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Abstract001

Recent advances in large language model002
(LLM) fine-tuning have shown that incorpo-003
rating high-quality reasoning traces into train-004
ing data can markedly improve downstream005
performance. However, existing approaches006
often depend on expensive manual annotations007
or auxiliary models, and fail to adapt to the008
unique limitations of smaller “weak” LLMs. To009
address these gaps, we introduce Weak2Wise,010
a fully automated, lightweight framework for011
synthesizing high-quality, weak-LLM-friendly012
reasoning traces. Starting from a QA dataset,013
Weak2Wise filters out the samples that can al-014
ready be correctly answered by the weak LLM,015
gathers diverse candidate reasoning traces016
from multiple strong LLMs, and leverages our017
Step-Mask scoring to rank and truncate the018
most guidance-effective traces. These reason-019
ing traces are then used for fine-tuning, yielding020
substantial improvements in the weak LLM’s021
reasoning abilities. The name Weak2Wise has022
two meanings: using a “weak” LLM to se-023
lect the "wisest" reasoning traces generated024
by stronger LLMs, and fine-tuning the same025
weak LLM on these reasoning traces to be-026
come “wiser”. We further use Weak2Wise to027
build GR-1K, a 1,000-sample math and sci-028
ence QA-reasoning dataset optimized for weak029
LLMs, and fine-tune Qwen2.5-7B on it to cre-030
ate GR-7B, which achieves superior perfor-031
mance on AIME2024, MATH-500, and GPQA032
Diamond benchmarks. Source code, dataset,033
and pretrained models will be made publicly034
available upon acceptance.035

1 Introduction036

The quality of training data plays a critical role in037

the fine-tuning of large language models (LLMs).038

During the fine-tuning stage, injecting reasoning039

traces into the training data has been shown to040

effectively improve the reasoning capabilities of041

LLMs (Hsieh et al., 2023; Shridhar et al., 2023;042

Li et al., 2023a; Yue et al., 2024). A high-quality043

Figure 1: An example of applying Weak2Wise to syn-
thesize reasoning for weak LLMs. Given a question
and its answer, different strong LLMs generate various
candidate reasoning traces. The key issue is to identify
the reasoning trace that is truly suitable for fine-tuning
a weak LLM. Note that the mathematical question in
the figure is merely used to illustrate the pipeline, while
actual questions we used are much more difficult.

dataset can significantly enhance the performance 044

of an LLM in a specific domain, even with a lim- 045

ited number of examples (Zhou et al., 2023; Muen- 046

nighoff et al., 2025). 047

To obtain high-quality reasoning traces for fine- 048

tuning, researchers have explored automated meth- 049

ods beyond costly manual annotations. Some meth- 050

ods (Shao et al., 2023; Liu et al., 2023; Zelikman 051

et al., 2024) automate the majority of the pipeline, 052

yet still rely on manual intervention at critical steps 053

.Other methods (Bhan et al., 2024; Lupidi et al., 054

2024; Haji et al., 2024) achieve full end-to-end 055

automation but require training additional models, 056

thereby compromising lightweight design. 057

However, weak LLMs1 often follow different 058

reasoning patterns from strong LLMs’, making 059

1In this paper, we refer to LLMs with fewer than 10B
parameters and without reasoning mode as weak LLMs.
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them unable to interpret certain traces (Zhang et al.,060

