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Abstract

Machine learning models must balance accuracy and fairness, but these goals often
conflict, particularly when data come from multiple demographic groups with
heterogeneous distributions. A useful tool for understanding this trade-off is the
fairness-accuracy (FA) frontier, which characterizes the set of models that cannot
be simultaneously improved in both fairness and accuracy. Prior analyses of the FA
frontier provide a full characterization under the assumption of complete knowledge
of population distributions—an unrealistic ideal. We study the FA frontier in the
finite-sample regime, showing how sampling error and the heterogeneity in group
distributions distort the empirical frontier from its population counterpart. In
particular, we derive minimax-optimal estimators that depend on the designer’s
knowledge of the covariate distribution. For each estimator, we characterize how
finite-sample effects asymmetrically impact each group’s risk, and identify optimal
sample allocation strategies. Our results transform the FA frontier from a theoretical
construct into a practical tool for policymakers and practitioners who must often
design algorithms with limited data.

1 Introduction

Across domains where predictive models guide consequential decisions—from lending and hiring to
healthcare and education—society expects systems to be both accurate and fair. In supervised learning
over a population composed of multiple subgroups with heterogeneous population distributions, these
objectives are often in tension: models that minimize overall error can yield unequal performance
across groups, while interventions that reduce disparities may incur accuracy losses. A central,
practically relevant challenge arises when a single predictive model must serve multiple groups due
to legal, logistical, or normative constraints. For instance, the Equal Credit Opportunity Act and
Title VII of the Civil Rights Act in the United States discourage the use of group-specific models for
credit and hiring decisions, respectively (see Raghavan et al. [46]] for a discussion of guidelines on
“disparate treatment").

In cases where group-specific models are disallowed or impractical, existing models are known
to exhibit disparate performance across groups [15, 26} [19]]; thus, understanding the best possible
compromises between fairness and accuracy becomes critical. A principled way to approach this
tension is through study of the fairness—accuracy (FA) frontier. The FA frontier consists of models
where neither fairness nor accuracy can be improved without harming the other. This frontier allows
decision-makers to visualize the explicit trade-offs and select a model that aligns with their fairness
and performance objectives.

Recent work, notably by Liang et al. [37], characterizes the FA frontier under the assumption that
group-wise distributions are known. In practice, however, we must base our decisions regarding the
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Figure 1: (a) Population FA frontier: The blue shaded area represents the set of risk pairs that are
achievable by some linear model, and /3, and 3} are the error-minimizing models for groups 7 and
b, respectively. (g is the error-equalizing model. The FA frontier is the purple region along the
boundary of the feasible set of error pairs. (b) For any A € [0, 1], 8, is the first point of tangency
between the line Az + (1 — A\)y = ¢ and the FA frontier as we increase ¢ > 0. This point moves
along the frontier from S, to 3, as A ranges from 1 — 0.

FA frontier on a finite number of data points. This work studies how the empirical FA frontier deviates
from its population counterpart, characterizes the worst-case gap between them, and develops optimal
estimators and sampling strategies.

We consider a two-group linear regression setting, with groups labeled “red” (r) and “blue” (b). Each
individual’s outcome in group g € {r, b} is modeled as the inner product of their covariate vector
and a group-specific parameter 3, plus zero-mean independent noise. The two groups may differ
in their parameters (3, # () and in their covariate distributions. We measure the group-specific
performance of a parameter 3 by the expected squared loss, and the fairness by the absolute difference
in risks— the equalized loss criterion [60, [32]. As presented by Liang et al. [37], Figure[Ta]depicts the
FA frontier which traces a portion of the boundary of the set of all risk pairs (across the two groups)
that are attainable by some linear model with endpoints at each group’s optimum [,.

For homoskedastic linear regression, we can parametrize the FA frontier using a parameter A € [0, 1].
For each A\, we define an objective function as a convex combination of group-specific risks, assigning
weight A to the red group and 1 — X to the blue group. The pair of risks corresponding to the
minimizer of this objective, denoted by ), lies on the FA frontier and represents the first point of
tangency between the frontier and a line of the form Az + (1 — A\)y = c as ¢ > 0 increases, as
illustrated in Figure By varying A continuously from O to 1, we trace out the entire FA frontier.
See Appendix |A.0.1|for further discussion on the choice of \.

Any estimator of a target model 3y will yield a risk pair that is strictly inside the achievable set. This
raises a natural question: Given only n, and n; samples from groups r and b, respectively, what
estimator minimizes worst-case excess risk? To illustrate this, as shown in Figure @ consider lines
of the form Az + (1 — \)y = c and define the excess risk of an estimator as the amount by which ¢
must be increased so that it intersects an attainable risk pair, in the worst-case sense over a family of
distributions.

First, we establish that the minimax-optimal estimator differs in the known covariance setting in
which we know the covariance matrices of the covariate but the parameters (3, and /3, are unknown
and the unknown covariance setting in which neither the covariance matrices nor the parameters are
known. In the known covariance case, we derive matching upper and lower bounds for an estimator
that preserves the structure of the oracle solution (3. We show that, under additional assumptions that
control the tails of the covariate distributions, error increases in the norm of the group’s covariance
matrix and decreases with its sample size. This implies that higher-variance covariates require more
samples to achieve the same accuracy and that increasing the sample size of only one group cannot
reduce the overall error beyond a certain limit. In the unknown covariance case, we show that the
ordinary least squares (OLS) estimator incurs risk consisting of variance and bias terms. The variance
term arises from the estimation of the parameters 3, and (3, even when the covariance matrices are



known. The bias term, in contrast, represents the error incurred from the estimation of the covariance
matrices and remains even when the group-wise parameters are known (see Proposition [2).

For subgaussian covariates satisfying the small-ball condition, we derive upper bounds for both the
bias and variance terms. Our upper bound for the variance term naturally matches the bound in the
known covariance case. Our upper bound for the bias term shows that it decreases in parameter
heterogeneity || 3, — Bp||.- We derive matching lower bounds (up to constants) to show that the OLS
estimator is minimax-optimal.

Our bounds yield optimal sampling rules that identify how to allocate a fixed sampling budget in both
cases. In the known-covariance case, the sampling allocation depends on the norm of the covariance
matrix and weight )ﬂ In the unknown covariance case, when the variance term dominates (e.g., when
|3 — Bbp]| is small), the same allocation rule as in the known covariance case remains near-optimal.
When heterogeneity is large and the bias term dominates, however, the optimal design shifts toward
balancing the two sample sizes, n,, =~ n; when the bias term dominates. The governing regime
depends on || 8, — B||, i.e., in the heterogeneity across groups.

Finally, we demonstrate an asymmetry in the group-wise impact of finite-sample estimation, as
depicted in Figure[2b] With known covariance, excess risk increases with ratio of the norms of their
covariance matrices. With unknown covariance, the OLS estimator introduces a cross term that (i) can
shift the risks in opposite directions and (ii) depends asymmetrically on A. Notably, these disparities
arise independently of sample size in both cases. Thus, the fairness—accuracy trade-off implied by the
empirical estimator may differ substantially in practice from the trade-off defined at the population
level.

Related Work: Our work builds on Liang et al. [37], who formalize the FA Pareto frontier for
assessing fairness-accuracy trade-offs under the assumption of full knowledge of the covariate and
outcome distributions. Liu and Molinari [39]] relax the full-knowledge assumption and introduce a
consistent estimator of the FA frontier, deriving the asymptotic distribution of the estimator and using
it to design statistical tests for properties such as the gap between a given algorithm and the fairest
alternative. Auerbach et al. [4]] further contribute a statistical test for determining whether a model
achieving a given accuracy admits a Pareto improvement in fairness. We likewise address the practical
challenges of analyzing the FA frontier from finite data, but take a fully non-asymptotic approach,
providing finite-sample guarantees for estimators that target a social planner’s fairness-accuracy
preferences.

Our work also contributes to the literature on fairness in regression, a topic that has traditionally
received less attention than fair classification [see, e.g., 21l]. The most closely related work is that of
Chzhen and Schreuder [[12], who develop a minimax-optimal fair regression estimator for an explicit
fairness constraint based on the Wasserstein distance between the loss distributions across groups.
Beyond this, several other works have introduced various notions of fairness for the regression
setting and have proposed corresponding optimal estimation procedures [8, (6} 125, [2, [13] {14} |45]] and
for estimating the minimal utility cost associated with achieving fairness in regression [62]. See
Appendix [A.T]|for an extended discussion of related work.

