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Abstract

Machine learning models must balance accuracy and fairness, but these goals often
conflict, particularly when data come from multiple demographic groups with
heterogeneous distributions. A useful tool for understanding this trade-off is the
fairness-accuracy (FA) frontier, which characterizes the set of models that cannot
be simultaneously improved in both fairness and accuracy. Prior analyses of the FA
frontier provide a full characterization under the assumption of complete knowledge
of population distributions—an unrealistic ideal. We study the FA frontier in the
finite-sample regime, showing how sampling error and the heterogeneity in group
distributions distort the empirical frontier from its population counterpart. In
particular, we derive minimax-optimal estimators that depend on the designer’s
knowledge of the covariate distribution. For each estimator, we characterize how
finite-sample effects asymmetrically impact each group’s risk, and identify optimal
sample allocation strategies. Our results transform the FA frontier from a theoretical
construct into a practical tool for policymakers and practitioners who must often
design algorithms with limited data.

1 Introduction

Across domains where predictive models guide consequential decisions—from lending and hiring to
healthcare and education—society expects systems to be both accurate and fair. In supervised learning
over a population composed of multiple subgroups with heterogeneous population distributions, these
objectives are often in tension: models that minimize overall error can yield unequal performance
across groups, while interventions that reduce disparities may incur accuracy losses. A central,
practically relevant challenge arises when a single predictive model must serve multiple groups due
to legal, logistical, or normative constraints. For instance, the Equal Credit Opportunity Act and
Title VII of the Civil Rights Act in the United States discourage the use of group-specific models for
credit and hiring decisions, respectively (see Raghavan et al. [46] for a discussion of guidelines on
“disparate treatment").

In cases where group-specific models are disallowed or impractical, existing models are known
to exhibit disparate performance across groups [5, 26, 19]; thus, understanding the best possible
compromises between fairness and accuracy becomes critical. A principled way to approach this
tension is through study of the fairness–accuracy (FA) frontier. The FA frontier consists of models
where neither fairness nor accuracy can be improved without harming the other. This frontier allows
decision-makers to visualize the explicit trade-offs and select a model that aligns with their fairness
and performance objectives.

Recent work, notably by Liang et al. [37], characterizes the FA frontier under the assumption that
group-wise distributions are known. In practice, however, we must base our decisions regarding the
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Figure 1: (a) Population FA frontier: The blue shaded area represents the set of risk pairs that are
achievable by some linear model, and βr and βb are the error-minimizing models for groups r and
b, respectively. βfair is the error-equalizing model. The FA frontier is the purple region along the
boundary of the feasible set of error pairs. (b) For any λ ∈ [0, 1], βλ is the first point of tangency
between the line λx + (1 − λ)y = c and the FA frontier as we increase c > 0. This point moves
along the frontier from βr to βb as λ ranges from 1 → 0.

FA frontier on a finite number of data points. This work studies how the empirical FA frontier deviates
from its population counterpart, characterizes the worst-case gap between them, and develops optimal
estimators and sampling strategies.

We consider a two-group linear regression setting, with groups labeled “red” (r) and “blue” (b). Each
individual’s outcome in group g ∈ {r, b} is modeled as the inner product of their covariate vector
and a group-specific parameter βg plus zero-mean independent noise. The two groups may differ
in their parameters (βr ̸= βb) and in their covariate distributions. We measure the group-specific
performance of a parameter β by the expected squared loss, and the fairness by the absolute difference
in risks– the equalized loss criterion [60, 32]. As presented by Liang et al. [37], Figure 1a depicts the
FA frontier which traces a portion of the boundary of the set of all risk pairs (across the two groups)
that are attainable by some linear model with endpoints at each group’s optimum βg .

For homoskedastic linear regression, we can parametrize the FA frontier using a parameter λ ∈ [0, 1].
For each λ, we define an objective function as a convex combination of group-specific risks, assigning
weight λ to the red group and 1 − λ to the blue group. The pair of risks corresponding to the
minimizer of this objective, denoted by βλ, lies on the FA frontier and represents the first point of
tangency between the frontier and a line of the form λx + (1 − λ)y = c as c > 0 increases, as
illustrated in Figure 1b. By varying λ continuously from 0 to 1, we trace out the entire FA frontier.
See Appendix A.0.1 for further discussion on the choice of λ.

Any estimator of a target model βλ will yield a risk pair that is strictly inside the achievable set. This
raises a natural question: Given only nr and nb samples from groups r and b, respectively, what
estimator minimizes worst-case excess risk? To illustrate this, as shown in Figure 2a, consider lines
of the form λx+ (1− λ)y = c and define the excess risk of an estimator as the amount by which c
must be increased so that it intersects an attainable risk pair, in the worst-case sense over a family of
distributions.

First, we establish that the minimax-optimal estimator differs in the known covariance setting in
which we know the covariance matrices of the covariate but the parameters βr and βb are unknown
and the unknown covariance setting in which neither the covariance matrices nor the parameters are
known. In the known covariance case, we derive matching upper and lower bounds for an estimator
that preserves the structure of the oracle solution βλ. We show that, under additional assumptions that
control the tails of the covariate distributions, error increases in the norm of the group’s covariance
matrix and decreases with its sample size. This implies that higher-variance covariates require more
samples to achieve the same accuracy and that increasing the sample size of only one group cannot
reduce the overall error beyond a certain limit. In the unknown covariance case, we show that the
ordinary least squares (OLS) estimator incurs risk consisting of variance and bias terms. The variance
term arises from the estimation of the parameters βr and βb, even when the covariance matrices are
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known. The bias term, in contrast, represents the error incurred from the estimation of the covariance
matrices and remains even when the group-wise parameters are known (see Proposition 2).

For subgaussian covariates satisfying the small-ball condition, we derive upper bounds for both the
bias and variance terms. Our upper bound for the variance term naturally matches the bound in the
known covariance case. Our upper bound for the bias term shows that it decreases in parameter
heterogeneity ∥βr − βb∥. We derive matching lower bounds (up to constants) to show that the OLS
estimator is minimax-optimal.

Our bounds yield optimal sampling rules that identify how to allocate a fixed sampling budget in both
cases. In the known-covariance case, the sampling allocation depends on the norm of the covariance
matrix and weight λ4. In the unknown covariance case, when the variance term dominates (e.g., when
∥βr − βb∥ is small), the same allocation rule as in the known covariance case remains near-optimal.
When heterogeneity is large and the bias term dominates, however, the optimal design shifts toward
balancing the two sample sizes, nr ≈ nb when the bias term dominates. The governing regime
depends on ∥βr − βb∥, i.e., in the heterogeneity across groups.

Finally, we demonstrate an asymmetry in the group-wise impact of finite-sample estimation, as
depicted in Figure 2b. With known covariance, excess risk increases with ratio of the norms of their
covariance matrices. With unknown covariance, the OLS estimator introduces a cross term that (i) can
shift the risks in opposite directions and (ii) depends asymmetrically on λ. Notably, these disparities
arise independently of sample size in both cases. Thus, the fairness–accuracy trade-off implied by the
empirical estimator may differ substantially in practice from the trade-off defined at the population
level.

Related Work: Our work builds on Liang et al. [37], who formalize the FA Pareto frontier for
assessing fairness-accuracy trade-offs under the assumption of full knowledge of the covariate and
outcome distributions. Liu and Molinari [39] relax the full-knowledge assumption and introduce a
consistent estimator of the FA frontier, deriving the asymptotic distribution of the estimator and using
it to design statistical tests for properties such as the gap between a given algorithm and the fairest
alternative. Auerbach et al. [4] further contribute a statistical test for determining whether a model
achieving a given accuracy admits a Pareto improvement in fairness. We likewise address the practical
challenges of analyzing the FA frontier from finite data, but take a fully non-asymptotic approach,
providing finite-sample guarantees for estimators that target a social planner’s fairness-accuracy
preferences.

Our work also contributes to the literature on fairness in regression, a topic that has traditionally
received less attention than fair classification [see, e.g., 21]. The most closely related work is that of
Chzhen and Schreuder [12], who develop a minimax-optimal fair regression estimator for an explicit
fairness constraint based on the Wasserstein distance between the loss distributions across groups.
Beyond this, several other works have introduced various notions of fairness for the regression
setting and have proposed corresponding optimal estimation procedures [8, 6, 25, 2, 13, 14, 45] and
for estimating the minimal utility cost associated with achieving fairness in regression [62]. See
Appendix A.1 for an extended discussion of related work.

2 Fairness-Accuracy Frontier Framework

We consider a population where each individual has covariates X ∈ X ⊂ Rd, outcome Y ∈ R,
and group label g ∈ G := {r, b} (e.g., red, blue). For each group g, we observe ng data points,
Sg := {(X(g)

i , Y
(g)
i )}ng

i=1 drawn i.i.d from P (X,Y |G = g). Given a predictor f ∈ H, its population
and empirical risk on group g under a loss function ℓ are given, respectively, by

Rg(f) := E(X,Y )∼P (·|G=g)[ℓ(f(X), Y )], R̂g(f) :=
1

ng

ng∑
i=1

ℓ
(
f
(
X

(g)
i

)
, Y

(g)
i

)
.

We measure fairness using the risk disparity |Rr(f)−Rb(f)| as in [37]. For regression tasks with
a continuous outcome variable Y—the primary focus of this paper—this notion coincides with the
definition of Equalized Loss proposed by [60]. The set of achievable population risk pairs over the

4This result is a direct analogue of Neyman’s classical allocation in stratified sampling [44]
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class H is given by
E(H) := {(Rr(f),Rb(f)) : f ∈ H}.

Following [37], we say that a point lies on the fairness-accuracy (FA) Pareto frontier if no other
predictor simultaneously improves both groups’ risks and risk disparity. See Appendix A.2 for
extended discussion and definitions of the FA frontier.

In this work, we focus on the setting where there is a direct tradeoff between the accuracy across
groups, referred to as the group balanced case in [37]. In the group-balanced setting, the fair predictor
which minimizes the risk disparity falls between each group’s optimal point on the frontier, denoted
fr and fb for groups r and b, respectively. In the next section, we show that the regression problem,
under the assumption of equal noise variance, falls into the group-balanced category.

For the group-balanced setting, the FA frontier can be traversed by varying a parameter λ ∈ [0, 1]
which represents the designer’s preference in trading off between fairness and accuracy for each group.
In particular, given a weight λ, the decision-maker seeks a decision policy fλ that achieves the desired
tradeoff in errors between groups. This corresponds to solving the weighted risk minimization:

fλ = argmin
f∈H

Rλ(f) with Rλ(f) := λRr(f) + (1− λ)Rb(f). (1)

Here, λ encodes the relative cost of errors affecting group r to those affecting group b. The extreme
cases λ = 1 and λ = 0 recover the group-optimal decision policies fr and fb, respectively. In general,
fλ is the first point in E(H) that intersects the line λRr + (1− λ)Rb = c as c increases—that is, as
the line shifts upward and to the right. See Figure 3a for an illustration. This formulation thus allows
us to target a point on the FA frontier and trade off between fairness and accuracy.