2024; Hu et al., 2024; Li et al., 2024). Only few061

methods (Cai et al., 2025; Kim et al., 2025) note062

this gap and adjust their synthesis processes to fit063

reasoning patterns of weak LLMs. But they merely064

replicate these patterns rather than truly integrating065

weak LLMs into the synthesis pipeline.066

This raises a natural and important question:067

How can we synthesize high-quality reasoning068

traces with an automated and lightweight method,069

while ensuring that these reasoning traces are truly070

friendly to weak LLMs?071

To address this challenge, we propose072

Weak2Wise, an automated and lightweight073

framework for generating high-quality reasoning074

traces friendly to weak LLMs. The key issue is to075

identify the reasoning trace that is truly suitable for076

fine-tuning weak LLMs, as illustrated in Figure 1.077

Unlike prior methods that rely on external reward078

models or multi-agent coordination, Weak2Wise079

leverages the weak LLM’s own performance to080

evaluate reasoning traces. The core idea is to081

evaluate each candidate reasoning trace’s guidance082

effectiveness using a novel Step-Mask Scoring:083

incrementally masking partial reasoning steps and084

querying the weak LLM itself reveals how well085

each trace aids the weak LLM in reaching the086

correct answer.087

Weak2Wise offers several distinct advantages:088

i) Full Automation: the entire pipeline is fully089

automated, requiring no human intervention; ii)090

Lightweight Design: no additional reward mod-091

els or agent-based frameworks are required, keep-092

ing the entire process simple and scalable; and093

iii) Weak-LLM-Friendly: by leveraging the weak094

LLM’s own behavior during evaluation, synthetic095

reasoning traces are adapted to reasoning patterns096

of weak LLMs.097

We evaluate Weak2Wise on some of the most098

challenging mathematical and scientific reasoning099

benchmarks, including AIME2024 (Maxwell-Jia,100

2024), MATH-500 (Lightman et al., 2023), and101

GPQA Diamond (Rein et al., 2023). Applied to102

the weak LLM Qwen2.5-7B (Yang et al., 2024),103

our framework achieves consistent and substantial104

improvements across all datasets. Ablation studies105

further verify the effectiveness of the Step-Mask106

Scoring and truncation strategies.107

In summary, we make the following major con-108

tributions:109

• We propose Weak2Wise, a new lightweight110

framework that fully automates the synthesis 111

of reasoning traces friendly to weak LLMs. 112

To the best of our knowledge, this is the first 113

framework to incorporate the weak LLM itself 114

into the reasoning synthesis process. 115

• In the Weak2Wise framework, we introduce 116

a novel and pivotal method for evaluating dif- 117

ferent reasoning traces: Step-Mask Scoring. 118

The resulting step-mask scores accurately re- 119

flect a weak LLM’s comprehension of each 120

trace, allowing us to identify the reasoning 121

trace that best aligns with the weak LLM’s 122

reasoning patterns. 123

• We apply Weak2Wise to augment and con- 124

struct a mathematics and science question- 125

reasoning–answer dataset GR-1K, which con- 126

tains 1,000 high-quality samples friendly 127

to weak LLMs. We further fine-tune 128

Qwen2.5-7B on GR-1K to obtain GR-7B, 129

which achieves superior performance on 130

reasoning-related evaluation tasks. 131

2 Related Work 132

2.1 Reasoning Augmentation via Strong LLM 133

Prompting 134

A number of studies have demonstrated that it 135

is effective for reasoning augmentation to distill 136

prompting from strong LLMs to smaller models 137

through fine-tuning. Fine-tune-CoT (Ho et al., 138

2023) prompts GPT-3.5 to produce multiple high- 139

quality reasoning traces per QA pair and fine-tunes 140

a student model on the resulting triples, yielding 141

substantial reasoning gains. SCoTD (Li et al., 142

2023b) extends this by sampling diverse CoT traces 143

from a large teacher and supervising the student on 144

all variants, significantly boosting both supervised 145

and few-shot performance. SCOTT (Wang et al., 146

2023) further introduces a counterfactual consis- 147

tency objective to ensure the student truly relies on 148

the provided chains. KARD (Kang et al., 2023) 149

augments teacher reasoning traces with retrieved 150

evidence before distillation, achieving strong im- 151

provements on knowledge-intensive tasks. PaD 152

(Zhu et al., 2024) replaces free-form CoT with 153

structured, executable programs to reduce noise 154

and improve supervision fidelity. The above studies 155

confirm that using higher-quality reasoning traces 156

during fine-tuning leads to greater improvements 157

in the target model’s reasoning capabilities. 158
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Method Fully-
Automated Lightweight

Weak-
LLM-

Friendly
Auto-CoT ✓ ✓ ✗
Synthetic Prompting ✗ ✓ ✗
LogiCoT ✗ ✓ ✗
Self-AMPLIFY ✓ ✗ ✗
STaR ✗ ✓ ✗
Source2Synth ✓ ✗ ✗
MA-ToT ✓ ✗ ✗
Weak2Wise (Ours) ✓ ✓ ✓

Table 1: Comparison of high-quality reasoning synthe-
sis methods in Section 2.2 and ours.

2.2 Synthesis of High-Quality Reasoning159

Research on automated synthesis of high-quality160

reasoning traces has led to several innovative frame-161

works. Auto-CoT (Zhang et al., 2022) clusters162

questions and uses a strong LLM to generate ex-163

emplar chains per cluster, matching human-crafted164

prompts without manual annotations. Synthetic165

Prompting (Shao et al., 2023) bootstraps QA-CoT166

pairs by alternating backward question generation167

and forward reasoning generation to create large168

synthetic datasets. LogiCoT (Liu et al., 2023)169

uses meta-instructions to GPT-4 to produce a log-170

ically structured CoT dataset for instruction tun-171

ing. Self-AMPLIFY (Bhan et al., 2024) extracts172

post-hoc mini reasoning traces from both success-173

ful and failed cases to serve as demonstrations.174

STaR (Zelikman et al., 2024) iteratively leverages175

a small number of reasoning examples and a large176

dataset without reasoning, to bootstrap the abil-177

ity to perform successively more complex reason-178

ing. Source2Synth (Lupidi et al., 2024) generates179

synthetic data points with intermediate reasoning180

steps grounded in real-world sources and improves181

dataset quality by discarding low-quality genera-182

tions based on their answer ability. MA-ToT (Haji183

et al., 2024) combines multi-agent reasoning with184

Tree-of-Thoughts (Yao et al., 2023) and introduces185

a Thought Verifier agent to filter out flawed reason-186

ing branches.187

Although these methods eliminate manual188

crafting, they often require clustering or meta-189

instruction design (not fully automated), train ad-190

ditional models (not lightweight), or synthesize191

reasoning that does not specially designed for the192

fine-tuned student model (lacking model speci-193

ficity). Table 1 demonstrates the superiority of194

our Weak2Wise method compared with existing195

methods.196

2.3 Weak-LLM-Friendly Reasoning 197

Various studies (Zhang et al., 2024; Hu et al., 2024; 198

Li et al., 2024) have shown that weak LLMs exhibit 199

different reasoning patterns from strong LLMs, mo- 200

tivating the need for synthesizing reasoning traces 201

friendly to weak LLMs. Few recent methods (Cai 202

et al., 2025; Kim et al., 2025) generate reasoning 203

tailored to weak LLMs. However, they do not in- 204

corporate the weak LLM’s actual performance into 205

the reasoning optimization process. As a result, 206

these approaches cannot obtain authentic feedback 207

from the weak LLM, nor can they truly synthe- 208

size weak-LLM-Friendly reasoning traces. Our ap- 209

proach addresses this gap by integrating the weak 210

LLM’s real-time reasoning performances into an 211

automated, lightweight synthesis framework, en- 212

suring that the final reasoning traces are both high- 213

quality and truly friendly to the weak LLM. 214

3 Method 215

3.1 Overview 216

Let SQA denote an existing question–answer 217

dataset, Mweak a base LLM with weak reasoning 218

ability for selection and subsequent fine-tuning, 219

and Mstrong a set of strong reasoning LLMs used 220

to generate candidate reasoning traces. Our method 221

consists of five successive stages: (i) Question- 222

Answer Data Filtering. Each (q, a) ∈ SQA is eval- 223

uated by Mweak. Retain only those pairs for which 224

Mweak produces an incorrect response, resulting 225

in the filtered subset S ′
QA (Section 3.2). (ii) Can- 226

didate Reasoning Traces Generation. For each 227

(q, a) ∈ S ′
QA and for each Mstrong ∈ Mstrong, in- 228

voke our chat template Cgen repeatedly to produce 229

multiple, diverse candidate reasoning traces, includ- 230

ing normal-reasoning traces and step-reasoning 231

traces (Section 3.3). (iii) Step-Mask Reason- 232

ing Scoring. Apply our proposed Step-Mask to 233

each candidate reasoning trace. Concatenate each 234

masked reasoning trace with its original question 235

q and query Mweak. Binary correctness outcomes 236

at each mask level are aggregated via a Step-Mask 237

scoring function to measure the guidance effective- 238

ness for each candidate (Section 3.4). (iv) Golden 239

Reasoning Selection. For each (q, a), select the 240

reasoning trace with the highest step-mask score 241

as the Golden Reasoning r∗. For excessively long 242

r∗, truncate it appropriately to reduce its length 243

(Section 3.5). (v) Fine-Tuning. Augment S ′
QA to 244

the dataset SQAR = {(q, a, r∗)} by adding r∗and 245

then fine-tune Mweak (Section 3.6). Figure 2 also 246
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Figure 2: Overview of our proposed Weak2Wise framework. (i) Filter QA pairs answered incorrectly by Mweak. (ii)
Use strong LLMs Mstrong to generate multiple reasoning traces. (iii) Apply Step-Mask to score each reasoning
trace. (iv) Select the highest-scoring reasoning trace r∗ and truncate it. (v) Fine-tune Mweak on the augmented
golden reasoning dataset.