2 Fairness-Accuracy Frontier Framework

We consider a population where each individual has covariates X € X C R, outcome Y € R,
and group label g € G := {r,b} (e.g., red, blue). For each group g, we observe n, data points,
S, = {(X\2, Y9}, drawniid from P(X,Y|G = g). Given a predictor f € H, its population
and empirical risk on group g under a loss function £ are given, respectively, by

Ry(f) = Eemriia=o L0, V)], Ry(f) = :26 (£ (x) . v,

We measure fairness using the risk disparity |R,(f) — Ry(f)]| as in [37]]. For regression tasks with
a continuous outcome variable Y—the primary focus of this paper—this notion coincides with the
definition of Equalized Loss proposed by [60]. The set of achievable population risk pairs over the

“This result is a direct analogue of Neyman’s classical allocation in stratified sampling [44]



class H is given by

EH) ={Rr(f),Ro(f)) : f € H}.
Following [37], we say that a point lies on the fairness-accuracy (FA) Pareto frontier if no other
predictor simultaneously improves both groups’ risks and risk disparity. See Appendix [A.2] for
extended discussion and definitions of the FA frontier.

In this work, we focus on the setting where there is a direct tradeoff between the accuracy across
groups, referred to as the group balanced case in [37]]. In the group-balanced setting, the fair predictor
which minimizes the risk disparity falls between each group’s optimal point on the frontier, denoted
fr and fj, for groups r and b, respectively. In the next section, we show that the regression problem,
under the assumption of equal noise variance, falls into the group-balanced category.

For the group-balanced setting, the FA frontier can be traversed by varying a parameter A € [0, 1]
which represents the designer’s preference in trading off between fairness and accuracy for each group.
In particular, given a weight )\, the decision-maker seeks a decision policy f) that achieves the desired
tradeoff in errors between groups. This corresponds to solving the weighted risk minimization:

fA:arg%iqr_th)\(f) with  Rx(f) == AR (f) + (1 — N)Rs(f). )

Here, A encodes the relative cost of errors affecting group r to those affecting group b. The extreme
cases A = 1 and A = 0 recover the group-optimal decision policies f,. and f;, respectively. In general,
fa is the first point in £(H) that intersects the line AR, + (1 — A)R}, = ¢ as ¢ increases—that is, as
the line shifts upward and to the right. See Figure [3a]for an illustration. This formulation thus allows
us to target a point on the FA frontier and trade off between fairness and accuracy.

2.1 Empirical Fairness-Accuracy Frontier

In practice, the true distribution P is unknown, so f) cannot be computed directly. Instead,
we may learn an empirical predictor f,\ € H from the data {S,,Sp}. Its excess risk, given by
R)\(f,\) — R (f») is nonnegative, since f minimizes R (). This implies that the empirical fairness-
accuracy frontier contracts inward relative to the FA frontier F(#). That said, for any estimator f)\,

the corresponding excess risk quantifies how much the frontier is pushed inward in the direction
orthogonal to the line AR, + (1 — A)R;, = constant, as illustrated in Figure

We study this contraction in a minimax sense. For a distribution class P, we seek estimators min-
imizing the worst-case excess risk:inf 7 _, suppep E [R,\( ) — Rl f,\)} where the expectation
is taken with respect to the draw of the dataset {S,., Sy }. The remainder of this work analyzes this

problem for linear regression, deriving lower bounds and near-optimal estimators and examining the
group-wise risk implications.

3 Linear Model Class

To provide theoretical bounds on the empirical FA frontier, we focus on linear regression with
homoskedastic noise.

Definition 1 (Linear Model Class). The linear model class Plineur(UQ) consists of all distributions
where, for each group g € {r,b},

Y =XT"8,+e4, ElgglX]=0, El2|X]=0?

for some B, € R If we further assume that the distribution of the covariate X given group identity
g is known and equal to P%, then we denote this subclass of Plinear(02) bY Piinear( P, P%, 02).

A canonical example of a distribution in P]inear(O'Q) is the well-specified linear model with ho-
moskedastic Gaussian noise £, ~ N (0, 02), independent of X. In what follows, we take H as
the class of linear models, i.e., {f3(z) = ' 8 : B € R?}. In addition, we take the squared loss
function ¢(f3(X),Y) = (87X — Y)2, and also simplify the notation of the risks to R, (f3) and
R(fs) to Ry(B) and R (), respectively. We write E, and P, to denote expectation and probability,
respectively, under the conditional distribution P(X,Y|G = g).



For group g, the population covariance is defined as X, := E [ X X T], and the cross-moment between
XandYisy, =E, [XY] = X,08,. Their empirical quantities are defined, respectively, as

R 1 ng 1 g
Zg — ni ZXZ'(g)Xi(g)Ta Z//\g — ni Z Y'Z(Q)XZ(Q)
9 i=1 9 i=1

The linear model falls under the group-balanced scenario described in Section[2} See Appendix [A.3]
for details.

Assumptions Assumptions [I]and 2]are maintained throughout our analysis and guarantee identifia-
bility and consistency of the least-squares estimator. Assumptions [3]and [4] provide control over the
tails of the sample covariance spectrum to further simplify our risk bounds.

Assumption 1 (Invertible Covariance and Sample Covariance Matrix). For each group g € {r,b},
the population covariance matrix X is invertible.

Assumption 2 (Invertible Sample Covariance Matrix). For each group g € {r,b}, the empirical
covariance matrix X4 is invertible almost surely.

Assumption 3 (Small-Ball Condition). We say that the covariate of group g satisfies the small-ball
condition with parameters Cy > 1 and o, € (0, 1] if, for all nonzero 0 € R and all t > 0,

Py (107 X1 < t110lls, ) < (Cyt)"™ -

This condition, adopted from prior work (e.g., Koltchinskii and Mendelson [34]], Mourtada [43]),
provides lower-tail control of the sample covariance spectrum, ensuring that the empirical covariance
does not degenerate in directions of low variance of the covariates. This assumption holds for
multivariate Gaussian distributions with oy = 1, since in that case AT X is Gaussian with variance
H9||2zg Furthermore, [49]] show that this condition holds with ay = 1 for covariates with independent
coordinates and bounded densities.

Assumption 4 (Subgaussian Covariates). We say that the covariate of group g satisfies the subgaus-
sian assumption if there exists a constant K, > 1 such that, for any u € R¢,

1l < K Jluly,

where the 1o-norm is defined conditional on the group identity being g.

This condition ensures that the covariates have light tails. It is satisfied, for instance, by multivariate
Gaussian distributions or bounded distributions. Further insights about the complementary nature of
Assumptions [3|and ] are given in Appendix

3.1 Empirical Estimators

Let 3y denote the optimal predictor corresponding to the weighted loss R (5),

By = argmin Ry (B)X5 'va &
BERE
with
Yy =AM, + (1 =X, and vy := A+ (1= N €)

The next proposition allows us to relate the excess risk of any estimator 3 to that of /35, as well as to
its estimation error on both groups. For details, see Appendix [C.1.T}

Proposition 1. For a given 3 € R%, X € [0,1], and g € G, the following identities hold:
RA(B) = RA(Br) = A 1B = Balg, + (1= N)[IB = Brl3, (4a)
Ry(8) = Rg(Bx) = 18 = Ball3, +2(8 = Br) "Sg(Br — By)- (4b)

Recall that our goal is to minimize the worst case expected excess risk, i.e.,

inf sup Es, s, [RA(8) — Ra(8r)] = inf sup Es,_s, [MB = Balls, + A= N8 Bil3,], O
B pep B pep



where /3 is a function of the datasets {S,., Sy} | For A € {0,1}, this reduces to the single-group
setting. In that case, [43]] shows that the OLS estimator 3, is minimax optimal for P]inear(O'Q) and that
knowledge of the covariate distribution does not affect this optimality. For A € (0, 1), we consider

the empirical analog of the A-weighted risk: Rx(8) == AR, (8) + (1 — A)Ry(8). whose minimizer
under Assumption [2]is

Bri=571n with S5 =25, + (1 =A%, and Dy := AD, + (1 — A)D. (6)

As we will see next, this estimator is nearly minimax optimal over ’leear(c72). However, unlike in the
one-group case, under additional knowledge of the covariate distribution—or even just the covariance
matrices X, and >;,—a different estimator becomes minimax optimal. This marks a sharp departure
from the classical linear regression setting, in which the OLS estimator is optimal regardless of
knowledge of the covariate distribution.