2.1 Empirical Fairness-Accuracy Frontier

In practice, the true distribution P is unknown, so fλ cannot be computed directly. Instead,
we may learn an empirical predictor f̂λ ∈ H from the data {Sr,Sb}. Its excess risk, given by
Rλ(f̂λ)−Rλ(fλ) is nonnegative, since fλ minimizes Rλ(·). This implies that the empirical fairness-
accuracy frontier contracts inward relative to the FA frontier F(H). That said, for any estimator f̂λ,
the corresponding excess risk quantifies how much the frontier is pushed inward in the direction
orthogonal to the line λRr + (1− λ)Rb = constant, as illustrated in Figure 3b.

We study this contraction in a minimax sense. For a distribution class P , we seek estimators min-
imizing the worst-case excess risk:inf f̂λ∈H supP∈P E

[
Rλ(f̂λ)−Rλ(fλ)

]
where the expectation

is taken with respect to the draw of the dataset {Sr,Sb}. The remainder of this work analyzes this
problem for linear regression, deriving lower bounds and near-optimal estimators and examining the
group-wise risk implications.

3 Linear Model Class

To provide theoretical bounds on the empirical FA frontier, we focus on linear regression with
homoskedastic noise.

Definition 1 (Linear Model Class). The linear model class Plinear(σ
2) consists of all distributions

where, for each group g ∈ {r, b},

Y = X⊤βg + εg, E[εg|X] = 0, E[ε2g|X] = σ2

for some βg ∈ Rd. If we further assume that the distribution of the covariate X given group identity
g is known and equal to P gX , then we denote this subclass of Plinear(σ

2) by Plinear(P
r
X , P

b
X , σ

2).

A canonical example of a distribution in Plinear(σ
2) is the well-specified linear model with ho-

moskedastic Gaussian noise εg ∼ N (0, σ2), independent of X . In what follows, we take H as
the class of linear models, i.e., {fβ(x) = x⊤β : β ∈ Rd}. In addition, we take the squared loss
function ℓ(fβ(X), Y ) = (β⊤X − Y )2, and also simplify the notation of the risks to Rg(fβ) and
Rλ(fβ) to Rg(β) and Rλ(β), respectively. We write Eg and Pg to denote expectation and probability,
respectively, under the conditional distribution P (X,Y |G = g).
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For group g, the population covariance is defined as Σg := Eg[XX⊤], and the cross-moment between
X and Y is νg := Eg [XY ] = Σgβg . Their empirical quantities are defined, respectively, as

Σ̂g :=
1

ng

ng∑
i=1

X
(g)
i X

(g)⊤
i , ν̂g :=

1

ng

ng∑
i=1

Y
(g)
i X

(g)
i .

The linear model falls under the group-balanced scenario described in Section 2. See Appendix A.3
for details.

Assumptions Assumptions 1 and 2 are maintained throughout our analysis and guarantee identifia-
bility and consistency of the least-squares estimator. Assumptions 3 and 4 provide control over the
tails of the sample covariance spectrum to further simplify our risk bounds.
Assumption 1 (Invertible Covariance and Sample Covariance Matrix). For each group g ∈ {r, b},
the population covariance matrix Σg is invertible.
Assumption 2 (Invertible Sample Covariance Matrix). For each group g ∈ {r, b}, the empirical
covariance matrix Σ̂g is invertible almost surely.
Assumption 3 (Small-Ball Condition). We say that the covariate of group g satisfies the small-ball
condition with parameters Cg ≥ 1 and αg ∈ (0, 1] if, for all nonzero θ ∈ Rd and all t > 0,

Pg
(
|θ⊤X| ≤ t ∥θ∥Σg

)
≤ (Cgt)

αg .

This condition, adopted from prior work (e.g., Koltchinskii and Mendelson [34], Mourtada [43]),
provides lower-tail control of the sample covariance spectrum, ensuring that the empirical covariance
does not degenerate in directions of low variance of the covariates. This assumption holds for
multivariate Gaussian distributions with αg = 1, since in that case θ⊤X is Gaussian with variance
∥θ∥2Σg

. Furthermore, [49] show that this condition holds with αg = 1 for covariates with independent
coordinates and bounded densities.
Assumption 4 (Subgaussian Covariates). We say that the covariate of group g satisfies the subgaus-
sian assumption if there exists a constant Kg ≥ 1 such that, for any u ∈ Rd,∥∥X⊤u

∥∥
ψ2

≤ Kg

∥∥u∥∥
Σg
,

where the ψ2-norm is defined conditional on the group identity being g.

This condition ensures that the covariates have light tails. It is satisfied, for instance, by multivariate
Gaussian distributions or bounded distributions. Further insights about the complementary nature of
Assumptions 3 and 4 are given in Appendix A.4.

3.1 Empirical Estimators

Let βλ denote the optimal predictor corresponding to the weighted loss Rλ(β),

βλ := argmin
β∈Rd

Rλ(β)Σ
−1
λ νλ (2)

with
Σλ := λΣr + (1− λ)Σb and νλ := λνr + (1− λ)νb. (3)

The next proposition allows us to relate the excess risk of any estimator β to that of βλ, as well as to
its estimation error on both groups. For details, see Appendix C.1.1.
Proposition 1. For a given β ∈ Rd, λ ∈ [0, 1], and g ∈ G, the following identities hold:

Rλ(β)−Rλ(βλ) = λ ∥β − βλ∥2Σr
+ (1− λ)∥β − βλ∥2Σb

, (4a)

Rg(β)−Rg(βλ) = ∥β − βλ∥2Σg
+ 2(β − βλ)

⊤Σg(βλ − βg). (4b)

Recall that our goal is to minimize the worst case expected excess risk, i.e.,

inf
β

sup
P∈P

ESr,Sb
[Rλ(β)−Rλ(βλ)] = inf

β
sup
P∈P

ESr,Sb

[
λ∥β − βλ∥2Σr

+ (1− λ)∥β − βλ∥2Σb

]
, (5)
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where β is a function of the datasets {Sr,Sb}.5 For λ ∈ {0, 1}, this reduces to the single-group
setting. In that case, [43] shows that the OLS estimator β̂g is minimax optimal for Plinear(σ

2) and that
knowledge of the covariate distribution does not affect this optimality. For λ ∈ (0, 1), we consider
the empirical analog of the λ-weighted risk: R̂λ(β) := λR̂r(β) + (1− λ)R̂b(β). whose minimizer
under Assumption 2 is

β̂λ := Σ̂−1
λ ν̂λ with Σ̂λ = λΣ̂r + (1− λ)Σ̂b and ν̂λ := λν̂r + (1− λ)ν̂b. (6)

As we will see next, this estimator is nearly minimax optimal over Plinear(σ
2). However, unlike in the

one-group case, under additional knowledge of the covariate distribution—or even just the covariance
matrices Σr and Σb—a different estimator becomes minimax optimal. This marks a sharp departure
from the classical linear regression setting, in which the OLS estimator is optimal regardless of
knowledge of the covariate distribution.

4 Estimation with Known Covariances

We first consider the setting in which the population covariance matrices Σr and Σb are known. Given
samples from both groups, we propose the following estimator:

β̃λ = (Σλ)
−1(λΣrβ̂r + (1− λ)Σbβ̂b), (7)

with Σλ as defined in (3) and β̂g defined as the standard, one-group OLS estimator. This estimator
maintains the structure of the optimal predictor βλ but replaces the true cross moment νg = Σgβg
with the empirical quantity Σgβ̂g for each group g. We first establish that this estimator is minimax
optimal when the covariance matrices are known, and then characterize its group-wise estimation
error. Finally, we discuss the implications of this result for algorithm design and optimal sampling
strategies.

4.1 The Optimal Estimator

As Proposition 1 shows, the excess risk of an estimator can be decomposed into the sum of its
distances from the optimal predictor βλ under the Mahalanobis norms induced by Σr and Σb. The
following result shows that, for each group g, the worst-case distance ∥β − βλ∥2g is minimized by β̃λ,
thereby implying the minimax optimality of this estimator.
Theorem 1. Suppose Assumptions 1 and 2 hold. Then, for any group g ∈ {b, r}, we have

inf
β

sup
P∈Plinear(P

r
X

,P b
X

,σ2)

E
[
∥β − βλ∥2Σg

]
(8)

= λ2 σ
2

nr
E
[
Tr

(
ΣgΣ

−1
λ ΣrΣ̂

−1
r ΣrΣ

−1
λ

)]
+ (1− λ)2

σ2

nb
E
[
Tr

(
ΣgΣ

−1
λ ΣbΣ̂

−1
b ΣbΣ

−1
λ

)]
,

and the infimum is achieved by setting β equal to β̃λ, given by (7).

The proof is provided in Appendix C.2.1 and involves two steps: first, characterizing the error rate
of the estimator β̃λ for any distribution in Plinear(P

r
X , P

b
X , σ

2); and second, showing that no other
estimator can achieve a better rate in the worst-case sense via the Bayes estimator. Notice that we
have only assumed knowledge of Σg for each g ∈ {r, b}. This means that any additional knowledge
of the distribution ofX for each group yields no estimation improvements. As stated in the discussion
before Theorem 1, this result, together with Proposition 1, implies the following corollary on the
minimax optimality of β̃λ with respect to the excess risk of Rλ(·).
Corollary 1. Suppose Assumptions 1 and 2 hold. Then, β̃λ is the minimizer of the worst-case excess
risk (5) when P is set as Plinear(P

r
X , P

b
X , σ

2).

4.2 Bounding the Excess Risk

In this subsection, to illustrate the implications of Theorem 1, we further simplify the error bound
under additional assumptions on the distribution. First, note that when the covariance matrices are

5Moving forward, we omit the dependence of the expectation on the datasets when it is clear from the context.
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known, it is without loss of generality to assume spherical covariances, since we can apply the
transformation

X̃(g) := Σ−1/2
g X(g), β̃g := Σ−1/2

g βg,

which yields a spherical covariance matrix for the covariate vectors. We thus assume that each group
has a spherical covariance structure, i.e., Σg = ρ2gId for known ρg > 0.

Corollary 2. Suppose that for each group g ∈ G, the covariance matrix satisfies Σg = ρ2gId for
known ρg > 0. Furthermore, suppose Assumption 2 holds and the small-ball condition (Assumption 3)
also holds with constants (Cg, αg). Also suppose that ng ≥ 6d/αg and that d ≥ 2. Then we have

E
[∥∥∥β̃λ − βλ

∥∥∥2

Σg

]
≤

2σ2dρ2g
(λρ2r + (1− λ)ρ2b)

2

(
λ2C′

r
ρ2r
nr

+ (1− λ)2C′
b
ρ2b
nb

)
, (9)

where C ′
g = 3C4

g exp(1 + 9/αg).