illustrates our Weak2Wise framework.247

3.2 Question–Answer Data Filtering248

To select high-quality question-answer pairs and249

better facilitate subsequent steps, we first need to250

filter the given question-answer dataset SQA. Dur-251

ing the filtering process, we consider questions that252

weak LLM Mweak cannot answer correctly as high-253

quality ones. This is because these question-answer254

pairs reveal that the weak LLM Mweak is unable255

to complete certain high-difficulty reasoning pro-256

cesses. Using these high-quality question-answer257

pairs to fine-tune weak LLM Mweak can maximize258

the improvement of its reasoning abilities.259

Let SQA denote the original question–answer260

dataset, and let Mweak be the base LLM with weak261

reasoning capability. We apply each (q, a) ∈ SQA262

to Mweak. The filtered subset S ′
QA retains only263

those pairs for which Mweak answers incorrectly:264

S ′
QA =

{
(q, a) ∈ SQA

∣∣ Mweak(q) ̸= a
}

(1)265

where q is a question in SQA and a is its ground-266

truth answer. The symbol "̸=" indicates that267

Mweak(q) and a are not semantically equivalent.268

To automatically determine whether Mweak(q)269

and a are semantically equivalent, we designed a270

prompt template Pjudge (see Figure 7 in Appendix271

A for details) that uses an additional LLM to auto-272

matically judge whether Mweak(q) is correct.273

3.3 Candidate Reasoning Traces Generation274

Given the filtered question–answer set S ′
QA (Sec-275

tion 3.2), our goal at this stage is to produce276

{ role: "user"; content: question}
{ role: "assistant"; content: answer}
{ role: "user"; content: "Please reason step by
step. Before every step, must output a subtitle
beginning with ’##’. The subtitle of the last
step must be ’## Final Answer’."}

Figure 3: The chat template Cgen used for Candidate
Reasoning Traces Generation (Section 3.3)

a diverse set of candidate reasoning traces for 277

each question-answer pair (q, a) ∈ S ′
QA. Con- 278

cretely, for each (q, a) and for each strong model 279

Mstrong ∈ Mstrong, we repeatedly invoke a uni- 280

fied chat prompt template Cgen (see Figure 3 for 281

details) and collect multiple reasoning traces. 282

Chat Template Cgen. The chat template Cgen 283

integrates the question and answer in the context 284

of the LLM and prompts the LLM to output the 285

reasoning trace from the question to the answer 286

in a step-by-step format. Based on Cgen, Mstrong 287

will output two parts in their responses: "reason- 288

ing content" and "content". Here is a real case of 289

"reasoning content" and "content" in Appendix D. 290

• Normal-Reasoning Trace: the "reasoning 291

content" is the LLM’s own reasoning process. 292

It is typically characterized by multiple occur- 293

rences of "wait" to check its own reasoning 294

process. We refer to the "reasoning content" 295

as the Normal-Reasoning Trace, which will 296

be used for fine-tuning. 297

• Step-Reasoning Traces: the "content" is the 298
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step-by-step reasoning process output accord-299

ing to our prompt, with each step beginning300

with "##". We refer to the "content" as the301

Step-Reasoning Trace, which will be used for302

golden reasoning selection.303

Diversity and Coverage. To ensure both breadth304

and depth in the candidate reasoning trace set, we305

apply two orthogonal diversity strategies:306

• Inter-Model Diversity: sampling outputs307

from multiple Mstrong ∈ Mstrong captures308

differing reasoning styles.309

• Intra-Model Diversity: sampling the same310

Mstrong multiple times at a relatively high311

temperature uncovers alternative reasoning312

paths.313

The final candidate reasoning trace set for each314

(q, a) is:315

Rcand(q, a) =
⋃

M∈Mstrong

Rcand(q, a,M) (2)316

where Rcand(q, a,M) is the set of all reasoning317

traces sampled by Mstrong for (q, a). Each candi-318

date reasoning trace r ∈ Rcand(q, a) comprises319

both Normal-Reasoning Trace (leveraged in Sec-320

tion 3.5 and Section 3.6) and Step-Reasoning321

Trace (leveraged in Section 3.4).322

3.4 Step-Mask Reasoning Scoring323

Given the candidate reasoning traces Rcand(q, a)324

generated in Section 3.3, our goal in this stage is325

to yield a score to measure the guidance effective-326

ness for each reasoning trace. This score measures327

how effectively each reasoning trace guides the328

weak LLM Mweak toward the correct answer when329

partial reasoning is masked. We achieve this via330

our Step-Mask procedure, which produces a stan-331

dard score s(r) for each candidate reasoning trace332

r ∈ Rcand(q, a).333

Step-Mask Construction. As described in Sec-334

tion 3.3, each reasoning trace comprises two com-335

ponents: the Normal-Reasoning trace and the336

Step-Reasoning trace. In this stage, we leverage337

the Step-Reasoning trace, denoted rs. Let a Step-338

Reasoning trace rs consists of K ordered steps,339

each encoded as a character sequence. We define340

a mask granularity parameter n ∈ N+. For each341

granularity level i ∈ {0, 1, . . . , n − 1}, we simul-342

taneously mask the final i
n fraction of characters in343

Figure 4: The process of adding a step mask to the
Step-Reasoning trace (Section 3.4). The gray area repre-
sents the step-mask, which in practice is replaced with
the placeholder "(to be continued...)". To avoid
the Mweak simply copying the correct answer, we fully
mask the "## Final Answer" step of each trace.