4 Estimation with Known Covariances

We first consider the setting in which the population covariance matrices ;. and 3 are known. Given
samples from both groups, we propose the following estimator:

By = (22) TOZ B 4 (1 — N Zofy), 7

with X as defined in (3) and Bg defined as the standard, one-group OLS estimator. This estimator
maintains the structure of the optimal predictor 3 but replaces the true cross moment v, = ¥4,

with the empirical quantity 3,3, for each group g. We first establish that this estimator is minimax
optimal when the covariance matrices are known, and then characterize its group-wise estimation
error. Finally, we discuss the implications of this result for algorithm design and optimal sampling
strategies.

4.1 The Optimal Estimator

As Proposition [I] shows, the excess risk of an estimator can be decomposed into the sum of its
distances from the optimal predictor 5, under the Mahalanobis norms induced by ¥, and ¥;. The
following result shows that, for each group g, the worst-case distance ||3 — 8|2 is minimized by B,
thereby implying the minimax optimality of this estimator.
Theorem 1. Suppose Assumptionsand [Z]hold. Then, for any group g € {b,r}, we have

it swp E[I8- Bl ] ®)

B PEPiear(Pg P 0?)
2 2
_ 20 —1v ©-1 -1 20 —1y -1 -1
= X¥7E [Tr (EgzA 2, 8718, 55 )] - TE [Tr (zgzA pIRIMED I S )] :
and the infimum is achieved by setting 8 equal to B, given by ().

The proof is provided in Appendix [C.2.T]and involves two steps: first, characterizing the error rate
of the estimator 3 for any distribution in Plinear(P}’(, P)b(, 02); and second, showing that no other
estimator can achieve a better rate in the worst-case sense via the Bayes estimator. Notice that we
have only assumed knowledge of X, for each g € {r, b}. This means that any additional knowledge
of the distribution of X for each group yields no estimation improvements. As stated in the discussion
before Theorem [1] this result, together with Proposition |1} implies the following corollary on the
minimax optimality of 3, with respect to the excess risk of R (+).

Corollary 1. Suppose Assumptions and hold. Then, By is the minimizer of the worst-case excess
risk () when P is set as Piinear(Pl, PY, 7).

4.2 Bounding the Excess Risk

In this subsection, to illustrate the implications of Theorem[I] we further simplify the error bound
under additional assumptions on the distribution. First, note that when the covariance matrices are

>Moving forward, we omit the dependence of the expectation on the datasets when it is clear from the context.



known, it is without loss of generality to assume spherical covariances, since we can apply the
transformation

(9) . y—1/2 3. y—1/2

x(9) .— >, 12x(9), By =13, / By,
which yields a spherical covariance matrix for the covariate vectors. We thus assume that each group
has a spherical covariance structure, i.e., ¥, = p_gld for known p, > 0.

Corollary 2. Suppose that for each group g € G, the covariance matrix satisfies ¥, = pﬁ]d for
known pg > 0. Furthermore, suppose Assumption[Z]holds and the small-ball condition (AssumptionE])
also holds with constants (Cy, og). Also suppose that ng > 6d/ag and that d > 2. Then we have

~ 2 20°dp? 2 0 Py 20 P
. Mﬂx - ﬂx‘ EJ = 2+ (1= N)pd)? (/\ Oy T A=Y Cb?b) ’ ©
where C} = 3Cy exp(1 + 9/ay).

See Appendix for the proof as well as Appendix for discussion of cases where the constant
C; can be further sharpened. The following corollary combines the differences in matrix norms to

explicitly characterize the excess risk bound for the optimal estimator f3y.
Corollary 3. Under the premise of Corollary[2} we have

- 202d 2 /Pg 2 /PE

We conclude this section with a few remarks on the insights we draw from these results.

Optimal allocation of the sampling budget: These results reveal the optimal allocation of a fixed
sampling budget across the two groups. Corollary [2] along with a simple Cauchy—Schwarz inequality,

suggests setting 2—; =0 ff\r)pb which intuitively increases with the group’s weight A and scale p,.

Per-group estimation error: Noting that 3, is an unbiased estimator of (), by Proposition|1} we
conclude that Theorem [[]and Corollary 2] quantify the per-group estimation error caused by using the
empirical estimator instead of the true parameter. Since these terms differ only in the p, terms, we
see that the asymmetry across groups is driven by differences in 3}, rather than n,; When one group’s

sample size is low, it impacts the accuracy of the estimator B '\, wWhich, in turn, affects the error for
both groups.An important implication of this discrepancy is that finite-sample estimation can distort
the fairness-accuracy trade-off encoded by A, shifting it away from the planner’s intended balance.

5 Estimation with Unknown Covariance

We now turn to the setting where the covariances ¥.,., 3; are unknown and must be estimated from
data. Here, our estimator is the convex-combination OLS estimator:

Br =371 = (A, + (1= N) LA, + (1 — N)5y).
We first decompose its excess risk into bias and variance terms, then establish upper and lower bounds

under subgaussian and small-ball conditions, showing near-optimality up to constants of the estimator
under these assumptions.

5.1 The Bias-Variance Decomposition

Recall from Proposition || that the excess risk of 3,\ can be expressed as the weighted sum of
2 ~

!
characterizing these two distances.

Proposition 2. Suppose Assumptionsand hold. Then, for any group g € {r,b}, we have:

E [HBA—/A\

where the variance and bias terms are given, respectively, by:

the two distances HE y— B A’ . Thus, as in the previous section, we begin by

2
3p

} <V,(0) + B,(), (1)

2
g

2 2
V,(\) =\ ETr (zglzgzglzr) +1-2TET (zglzgzglzb) , (12)
ze Np
1-Aa1a \ ! 1—\ -1
By(\) =E [ w2 (Id + TE?&,) = (Id + Tz,ﬂz,,) 18- — Boll®.  (13)




See Appendix [C.3.T]|for the proof. The variance term closely resembles the error rate in the known-
covariance case: it captures the irreducible sampling error within each group, as it is scaled by
the squared fairness weights and the inverse sample sizes of each group. The bias term, however,
represents a key departure from the known-covariance setting. It arises from heterogeneity in the true
underlying coefficients (3, and [, it depends explicitly on 3, — By, and it vanishes when 3, = 5.
Even if 3, and f3;, are known exactly, the target parameter 3, cannot be recovered without knowledge
of X, ;. The bias term quantifies the additional error introduced by replacing the true covariance
structure with empirical estimates, which explains why it vanishes in the known-covariance case.

5.2 Upper and Lower Bounds for the Bias and Variance Terms

In this section, we investigate the optimality of the estimator B » under additional assumptions. For
our upper bounds, we consider subgaussian covariates (Assumption [ that satisfy the small-ball
condition (Assumption . We further assume that, for any group g € {r, b},

1 3
3Pala X9 = Spgla,  |Bg < B. (14)

In the first condition, constants 1/2 and 3/2 are chosen for simplicity, and the appendix gives a more
general upper bound. We impose the second condition since Proposition 2] (and later our lower bound)
shows that the bias term grows with ||3, — 5| and would diverge if the groups’ predictors were
unbounded. Accordingly, we consider the subclass of P]ineal-(02) consisting of Gaussian covariates
satisfying conditions (T4)), and we denote the class by Pgauss(02, p2, p3, B).

For the upper bound, we bound the quantities V,(\) and By () from Proposition 2| For the lower
bound, we decompose the worst-case error into bias and variance components by considering two
complementary scenarios. Specifically, we lower bound

2
s E[I8- Al ] (1s)
PG'PGHN((TZ,/)%,/%,B)
by the maximum of two restricted subproblems: (1) the case where the covariance matrices >, and
>, are known but the group predictors (3, and (3, are unknown (corresponding to the variance term),
and (2) the case where the group predictors are known but the covariance matrices are unknown
(corresponding to the bias term).
Theorem 2. Suppose Assumptions[IHd| hold, the covariance matrices satisfy (14), and, for g € G,
and ng > max{48/agy, K d}. Then, we have:
2,24 2 2 _\)\2,2
(Ap?2/CY+ (L= N)py /CY)
where Vg () is the variance term, as defined in Proposition |2 and C’; is given in Corollary
Moreover, assuming ng > o° /(Bp?) for g € G, we have
2.2 2 2 22,2

Py <>\ pr (1=X) pb)7 (17)

CZ+A-—NP \ne  m

+

Ny Ny

. 2
imf swp  E[IB-m3] 2
PEPGauss (02,0203, B) ’
3,2y are known.

where the infimum is taken over any estimator 3 as a function of the datasets (S, Sp).