See Appendix C.2.2 for the proof as well as Appendix A.5 for discussion of cases where the constant
C ′
g can be further sharpened. The following corollary combines the differences in matrix norms to

explicitly characterize the excess risk bound for the optimal estimator β̃λ.
Corollary 3. Under the premise of Corollary 2, we have

E
[
Rλ(β̃λ)−Rλ(βλ)

]
≤ 2σ2d

λρ2r + (1− λ)ρ2b

(
λ2C′

r
ρ2r
nr

+ (1− λ)2C′
b
ρ2b
nb

)
. (10)

We conclude this section with a few remarks on the insights we draw from these results.

Optimal allocation of the sampling budget: These results reveal the optimal allocation of a fixed
sampling budget across the two groups. Corollary 2, along with a simple Cauchy–Schwarz inequality,
suggests setting nr

nb
= λρr

(1−λ)ρb which intuitively increases with the group’s weight λ and scale ρg .

Per-group estimation error: Noting that β̃λ is an unbiased estimator of βλ, by Proposition 1, we
conclude that Theorem 1 and Corollary 2 quantify the per-group estimation error caused by using the
empirical estimator instead of the true parameter. Since these terms differ only in the ρg terms, we
see that the asymmetry across groups is driven by differences in Σg rather than ng; When one group’s
sample size is low, it impacts the accuracy of the estimator β̃λ, which, in turn, affects the error for
both groups.An important implication of this discrepancy is that finite-sample estimation can distort
the fairness-accuracy trade-off encoded by λ, shifting it away from the planner’s intended balance.

5 Estimation with Unknown Covariance

We now turn to the setting where the covariances Σr,Σb are unknown and must be estimated from
data. Here, our estimator is the convex-combination OLS estimator:

β̂λ = Σ̂−1
λ ν̂λ = (λΣ̂r + (1− λ)Σ̂b)

−1(λν̂r + (1− λ)ν̂b).

We first decompose its excess risk into bias and variance terms, then establish upper and lower bounds
under subgaussian and small-ball conditions, showing near-optimality up to constants of the estimator
under these assumptions.

5.1 The Bias-Variance Decomposition

Recall from Proposition 1 that the excess risk of β̂λ can be expressed as the weighted sum of

the two distances
∥∥∥β̂λ − βλ

∥∥∥2
Σr

and
∥∥∥β̂λ − βλ

∥∥∥2
Σb

. Thus, as in the previous section, we begin by

characterizing these two distances.
Proposition 2. Suppose Assumptions 1 and 2 hold. Then, for any group g ∈ {r, b}, we have:

E
[∥∥∥β̂λ − βλ

∥∥∥2
Σg

]
≤ Vg(λ) + Bg(λ), (11)

where the variance and bias terms are given, respectively, by:

Vg(λ) := λ2 σ
2

nr
ETr

(
Σ̂−1

λ ΣgΣ̂
−1
λ Σ̂r

)
+ (1− λ)2

σ2

nb
ETr

(
Σ̂−1

λ ΣgΣ̂
−1
λ Σ̂b

)
, (12)

Bg(λ) := E

[∥∥∥∥∥Σ1/2
g

[(
Id +

1− λ

λ
Σ̂−1

r Σ̂b

)−1

−
(
Id +

1− λ

λ
Σ−1

r Σb

)−1
]∥∥∥∥∥

2]
∥βr − βb∥2 . (13)
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See Appendix C.3.1 for the proof. The variance term closely resembles the error rate in the known-
covariance case: it captures the irreducible sampling error within each group, as it is scaled by
the squared fairness weights and the inverse sample sizes of each group. The bias term, however,
represents a key departure from the known-covariance setting. It arises from heterogeneity in the true
underlying coefficients βr and βb, it depends explicitly on βr − βb, and it vanishes when βr = βb.
Even if βr and βb are known exactly, the target parameter βλ cannot be recovered without knowledge
of Σr,Σb. The bias term quantifies the additional error introduced by replacing the true covariance
structure with empirical estimates, which explains why it vanishes in the known-covariance case.

5.2 Upper and Lower Bounds for the Bias and Variance Terms

In this section, we investigate the optimality of the estimator β̂λ under additional assumptions. For
our upper bounds, we consider subgaussian covariates (Assumption 4) that satisfy the small-ball
condition (Assumption 3). We further assume that, for any group g ∈ {r, b},

1

2
ρ2gId ⪯ Σg ⪯

3

2
ρ2gId, |βg| ≤ B. (14)

In the first condition, constants 1/2 and 3/2 are chosen for simplicity, and the appendix gives a more
general upper bound. We impose the second condition since Proposition 2 (and later our lower bound)
shows that the bias term grows with ∥βr − βb∥ and would diverge if the groups’ predictors were
unbounded. Accordingly, we consider the subclass of Plinear(σ

2) consisting of Gaussian covariates
satisfying conditions (14), and we denote the class by PGauss(σ

2, ρ2r, ρ
2
b , B).

For the upper bound, we bound the quantities Vg(λ) and Bg(λ) from Proposition 2. For the lower
bound, we decompose the worst-case error into bias and variance components by considering two
complementary scenarios. Specifically, we lower bound

sup
P∈PGauss(σ2,ρ2r,ρ

2
b ,B)

E
[
∥β − βλ∥2Σg

]
(15)

by the maximum of two restricted subproblems: (1) the case where the covariance matrices Σr and
Σb are known but the group predictors βr and βb are unknown (corresponding to the variance term),
and (2) the case where the group predictors are known but the covariance matrices are unknown
(corresponding to the bias term).
Theorem 2. Suppose Assumptions 1–4 hold, the covariance matrices satisfy (14), and, for g ∈ G,
and ng ≥ max{48/αg,K4

gd}. Then, we have:

Vg(λ) ≲
ρ2gσ

2d

(λρ2r/C′
r + (1− λ)ρ2b/C

′
b)

2

(
λ2ρ2r
nr

+
(1− λ)2ρ2b

nb

)
, (16)

where Vg(λ) is the variance term, as defined in Proposition 2, and C ′
g is given in Corollary 2.

Moreover, assuming ng ≥ σ2/(Bρ2g) for g ∈ G, we have

inf
β

sup
P∈PGauss(σ

2,ρ2r,ρ
2
b ,B)

Σr,Σb are known.

E
[
∥β − βλ∥2Σg

]
≳

ρ2gσ
2d

(λρ2r + (1− λ)ρ2b)
2

(
λ2ρ2r
nr

+
(1− λ)2ρ2b

nb

)
, (17)

where the infimum is taken over any estimator β as a function of the datasets (Sr,Sb).

See Appendix C.3.2 for the proof. The upper and lower bounds together show that, up to constant
factors, the variance term indeed captures the error arising from not knowing the true predictors βr
and βb, even in the known-covariance case. Moreover, the estimator β̂λ is minimax-optimal, again up
to constant factors. Note that, while the lower bound is for the known-covariance case, the result in
Theorem 1 from the previous section do not apply here since we have assumed bounded parameters.
We next derive upper and lower bounds for the bias term.
Theorem 3. Suppose Assumptions 1–4 hold, the covariance matrices satisfy (14), and, for g ∈ G,
ng ≥ 48/αg . Then, we have:

Bg(λ) ≲
λ2(1− λ)2 ρ2g ρ4r ρ4b d

(λρ2r/C′
r + (1− λ)ρ2b/C

′
b)

2 (λρ2r + (1− λ)ρ2b)
2

(
K4

r

nr
+

K4
b

nb

)
∥βr − βb∥2 , (18)

where Bg(λ) is the bias term, as defined in Proposition 2, and C ′
g is given in Corollary 2. Moreover,

if ng ≥ 16d2 for g ∈ G, we have

inf
β

sup
P∈PGauss(σ

2,ρ2r,ρ
2
b ,B)

βr,βb are known.

E
[
∥β − βλ∥2Σg

]
≳

λ2(1− λ)2 ρ2g ρ4r ρ4b d

(λρ2r + (1− λ)ρ2b)
4

(
1

nr
+

1

nb

)
∥βr − βb∥2 , (19)
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where the infimum is taken over any estimator β as a function of the datasets (Sr,Sb).

See Appendix C.3.3 for the proof. Recall that the constants Kr and Kb, as defined in Assumption 4,
are invariant to scaling and hence are independent of ρr and ρb. As a result, the upper and lower
bounds above match up to constant factors, which again shows that the bias term truly captures the
error arising from not knowing the covariance matrices, even when the group predictors βr and βb
are known. Moreover, Theorem 3, together with the result of Theorem 2, highlights that the OLS
estimator β̂λ achieves the minimax excess risk, as given in (5) with P = PGauss(σ

2, ρ2r, ρ
2
b , B), up to

constant factors.

Optimal allocation of the sampling budget: Similar to the known covariance setting, under a
fixed total sampling budget, these results imply that we should choose nr/nb = (λρr)/((1− λ)ρb)
to minimize the variance term. In contrast, Theorem 3 shows that minimizing the bias term requires a
balanced design, namely, nr = nb. The optimal sampling allocation strategy is more nuanced here
and depends on whether the variance term of bias term dominates. This, in turn, depends on the
heterogeneity in group distributions: the more the two groups differ, the larger the bias term becomes,
and the more we would prefer nr and nb to be closer.

5.3 Per-Group Estimation Errors
In the known covariance case (see Section 4), the cross term in the group-wise excess risk given
by Proposition 1 is mean-zero, so our bounds on ∥β̂λ − βλ∥2Σg

translate directly to the per-group

(expected) estimation error. However, this property does not hold for unknown covariance, as β̂λ is
not an unbiased estimate of βλ. The following result bounds the cross term in Proposition 1:
Proposition 3. Suppose Assumptions 1–4 hold, the covariance matrices satisfy (14), and, for g ∈ G,
ng ≥ 48/αg . Then, we have:∣∣∣E [

(β̂λ − βλ)
⊤Σr(βλ − βr)

]∣∣∣ ≲
λ(1− λ)2dρ4rρ

4
b ∥βr − βb∥2

(λρ2r + (1− λ)ρ2b)
3 (λρ2r/C′

r + (1− λ)ρ2b/C
′
b)

(
K2

r√
nr

+
K2

b√
nb

)(
λ
K2

rρ
2
r√

nr
+ (1− λ)

K2
b ρ

2
b√

nb

)
,

where C ′
g is given in Corollary 2.

The proof is provided in Appendix C.3.4. A similar result can also be stated for group b, with the only
difference being that λ(1− λ)2 in the bound is replaced by λ2(1− λ). Proposition 3, Theorem 2 and
Theorem 3, show that, much like in the known-covariance setting, there is an inherent asymmetry
in how the empirical estimator affects the risks of the two groups. The asymmetry revealed in
Proposition 1 mirrors that of the known-covariance setting in that it is driven only by ρg .