## Problem
{question}

## Hint
{Step-Reasoning trace}

Please reason step by step, and put your final
answer within \boxed{}.

Figure 5: The prompt template Pqr used to concatenate
Step-Reasoning trace with its original question (Section
3.4).

every step, producing n masked variants 344

r(i)s =
(
r
(i)
s,1, . . . , r

(i)
s,K

)
, (3) 345

where for step k of length ℓk, we replace the last 346

⌈ i
n ℓk⌉ characters with the placeholder "(to be 347

continued...)." Figure 4 illustrates the process 348

of adding a step mask to the Step-Reasoning trace. 349

Binary Correctness Evaluation. Each masked 350

Step-Reasoning trace r
(i)
s is concatenated with the 351

original question q using the prompt template Pqr 352

(see Figure 5 for details), and the resulting prompt 353

is fed into Mweak. We then record the binary out- 354

come: 355

s(i) =

{
1, if Mweak(q∥r

(i)
s ) = a,

0, otherwise.
(4) 356
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where the symbol "=" indicates that Mweak(q∥r
(i)
s )357

and a are semantically equivalent. We continue to358

use the prompt template Pjudge (see Figure 7 in359

Appendix A for details) to automate this evaluation.360

As a result, each Step-Reasoning trace produces a361

set of n binary scores: {s(0), s(1), . . . , s(n−1)}.362

Step-Mask Scoring Function. From these bi-363

nary outcomes, we compute two complementary364

metrics:365

• Average Step-Mask Score366

savg(r) =
1

n

n−1∑
i=0

s(i), (5)367

which captures the overall guidance effective-368

ness of r under varying mask strengths.369

• Exponentially Weighted Step-Mask Score370

sew(r) =
1

n− 1

n−1∑
i=1

s(i)·2−(n−i)+s(0)·2−(n−1),

(6)371

which assigns greater weight to success under372

heavier masking, emphasizing the reasoning373

structure’s robustness and guidance effective-374

ness.375

Finally, we combine these into a single step-376

mask score to measure guidance effectiveness:377

s(r) = β · savg(r) + (1− β) · sew(r), (7)378

where β ∈ [0, 1] is a tunable hyperparameter bal-379

ancing overall quality and structural quality of the380

reasoning trace r. The step-mask scores s(r) are381

then used in Section 3.5 to select high-quality rea-382

soning traces.383

In the ablation studies (Section 4.3.1), we will384

demonstrate the efficacy of this step-mask scoring385

function as a metric for evaluating the quality of386

reasoning traces.387

3.5 Golden Reasoning Selection388

Having computed a standard step-mask score s(r)389

for each candidate reasoning trace r ∈ Rcand(q, a)390

(Section 3.4), our goal is this stage is to select and,391

if necessary, truncate the optimal reasoning trace392

to serve as the Golden Reasoning r∗. This stage393

comprises two steps: selection over all candidates,394

and length-aware truncation to enforce practical395

constraints on trace size.396

Selection. For each (q, a) ∈ S ′
QA, we select the 397

candidate reasoning trace whose step-mask score 398

is maximal: 399

r∗ = argmax
r∈Rcand(q,a)

s(r). (8) 400

In the event that multiple reasoning traces achieve 401

the maximal step-mask score, we select the reason- 402

ing trace with the fewest tokens, since such concise 403

reasoning traces maintain equal guidance effective- 404

ness while being easier for the weak LLM Mweak 405

to comprehend. 406

Length-Aware Truncation. During fine-tuning, 407

we utilize the Normal-Reasoning trace portion of 408

r∗ rather than the Step-Reasoning trace, since the 409

latter is overly abstract for Mweak and thus diffi- 410

cult to internalize. However, Normal-Reasoning 411

traces often include repeated “wait” backtracks af- 412

ter the correct answer has already been found. To 413

eliminate this redundancy, we introduce a prompt 414

template Ptrunc (see Figure 8 for details) that 415

automatically truncates excessively long Normal- 416

Reasoning trace at the first occurrence of the cor- 417

rect answer. The resulting truncated trace r̃∗ is 418

significantly shorter and thus better suited for down- 419

stream fine-tuning of Mweak. Here is a real case of 420

a Normal-Reasoning Trace before and after trunca- 421

tion in Appendix D. 422

Resulting Dataset. After selection and trunca- 423

tion, we obtain the final Golden Reasoning r∗ (or 424

r̃∗ if truncated) for each (q, a). We then form the 425

enriched dataset 426

SQAR =
{
(q, a, r∗)

∣∣ (q, a) ∈ S ′
QA

}
, (9) 427

which serves as the basis for fine-tuning the weak 428

model Mweak in Section 3.6. 429

In the ablation studies (Section 4.3.2), we will 430

demonstrate the efficacy of truncating reasoning 431

trace for downstream fine-tuning. 432

3.6 Fine-Tuning 433

In the final stage, we perform supervised 434

fine-tuning of the weak model Mweak on the en- 435

riched dataset SQAR. Each training example is 436

formatted as Figure 6, where (q, a, r∗) ∈ SQAR. 437

During optimization, we encourage the model 438

to generate both the reasoning and the answer in 439

sequence, and compute the loss on reasoning and 440

answer tokens. Let y = (y1, . . . , yT ) denote the 441

full sequence of response tokens and i the index of 442
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prompt: {q}
response: <think> {r∗} </think> {a}

Figure 6: The concatenation format of fine-tuning train-
ing data (Section 3.6).

the "<think>" marker. The supervised fine-tuning443

loss function is:444

L(θ) = − 1

|SQAR|
∑

(q,a,r∗)∈SQAR

T∑
t=i

log pθ
(
yt | q, y<t

)
.