See Appendix for the proof. The upper and lower bounds together show that, up to constant
factors, the variance term indeed captures the error arising from not knowing the true predictors £,

and fy, even in the known-covariance case. Moreover, the estimator 3 is minimax-optimal, again up
to constant factors. Note that, while the lower bound is for the known-covariance case, the result in
Theorem ] from the previous section do not apply here since we have assumed bounded parameters.
We next derive upper and lower bounds for the bias term.

Theorem 3. Suppose Assumptions[IHd| hold, the covariance matrices satisfy (14), and, for g € G,

ng > 48/cv,. Then, we have:
2 2 2 4 4 4 4
/T4 (L= N2 /CF D2+ (L= Npd)? N
where By () is the bias term, as defined in Propositioan] and C; is given in Corollary Moreover,
ifng > 16d? for g € G, we have
inf s E[IB-83, ]2

2 2 2
s PEPGauss (07 p5.,05+B)
Br,Byp are known.

)Hm—ﬁﬂ% (s)

)\2 1_)\2 2 ﬁ 4d 1 1
(L=A)pgp 2pb4 (7+7> 16— B2, (19
(Ap2 + (1 — N)pd) n

ny



where the infimum is taken over any estimator 3 as a function of the datasets (S, Sp).

See Appendix [C.3.3| for the proof. Recall that the constants K, and K3, as defined in Assumption 4]
are invariant to scaling and hence are independent of p, and p,. As a result, the upper and lower
bounds above match up to constant factors, which again shows that the bias term truly captures the
error arising from not knowing the covariance matrices, even when the group predictors 3, and 3,
are known. Moreover, Theorem 3] together with the result of Theorem 2] highlights that the OLS
estimator 3 achieves the minimax excess risk, as given in (®) with P = PGauss (02, p2, p§7 B),upto
constant factors.

Optimal allocation of the sampling budget: Similar to the known covariance setting, under a
fixed total sampling budget, these results imply that we should choose n,-/ny = (Ap,)/((1 — X)pp)
to minimize the variance term. In contrast, Theorem [3|shows that minimizing the bias term requires a
balanced design, namely, n, = n;. The optimal sampling allocation strategy is more nuanced here
and depends on whether the variance term of bias term dominates. This, in turn, depends on the
heterogeneity in group distributions: the more the two groups differ, the larger the bias term becomes,
and the more we would prefer n,. and n;, to be closer.

5.3 Per-Group Estimation Errors

In the known covariance case (see Section[d)), the cross term in the group-wise excess risk given
by Proposition |1|is mean-zero, so our bounds on ||3\ — 8 H%q translate directly to the per-group

(expected) estimation error. However, this property does not hold for unknown covariance, as B\ \ 18
not an unbiased estimate of 3. The following result bounds the cross term in Proposition

Proposition 3. Suppose Assumptions[IH4| hold, the covariance matrices satisfy (14), and, for g € G,
ng > 48/cy,. Then, we have:

(B — 8375060~ )] | £

AL = N)dprp [1Br — Boll® ( K | K ) (/\Kfp? . /\)Kfp?)
(A2 + (1= Np2)® (A2 /ClL+ (1= N)p2/Cy) \Vir Vi Vi Nowa

where Cy is given in Corollary

The proof is provided in Appendix[C.3.4] A similar result can also be stated for group b, with the only
difference being that A(1 — \)? in the bound is replaced by A?(1 — \). Proposition 3| Theorem [2|and
Theorem [3] show that, much like in the known-covariance setting, there is an inherent asymmetry
in how the empirical estimator affects the risks of the two groups. The asymmetry revealed in
Proposition mirrors that of the known-covariance setting in that it is driven only by p,.

The cross term, (8x — Bx) " £,4(Bx — SB), captures a new phenomenon arising from the bias term.
First, note that the bound in Proposition [3] controls its absolute value, but the term itself may be
positive or negative. Moreover, it is straightforward to verify that if we sum this term across the
two groups with weights A and 1 — ), the result is zero. Thus, its contribution to one group’s risk is
always offset by the other’s, ensuring that the two groups experience it with opposite signs. Even if
the absolute-value bound were symmetric, the term would still be a source of disparity between the
two groups’ risks. However, the bound is in fact not symmetric. As stated after the proposition, it
changes from A(1 — \)? for group r to A%(1 — \) for group b. This bias effect is larger for group r
when A is close to 0 and for group b when A is close to 1, meaning that the second term increases in
absolute value for one group when the other group is prioritized in the overall loss function.

The fairness-accuracy trade-off implied by the choice of A in the population objective is not necessarily
the trade-off realized in finite samples. The systematic differences in per-group risk may shift the
balance in fairness and accuracy away from the intended allocation, however, as in the known-
covariance setting, all bounds remain similar in n,. and n; across both groups.
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A Additional Discussion

A.0.1 Choosing the Parameter A

The choice of ) is a central design decision shaped by the model’s legal and ethical context, reflecting
the social planner’s preferences over group errors. To illustrate this, suppose 90% of the population
belongs to the red group. A natural choice would then be to set A = 0.9. However, if we are
training a predictive model for patients or for hiring across different demographics, we might want to
ensure that the smaller group is not overshadowed. In that case, we could increase its weight and
even assign equal importance to both groups, i.e., set A = 0.5. This approach, often referred to as
“weighting by inverse class frequency,’ is common in the fairness literature [18, 52]. There are also
smoothed variants that interpolate between these extremes, offering a context-dependent balance
between accuracy and fairness [42]. In summary, the choice of A ultimately rests with the designer,
and the role of the FA frontier is to ensure that, whatever choice is made, the resulting algorithm is
optimal for that setting.

A.1 Additional Related Work

A growing body of work bridges perspectives on fairness-accuracy trade-offs in computer science
and statistics with analyses of social welfare 30} |36} 27} 148]]. Our results on the FA frontier can
also be interpreted in this context if we view each individual’s utility as the risk associated with
their group. More broadly, in the algorithmic fairness literature, it is widely recognized that no
single fairness criterion can capture the diverse preferences that decision-makers may have over
these trade-offs [10} 53] 133]]. Economists make this point in a similar way by documenting the
heterogeneity in how individuals weigh equity against efficiency [9,40]]. Our framework builds on
this connection by adopting a flexible, weight-based formulation that accommodates this kind of
heterogeneity [50, 29} 131]].

Finally, much attention has been devoted to the fundamental question of when fairness and accuracy
are in conflict and when they are aligned [[16} 157, [7, [37, 3, 22| [15]]. In settings where these objectives
are at odds, a variety of methods have been developed to identify Pareto improvements, where either
fairness or accuracy can be improved while keeping the other one unchanged. One line of work
designs algorithms for computing fairer alternatives to a given model for specific applications [24]
17,138,156, 11} 20]. A closely related line of work draws on the legal notion of a Less Discriminatory
Alternative, or a fairer model that maintains the original model’s accuracy [28,[35,151]. Others take
the reverse approach, focusing on accuracy improvements subject to fairness guarantees [1, 53], or,
more generally, methods for balancing multiple competing objectives in learning [47, 41].
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A.2 Details on Defining the FA Frontier

Here we recall the definition of the fairness-accuracy (FA) Pareto frontier from [37]]. To do so, we
first revisit the definition of FA dominance.

Definition 2 (Fairness-Accuracy (FA) Dominance). We say that a function ' € H FA-dominates a
function f € H, denoted by f' = f,if R, (f') < Ry (f), Ro(f') < Ry(f), and [R, (f)—Ry(f')] <
R (f) — Ru(f)|, with at least one of these three inequalities being strict.

In other words, a function f’ FA-dominates a function f if it achieves no higher risk on either group
and no greater risk disparity between groups, with strict improvement for at least one. The FA frontier
is then defined as the subset of achievable risk pairs that are not FA-dominated by any other point.