The cross term, (β̂λ − βλ)
⊤Σg(βλ − βg), captures a new phenomenon arising from the bias term.

First, note that the bound in Proposition 3 controls its absolute value, but the term itself may be
positive or negative. Moreover, it is straightforward to verify that if we sum this term across the
two groups with weights λ and 1− λ, the result is zero. Thus, its contribution to one group’s risk is
always offset by the other’s, ensuring that the two groups experience it with opposite signs. Even if
the absolute-value bound were symmetric, the term would still be a source of disparity between the
two groups’ risks. However, the bound is in fact not symmetric. As stated after the proposition, it
changes from λ(1− λ)2 for group r to λ2(1− λ) for group b. This bias effect is larger for group r
when λ is close to 0 and for group b when λ is close to 1, meaning that the second term increases in
absolute value for one group when the other group is prioritized in the overall loss function.

The fairness-accuracy trade-off implied by the choice of λ in the population objective is not necessarily
the trade-off realized in finite samples. The systematic differences in per-group risk may shift the
balance in fairness and accuracy away from the intended allocation, however, as in the known-
covariance setting, all bounds remain similar in nr and nb across both groups.
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A Additional Discussion

A.0.1 Choosing the Parameter λ

The choice of λ is a central design decision shaped by the model’s legal and ethical context, reflecting
the social planner’s preferences over group errors. To illustrate this, suppose 90% of the population
belongs to the red group. A natural choice would then be to set λ = 0.9. However, if we are
training a predictive model for patients or for hiring across different demographics, we might want to
ensure that the smaller group is not overshadowed. In that case, we could increase its weight and
even assign equal importance to both groups, i.e., set λ = 0.5. This approach, often referred to as
“weighting by inverse class frequency,” is common in the fairness literature [18, 52]. There are also
smoothed variants that interpolate between these extremes, offering a context-dependent balance
between accuracy and fairness [42]. In summary, the choice of λ ultimately rests with the designer,
and the role of the FA frontier is to ensure that, whatever choice is made, the resulting algorithm is
optimal for that setting.

A.1 Additional Related Work

A growing body of work bridges perspectives on fairness-accuracy trade-offs in computer science
and statistics with analyses of social welfare [30, 36, 27, 48]. Our results on the FA frontier can
also be interpreted in this context if we view each individual’s utility as the risk associated with
their group. More broadly, in the algorithmic fairness literature, it is widely recognized that no
single fairness criterion can capture the diverse preferences that decision-makers may have over
these trade-offs [10, 53, 33]. Economists make this point in a similar way by documenting the
heterogeneity in how individuals weigh equity against efficiency [9, 40]. Our framework builds on
this connection by adopting a flexible, weight-based formulation that accommodates this kind of
heterogeneity [50, 29, 31].

Finally, much attention has been devoted to the fundamental question of when fairness and accuracy
are in conflict and when they are aligned [16, 57, 7, 37, 3, 22, 15]. In settings where these objectives
are at odds, a variety of methods have been developed to identify Pareto improvements, where either
fairness or accuracy can be improved while keeping the other one unchanged. One line of work
designs algorithms for computing fairer alternatives to a given model for specific applications [24,
17, 38, 56, 11, 20]. A closely related line of work draws on the legal notion of a Less Discriminatory
Alternative, or a fairer model that maintains the original model’s accuracy [28, 35, 51]. Others take
the reverse approach, focusing on accuracy improvements subject to fairness guarantees [1, 55], or,
more generally, methods for balancing multiple competing objectives in learning [47, 41].
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A.2 Details on Defining the FA Frontier

Here we recall the definition of the fairness-accuracy (FA) Pareto frontier from [37]. To do so, we
first revisit the definition of FA dominance.

Definition 2 (Fairness-Accuracy (FA) Dominance). We say that a function f ′ ∈ H FA-dominates a
function f ∈ H, denoted by f ′ ≻ f , if Rr(f

′) ≤ Rr(f), Rb(f
′) ≤ Rb(f), and |Rr(f

′)−Rb(f
′)| ≤

|Rr(f)−Rb(f)|, with at least one of these three inequalities being strict.

In other words, a function f ′ FA-dominates a function f if it achieves no higher risk on either group
and no greater risk disparity between groups, with strict improvement for at least one. The FA frontier
is then defined as the subset of achievable risk pairs that are not FA-dominated by any other point.

Definition 3 (Fairness-Accuracy (FA) Frontier). The FA frontier, denoted by F(H), is defined as:

F(H) := {(Rr(f),Rb(f)) ∈ E(H) : ∄f ′ ∈ H : f ′ ≻ f} .

A.3 Formalizing Group-Balanced Setting in Linear Regression

Lemma 1 (Group-Balanced Structure). The linear model described above exhibits a group-balanced
structure. That is, each group’s risk-minimizing predictor achieves (weakly) lower prediction error
on its own group than on the other:

Rr(βr) ≤ Rb(βr), Rr(βb) ≥ Rb(βb).

A.3.1 Proof of Lemma 1

For any group g ∈ {r, b}, the risk of the group-optimal predictor βg is:

Rg(βg) = Eg
[
(X⊤βg − Y )2

]
= Eg[ε2g] = σ2.

For the other group g′ ̸= g, the same predictor incurs risk:

Rg′(βg) = Eg′
[
(X⊤βg − Y )2

]
= Eg′

[(
X⊤ (βg − βg′)

)2]
+ σ2.

The latter is greater or equal, and strictly greater when βg ̸= βg′ and Σg′ is invertible.

A.4 The Role of Concentration and Anticoncentration Assumptions

Assumptions 3 and 4 are complementary and provide control over the spectrum of the sample
covariance matrix. The subgaussian condition bounds the upper tail, limiting the growth of the largest
eigenvalue and thereby the variance of our estimators. The small-ball condition controls the lower tail,
preventing the collapse of the smallest eigenvalue such that inverse covariance terms are bounded. As
discussed above, the two assumptions hold simultaneously for a broad class of distributions, including
multivariate Gaussian distributions and covariates with independent subgaussian coordinates and
bounded density.

A.5 Sharpening Analysis of Minimum Eigenvalue of the Sample Covariance Matrix

The constant C ′
g arises from the bound on the minimum eigenvalue of the sample covariance,

which is used here to bound the trace of Σ̂−1
r and Σ̂−1

b , as given in Mourtada [43, Theorem 4].
However, as highlighted in Mourtada [43, Remark 6]—based on results from Wu and Verdú [58] and
Edelman [23]—this constant can be significantly reduced for Gaussian distributions. In particular,
if the covariate distributions are Gaussian, C ′

g can be replaced by a constant whose limit, when
d/ng → h ∈ (0, 1), is upper bounded by(

1

h

)3h( √
e

1− h

)3(1−h)

,

which, in turn, can be shown to be upper bounded by (1 +
√
e)3.
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B Additional Figures
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Figure 2: (a) Finite-sample estimation: The error pair corresponding to the empirical estimator β̂λ
lies on the line λx + (1 − λ)y = c′, where c − c′ is the excess risk. (b) Asymmetric group-wise
impact: The displacement from βλ to β̂λ decomposes into a vertical change in the blue-group error
and a horizontal change in the red-group error; their unequal magnitudes show that the estimator
affects the two groups asymmetrically.
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Figure 3: Illustration of FA frontier, parametrized by λ, and its empirical version.

C Additional Results and Proofs

C.0.1 Auxiliary Results

Lemma 2 (Exact risk of the OLS convex combination estimator). Under Definition 1 and Assumptions
1, 2 the excess risk decomposes as:

E
[∥∥∥β̂λ − βλ

∥∥∥2
Σg

]
= λ2

1

n2r
E

[
nr∑
i=1

σ2
r(Xi)

∥∥∥X̃i

∥∥∥2
Σ̃−2

g

]

+ (1− λ)2
1

n2b
E

[
nb∑
i=1

σ2
b (Xi)

∥∥∥X̃i

∥∥∥2
Σ̃−2

g

]

+ E
[∥∥∥λΣ̂r(βr − βλ) + (1− λ)Σ̂b(βb − βλ)

∥∥∥2
Σ̃−2

g

]
.
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Proof of Lemma 2

We begin by noting that

ν̂g :=
1

ng

ng∑
i=1

XiYi = Σ̂gβg +
1

ng

ng∑
i=1

εiXi.

Substituting into ν̂λ, we obtain

λν̂r + (1− λ)ν̂b = λΣ̂rβr + (1− λ)Σ̂bβb + λ
1

nr

nr∑
i=1

εiXi + (1− λ)
1

nb

nb∑
i=1

εiXi.

Define the symmetric matrix

W := Σ̂−1
λ ΣgΣ̂

−1
λ

and let

Zr := λ
1

nr

nr∑
i=1

εiXi, Zb := (1− λ)
1

nb

nb∑
i=1

εiXi, Z := Zr + Zb

B = λΣ̂r(βr − βλ) + (1− λ)Σ̂b(βb − βλ).

The error in estimating βλ thus decomposes as

β̂λ − βλ = Σ̂−1
λ (Z +B).

so that

E
[∥∥∥β̂λ − βλ

∥∥∥2
Σg

]
= E

[
∥Z +B∥2W

]
= E

[
∥Z∥2W

]
+ E

[
∥B∥2W

]
+ 2E [⟨Z,B⟩W ] .

Since Z is mean-zero conditional on {Xi} and B and W are deterministic given {Xi}, we have

E [E [⟨Z,B⟩W | {Xi}] = 0.

The cross-terms between Zr and Zb also vanish by independence and the fact that the noise is
zero-mean:

E [E [ ⟨Zr, Zb⟩W ]| {Xi}] = 0.

Therefore,

E
[
∥Z∥2W

]
= E

[
∥Zr∥2W

]
+ E

[
∥Zb∥2W

]
= λ2

1

n2r
E

[
nr∑
i=1

σ2
r(Xi) ∥Xi∥2W

]
+ (1− λ)2

1

n2b
E

[
nb∑
i=1

σ2
b (Xi) ∥Xi∥2W

]

Combining terms and observing that

∥Xi∥2W =
∥∥∥X̃i

∥∥∥
Σ̃−2

g

yields the claim. ■

Lemma 3 ([43] Corollary 4 generalized to spherical covariance). Suppose that ng ≥ 48/αg and that
X(g) satisfies Assumption 3 with parameters Cg and αg . Also suppose that ρ2gId ⪯ Σg . Then,

E
[
λmin(Σ̂g)

−4
]
≤ 2ρ−8

g · C ′
g
4 (20)

where C ′
g := 3C4

g exp(1 + 9/αg).
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Proof of Lemma 3

Define the whitened covariate vectors and whitened sample covariance, respectively, as

X̃
(g)
i :=

1

ρg
X

(g)
i , Σ̄g :=

1

ng

ng∑
i=1

X̃i
(g)
X̃i

(g)⊤
.