(10)445

By masking out the question part during gradi-446

ent computation, Mweak is guided to assimilate447

Mstrong’s reasoning capabilities while preserving448

focus on reasoning and answer.449

4 Experiments450

4.1 Experiment Setup451

Dataset Synthesis. We apply our Weak2Wise452

framework for synthesizing high-quality reason-453

ing traces from existing QA pairs in S1K dataset454

(Muennighoff et al., 2025). It is worth noting that455

S1K is a high-quality math and science QA dataset456

with 1,000 samples, which already excludes ques-457

tions answerable by Qwen2.5-7B. Thus, the Data458

Filtering step in Weak2Wise can be skipped in459

our experiments. We adopt DeepSeek r1 (Guo460

et al., 2025) and QwQ-Plus (Yang et al., 2024) as461

Mstrong and Qwen2.5-7B as Mweak. Each model462

in Mstrong samples 3 distinct reasoning traces per463

question with temperature = 0.3, producing a464

diverse candidate pool. We then set the mask gran-465

ularity parameter n = 6 and the score weight466

parameter β = 0.5 in Step-Mask Scoring stage.467

DeepSeek-V3 (Liu et al., 2024) is leveraged for cor-468

rectness judgment and reasoning trace truncation469

with temperature = 0.1. We use the "majority470

vote" principle assessing each answer three times471

to ensure reliability. After incorporating golden472

reasoning into the S1K dataset via Weak2Wise, we473

obtained the GR-1K dataset.474

Training. We perform supervised finetuning on475

Qwen2.5-7B with our GR-1K dataset to obtain our476

model GR-7B. Detailed training hyper-parameters477

can be found in Appendix B478

Evaluation. Following Muennighoff et al., 2025,479

we evaluate GR-7B and other models on 3 challeng-480

ing reasoning benchmarks: AIME2024 (Maxwell-481

Jia, 2024), MATH-500 (Lightman et al., 2023) and 482

GPQA Diamond (Rein et al., 2023). The questions 483

in all benchmarks are not present in GR-1K. The 484

metrics are scores of these benchmarks. 485

• AIME2024: 30 three-digit answer math prob- 486

lems from the 2024 American Invitational 487

Mathematics Examination. 488

• MATH-500: A set of 500 college-level com- 489

petition questions covering algebra, geometry, 490

number theory, and probability. 491

• GPQA Diamond: 198 graduate-level science 492

questions spanning biology, chemistry, and 493

physics qualifiers. 494

Other Models. Following Cai et al., 2025, 495

we compare GR-7B against five competitive 496

7B-parameter models: LLaMA-o1 trained on 497

332K reasoning examples (SimpleBerry, 2025), 498

Macro-o1 trained on 60K reasoning examples 499

(Zhao et al., 2024), Bespoke-Stratos-7B trained 500

on 17K distilled chains (Bespoke Labs, 2025), 501

CRV-SFT-7B trained on 17K distilled chains 502

(Cai et al., 2025) and S1.1-7B trained on 1K 503

DeepSeek-R1 reasoning traces (Muennighoff et al., 504

2025). We evaluate all models under “lm- 505

evaluation-harness” framework (Biderman et al., 506

2024) to ensure a fair comparison. 507

4.2 Main Results 508

To contextualize GR-7B’s performance among 509

other competitive 7B-parameter models, Table 2 510

compares accuracy and training set sizes. De- 511

spite being trained on only 1K reasoning traces, 512

GR-7B outperforms larger-data baselines such 513

as LLaMA-o1 (332K examples) and Macro-o1 514

(60K examples), as well as distilled-chain mod- 515

els Bespoke-Stratos-7B and CRV-SFT-7B (17K 516

examples each). Notably, GR-7B achieves the 517

highest accuracies on all benchmarks—26.7% on 518

AIME2024, 84.2% on MATH-500, and 42.4% on 519

GPQA Diamond—while matching S1.1-7B’s mini- 520

mal training set size. This highlights the efficiency 521

and effectiveness of our Weak2Wise approach in 522

reasoning synthesis. 523

Table 2 also reports the performance of our 524

fine-tuned model GR-7B against its backbone 525

Qwen2.5-7B on three standard reasoning bench- 526

marks. Compared to Qwen2.5-7B, GR-7B achieves 527

substantial gains in accuracy across all datasets: an 528

absolute increase of 16.7% accuracy on AIME2024 529
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Model Training Set Size AIME2024 MATH-500 GPQA Diamond
LLaMA-o1 332K 3.3 28.6 26.3
Macro-o1 60K 6.7 38.4 31.8
Bespoke-Stratos-7B 17K 20.0 82.0 37.8
CRV-SFT-7B 17K 20.0 80.0 37.4
S1.1-7B 1K 20.0 83.0 40.9
Qwen2.5-7B(backbone) 0 10.0 73.6 33.3
GR-7B 1K 26.7 84.2 42.4

Table 2: Performance comparison of various 7B-parameter models on AIME2024, MATH-500, and GPQA Diamond
benchmarks

(from 10.0% to 26.7%), 10.6% on MATH-500530

(from 73.6% to 84.2%), and 9.1% on GPQA Di-531

amond (from 33.3% to 42.4%). These results532

demonstrate that incorporating high-quality, weak-533

LLM-Friendly reasoning traces via Weak2Wise534

substantially enhances the reasoning capabilities of535

Qwen2.5-7B even with only 1K fine-tuning exam-536

ples.537

4.3 Ablation Studies538

To further validate the contributions of our539

Step-Mask Scoring and reasoning trace truncation,540

we conduct two complementary ablation experi-541

ments. Table 3 compares the effect of different542

candidate selection strategies, and Table 4 exam-543

ines the impact of disabling our truncation step.544

4.3.1 Effectiveness of Step-Mask Scoring545

In the first ablation (Table 3), we replace our546

highest-scoring trace selection with (i) random547

sampling, (ii) lowest Step-Mask Score, and (iii)548

highest Step-Mask Score (our full method). We549

then fine-tune Qwen2.5-7B on each resulting550

dataset. Selecting reasoning traces at random551

yields a substantial drop in accuracy, and using552

the lowest-scoring traces performs even worse than553

the backbone model on MATH-500 and GPQA554

Diamond. In contrast, choosing the top-ranked555

reasoning traces via our Step-Mask Scoring con-556

sistently delivers the best results across all bench-557

marks. This demonstrates that our scoring metric558

effectively quantifies reasoning trace quality and559

that prioritizing high-scoring candidates is crucial560

for reliable supervision. We additionally conduct a561

statistical analysis of the scores generated by Step-562

Mask Scoring in Appendix C.563

4.3.2 Impact of Reasoning Trace Truncation564

The second ablation (Table 4) evaluates the effect565

of disabling our truncation step. Without trunca-566

Dataset random lowest GR-7B
AIME2024 16.7 10.0 26.7
MATH-500 78.2 70.6 84.2
GPQA Diamond 39.4 30.8 42.4

Table 3: Ablation on candidate selection: random vs.
lowest-scoring vs. GR-7B (highest-scoring traces).

