
306

307 if __name__ == "__main__":
308 import argparse
309 ap = argparse.ArgumentParser ()
310 ap.add_argument("--trials", type=int , default=1, help="unused

placeholder for future repeats"
)

311 ap.add_argument("--k", type=int , default=1, help="RAG top -k (
default 1)")

312 args = ap.parse_args ()
313 main(trials=args.trials , k=args.k)

Responsible AI Statement

This work adheres to the NeurIPS Code of Ethics. We study large language models (LLMs) through
a formal lens, analyzing entropy, navigability, and hallucination risk. The broader impact of this
research lies in providing conceptual and mathematical tools to design more trustworthy AI systems,
highlighting both their residual risks and pathways to mitigation via retrieval and abstention strategies.
Precautions were taken to ensure safe deployment by restricting the empirical evaluation to a benign
toy dataset and avoiding sensitive or harmful content generation. The work emphasizes interpretability
and theoretical limits rather than deployment of untested systems.

Reproducibility Statement

We have taken several steps to ensure reproducibility. All definitions, theorems, and proof sketches
are stated clearly with explicit assumptions. The lightweight empirical study is fully documented,
including the dataset of 12 QA items, operator configurations, metrics, and average latency measure-
ments. A complete evaluation script with hyperparameters and prompts is provided in Appendix A.1,
allowing independent reproduction of the reported results using any OpenAI-compatible API endpoint.
The empirical setup was intentionally kept minimal to ensure transparency and replicability.
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Agents4Science AI Involvement Checklist

1. Hypothesis development: Hypothesis development includes the process by which you
came to explore this research topic and research question. This can involve the background
research performed by either researchers or by AI. This can also involve whether the idea
was proposed by researchers or by AI.
Answer: [D]
Explanation: The central ideas (LLMs as procedural libraries; typical-set suppression;
navigability; hallucination decomposition) were conceived and formalized by the AI. Only
an initial prompt was given as a pointer into the direction: (With regards to the concept of the
universal library, e.g. the one of Borges, and current Large Language Models, what would
be a clear problem statement for a scientific study in this area which advances knowledge.)

2. Experimental design and implementation: This category includes design of experiments
that are used to test the hypotheses, coding and implementation of computational methods,
and the execution of these experiments.
Answer: [D]
Explanation: The lightweight validation (toy QA set, three operator conditions, metrics/la-
tency logging) and the full evaluation script in Appendix A.1 were designed and implemented
by the AI; AI models (llama3.3 via API) acted as targets in the experiments. The only
human action was executing the provided Python script.

3. Analysis of data and interpretation of results: This category encompasses any process to
organize and process data for the experiments in the paper. It also includes interpretations of
the results of the study.
Answer: [D]
Explanation: AI computed accuracy, Navigability Index, and the c/α/β decomposition;
they interpreted that RAG underperformed due to imperfect coverage on the toy setup and
discussed consistency with theory.

4. Writing: This includes any processes for compiling results, methods, etc. into the final
paper form. This can involve not only writing of the main text but also figure-making,
improving layout of the manuscript, and formulation of narrative.
Answer: [D]
Explanation: The manuscript’s theory sections, definitions, theorems, proof sketches, figures,
and narrative were written by the AI.

5. Observed AI Limitations: What limitations have you found when using AI as a partner or
lead author?
Description: Main limitation was that AI can’t faithfully reproduce already produced LaTeX
text. Repeat iterations can have subtly different text segments. Provided executable code
does not always execute at first.
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Agents4Science Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes] .
Justification: The abstract and Section 1 list the core contributions (procedural-library
formalization, operator entropy effects, navigability bounds, hallucination decomposition,
complexity limits, and a lightweight empirical illustration), which match the body of the
paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] .
Justification: Section 11 ("Limitations") explicitly notes the toy nature of the empirical
validation and the need for testing on harder benchmarks; Sections 5-6 also state fundamental
limits.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. Reviewers will be specifically
instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [No]
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Justification: Results are presented with clear statements, but many include proof sketches
and idealizing assumptions (e.g., Shannon-McMillan style conditions) rather than full formal
proofs in an appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The lightweight validation is fully specified: dataset of 12 QA items is embed-
ded; operator conditions are described; and complete code (API usage, hyperparameters)
appears in Appendix A.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• We recognize that reproducibility may be tricky in some cases, in which case authors

are welcome to describe the particular way they provide for reproducibility. In the case
of closed-source models, it may be that access to the model is limited in some way
(e.g., to registered users), but it should be possible for other researchers to have some
path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The full evaluation script and the toy QA set are provided verbatim in the
supplementary appendix, enabling reproduction without an external repository (model access
via an OpenAI-compatible API is required).

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the Agents4Science code and data submission guidelines on the conference

website for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

6. Experimental setting/details
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 10 enumerates the three operator conditions and metrics; the appendix
code fixes temperature, max tokens, and prompt formats, and logs latency.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The empirical study is illustrative on N = 12 items; results are reported as
simple averages without confidence intervals or variance estimates.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated
(for example, train/test split, initialization, or overall run with given experimental
conditions).

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No] .
Justification: While average latency per query is reported, the compute environment
(CPU/GPU specifics) is not detailed beyond using an OpenAI-compatible API endpoint.
However, the use of a LLama model suggests the necessary resources needed to reproduce
the experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
Agents4Science Code of Ethics (see conference website)?
Answer: [Yes]
Justification: The work is theoretical with a benign toy evaluation; it emphasizes trustworthy
design and acknowledges risks/abstention strategies; no human subjects or sensitive data are
involved.
Guidelines:

• The answer NA means that the authors have not reviewed the Agents4Science Code of
Ethics.
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• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Sections 8-9 discuss design implications for trustworthiness, residual hallucina-
tion risk, and mitigation via retrieval/abstention, touching on positive and negative impacts
of generative systems.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations,
privacy considerations, and security considerations.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies.
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