By [43] Corollary 4 taking q = 4, if ng ≥ 48/αg ,

E
[
λmin(Σ̄g)

−4
]
≤ 2 ·

(
3C4

g exp(1 + 9/αg)
)4
.

Hence,
E
[
λmin(Σ̂g)

−4
]
≤ 2ρ−8

g ·
(
3C4

g exp(1 + 9/αg)
)4
.■ (21)

Lemma 4 (Subgaussian sample covariance moment bound). Under Assumption 4, there exists a
universal constant C > 0 such that:

E
[∥∥∥Σ̂g − Σg

∥∥∥4] ≤ CK8
g ∥Σg∥

4 d
2

n2g
.

Proof of Lemma 4

By standard subgaussian matrix concentration (see, e.g., [54] Remark 4.7.3), for all δ ∈ (0, 1), there
exists an absolute constant C > 0 such that:

P

(∥∥∥Σ̂g − Σg

∥∥∥ ≥ CK2
g

(√
d+ u

ng
+
d+ u

ng

)
∥Σg∥

)
≤ 2 exp(−u).

To invert this tail bound, we seek f(s) such that P(
∥∥∥Σ̂g − Σg

∥∥∥ ≥ s) ≤ 2 exp(−f(s)). In other
words, using 2max{a, b} ≥ a+ b, we want

s ≤ CK2
g

(√
d+ u

ng
+
d+ u

ng

)
∥Σg∥ ≤ 2CK2

g max

{√
d+ u

ng
,
d+ u

ng

}
(22)

We split this into two cases:

1. If
√

d+u
ng

≥ d+u
ng

, (22) is satisfied if s ≤ 2CK2
g

√
d+u
ng

which occurs when u ≥
s2ng

4C2K4
g∥Σg∥2 − d.

2. If
√

d+u
ng

< d+u
ng

, (22) is satisfied if s ≤ 2CK2
g

√
d+u
ng

which occurs when u ≥ sng

2CK2
g∥Σg∥−

d.

Combining,

P
(∥∥∥Σ̂g − Σg

∥∥∥ ≥ s
)
≤ 2 exp

(
d− C ′ngmin

{
s2

K4
g ∥Σg∥

2 ,
s

K2
g ∥Σg∥

})
.

Define s1 := K2
g ∥Σg∥

√
d

C′ng
and s2 := K2

g ∥Σg∥ d
C′ng

, the critical values of s that make the
argument of the exponent positive for cases (1) and (2) defined above, respectively.

Next, we express the expectation as the integral of the tails, performing the change of variables
t = s4:

E
[∥∥∥Σ̂g − Σg

∥∥∥4] = ∫ ∞

0

P
(∥∥∥Σ̂g − Σg

∥∥∥4 ≥ t

)
dt = 4

∫ ∞

0

P
(∥∥∥Σ̂g − Σg

∥∥∥ ≥ s
)
s3ds

Define the critical point sd := min{s1, s2} and split the integral∫ ∞

0

P
(∥∥∥Σ̂g − Σg

∥∥∥ ≥ s
)
s3ds =

∫ sd

0

P
(∥∥∥Σ̂g − Σg

∥∥∥ ≥ s
)
s3ds+

∫ ∞

sd

P
(∥∥∥Σ̂g − Σg

∥∥∥ ≥ s
)
s3ds

17



For the first term, we may take the trivial upper bound of 1 to bound the integral as follows:∫ sd

0

P
(∥∥∥Σ̂g − Σg

∥∥∥ ≥ s
)
s3ds ≤

∫ sd

0

s3ds ≤ 1

4
max{s41, s42} =

1

4
max

{(
d

C ′ng

)2

,

(
d

C ′ng

)4
}

For the second term, observe∫ ∞

sd

P
(∥∥∥Σ̂g − Σg

∥∥∥ ≥ s
)
s3ds ≤ max

{∫ ∞

s1

P
(∥∥∥Σ̂g − Σg

∥∥∥ ≥ s
)
s3ds,

∫ ∞

s2

P
(∥∥∥Σ̂g − Σg

∥∥∥ ≥ s
)
s3ds

}
.

We then bound each integral:∫ ∞

s1

P
(∥∥∥Σ̂g − Σg

∥∥∥ ≥ s
)
s3ds ≤

∫ ∞

s1

s3 exp

(
−C ′ngs

2

K4
g ∥Σg∥

2

)
ds =

K8
g (d+ 1) exp(−d) ∥Σg∥4

2C ′2n2g∫ ∞

s2

P
(∥∥∥Σ̂g − Σg

∥∥∥ ≥ s
)
s3ds ≤

∫ ∞

s2

s3 exp

(
−C ′ngs

K2
g ∥Σg∥

)
ds =

K8
g

(
d3 + 3d2 + 6d+ 6

)
exp(−d)∥Σg∥4

C ′4n4g
.

Therefore, in either case, we conclude that, for an absolute constant C > 0,

E
[∥∥∥Σ̂g − Σg

∥∥∥4] ≤ CK8
g ∥Σg∥

4 d
2

n2g

as desired. ■
Lemma 5. Under Assumption 4, there exists a constant C > 0 such that

E
[
Tr
(
Σ̂2
g

)]
≤ Tr

(
Σ2
g

)
+
CK4

g

ng
Tr (Σg)

2
.

Proof of Lemma 5

For notational convenience, we writeXi in place ofX(g)
i ∼ X|G = g throughout the proof. Applying

linearity of the trace and expectation and expanding the empirical covariance matrix product, we
have:

E
[
Tr
(
Σ̂2
g

)]
=

1

n2g

ng∑
i=1

Tr
(
E[XiX

⊤
i XiX

⊤
i ]
)
+

1

n2g

∑
i ̸=j

Tr
(
E[XiX

⊤
i XjX

⊤
j ]
)

For the cross terms, by independence, for i ̸= j,

E
[
XiXi

⊤XjXj
⊤
]
= E

[
XiXi

⊤
]
E
[
XjXj

⊤
]
= Σ2

g.

Thus, ∑
i̸=j

Tr
(
E[XiX

⊤
i XjX

⊤
j ]
)
= ng(ng − 1)Tr

(
Σ2
g

)
.

For the diagonal terms, interchanging the trace and expectation and applying invariance under cyclic
permutations of the trace, we have

Tr
(
E
[
XiXi

⊤XiXi
⊤
])

= E
[
∥Xi∥42

]
.

By our subgaussianity assumption 4 and standard moment bounds for subgaussian vectors (see, e.g.,
[54]), we have, for some absolute constant C > 0:

E
[
∥X1∥4

]
≤ CK4

g Tr (Σg)
2
.

Put the pieces together, we have

E
[
Tr
(
Σ̂2
g

)]
≤ Tr

(
Σ2
g

)
+
CK4

g

ng
Tr(Σg)

2

as desired. ■
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Lemma 6 (Assouad’s Lemma [59]). Fix an integer m ≥ 1 and define the m-dimensional hypercube
Ξm := {−1, 1}m. Let P = {Pξ : ξ ∈ Ξm} be a family of probability measures such that for each
ξ ∈ Ξm there is an associated parameter θ(Pξ) that is the target of interest. Also suppose that
|P| = 2m. Take the loss function to be the squared ℓ2-distance. For j ∈ [m], let ξ(j) denote the
vector obtained by flipping the j-th coordinate of vector ξ, i.e., ξ−j = ξ

(j)
−j , ξj = −ξ(j)j . Define the

per-coordinate separation as

α := inf
j∈[m],ξ∈Ξm

〈
ej , θ(Pξ)− θ

(
Pξ(j)

)〉2
.

Then, for every estimator θ̂, the minimax risk is lower bounded by

sup
Pξ∈P

EPξ

[∥∥∥θ̂ − θ(Pξ)
∥∥∥2
2

]
≥ m

2
· α ·

1− sup
ξ,ξ′∈Ξm

dh(ξ,ξ
′)=1

∥Pξ,Pξ′∥TV


where dh denotes the Hamming distance.

C.1 Proofs from Section 3

C.1.1 Proof of Proposition 1

Note that

Rg(β) = Eg
[
(X⊤β − Y )2

]
= Eg

[
(X⊤(β − βg)− εg)

2
]
= ∥β − βg∥2Σg

+ σ2, (23)

where the last equality follows from the fact that E[εg|X] = 0. As a result, we have

Rg(β)−Rg(βλ) = ∥β− βg∥2Σg
−∥βλ− βg∥2Σg

= ∥β− βλ∥2Σg
+2(β− βλ)

⊤Σg(βλ− βg), (24)

which completes the proof of (4b). To establish (4a), simply sum both sides of (4b) for the red and
blue groups, weighted by λ and 1− λ, respectively, and use the definition of βλ.

C.2 Proofs from Section 4

C.2.1 Proof of Theorem 1

Upper bound

We first establish that the error given in the statement of the theorem is indeed achieved by setting
β = β̃λ. Notice that, we have

β̃λ = βλ − Σ−1
λ

(
λΣr(βr − β̂r) + (1− λ)Σb(βb − β̂b)

)
.

Substituting β̂g = Σ̂−1
g ν̂b and using the decomposition

ν̂g = Σ̂gβg +
1

ng

ng∑
i=1

X
(g)
i ε

(g)
i ,

we obtain

β̃λ − βλ = Σ−1
λ

(
λΣrΣ̂

−1
r · 1

nr

nr∑
i=1

X
(r)
i ε

(r)
i + (1− λ)ΣbΣ̂b ·

1

nb

nb∑
i=1

X
(b)
i ε

(b)
i

)
.

Let A := Σ−1
λ ΣgΣ

−1
λ . By the mean-zero and independence properties of the noise, the cross terms

cancel in the squared norm, which yields

E
[∥∥∥β̃λ − βλ

∥∥∥2
Σg

]
= λ2 · 1

n2r
E

∥∥∥∥∥ΣrΣ̂−1
r

nr∑
i=1

X
(r)
i ε

(r)
i

∥∥∥∥∥
2

A

+ (1− λ)2 · 1

n2b
E

∥∥∥∥∥ΣbΣ̂−1
b

nb∑
i=1

X
(b)
i ε

(b)
i

∥∥∥∥∥
2

A


19



Using the independence and mean-zero property of ε(g)i and applying the trace identity for the
expectation of quadratic forms, we obtain

E

∥∥∥∥∥ΣgΣ̂−1
r

nr∑
i=1

X
(r)
i ε

(r)
i

∥∥∥∥∥
2

A

 = σ2nr · E
[
Tr
(
Σ̂−1
r ΣrAΣr

)]
.

Applying the same procedure for the equivalent term for group b and substituting completes the proof.