Dataset w/o Truncation GR-7B
AIME2024 16.7 26.7
MATH-500 72.2 84.2
GPQA Diamond 35.4 42.4

Table 4: Ablation on truncation: without truncation vs.
GR-7B (with truncation).

tion, accuracy decreases markedly. We attribute 567

this degradation to QwQ-Plus occasionally gener- 568

ating reasoning traces longer than 32,768 tokens, 569

which exceed Qwen2.5-7B’s context window. In- 570

corporating these extremely-long reasoning traces 571

during fine-tuning leads to incomplete reasoning 572

and flawed inference. By truncating traces properly 573

to fit within the model’s context capacity, we pre- 574

serve the integrity of the learned reasoning patterns 575

and achieve substantial performance gains. 576

5 Conclusion 577

In this paper, we introduce Weak2Wise, a fully au- 578

tomated, lightweight framework for synthesizing 579

high-quality, weak-LLM-friendly reasoning traces. 580

Our framework innovates by leveraging the weak 581

LLM’s own performance to evaluate reasoning 582

traces with a novel step-mask scoring mechanism. 583

Through experiments on challenging benchmarks, 584

we demonstrated that Weak2Wise effectively syn- 585

thesize reasoning traces for fine-tuning weak LLMs. 586

Weak2Wise offers an efficient solution for improv- 587

ing reasoning in LLMs, making high-quality rea- 588

soning more accessible for practical applications. 589
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Limitations590

While Weak2Wise has demonstrated promising re-591

sults, it is important to acknowledge some limita-592

tions inherent in its current design. One notable593

aspect is its reliance on data distillation from strong594

LLMs, which is a common limitation of data distil-595

lation approach. Although this approach has been596

carefully implemented with multiple sampling and597

selection processes to ensure robustness, the perfor-598

mance of Weak2Wise remains closely tied to the599

quality of the strong LLMs used. There may be600

instances where the reasoning traces, despite our601

efforts to optimize their selection, could still con-602

tain subtle deficiencies or biases resulting from the603

limitations in strong LLMs. These factors might604

influence the learning effectiveness of weak LLMs.605

Future work will focus on exploring additional606

strategies to further mitigate such potential lim-607

itations and enhance the overall robustness and608

independence of the Weak2Wise framework.609

Ethical Considerations610

In conducting our research, we have thoroughly611

reviewed and ensured compliance with ethical stan-612

dards. Our study utilizes existing datasets, which613

have been publicly available and previously vetted614

for ethical use. These datasets have been carefully615

selected to avoid any form of offensive or biased616

content. Therefore, we consider that our research617

does not present any ethical issues. The data used618

is ethically sourced, the analysis is unbiased, and619

all procedures align with established ethical guide-620

lines.621
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A Prompt Template 803

Here are all the prompt templates used in Section 3. Each prompt template has been custom-designed to 804

automate the entire workflow without any manual intervention. 805

You’re an AI evaluator for science questions. The user will give you a question, an attempt and the correct
answer.

Your task is to compare the attempt with the provided correct answer and determine whether it is correct.
If the correct answer is a clear numerical value or a multiple-choice option, there must be no ambiguity. If
the correct answer requires a full reasoning process, assess whether the attempt is valid, using the correct
answer as a reference if necessary.

The user will supply the input in the following format:
## Question
{question}
## Attempt
{attempt to be evaluated}
## Correct Answer
{correct answer}

Explain your evaluation step by step, and finish your response on a new line with only “Yes” or “No”.

Figure 7: The prompt template Pjudge used to determine the correctness of LLM’s response to certain question.
(Section 3.2 and Section 3.4)

You are a helpful assistant who is highly skilled at simplifying reasoning processes. User will provide
you with the reasoning process and correct answer for a certain question. There are many backtracking in
reasoning, which always start with the word ’wait’.
You need to simplify the reasoning process in the following way: Extract from the beginning of the
reasoning until the correct answer is FIRST deduced. Note that all you need to do is find the appropriate
endpoint and output the reasoning process from the beginning to the endpoint. No modification of any
reasoning content is allowed.

Just output the simplified reasoning process without any additional content.

Here is the reasoning process and correct answer for a certain question from the user:

## Reasoning Process
{Normal-Reasoning trace}
## Correct Answer
{answer}

Figure 8: The prompt template Ptrunc used to truncate excessively long Normal-Reasoning traces (Section 3.5).

B Training Details 806

We fine-tune the Qwen2.5-7B model on our GR-1K dataset. We train for 3 epochs with a learning rate of 807

1e-5, using a global batch size of 16. Packing is enabled to optimize GPU memory usage by combining 808

multiple shorter sequences. A cosine learning rate scheduler is applied with a warm-up ratio of 0.03 and 809

weight decay of 0.01 to balance training stability and convergence. The training takes approximately 2 810

hours on an 8 NVIDIA A100 GPU server. 811

C Further Experiments 812

Here, we additionally conduct a statistical analysis of the scores generated by Step-Mask Scoring (Section 813

3.4) for each reasoning. From the Step-Mask Scoring Function in Section 3.4, it can be easily proven 814
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that the value of the step-mask score ranges between 0 and 1. The step-mask score is 0 when all s(i) are 0,815

and 1 when all s(i) are 1.816

Specifically, we analyze the distribution of the ranges of s(i) generated by each reasoning, which aims817

to demonstrate that our step-mask scoring design has strong separability for different reasoning traces.818

From Figure 9 (left), We observe that in only a small proportion of reasoning traces, all s(i) exhibit a819

range of less than 0.1 (10% of the total score range of 0–1). This indicates that our step-mask scoring820

reflects differences across different reasoning traces, demonstrating strong separability.821

Figure 9: Distribution of the ranges of s(i) generated by each reasoning (left) And Distribution of the step-mask
scores of each reasoning (right).