Definition 3 (Fairness-Accuracy (FA) Frontier). The FA frontier, denoted by F(H), is defined as:
F(H) = {(R+(f):Ro(f)) € EH) : Bf € H = f' = [}

A.3 Formalizing Group-Balanced Setting in Linear Regression

Lemma 1 (Group-Balanced Structure). The linear model described above exhibits a group-balanced
structure. That is, each group’s risk-minimizing predictor achieves (weakly) lower prediction error
on its own group than on the other:

RI(/BI) < Rb(ﬁ'r')a Rl(ﬁb) > Rb(ﬁb)

A.3.1 Proof of Lemmal[ll
For any group g € {r, b}, the risk of the group-optimal predictor 3, is:

Ry(By) =Ey [(X T8y = Y)?] = Eylel] = 0.

For the other group ¢’ # g, the same predictor incurs risk:
2
Ry (Byg) =Eg [(XT/BQ - Y)z] =Ey [(XT (Bg — 59’)) } +o.

The latter is greater or equal, and strictly greater when 3, # B, and X is invertible.

A.4 The Role of Concentration and Anticoncentration Assumptions

Assumptions [3] and ] are complementary and provide control over the spectrum of the sample
covariance matrix. The subgaussian condition bounds the upper tail, limiting the growth of the largest
eigenvalue and thereby the variance of our estimators. The small-ball condition controls the lower tail,
preventing the collapse of the smallest eigenvalue such that inverse covariance terms are bounded. As
discussed above, the two assumptions hold simultaneously for a broad class of distributions, including
multivariate Gaussian distributions and covariates with independent subgaussian coordinates and
bounded density.

A.5 Sharpening Analysis of Minimum Eigenvalue of the Sample Covariance Matrix

The constant C!’] arises from the bound on the minimum eigenvalue of the sample covariance,

which is used here to bound the trace of i; I and flb_l, as given in Mourtada [43] Theorem 4].
However, as highlighted in Mourtada [43 Remark 6]—based on results from Wu and Verdu [58]] and
Edelman [23]—this constant can be significantly reduced for Gaussian distributions. In particular,
if the covariate distributions are Gaussian, C’!’] can be replaced by a constant whose limit, when

d/ng — h € (0, 1), is upper bounded by

N e \ 3P
h 1—-h ’
which, in turn, can be shown to be upper bounded by (1 + \/e)3.
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B Additional Figures

Blue group error
p/
y

Red group error

(a)

Blue group error

’

®
N Bo

Red group error

(b)

Figure 2: (a) Finite-sample estimation: The error pair corresponding to the empirical estimator B B\
lies on the line Az 4+ (1 — \)y = ¢/, where ¢ — ¢ is the excess risk. (b) Asymmetric group-wise

impact: The displacement from 3 to 3, decomposes into a vertical change in the blue-group error
and a horizontal change in the red-group error; their unequal magnitudes show that the estimator

affects the two groups asymmetrically.
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(a) MMustration of fx
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Figure 3: Illustration of FA frontier, parametrized by A, and its empirical version.

C Additional Results and Proofs

C.0.1 Auxiliary Results

Lemma 2 (Exact risk of the OLS convex combination estimator). Under Definition[I|and Assumptions

[7) B|the excess risk decomposes as:

b B3 -+ a- N6 - s
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Proof of Lemma

We begin by noting that

ZXY zgﬂg+fzax
9 =1

Substituting into 7y, we obtain
AUy + (1= Ny = AS, B + (1 — )Ebﬁb+)\—Zg,X + (1= A 251

Define the symmetric matrix
R T R
W =¥, "3,%}

and let

1 Ny 1 np
Zr =\ iXia Zy = (1 —=)X)— in', 7 = ZT Z

B =258, = Bx) + (1= NZs(Bs — Br)-
The error in estimating 3 thus decomposes as
Br—Br=37"(Z + B).

so that
2 2 2 2 2
E [Hm -5 } =E |12+ Bliyy | =E[IZI | + E 1Bl ]| +2E[(2. B)w).
g
Since Z is mean-zero conditional on {X;} and B and W are deterministic given {X;}, we have

E[E[(Z, B)w|{Xi}] =0.

The cross-terms between Z,. and Z;, also vanish by independence and the fact that the noise is
zero-mean:

E[E[(Z, Zy)w][{Xi}] = 0.

Therefore,
E [quiv] ~E [nzrniv} +E (1201

ZC’ i) 12X ||W

1 ny
+(1-2)?—E [Z 73 (X:) IIXilliv]
b i=1

Combining terms and observing that

Xl = | %)

S 2

yields the claim. B

Lemma 3 ([43] Corollary 4 generalized to spherical covariance). Suppose that ng > 48/ and that
X9 satisfies Assumpttonlwzth parameters Cy and o g. Also suppose that ngd = Xg. Then,

E [Amm(ig)—ﬂ <208l (20)

where C} := 3C; exp(1 4 9/ay).
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Proof of Lemma
Define the whitened covariate vectors and whitened sample covariance, respectively, as

o 1 = 7.9 5 (g)
X9 = —x9 5,
R ) B

By [43] Corollary 4 taking ¢ = 4, if n, > 48/ay,
E [Amin(S,) 7] <2+ (3CL exp(1 +9/ay))"
Hence,

E Din(S,) 1] < 20,% - (3C exp(1 4 9/0)) " B 21

Lemma 4 (Subgaussian sample covariance moment bound). Under Assumption |4} there exists a
universal constant C' > 0 such that:

~ 4 s 4 d?
B[S -2 | < ors Iz S
g

Proof of Lemma [

By standard subgaussian matrix concentration (see, e.g., [54] Remark 4.7.3), for all 6 € (0, 1), there
exists an absolute constant C' > 0 such that:

a d+u d+u
< —u).
P(\ ; g<\/ e )nzgn)_zexp( u)

To invert this tail bound, we seek f(s) such that ]P’(Hf]g - ZgH > s) < 2exp(—f(s)). In other

words, using 2 max{a, b} > a + b, we want

d d d+u d
s§CK§<1/ U +“> ||Eg||§2CK§max{,/ . +“} (22)
ng Ng Mg Mg

We split this into two cases:

1. If d*“ > dﬂ*—“, is satisfied if s < 2CK§,/d;r—“ which occurs when » >
g g

82n
TR
2. If d*“ < d*“ , @2) is satisfied if s < QC'KQ\/7Wh10h occurs when u > 2CKZHE [
d.
Combining,

EN 52 s
IP’(HZ ) HZS)SQGX d — C'ngmin , .
9~ g P g K452 K25,

Define 51 == K7 [|3y \/ e and sy = K [|Z]] C,n , the critical values of s that make the
argument of the exponent posmve for cases (1) and (2) deﬁned above, respectively.

Next, we express the expectation as the integral of the tails, performing the change of variables
t = st

~ 4 o0 ~ 4 o0 ~
E[Hzg—zgu ] :/0 P(HEg—ng 2t> dt:4/0 P (]S54 = 5) s%s

Define the critical point s := min{s;, so} and split the integral
oo R Sd R oo R
/ P([|S, -5, 2 s)sPas = / P([S -5y 2 5) sas +/ P([S, -5 2 5)sas
0 0 Sd
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For the first term, we may take the trivial upper bound of 1 to bound the integral as follows:

TP sa 1 1 d \> [ d\*
/0 P(HEQ—EQHZS)SSCZSS/O S3d8<4max{s?’83}:4max{(o/%> <cn) }

For the second term, observe
/ IF’(Hig—ZgH 25) s3ds<max{/ P(HEQ—EQH ZS) s3d8,/ P(HEQ—EQH 23) 53ds}.
Sd S1 S2

We then bound each integral:

s > —C'nys? K3(d+ 1) exp(—d) | S, |*
[ (j8 -] 25) s [ Szexp<0ngs>ds: 3(d+ 1) exp(=d) |5,

K|, 20" ng
% i o0 —C'nys K3 (d® + 3d% + 6d + 6) exp(—d) || Z, |
_ > 376 < 3 g _ g gl
/82 IP’(HEQ ZgH_S)s ds_/s2 5° exp (Kg2 ||Eg||>d8 Crint

Therefore, in either case, we conclude that, for an absolute constant C' > 0,

~ 4 5 4 d?
B[S -5 | < oxS 1=l S
g

as desired.