Lower bound

Next, we establish the minimax optimality. In particular, we aim to show

sup
P∈Plinear(P r

x ,P
b
X ,σ

2)

E
[
∥β − βλ∥2Σg

]
≥ λ2

σ2

nr
E
[
Tr
(
ΣgΣ

−1
λ ΣrΣ̂

−1
r ΣrΣ

−1
λ

)]
+ (1− λ)2

σ2

nb
E
[
Tr
(
ΣgΣ

−1
λ ΣbΣ̂

−1
b ΣbΣ

−1
λ

)]
,

for any β. We derive this lower bound by the Bayes risk under an appropriate prior. More specifically,
suppose we choose a prior over groups’ regressor βr and βb. Then, the Bayes risk provides a valid
lower bound:

inf
β

sup
βλ

E
[
∥β − βλ∥2Σg

]
≥ E

[∥∥∥β̂∗
λ − βλ

∥∥∥
Σg

]
, (25)

where β̂∗
λ denotes the Bayes estimator under a prior specified below.

Let τ > 0 and suppose that the group-specific parameters follow independent Gaussian priors:

βr ∼ N (0, τ2Id), βb ∼ N (0, τ2Id).

Then, the induced prior on βλ is also Gaussian:

βλ ∼ N
(
0,Σ−1

λ

(
λ2τ2Σ2

r + (1− λ)2τ2Σ2
b

)
Σ−1
λ

)
.

Under the linear model Y = X⊤βg + εg with i.i.d noise εg ∼ N (0, σ2), the posterior distribution

for each parameter βg|
{
X

(g)
i , Y

(g)
i

}
is Gaussian:

βg|
{
X

(g)
i , Y

(g)
i

}
∼ N (µg(τ), Vg(τ))

with posterior mean and variance:

Mg(τ) := Σ̂g +
σ2

ngτ2
Id, µg(τ) :=Mg(τ)

−1ν̂g, Vg(τ) :=
σ2

ng
Mg(τ)

−1.

Since βλ is a deterministic linear combination of βr and βb, its posterior is also Gaussian:

βλ | Sn ∼ N (µλ(τ), Vλ(τ))

where:

µλ(τ) := Σ−1
λ (λΣrµr(τ) + (1− λ)Σbµb(τ)) , Vλ := Σ−1

λ

(
λ2ΣrVr(τ)Σr + (1− λ)2ΣbVb(τ)Σb

)
Σ−1
λ .

Since the Bayes estimator under squared loss is the posterior mean, the Bayes risk in the Σg-norm is:

E
[∥∥∥β̂∗

λ − βλ

∥∥∥
Σg

]
= E [Tr (ΣgVλ(τ))]

To obtain a lower bound, we consider the limit τ → ∞, which corresponds to an uninformative prior.
In this limit:

µg(τ) → Σ̂−1ν̂g, Vg(τ) →
σ2

ng
Σ̂g

−1
.

Thus, Vλ(τ) increases in the Loewner order as τ → ∞, and by monotone convergence,

lim
τ→∞

E [Tr (ΣgVλ(τ))] = λ2
σ2

nr
ETr

(
ΣgΣ

−1
λ ΣrΣ̂

−1
r ΣrΣ

−1
λ

)
+(1−λ)2σ

2

nb
ETr

(
ΣgΣ

−1
λ ΣbΣ̂

−1
b ΣbΣ

−1
λ

)
.

The desired minimax lower bound follows from substitution into the inequality (25).
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C.2.2 Proof of Corollary 2

Under the group-wise spherical covariance assumption, we have

Σ−1
λ =

(
λρ2r + (1− λ)ρ2b

)−1
Id.

Substituting and applying linearity of the trace yields

E
[∥∥∥β̃λ − βλ

∥∥∥2
Σg

]
≤ λ2

σ2

nr

ρ2gρ
4
r

(λρ2r + (1− λ)ρ2b)
2
E
[
Tr
(
Σ̂−1
r

)]
+ (1− λ)2

σ2

nb

ρ2gρ
4
b

(λρ2r + (1− λ)ρ2b)
2
E
[
Tr
(
Σ̂−1
b

)]
.

(26)

Let X̃(g)
i denote the whitened covariate vectors, i.e., X̃(g)

i = ρ
1/2
g X

(g)
i such that E

[
X̃

(g)
i X̃

(g)
i

⊤
]
=

Id.

Also observe
Tr
(
Σ̃−1
g

)
≤ d · λmin

(
Σ̃g

)−1

.

By Corollary 4 of [43],

E
[
λmin

(
Σ̃g

)−1
]
≤ 2C ′

g.

Then, noting Tr
(
Σ̃g

)
= ρ2g Tr

(
Σ̂g

)
, we reach the claim by substituting the resulting bound

E
[
Tr
(
Σ̂−1
g

)]
≤ 2C ′

gρ
−2
g d (27)

into (26).

To show the second half of the claim, consider subgaussian X ∈ Rd satisfying 4 with parameter
Kg and with covariance ρ2gId. Each coordinate satisfies ∥Xi∥ψ2

≤ Kgρg and it follows that there
exists an absolute constant ζ0 such that E

[
X4
i

]
≤ ζ0K

4
gρ

4
g. By Cauchy-Schwarz, for i ̸= j,

E
[
X2
iXj

]
≤ ζ0K

4
gρ

4
g . Hence, there exists a constant ζ > 0 such that

E
[
∥X∥4

]
= d · E

[
X4

1

]
+ 2

(
d

2

)
· E
[
X2

1X
2
2

]
≤ ζK4

gρ
4
g.

Then, by whitening and applying Mourtada [43, Theorem 3], we replace (27) with the following
bound:

E
[
Tr
(
Σ̂−1
g

)]
≤ ρ−2

g

(
d+

8C ′
gζρ

8
gd

2

ng

)
and the claim follows. ■

C.3 Proofs from Section 5

C.3.1 Proof of Proposition 2

From Lemma 2, the excess risk decomposes as:

E
[∥∥∥β̂λ − βλ

∥∥∥2
Σg

]
≤ λ2

σ2

n2r
E

[
nr∑
i=1

∥∥∥X̃i

∥∥∥2
Σ̃−2

g

]
+ (1− λ)2

σ2

n2b
E

[
nb∑
i=1

∥∥∥X̃i

∥∥∥2
Σ̃−2

g

]

+ E
[∥∥∥λΣ−1/2

g Σ̂r(βr − βλ) + (1− λ)Σ−1/2
g Σ̂b(βb − βλ)

∥∥∥2
Σ̃−2

g

]
where we define:

X̃i = Σ−1/2
g Xi and Σ̃g = Σ−1/2

g Σ̂λΣ
−1/2
g .

We apply the identity:
n∑
i=1

∥Axi∥2 = Tr

(
A⊤A

n∑
i=1

xix
⊤
i

)

21



with A = Σ̃−2
g and xi = X̃i. This gives:

σ2

n2r
E

[
nr∑
i=1

∥∥∥X̃i

∥∥∥2
Σ̃−2

g

]
=
σ2

nr
ETr

(
Σ̂−1
λ ΣgΣ̂

−1
λ Σ̂r

)
,

σ2

n2b
E

[
nb∑
i=1

∥∥∥X̃i

∥∥∥2
Σ̃−2

g

]
=
σ2

nb
ETr

(
Σ̂−1
λ ΣgΣ̂

−1
λ Σ̂b

)
For the final bias term, observe that:∥∥∥λΣ−1/2

g Σ̂r(βr − βλ) + (1− λ)Σ−1/2
g Σ̂b(βb − βλ)

∥∥∥2
Σ̃−2

g

=
∥∥∥Σ1/2

g Σ̂−1
λ

(
λΣ̂r(βr − βλ) + (1− λ)Σ̂b(βb − βλ)

)∥∥∥2 ,
which gives the first characterization of the bias term. To see the other representation, note that

λΣr(βr − βλ) + (1− λ)Σb(βb − βλ) = 0.

Therefore, we have

λΣ̂r(βr − βλ) + (1− λ)Σ̂b(βb − βλ) = λ
(
Σ̂r − Σr

)
(βr − βλ) + (1− λ)

(
Σ̂b − Σb

)
(βb − βλ).

Then, we can rearrange to see that

Σ̂−1
λ

(
λ
(
Σ̂r − Σr

)
(βr − βλ) + (1− λ)

(
Σ̂b − Σb

)
(βb − βλ)

)
(28)

= λΣ̂−1
λ Σ̂rβr + (1− λ)Σ̂−1

λ Σ̂bβb − βλ

= λ
(
Σ̂−1
λ Σ̂r − Σ−1

λ Σr

)
βr + (1− λ)

(
Σ̂−1
λ Σ̂b − Σ−1

λ Σb

)
βb. (29)

Next, note that, we have

λ
(
Σ̂−1
λ Σ̂r − Σ−1

λ Σr

)
=

(
Id +

1− λ

λ
Σ̂−1
r Σ̂b

)−1

−
(
Id +

1− λ

λ
Σ−1
r Σb

)−1

. (30)

Similarly, we can write

(1− λ)
(
Σ̂−1
λ Σ̂b − Σ−1

λ Σb

)
=

(
Id +

λ

1− λ
Σ̂−1
b Σ̂r

)−1

−
(
Id +

λ

1− λ
Σ−1
b Σr

)−1

. (31)

Next, using the Woodbury matrix identity, we have (Id + X)−1 = Id − (Id + X−1)−1 for any
invertible d× d matrix X . Therefore, we can recast (31) as

(1− λ)
(
Σ̂−1
λ Σ̂b − Σ−1

λ Σb

)
= −

(
Id +

1− λ

λ
Σ̂−1
r Σ̂b

)−1

+

(
Id +

1− λ

λ
Σ−1
r Σb

)−1

. (32)

Plugging (30) and (32) into (29) completes the proof. ■

C.3.2 Proof of Theorem 2

Upper bound

We show a slightly more general result for the upper bound. In fact, we relax the (14) to

ρ2gId ⪯ Σg ⪯ P2
gId, (33)

and also drop the assumption ng ≥ K4
gd, and show the upper bound

Vg(λ) ≲
P2
gσ

2

(λρ2r/C
′
r + (1− λ)ρ2b/C

′
b)

2

[
λ2P2

r

(
d

nr
+
K2
rd

3/2

n
3/2
r

)
+ (1− λ)2P2

b

(
d

nb
+
K2
b d

3/2

nb3/2

)]
.