We additionally analyze the scores distribution of all golden reasoning, which correspond to the highest822

scores among all reasoning traces for each QA pair. We find that these scores are distributed across the823

entire 0–1 range. We believe this reflects a uniform distribution of problem difficulties in our selected QA824

set. For simple questions, strong LLMs can generate high-quality reasoning traces (with scores closer to825

1), whereas for difficult questions, even strong LLMs may only produce lower-quality ones (with scores826

closer to 0), despite our selection process.827

It is particularly notable that 6% of the golden reasoning traces scored 0, which may be ineffective828

for fine-tuning weak LLMs and enhancing their reasoning abilities. For these golden reasoning traces829

and their corresponding QA pairs, we propose the following remedies: (i) discard them to prevent weak830

LLMs from learning low-quality or incorrect reasoning processes; (ii) resample by having strong LLMs831

generate more reasoning traces for the corresponding QA pairs until a reasoning trace with a score higher832

than 0 is obtained; (iii) manually annotate them. Given the dataset’s overall size of approximately 1K,833

6% translates to only around 60 data points, which is a manageable task. Moreover, these QA pairs may834

also be too difficult for strong LLMs to answer properly, so manual annotation would better improve data835

quality.836

Finally, we analyze which strong LLM our selected golden reasoning traces originated from. In our837

experiments, 56.70% of the golden reasoning traces come from DeepSeek r1 and 43.3% from QwQ-Plus.838

We believe these proportions reflect the weak LLM’s preference for different strong LLMs. To put it more839

vividly, they show which strong LLM the weak LLM tends to select as its "teacher".840

D Case Studies841

Here is a real case of golden reasoning synthesis from the original QA. The data in the Question and842

Answer columns were extracted from the original QA dataset S1K (Muennighoff et al., 2025). After843

applying the chat template Cgen in Figure 3, the strong LLM generated the corresponding Normal-844

Reasoning Trace ("reasoning content") and Step-Reasoning Trace ("content"). We performed Step-Mask845

Scoring on the Step-Reasoning Trace and found that it had the highest score among all generated reasoning846

traces. Subsequently, due to the excessive length of its Normal-Reasoning Trace, we used Ptrunc in Figure847
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8 for truncation, and ultimately obtained the golden reasoning for fine-tuning. We mark the complete 848

Normal-Reasoning Trace with light blue and the truncated Normal-Reasoning Trace with dark blue. 849

850

Question 851

Given a rational number, write it as a fraction in lowest terms and calculate the product of the resulting 852

numerator and denominator. For how many rational numbers between 0 and 1 will 20! be the resulting 853

product? 854

855

Correct Answer 856

128 857

858

Normal-Reasoning Trace ("reasoning content") 859

Okay, so the problem is asking: For how many rational numbers between 0 and 1 will 20! be the product 860

of the numerator and denominator when the rational number is written in lowest terms. Hmm, let me try 861

to unpack this step by step. 862

First, let me make sure I understand the question correctly. We need to find all fractions between 0 and 1 863

that, when reduced to their simplest form (i.e., numerator and denominator are coprime), the product of 864

the numerator and denominator equals 20 factorial (20!). Then, count how many such fractions exist. 865

So, to rephrase, we are looking for pairs of integers (a, b) such that: 866

1. 0 < a < b (since the fraction is between 0 and 1) 867

2. gcd(a, b) = 1 (the fraction is in lowest terms) 868

3. a · b = 20! (the product of numerator and denominator is 20!) 869

Therefore, the task reduces to finding the number of coprime pairs (a, b) with 0 < a < b and a · b = 20!. 870

Hmm, how do I approach this? Let me think. Since a and b are coprime and their product is 20!, they 871

must form a coprime pair of divisors of 20!. So, essentially, we need to count the number of ways to split 872

the prime factors of 20! into two coprime parts a and b, such that a < b. 873

But since a and b are coprime, they must share no common prime factors. That means all the prime 874

factors of 20! have to be partitioned between a and b, with no overlap. So, each prime factor in 20! must 875

go entirely to a or entirely to b. 876

Wait, that makes sense. Because if a prime p divides both a and b, then gcd(a, b) would be at least p, 877

contradicting the coprimality. Therefore, each prime in the prime factorization of 20! must be assigned 878

exclusively to either a or b. 879

Therefore, the problem becomes equivalent to finding the number of ways to partition the set of prime 880

factors of 20! into two non-empty subsets (since a and b must both be at least 1) such that the product of 881

the primes in each subset (with their respective exponents) gives a and b, and then ensuring that a < b. 882

But wait, actually, it’s not just the primes, but all the prime powers in the factorization of 20!. Because 883

20! has exponents for each prime. For example, 20! = 218 · 38 · 54 · 72 · 111 · 131 · 171 · 191 (let me check 884

that later). So, each prime power must be entirely assigned to either a or b. 885

But since a and b are coprime, as long as all occurrences of a prime are assigned to one side, they can be. 886

So, the process is similar to assigning each prime in the prime factorization to either a or b. For each 887

distinct prime, we have two choices: assign all its exponents to a or to b. However, since the order matters 888

(a < b), but we have to account for that. 889

But wait, the number of coprime pairs (a, b) with a · b = N is 2k−1, where k is the number of distinct 890

prime factors of N . Because for each prime, you assign it to a or b, giving 2k possibilities. However, 891

since a and b are positive integers and a ≤ b, we divide by 2, but since N is a square only if there’s a 892

square factor, but in our case, since a and b are coprime, N cannot be a square unless all exponents are 893

even, but 20! has exponents which are not all even. Wait, but 20! is not a perfect square. Let me check. 894

Wait, 20! includes primes like 2, which has exponent 18 (even), 3 has exponent 8 (even), 54 (even), 72 895

(even), but 11, 13, 17, 19 each have exponent 1 (odd). So, 20! is not a perfect square. Therefore, there 896

are no solutions where a = b. Therefore, the total number of unordered pairs {a, b} with a · b = N and 897

gcd(a, b) = 1 is 2k, where k is the number of distinct prime factors, divided by 2 (since unordered), which 898

would be 2k−1. But since we need ordered pairs (a, b) with a < b, the number would be 2k−1. 899
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But hold on, in our problem, N is 20!, so k is the number of distinct prime factors of 20!.900