Lemma 5. Under Assumption[d] there exists a constant C' > 0 such that
~ CK? 9
E|T(52)] < (z2) + L)

Proof of Lemma

For notational convenience, we write X; in place of X Z-(g ) X |G = g throughout the proof. Applying
linearity of the trace and expectation and expanding the empirical covariance matrix product, we
have:

a 1 & 1
2 T T T T
E [Tr (zg)} = = > T (BLGX] X X)) + — > T (BLXGX] X, X))
9 i=1 9 i#j
For the cross terms, by independence, for i # 7,
T T T T 2
E {XiXi X;X; ] _E [XiXi } E [Xij } - 52,
Thus,
> T (BIX: X, X; X)) = ng(ng — 1) Tr (32) .
i#j
For the diagonal terms, interchanging the trace and expectation and applying invariance under cyclic
permutations of the trace, we have

Tr (E [XiX,»TXiXZ-TD —E [||XZ-||3] .

By our subgaussianity assumption f] and standard moment bounds for subgaussian vectors (see, €.g.,
[54]), we have, for some absolute constant C' > 0:

E [||X1||4] < CKATr (%)%

Put the pieces together, we have

~ CK*
BT (52)] < (s2) + )
as desired. H
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Lemma 6 (Assouad’s Lemma [59])). Fix an integer m > 1 and define the m-dimensional hypercube
Em o ={—1,1}". Let P = {P¢ : £ € E,,} be a family of probability measures such that for each
& € B, there is an associated parameter 0(P¢) that is the target of interest. Also suppose that
|P| = 2™. Take the loss function to be the squared lo-distance. For j € [m], let £9) denote the

vector obtained by flipping the j-th coordinate of vector &, i.e., {_; = 59; & = —fj(j). Define the
per-coordinate separation as

o= inf (e;,0(P¢)—0 (Pg(]‘))>2 .

JE[M],E€Em
Then, for every estimator 5, the minimax risk is lower bounded by
~ 2 m
| RN W B R e

P.eP £¢'€Em
dn(€,¢")=1

where dy, denotes the Hamming distance.
C.1 Proofs from Section
C.1.1 Proof of Proposition 1]
Note that
Ry(B) =Eg [(XTB =Y )] =B, [(XT(B-8y) —c0)’] = 1B = Bl3, +0°,  (23)
where the last equality follows from the fact that E[e,| X ] = 0. As a result, we have
Rg(B) =Ry (Bx) = 18 = Byll%, — 18x = Byll%, = 18— Ball%, +2(8 = Bx) TSg(Br — By), (24)

which completes the proof of (@b). To establish [@a)), simply sum both sides of {B)) for the red and
blue groups, weighted by A and 1 — ), respectively, and use the definition of ().

C.2 Proofs from Section 4|

C.2.1 Proof of Theorem/Il
Upper bound

We first establish that the error given in the statement of the theorem is indeed achieved by setting
8 = B. Notice that, we have

Br=Br = T3t (XS (8 = Br) + (1= NZ4(Bs — B)) -
Substituting ﬁg = i;lﬁb and using the decomposition

L s RS
Vg = Egﬂg + nf ZXZ-(Q)&E‘Q),
g

i=1
we obtain

B N 1 za i N 1 Ny
I 1 (r) (1) () (b)
Br—Br=3; (AETET -;in £ +(17/\)Zb2b~n—bZXi £; )

T i=1 i=1

Let A = E;lEgEgl. By the mean-zero and independence properties of the noise, the cross terms
cancel in the squared norm, which yields

o e

1
+(1-X)?SE
ng

A i=1
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Using the independence and mean-zero property of 52(-9 )

expectation of quadratic forms, we obtain

and applying the trace identity for the

2

E —o%n, - E {Tr (i;lerzr)} .

S8 Y X"
i=1

A

Applying the same procedure for the equivalent term for group b and substituting completes the proof.

Lower bound

Next, we establish the minimax optimality. In particular, we aim to show

s E[18- 53]

PG’Plincar(P;‘aP)b(vaz)
20° —1y §-1 -1 20° —1y $-1 -1
> MR |Tr (5,555,515, 5501) | + (1= 2K | Tr (5,575,515 57 )|
Uz ny

for any (5. We derive this lower bound by the Bayes risk under an appropriate prior. More specifically,
suppose we choose a prior over groups’ regressor (3, and ;. Then, the Bayes risk provides a valid
lower bound:

infsupE [6 - 43, ] > B [\
BB

gi—ﬁ,\‘

} ; (25)
g

where Bj‘\ denotes the Bayes estimator under a prior specified below.
Let 7 > 0 and suppose that the group-specific parameters follow independent Gaussian priors:
Br ~ N(0,7°1a), By ~ N(0,7°I4).
Then, the induced prior on 3, is also Gaussian:
Br ~ N (0,571 (N282 + (1 - A)?r°57) 511).

Under the linear model Y = X ' 8, + ¢, with i.i.d noise £, ~ N(0, 02), the posterior distribution
for each parameter 3] {XZ.(Q ) v\ )} is Gaussian:

Byl { XY}~ N (11y (), Vi (7))

with posterior mean and variance:

R 2 o2

Mgy(7) = X4 + %Id’ pg(T) = Mg(T)_l/V\ga V(1) = ;gMg(T)_1~
Since ) is a deterministic linear combination of 3, and 3y, its posterior is also Gaussian:
B | Sn~ N (A7), V(1))
where:
pA(T) =27 A8 (1) + (1= N Epun(7)) . V=57 (WS, V(1) + (1= NP5 V(1)) 25

Since the Bayes estimator under squared loss is the posterior mean, the Bayes risk in the ¥-norm is:
B |52 - 5

To obtain a lower bound, we consider the limit 7 — oo, which corresponds to an uninformative prior.
In this limit:

| B Emo)

S_1-~ 0'2/\71
,Ug(T) — X7, Vg(T) — —X
Mg

Thus, V) (7) increases in the Loewner order as 7 — oo, and by monotone convergence,
2 2
lim E[Tr (S,Vi(7)] = X2-ETr (znglzrz;lzrzgl)+(1—A)2‘7—E Tr (znglzbzb—lzbz;l) .
S ‘ " ‘ T .

The desired minimax lower bound follows from substitution into the inequality (25)).
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C.2.2  Proof of Corollary 2]
Under the group-wise spherical covariance assumption, we have
= (24 (1= Npd) " I
Substituting and applying linearity of the trace yields
9 o2 p2p N o2 p2pt N
<2z gl BT (S71)] + (- 022 al’ BT ()]
o] SV e [ ()] + -V e e v (5
(26)
- - ) (T
Let Xi(g) denote the whitened covariate vectors, i.€., Xi(g) = pé/QXi(g) such that E {Xi(g)Xi(g) ] =
Ig.

Also observe

E {HBA—/A]

- N1
T (557) < d A (55)
By Corollary 4 of [43],
N
E {)\min (zg) } <2c!.
Then, noting Tr (ig) = ,03 Tr (§q> , we reach the claim by substituting the resulting bound
E[Tr (5;7)] < 26,2 27)

into (20).

To show the second half of the claim, consider subgaussian X € R¢ satisfying 4| with parameter
K and with covariance p214. Each coordinate satisfies || X;|| by < Kgpg and it follows that there

exists an absolute constant (o such that E [X}'] < (oKjp}. By Cauchy-Schwarz, for i # j,
E [XEXJ-] < (OK;lp‘;. Hence, there exists a constant ¢ > 0 such that
d
4
E[IX]'] = a-E[x1] + 2(2) ‘E [X2X3] < (K, pj.
Then, by whitening and applying Mourtada [43] Theorem 3], we replace (27) with the following
bound:
- 8C! ¢pdd?
B [T (5,7)] <5 <d , 30t
Ng

and the claim follows. H
C.3 Proofs from Section 3]
C.3.1 Proof of Proposition 2]

From Lemma[2} the excess risk decomposes as:

E||3 ’ NTE 3 %l N OE 3 x|
- SA— i 1-XA)"= H if| -
{H/i\ ”B’\’zj SA ; 52 +( ) nZ ; 52

+E |:H)\Eg_1/2§r(ﬁr - 6)\) + (1 - A)Eg_l/Qib(Bb - 5)\>’

2
5,2

where we define:
% —1/2 S —1/23) y—1/2
X, =%,"2X; and 3, =3%,;'25,n 12
We apply the identity:

En: ||A~Ti||2 =Tr (ATAEH::EZMT>
=1 i=1
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with A = flg_2 and z; = X;. This gives:

o SIFaE o’ -1y $-19 P-1ly §-13
2k ; ’XZ- Z_] = R (Em27s,), . —]ETr (5312,571%)
For the final bias term, observe that:
~ —~ ~ —~ 2
")\2;1/227«(& = Ba) + (1= N, 258 — 5A)H = HEI/ZZ ()\Er(ﬂr = Ba) + (1= N)Ep(B — 5A)> H :

which gives the first characterization of the bias term. To see the other representation, note that

S (Br = Bx) + (1 = A)Z6(Bp — Br) = 0.