(34)
To do so, first apply Proposition 2 under Σg ⪯ P2

gId to obtain the following bound:

Vg(λ) ≤ P2
g

(
λ2
σ2

nr
E
[
Tr
(
Σ̂−2
λ Σ̂r

)]
+ (1− λ)2

σ2

nb
E
[
Tr
(
Σ̂−2
λ Σ̂b

)])
Next, by Cauchy-Schwarz on the trace inner product and again on the expectation:

E
[
Tr
(
Σ̂−2
λ Σ̂g

)]
≤ E

[√
Tr
(
Σ̂−4
λ

)√
Tr
(
Σ̂2
g

)]
≤
√
E
[
Tr
(
Σ̂−4
λ

)]
E
[
Tr
(
Σ̂2
g

)]
.
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Under Assumption 4 that X|G = g is Kg-subgaussian, by Lemma 5,

E
[
Tr
(
Σ̂2
g

)]
≤ Tr

(
Σ2
g

)
+
CK4

g

ng
Tr (Σg)

2 ≲ P4
g

(
d+

K4
gd

2

ng

)
(35)

where the second inequality uses that Σg ⪯ P2
gId. Next, by Weyl’s inequality,

λmin

(
Σ̂λ

)
≥ λ · λmin

(
Σ̂r

)
+ (1− λ) · λmin

(
Σ̂g

)
. (36)

Therefore, we have

E
[
λmin

(
Σ̂λ

)−4
]
≤ min

{
λ−4E

[
λmin

(
Σ̂r

)−4
]
, (1− λ)−4E

[
λmin

(
Σ̂b

)−4
]}

(37)

Now, by Lemma 3, we have√
E
[
Tr
(
Σ̂−4
λ

)]
≤

√
2
√
dmin

{
λ−2C ′

r
2
ρ−4
r , (1− λ)−2C ′

b
2
ρ−4
b

}
(38)

Combining the bounds (38) and (35) and using min{1/a, 1/b} ≤ 2/(a+ b), we reach the bound:

E
[
Tr
(
Σ̂−2
λ Σ̂g

)]
≲ P2

g

1
λ2

C′2
r
ρ4r +

(1−λ)2
C′2

b
ρ4b

(
d+

K2
gd

3/2

√
ng

)
(39)

≲ P2
g

1

(λρ2r/C
′
r + (1− λ)ρ2b/C

′
b)

2

(
d+

K2
gd

3/2

√
ng

)
(40)

As a result, the variance terms satisfy the following bound:

P2
g

(
λ2
σ2

nr
E
[
Tr
(
Σ̂−2
λ Σ̂r

)]
+ (1− λ)2

σ2

nb
E
[
Tr
(
Σ̂−2
λ Σ̂b

)])
≲

P2
gσ

2

(λρ2r/C
′
r + (1− λ)ρ2b/C

′
b)

2

[
λ2P2

r

(
d

nr
+
K2
rd

3/2

n
3/2
r

)
+ (1− λ)2P2

b

(
d

nb
+
K2
b d

3/2

nb3/2

)]
.

Under the assumption ng ≥ K4
gd, the term K2

gd
3/2/n

3/2
g is bounded by d/ng which completes the

proof of the upper bound.

Lower bound

We use the Assouad’s Lemma (Lemma 6). Here are the steps:

Perturbed parameter structure: For g ∈ {r, b}, set

h2g =
σ2

4ngρ2g
, β(ξ)

g := hgξg

where ξg ∈ Ξd. The condition on ng ensures ∥β(ξ)
g ∥ ≤ B.

Consider the 2d-dimensional hybercube Ξ := Ξd × Ξd. For ξ := (ξr, ξb) ∈ Ξ, define by P(ξ) the
joint law of the data with mean β(ξ) := (β

(ξr)
r , β

(ξb)
b ).

KL divergence bound: The following result provides an upper bound on the KL divergence
between the distributions under parameters ξ, ξ′ ∈ Ξ differing in only a single coordinate.

Claim 1. Let ξ and ξ′ differ only in coordinate i ∈ [d] (i.e., a coordinate corresponding to group r)
where ξi = −ξ′i. Then

DKL(P(ξ) ∥ P(ξ′)) ≤ 2h2rρ
2
r

σ2
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Proof of Claim 1. Take ξ and ξ′ to be neighbors that differ only in the i-th coordinate of ξr, i.e.,
ξr,i = 1, ξr,i = −1 and ξr,−i = ξ′r,−i. Recalling well-known results of the KL divergence of
multivariate Gaussians (see, e.g., [61]), conditional on observing a single observation Xi, the KL
divergence between Pξr = N (hrXi, σ

2),Pξ′r = N (−hrXi, σ
2) is given by

DKL(Pξr ∥ Pξ′r | Xi) =
2h2rX

2
i

σ2
.

Then, for Xi ∼ N (0, ρ2r) with E[X2
i ] = ρ2r , we observe that

DKL(Pξr ∥ Pξ′r ) =
2h2rρ

2
r

σ2
.

By Claim 1, over nr samples,

DKL(P(ξ)⊗nr ∥ P(ξ′)⊗nr ) ≤ 2h2rρ
2
rnr

σ2
=

1

2
.

By Pinsker’s inequality,

∥Pξ,Pξ′∥TV ≤ 1

2
.

Parameter separation: Let ξ and ξ′ differ only in the same coordinate i ∈ [d] as in Claim 1 where
ξi = −ξ′i. Then, we can express

⟨ei, β(ξ)
λ − β

(ξ′)
λ ⟩ = λρ2r (hr − (−hr))

ρ2λ
=

2λρ2rhr
ρ2λ

, (41)

with
ρ2λ = λρ2r + (1− λ)ρ2b . (42)

After an analogous computation for a single-coordinate group b perturbation,

⟨ei, β(ξ)
λ − β

(ξ′)
λ ⟩ = 2(1− λ)ρ2bhb

ρ2λ
. (43)

Substitute the definitions of hr and hb into (41) and (43), respectively, and define

α2
r :=

σ2λ2ρ2r
nrρ4λ

, α2
b :=

σ2(1− λ)2ρ2b
nbρ4λ

.

Assouad’s Lemma: Over a 2d-dimensional signed hypercube, an application of Assouad’s lemma
(as stated in 6) and the fact max{a, b} ≥ 1

2 (a+ b) yields the bound

inf
β

sup
ξ∈Ξ

Eξ
[∥∥∥βλ − β

(ξ)
λ

∥∥∥2
2

]
≥ 1

16

σ2d

ρ4λ

(
λ2ρ2r
nr

+
(1− λ)2ρ2b

nb

)
.

and the final bound follows by observing

∥βλ − βλ∥2Σg
≥ ρ2g ∥βλ − βλ∥22 . ■

C.3.3 Proof of Theorem 3

Upper Bound

We again show a slightly more general result for the upper bound. In fact, we relax the (14) to

ρ2gId ⪯ Σg ⪯ P2
gId, (44)

and show the upper bound

Bg(λ) ≲
λ2(1− λ)2 P2

g P
4
r P

4
b

(λρ2r/C
′
r + (1− λ)ρ2b/C

′
b)

2
ρ4λ

· d ·
(
K4
r

nr
+
K4
b

nb

)
∥βr − βb∥2 , (45)
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with
ρ2λ = λρ2r + (1− λ)ρ2b . (46)

To do so, first apply Proposition 2 under Σg ⪯ P2
gId to obtain the following bound:

Bg(λ) ≤ P2
gE
[∥∥∥Σ̂−1

λ

(
λΣ̂r(βr − βλ) + (1− λ)Σ̂b(βb − βλ)

)∥∥∥2] . (47)

Next, observe that, be definition of βλ,

λΣr(βr − βλ) + (1− λ)Σb(βb − βλ) = 0.

Subtracting this identity from its empirical counterpart therefore yields,

Ã := λΣ̂r(βr−βλ)+(1−λ)Σ̂b(βb−βλ) = λ(Σ̂r−Σr)(βr−βλ)+(1−λ)(Σ̂b−Σb)(βb−βλ). (48)

By triangle inequality,∥∥∥Ã∥∥∥ ≤ λ
∥∥∥Σ̂r − Σr

∥∥∥ ∥βr − βλ∥+ (1− λ)
∥∥∥Σ̂b − Σb

∥∥∥ ∥βb − βλ∥ . (49)

Next, notice that we can express

βr − βλ = (1− λ) Σ−1
λ Σb(βr − βb) (50a)

βb − βλ = λΣ−1
λ Σr(βb − βr). (50b)

Substituting into (50a) and (50b) into (49) and applying the assumptions ∥Σg∥ ≤ P2
g and

λmin (Σλ) ≥ ρ2λ, we reach∥∥∥Ã∥∥∥ ≤ λ(1− λ)

ρ2λ

(
P2
b

∥∥∥Σ̂r − Σr

∥∥∥+ P2
r

∥∥∥Σ̂b − Σb

∥∥∥) ∥βr − βb∥ . (51)

Raising (51) to the fourth power and using the inequality (a+ b)4 ≤ 8(a4 + b4),∥∥∥Ã∥∥∥4 ≤ 8λ4(1− λ)4

ρ8λ

(
P8
b

∥∥∥Σ̂r − Σr

∥∥∥4 + P8
r

∥∥∥Σ̂b − Σb

∥∥∥4) ∥βr − βb∥4 .

Taking an expectation and square root successively then using that
√
a+ b ≤

√
a+

√
b,√

E
[∥∥∥Ã∥∥∥4] ≤ 2

√
2λ2(1− λ)2

ρ4λ

(
P4
bE
[∥∥∥Σ̂r − Σr

∥∥∥4]1/2 + P4
rE
[∥∥∥Σ̂b − Σb

∥∥∥4]1/2) ∥βr − βb∥2 .

Applying the subgaussian covariance estimation bound Lemma 4 to each term E
[∥∥∥Σ̂g − Σg

∥∥∥4], we

obtain √
E
[∥∥∥Ã∥∥∥4] ≤ 2

√
2Cλ2(1− λ)2

ρ4λ
P4
rP

4
bd

(
K4
r

nr
+
K4
b

nb

)
∥βr − βb∥2 . (52)

Next, recall the property ∥∥∥Σ̂−1
λ Ã

∥∥∥2 ≤ λmin

(
Σ̂λ

)−2 ∥∥∥Ã∥∥∥2 . (53)

By Cauchy-Schwarz and (53),

E
[∥∥∥Σ̂−1

λ Ã
∥∥∥2] ≤√E

[
λmin

(
Σ̂λ

)−4
]√

E
∥∥∥Ã∥∥∥4.

By Weyl’s inequality, convexity, and Lemma 3 as in the preceding analysis of the variance term, we
have √

E
[
λmin

(
Σ̂λ

)−4
]
≲

1

(λρ2r/C
′
r + (1− λ)ρ2b/C

′
b)

2 . (54)

Combining the bounds (52) and (54), we conclude the proof of the upper bound on the bias term.
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Lower bound

Fix ρ2r, ρ
2
b > 0 and λ ∈ (0, 1). For each coordinate i ∈ [d], set

v :=
βr − βb

∥βr − βb∥2
, (55a)

ui =

{
ei+v

∥ei+v∥2
, if e⊤i v ≥ 0,

ei−v
∥ei−v∥2

, if e⊤i v ≤ 0.
(55b)

Perturbed covariance structure for group r: For a Rademacher vector ξ ∈ {−1, 1}d, set

Σ(ξ)
r := ρ2rId + hr

d∑
i=1

ξiuiu
⊤
i , Σb := ρ2bId

where the group r perturbation level hr is given by

hr =
2ρ2r
5
√
nr

≤ ρ2r
10d

, (56)

where the inequality follows from nr ≥ 16d2. Hence, for every ξ,

0.9 · ρ2rId ⪯ Σ(ξ)
r ⪯ 1.1ρ2rId (57)

for d ≥ 1.

KL diverence bound: Define P(ξ) := N (0,Σ
(ξ)
r ). The following result provides an upper bound

on the KL divergence between the distributions under parameters ξ, ξ′ ∈ Ξd differing in only a single
coordinate.
Claim 2. Let ξ and ξ′ differ only in coordinate i where ξi = −ξ′i. Then

DKL(P(ξ) ∥ P(ξ′)) ≤ 25

16

h2r
ρ4r
.

Proof of Claim 2. Observe that

DKL(P(ξ) ∥ P(ξ′)) =
1

2

[
log

det
(
Σr − hruiu

⊤
i

)
det
(
Σr + hruiu⊤i

) − d+Tr
((

Σr − hruiu
⊤
i

)−1
) (

Σr + hruiu
⊤
i

)]
Define α = hru

⊤
i Σ

−1
r ui. By the matrix determinant lemma,

det
(
Σr − hruiu

⊤
i

)
= (1− α) det(Σr).

By Sherman Morrison,
(
Σr − hruiu

⊤
i

)−1
= Σ−1

r
hr

1−α (Σ
−1
r uiu

⊤
i Σ

−1
r ). Substituting and simplify-

ing, we reach

DKL(P(ξ) ∥ P(ξ′)) =
1

2

[
log

(1− α)

(1 + α)
+

2α

1− α

]
.

Observe α ≥ 0 since Σr is PSD. By (57), Σ−1
r ⪯ 1

0.9ρ2r
Id thus α ≤ hr

0.9ρ2r
. By (56), it follows

that 0 ≤ α ≤ 1
9d ≤ 1

9 for d ≥ 1. Define γ := 2α
1−α where γ ∈ [0, 1/4]. Using the fact that, for

γ ∈ [0, 1/4], − log(1 + λ) + λ ≤ λ2

2 and the fact that, for α ∈ (0, 1/9), α2

(1−α)2 ≤ 81
64α

2,

DKL(P(ξ) ∥ P(ξ′)) =
1

2
[− log(1 + λ) + λ] ≤ λ2

4
=

α2

(1− α)2
≤ 81

64
α2 ≤ 81

64
h2r
∥∥Σ−1

r

∥∥2
2
≤ 25

16

h2r
ρ4r

where the last inequality follows by (57).

By Claim 1, over nr independent samples from group r,

DKL(P(ξ)⊗nr ∥ P(ξ′)⊗nr ) ≤ 25

16

h2rnr
ρ4r

.

By (56) and an application of Pinsker’s inequality, we reach the bound∥∥∥P(ξ)⊗nr ,P(ξ′)⊗nr

∥∥∥
TV

≤ 1

2
. (58)
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Parameter separation: Define A(ξ) :=
(
λΣ

(ξ)
r + (1− λ)Σb

)
. The target parameter under ξ can

be expressed as

β
(ξ)
λ =

(
A(ξ)

)−1 (
λΣ(ξ)

r βr + (1− λ)Σbβb

)
= βr +

(
A(ξ)

)−1

(1− λ)Σb(βb − βr).

Claim 3. Let ξ and ξ′ differ only in coordinate i where ξi = −ξ′i. Then,∣∣∣〈ei, β(ξ)
λ − β

(ξ′)
λ

〉∣∣∣ ≳ λ(1− λ)hrρ
2
bρ

−4
λ ∥βr − βb∥ .

Proof of Claim 3. By Sherman-Morrison,

A(ξ)−1
−A(ξ′)−1

=
2λhr

1 + 2λhru⊤i A
(ξ)−1

ui
A(ξ)−1

uiu
⊤
i A

(ξ)−1
.

Hence, we can express

β
(ξ)
λ − β

(ξ′)
λ =

(
A(ξ)−1

−A(ξ′)−1
)
(1− λ)Σb(βb − βr)Σb(βb − βr).

Then, substitution of v defined in (55a),

⟨ei, β(ξ)
λ − β

(ξ′)
λ ⟩ = 2λ(1− λ)hr ∥Σb∥ ∥βr − βb∥

e⊤i A
(ξ)−1

uiu
⊤
i A

(ξ)−1
v

1 + 2λhru⊤i A
(ξ)−1

ui
.

By the Loewner order relationship (57),∥∥∥A(ξ)
∥∥∥ ≥ 0.9λρ2r + (1− λ)ρ2b ≥ 0.9λρ2r

The denominator is bounded, therefore, by:

|1 + 2λhru
⊤
i A

(ξ)−1
ui| ≤

∣∣∣1 + 2λhr

∥∥∥A(ξ)−1
∥∥∥∣∣∣ ≤ ∣∣∣∣1 + 2λhr

(0.9λρ2r)

∣∣∣∣ ≤ 11

9

where the last inequality follows by assuming hr ≤ ρ2r
10d and d ≥ 1.

Next, we lower bound the numerator. Fix a coordinate i ∈ [d], and observe that we can write the
decomposition

A(ξ)−1
ei = c1ei + c2wi

where wi ∈ Rd is orthogonal to ei and satisfies ∥wi∥ = 1. By definition, c1 = e⊤i A
(ξ)−1

ei, and,
using (57),

1

1.1
ρ−2
λ ≤

(
1.1λρ2r + (1− λ)ρ2b

)−1 ≤ c1 ≤
(
0.9λρ2r + (1− λ)ρ2b

)−1 ≤ 1

0.9
ρ−2
λ . (59)

Moreover, by construction and again by (57),

c21 + c22 =
∥∥∥A(ξ)−1

ei

∥∥∥2 ≤
∥∥∥A(ξ)−1

∥∥∥2 ≤
(
0.9λρ2r + (1− λ)ρ2b

)−2 ≤ 1

0.92
ρ−4
λ . (60)

Combining (59) and (60), we have

c2 ≤
(
0.9−2 − 1.1−2

)0.5
ρ−2
λ . (61)

Next, noting that the vectors ui and v satisfy |u⊤i ei|, |u⊤i v| ≥ 1√
2

, we have

|e⊤i A(ξ)−1
ui| = |c1e⊤i ui + c2w

⊤
i ui| ≥

c1√
2
− |c2|, |u⊤i A(ξ)−1

v| ≥ c1√
2
− |c2|.

Combining (59) and (61), we see that
c1√
2
− |c2| ≥

1

300
ρ−2
λ .

All together, this yields the parameter separation lower bound:

⟨ei, β(ξ)
λ − β

(ξ′)
λ ⟩2 ≥

(
18

11 · 3002

)2

λ2(1− λ)2h2rρ
4
bρ

−8
λ ∥βr − βb∥2 .
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Assouad’s Lemma: Let β̂ be any estimator. Assouad’s lemma (see Lemma 6) applied to the
d-dimensional hypercube Ξd, given the results Claim 3 and (58), yields

sup
ξ∈Ξd

Eξ
[∥∥∥β̂ − β

∥∥∥2
2

]
≥
(

18

11 · 3002

)2
2

25
λ2(1− λ)2

ρ4r · ρ4b · d
ρ8λ · nr

∥βr − βb∥2 . (62)

Symmetric perturbation for group b: Repeating the procedure so far but instead perturbing the
covariance structure of group b, i.e., taking, for a Rademacher vector ζ ∈ {−1, 1}d, set

Σr := ρ2rId, Σ
(ζ)
b := ρ2bId + hb

d∑
i=1

ξiuiu
⊤
i , hb =

2ρ2b
5
√
nb
.

This construction yields the analogous lower bound

sup
ζ∈Ξd

Eξ
[∥∥∥β̂ − β

∥∥∥2
2

]
≥
(

18

11 · 3002

)2
2

25
λ2(1− λ)2

ρ4r · ρ4b · d
ρ8λ · nb

∥βr − βb∥2 . (63)

Since we may perturb either group, we may take the maximal lower bound and use the fact that
max(a, b) ≥ 1

2 (a+ b) to obtain the bound:

sup
ξ,ζ∈Ξd

[∥∥∥β̂ − β
∥∥∥2
2

]
≥ Cλ2(1− λ)2

ρ4r · ρ4b · d
ρ8λ

(
1

nr
+

1

nb

)
∥βr − βb∥2

where C =
(

18
11·3002

)2 1
25 .

Finally, using that
∥∥∥β̂λ − βλ

∥∥∥
Σg

≥ ρ2g

∥∥∥β̂λ − βλ

∥∥∥2
2
, we reach the bound

E
[∥∥∥β̂λ − βλ

∥∥∥2
Σg

]
≥ λ2(1− λ)2

ρ2g · ρ4r · ρ4b · d
ρ8λ

(
1

nr
+

1

nb

)
∥βr − βb∥2 . ■

C.3.4 Proof of Proposition 3

First, note that, using (50) from the proof of Theorem 3, we have∣∣∣E [(β̂λ − βλ)
⊤Σr(βλ − βr)

]∣∣∣ ≲ (1− λ)ρ2rρ
2
b

λρ2r + (1− λ)ρ2b
∥βr − βb∥

∥∥∥E [β̂λ − βλ

]∥∥∥ . (64)

Next, we recall from the proof of Lemma 2 that

E
[
β̂λ − βλ

]
= E

[
Σ̂−1
λ

(
λΣ̂rβr + (1− λ)Σ̂bβb

)
− βλ

]
, (65)

which, as described in the proof of Proposition 2, can be further cast as

E
[
β̂λ − βλ

]
= E

[
Σ̂−1
λ

(
λ
(
Σ̂r − Σr

)
(βr − βλ) + (1− λ)

(
Σ̂b − Σb

)
(βb − βλ)

)]
(66)

Woodbury matrix identity, we can write

Σ̂−1
λ = Σ−1

λ − Σ−1
λ (Σ̂λ − Σλ)Σ̂

−1
λ . (67)

By substituting the above identity into (66), and using the fact that E[Σ̂g − Σg] = 0 for both groups,
we obtain
E
[
β̂λ − βλ

]
= −E

[
Σ−1
λ (Σ̂λ − Σλ)Σ̂

−1
λ

(
λ
(
Σ̂r − Σr

)
(βr − βλ) + (1− λ)

(
Σ̂b − Σb

)
(βb − βλ)

)]
.

(68)
Next, we bound the two terms on the right hand side separately. First, notice that∥∥∥E [Σ−1

λ (Σ̂λ − Σλ)Σ̂
−1
λ

(
Σ̂r − Σr
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where the last inequality follows from Lemma 3 and Lemma 4. Similarly, we can show∥∥∥E [Σ−1
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(70)

Plugging (69) and (70) into (68), and then substituting the whole term into (64) completes the proof.
■.
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