Therefore, we have

AZ (Br = Ba) + (1= NZp(By — Br) = A (ir - Er) (Br = Br) + (1= A) (ib - Eb) (Bo — Bx)-

Then, we can rearrange to see that

Dl ()\ (ir - Er) (Br = Bx) + (1 =) (ib - Eb) (By — 5A)) (28)
=AS1'EB + (1= NES S8 — Ba
= (i;lir - 2;127,) Br+ (1A (i;lib - E;lxb) By (29)

Next, note that, we have
~ 1 1-XA~ .~ \! 11—\ -1
A (2;12r _ 2;1&) - (Id n Az;lzb) - <Id + AE;12b> . (30)

Similarly, we can write
—1

alia e PPN PN
(1) (2;&,—2;2;,):(Id+szlzr> —<Id+1_AEb12r) . 6D

Next, using the Woodbury matrix identity, we have (I; + X)™' = I; — (I + X~1)~! for any
invertible d x d matrix X. Therefore, we can recast (1)) as

A A
Plugging (30) and (32) into (29) completes the proof. W

C.3.2 Proof of Theorem 2]

e R DU S Y -
(1-)) (2;121, _ 2;121,) —_ <Id n 2;12b> n (Id n 2;121,) ey

Upper bound
We show a slightly more general result for the upper bound. In fact, we relax the (T4) to
ppla = Sy < PiI4, (33)
and also drop the assumption n, > K 3d, and show the upper bound
PZo? d K27 d | Kid?
g P2(+ T >+( )\)PQ( + b >:|

AZP2
(Ap%/c;w—»pi/cl;)?[ L3 FRTE
(34

V,(N)

To do so, first apply Proposition|2{under ¥, < PSI 4 to obtain the following bound:

Vy(\) < P2 (AziE [Tr (E;Qirﬂ +(1- >\)20—2E [Tr (ifib)])

ny

Next, by Cauchy-Schwarz on the trace inner product and again on the expectation:
Y () o (52)| < o [ (55 = o (53)].

22
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Under Assumption [ that X|G = g is K -subgaussian, by Lemma 5]

~ CK? K2d?
E [Tr (Ef]ﬂ < Ty (22) + —£ Tr (%,)* < P <d+ g ) (35)
where the second inequality uses that 3, < Pg 1. Next, by Weyl’s inequality,

Awin (£3) 2 3 Amin (S0) + (=2 Ain () - (36)

Therefore, we have

E [/\min (i A) 1 < min {A—4E [/\min (i) 1 J(1—NiE [/\min (ib) 1 } (37)

Now, by Lemma 3] we have

E [Tr( )] < ffmm{xQCfp;‘*,(l— N)~20)? *4} (38)
Combining the bounds (38) and (33)) and using min{1/a,1/b} < 2/(a + b), we reach the bound:
L 1 K243/2
E|Tr(2%%,)| <P? <d+ g (39)
[ ( g)} o+ Yool Vg

) 1 KZ2d3/?
< Pg Y d+
()\P%/C; + (1 - A)Pb/CO Vg

As aresult, the variance terms satisfy the following bound:

()\QWE T (5778 )] + - A)Q(::]E ke (ifib)})

P2o? d = K2d3/? d = KZd3/?
P [A?pf (+3/2 >+(1—/\)2pg (+ b3/2 )}
(Ap2/CL+ (1= N)pi/CY) Ny n, ny ny

(40)

<

Under the assumption ng > K ;1d, the term K g d3?/ ng/ ? is bounded by d/n, which completes the
proof of the upper bound.

Lower bound

We use the Assouad’s Lemma (Lemmal6)). Here are the steps:

Perturbed parameter structure: For g € {r, b}, set

2
2=
2_

A

where £, € =¢. The condition on n, ensures Hﬁ(f) | < B.

Consider the 2d-dimensional hybercube = := Z¢ x 2%, For ¢ = (£,,&) € Z, define by P the
joint law of the data with mean 5(&) == (5££” , @Sgb)).

KL divergence bound: The following result provides an upper bound on the KL divergence
between the distributions under parameters £, £’ € Z differing in only a single coordinate.

Claim 1. Ler € and &' differ only in coordinate i € [d] (i.e., a coordinate corresponding to group r)
where & = —&.. Then

T

, 2 2.2
D (PO || PE)) < 2hypr
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Proof of Claim[I} Take & and &’ to be neighbors that differ only in the i-th coordinate of &, i.e.,
& = 1,6, = —land & _; = £ _,. Recalling well-known results of the KL divergence of
multivariate Gaussians (see, e.g., [61]), conditional on observing a single observation X;, the KL
divergence between Pe, = N'(h, X;,02),Pey = N (—h, X;,0?) is given by

Dy (P,

2h2X 2
P | Xi) = 2

Then, for X; ~ N(0, p?) with E[X?] = p2, we observe that
2h3 p7

Dxr(Pe, || Pg) = (;2

By Claim[I] over n, samples,

2 2
Dy (BOE™ || p&enr) < 2clitte 2

o2 2
By Pinsker’s inequality,
”P& Pﬁ’ HTV <

N —

Parameter separation: Let ¢ and ¢’ differ only in the same coordinate i € [d] as in Claimwhere
& = —&!. Then, we can express

/ A2 (hy — (—=h 2)\02h
<€i76§\€) _ﬂ&f )> _ Py (hy _ (=hs)) _ PQ T (41)
P P
with
pr = Apr + (1= Npjp- (42)
After an analogous computation for a single-coordinate group b perturbation,
4 2(1 -\ 2hb
(o0, B — g8y = 2L ule, (43)

P
Substitute the definitions of h,. and hy, into (@I)) and (43)), respectively, and define
2. TN} ol = a*(1 =X

roT 4 b -

@ 1
NPy nypP

Assouad’s Lemma: Over a 2d-dimensional signed hypercube, an application of Assouad’s lemma
(as stated in@) and the fact max{a,b} > 3(a + b) yields the bound

2 1 o%d (N2p2 (1 —)N)2%p?
s e [ - 5[] 2 £ 2 (22 + ).
ﬂﬁeg é[m Mllz] 716 o} \ n, np

and the final bound follows by observing
18x = Ball%, = P2 118y — Balls. ™

C.3.3 Proof of Theorem[3]

Upper Bound
We again show a slightly more general result for the upper bound. In fact, we relax the (T4) to
P21y = By 2 P2y, (44)
and show the upper bound
2 2 p2 p4 p4
BV S o U g (B B e
pr/Cr+ (1= N)py/Cy)” py e T
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with
P2 = Mo + (1 N)pi. (46)
To do so, first apply Proposition under ¥, < Pgl 4 to obtain the following bound:

B < P2E |55 (08, (5, - 52+ (1= N - 30)) || @

Next, observe that, be definition of 3},

AX(Br = Br) + (1 = X)Xu(By — Bx) = 0.

Subtracting this identity from its empirical counterpart therefore yields,

= A, (B —Ba) +(1=NZp(By—Br) = AEr—50) (Br—Bx) + (1= M) (Zp—5) (By—B). (48)
By triangle inequality,

H/IH SAHer—E —»3/\||+(1_>\)H§3b—EbH 18y — Ball - (49)

Next, notice that we can express
Br = Br= (1= NI 5(8, — ) (50a)
By — Br = AE3 'S0 (Be — Br). (50b)

Substituting into and (30B) into @9) and applying the assumptions ||Xy]] < P2 and
Amin (X2) > p3, we reach

~ 1-— ~

4] = 252 (et s

3

o) 18 = ol (5

Raising (51)) to the fourth power and using the inequality (a + b)* < 8(a* + b%),

Z14 401 =
] < =02 (i
I

-5 ) 18, - ol

Taking an expectation and square root successively then using that va + b < v/a + v/,
1141 2V2A% (1= A - 41/2 N a11/2
s [|4]] < L VXN (ng [ s Al e R TR

Px
~ 4
Applying the subgaussian covariance estimation bound Lemma 4| to each term E [HZ g — Xg H } , we

obtain
4 201 — \)2 4 4
(4] ] < 22 prega (K2 4 K2 s, — g 52
Px
Next, recall the property
o1 )2 N2 2
[5574] " < rwin () [[4] )

By Cauchy-Schwarz and (33),

o850 < 2 e (8) ] o]

By Weyl’s inequality, convexity, and Lemma [3]as in the preceding analysis of the variance term, we

have \/]E {)\ | (EA] )4} < 1 (54)
AT (Ap2/CL+ (1= N2 /Oy

Combining the bounds (52)) and (34), we conclude the proof of the upper bound on the bias term.
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Lower bound

Fix p2, p? > 0 and X € (0, 1). For each coordinate i € [d], set

Br — Bo
"B =Bl (55a)
18- — Boll,
et ifelv >0
— H6i+’UH2’ 1 T -
" {uﬁﬁy ifefv <0. (55b)

Perturbed covariance structure for group : For a Rademacher vector £ € {—1, 1}, set

d
ES) = pf]d + h, Zgzuzuj, Yip = p%]d
i=1
where the group r perturbation level h,. is given by

2 2 2
PP (56)

hr - )
5¢/n, — 10d
where the inequality follows from n, > 16d2. Hence, for every &,
0.9 piIy 2 B < 11971, (57)

ford > 1.

KL diverence bound: Define P(&) .= \/ (0, 259). The following result provides an upper bound
on the KL divergence between the distributions under parameters ¢, &' € =4 differing in only a single
coordinate.

Claim 2. Ler & and &' differ only in coordinate i where & = —¢&|. Then

, 25 h?2
Der (PG || PED)Yy <« 2207
Proof of Claim[2] Observe that
1 det (Er — hruluj)
= — |log
2 det (ZT + h,.uiu;)

D (P©) || PE)) —d+Tr ((2, - hruiu;r)_l) (= + hTuiuiT)]

Define o = h,u, ¥, 1u;. By the matrix determinant lemma,
det (%, — hruiu?) = (1 — ) det(%,).

By Sherman Morrison, (X, — hyuu; ) oyt e (S yu] B, Substituting and simplify-
ing, we reach

/ 1 l-a 2a
D (PO || P&y = 3 [log El n a; t1- a] .

Observe a > 0 since X, is PSD. By (57), &, ! < ﬁld thus a < 0.%#' By (36), it follows

that 0 < o < 9%1 < % for d > 1. Define v = 12% where v € [0,1/4]. Using the fact that, for

o

v €10,1/4], —log(1+ A) + A < )‘72 and the fact that, for o € (0, 1/9), ﬁ < 8la?,

/ 1 A2 a? 81 81 2 25h?
D (PO | PE)Y = Z[—log(1+ N+ A <= —— < —a? < —R2|o7 Y < ==
KL( || ) 2[ Og(+ )+ ]—4 (1_a)2—64a_64 7"|| T||2_16p$
where the last inequality follows by (57). O
By Claim[T} over n, independent samples from group r,
, 25 h2n
Dt (PE®N || p§)®nry 22 Oriir
kil V5168
By (56) and an application of Pinsker’s inequality, we reach the bound
HP@)@m p@en || <1 (58)
’ ™v 2
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Parameter separation: Define A(6) := ()\ES) +(1— )\)Eb). The target parameter under £ can

be expressed as

BO = (A<f>)71 (Azg% +(1- A)Zbﬁb) =B + (Aw)f1 (1= N8y — Br).

Claim 3. Ler & and &' differ only in coordinate i where §; = —¢&|. Then,
(e85 = B 2 A0 = Nhrodoz* 18, = ol

Proof of Claim[3] By Sherman-Morrison,
2\h,. i A(g)_l
1+ 2M\hu A©) ™y,

A©TE e wiu] A©”

Hence, we can exXpress

’ -1 N—1
B =B = (497 =AY (1= NZu(Bs — BTo(Bs — By).
Then, substitution of v defined in (554),

© _ 4@ A© ugu] A© _1”
(e B9 — B)) = 20(1 = Ne 4] 118, — ﬁbu TR
By the Loewner order relationship (57)),
HA@)H > 0.9002 + (1 — A)p2 > 0.97p2
The denominator is bounded, therefore, by:
14 20T A9 0 < [ 2, 40| < e el < o

where the last inequality follows by assuming h, < 1’)0* Sand d > 1.

Next, we lower bound the numerator. Fix a coordinate ¢ € [d], and observe that we can write the

decomposition
A(f)ilei = c1€; + cow;
where w; € R? is orthogonal to e; and satisfies [|w;|| = 1. By definition, ¢; = e A
using (7)),
1 - - 1
7o < (L7 + (1= N)pj) P<e (0902 + (1= V) < RS
Moreover, by construction and again by (57),
22 la@ e | < a©7Y : -2 14
cg+c= HA eiH < HA H < (0.9007 + (1 = N)pj) Wp
Combining (39) and (60), we have
2 < (0972~ 1.1-2)0'5p;2.
Next, noting that the vectors u; and v satisfy |u; e;], |u v| > f’ we have
TA©O ) = ‘ ‘ ©! €1
e; A uz—ceiuz—i—cwiulZ——c, u; A v| > — — |eal.
| | = ler 2W0; U] 7 lcal, | |27 ~ e
Combining (39) and (61)), we see that
A %
vz =300

All together, this yields the parameter separation lower bound:

2
/ 18
(e, f) - 5;5 )>2 > (113002> )\2(1 - A) hgpprB 8 — 5b||2~

27

-1
e;, and,

(59)

(60)

(61)



Assouad’s Lemma: Let 3 be any estimator. Assouad’s lemma (see Lemma El) applied to the
d-dimensional hypercube =4, given the results Claim [3]and (58)), yields

18 22 2 2pr 2
sup B¢ 15-501] = (50m) 20— el L V)

Symmetric perturbation for group b: Repeating the procedure so far but instead perturbing the
covariance structure of group b, i.e., taking, for a Rademacher vector ¢ € {—1, l}d, set

d
202
Y= Id, E(C) = 2Id+hb 'U;UT, hy = b_.
r Pr b Py ;61 iU 5\/7Tb

This construction yields the analogous lower bound

18 22 2 2pr 2
s e |- ] = (g ) wPa- VL8 - Al @)

Since we may perturb either group, we may take the maximal lower bound and use the fact that
max(a,b) > 3(a -+ b) to obtain the bound:

[l 2 doptod (1 1
sup Hﬂ—ﬁ\u > ON(1 = AP P ( + nb) 18, = Bl

¢cezd | P Tp
_ 18 \2 1
where C' = (11‘3002) 25

N 2
- ZP?,HﬁA*ﬁA 2,wereachthebound
’ 2. 4. 4
cprpp-d (1 1
2% <+nb> 1B, — Bol>. M

p)\ Ty

Finally, using that HBA - 5>\’

[l 0o

g

C.3.4 Proof of Proposition 3]

First, note that, using (50) from the proof of Theorem 3] we have

\E[(@—@)Tzrwx—ﬂr]\wm||ﬂr sl [E[B -8l ©»

Next, we recall from the proof of Lemma 2] that
E[B =] =E[S (088 + (1= N%8,) - 8], (65)
which, as described in the proof of Proposition 2] can be further cast as
BB -8]=E[S (A (S —2) B =80+ 1 -1 (S -%) (5= 581)]  ©6)
Woodbury matrix identity, we can write
IS D D1 0 SN 39 ) S (67)

By substituting the above identity into (66)), and using the fact that ]E[fg — X4] = 0 for both groups,
we obtain

E[B =8| =-E[5 = 20S (A (B =20) (8= 80 + (1= 2) (30— 30) (8 - B0)] -
(68)

Next, we bound the two terms on the right hand side separately. First, notice that

[E[=5Ex - EA)E HEe-m) -8

S o N 18 = Bl [ [r - 2085 (50— %) ]|
B EN

S i - s e [ ] ([le- =) (el -2])

(1= Npp K2p2d/\/n; N7 L,V
< r — ) )\KT 2 +(1-NK Ve,
~ ()\p%—k(l—)\)pg)Q 18- = Bl Ap2/CL+ (1= N\)p2/C} p NS ( ) bﬂb\/n—b

(69)
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where the last inequality follows from Lemma [3|and Lemmafd] Similarly, we can show
HIE: {2;1(& N (ib - Eb) (By — Bx)} H
T2+ (L= A)p}) o

5 18r = Bol

€2CL+ (1= Neicy M e T VR
(70)

Plugging (69) and (70) into (68)), and then substituting the whole term into (64) completes the proof.
[}
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