Let me first compute the prime factors of 20!.901

Primes less than or equal to 20 are: 2, 3, 5, 7, 11, 13, 17, 19. That’s 8 primes. Therefore, k = 8. Therefore,902

the number of coprime pairs (a, b) with a · b = 20! would be 28−1 = 128. But wait, is that correct?903

(The first occurrence of the correct answer)904

Wait, the standard formula for the number of coprime pairs (a, b) with a · b = N is 2k, where k is the905

number of distinct prime factors of N . Because each prime can go to a or b. Since a and b must be906

positive integers, and each coprime decomposition corresponds to a subset of primes assigned to a, and907

the rest to b. Therefore, the number of such pairs is 2k. However, since the problem requires a < b, then908

we need to divide by 2, but only if a ̸= b. Since N is not a perfect square (as established earlier), all pairs909

have a ̸= b. Therefore, the number of ordered pairs (a, b) with a < b and a · b = N and gcd(a, b) = 1 is910

2k−1.911

Therefore, since k = 8, the number would be 27 = 128. Therefore, the answer would be 128.912

But wait, let me verify this carefully. Let’s take a smaller example. Suppose N is 6, which is 2 · 3. Then,913

the coprime pairs (a, b) with a · b = 6 are (1,6) and (2,3). However, (1,6) and (6,1), (2,3) and (3,2). But914

since a < b, we have two pairs: (1,6) and (2,3). The number of distinct prime factors of 6 is 2 (primes 2915

and 3). So, 22−1 = 2, which matches. Similarly, for N = 30 (primes 2, 3, 5), k = 3, so 22 = 4. Let’s916

see: the coprime pairs with a · b = 30 and a < b are (1,30), (2,15), (3,10), (5,6). That’s 4 pairs. Yep, that917

works. So the formula holds.918

Therefore, applying this to 20!, which has 8 distinct prime factors, the number should be 27 = 128. Hence,919

the answer is 128.920

But hold on a second. Let me check the prime factors of 20! again to confirm the count of distinct primes.921

The primes less than or equal to 20 are 2, 3, 5, 7, 11, 13, 17, 19. That’s 8 primes. So k = 8. Thus,922

28−1 = 128. So that should be the answer.923

But let me think again. Is there any possibility that in the case of 20! being a factorial, its prime exponents924

might affect this count? For example, does the multiplicity of primes (like 218, 38, etc.) play any role here?925

Wait, in the formula, we only consider the number of distinct primes. Because even if a prime has a higher926

exponent, when we split the prime factors between a and b, all the exponents of that prime must go to927

one side or the other. Therefore, each prime is treated as a single entity when partitioning. So, whether a928

prime is raised to the 1st power or the 18th power, it’s still just one prime in terms of assignment. Hence,929

the number of coprime pairs is determined solely by the number of distinct primes, not their exponents.930

Therefore, even with multiple exponents, the number of coprime pairs remains 2k, with k being the number931

of distinct primes.932

Therefore, in our case, since there are 8 distinct primes in 20!, the number of coprime pairs (a, b) with933

a · b = 20! is 28 = 256. However, since we require a < b, we divide by 2, giving 128. That seems correct.934

Therefore, the answer is 128. So I should check the problem statement once again to make sure I didn’t935

miss any details.936

The problem says: “how many rational numbers between 0 and 1 will 20! be the resulting product”. So,937

each such fraction a
b , reduced to lowest terms, with a · b = 20!. Since a and b are coprime, their product938

is 20!, and each such pair corresponds to a unique fraction. The count is the number of such fractions,939

which is the same as the number of coprime pairs (a, b) with a < b and a · b = 20!.940

Therefore, yes, the answer is 128.941

But let me make sure with another example. Take N = 12, which is 22 · 3. The distinct primes are 2 and 3,942

so k = 2. Then, the number of coprime pairs (a, b) with a < b and a · b = 12 is 22−1 = 2. Let’s check.943

The possible pairs:944

Possible coprime pairs (a, b) with a · b = 12:945

1 · 12: gcd(1, 12) = 1946

3 · 4: gcd(3, 4) = 1947

But 2 · 6: gcd(2, 6) = 2 ̸= 1948

So, only two pairs: (1,12) and (3,4). So, 2 pairs, which is 22−1 = 2. Correct.949

Another example: N = 30, as before, primes 2,3,5: 3 primes. So 23−1 = 4, which matches the four pairs.950

So, the formula holds. Therefore, for N = 20! with 8 primes, the answer is 28−1 = 128.951
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Therefore, I think that’s the correct answer. I don’t see any mistakes in the reasoning. The key insight is 952

that each prime must be entirely assigned to a or b, leading to 28 possibilities, and since we want a < b, 953

we divide by 2, getting 27 = 128. 954

955

Step-Reasoning Trace ("content") 956

Understanding the Problem 957

We need to find how many rational numbers between 0 and 1, when written in lowest terms, have a product 958

of numerator and denominator equal to 20!. 959

Key Observations 960

1. The rational number a
b must satisfy 0 < a < b and gcd(a, b) = 1. 961

2. The product a · b = 20!. 962

3. a and b must be coprime divisors of 20!. 963

Prime Factorization of 20! 964

20! has prime factors: 2, 3, 5, 7, 11, 13, 17, 19. These are 8 distinct primes. 965

Coprime Divisor Pairs 966

Each prime factor must be assigned entirely to either a or b. For each prime, there are 2 choices (assign 967

to a or b), leading to 28 = 256 total pairs. Since a < b, we divide by 2 to avoid double-counting. 968

Final Calculation 969

The number of valid pairs is 28−1 = 27 = 128. 970

Final Answer 971

128 972

973

974

Truncated Reasoning Trace for Fine-Tuning (Golden Reasoning) 975

Okay, so the problem is asking: For how many rational numbers between 0 and 1 will 20! be the product 976

of the numerator and denominator when the rational number is written in lowest terms. Hmm, let me try 977

to unpack this step by step. 978

First, let me make sure I understand the question correctly. We need to find all fractions between 0 and 1 979

that, when reduced to their simplest form (i.e., numerator and denominator are coprime), the product of 980

the numerator and denominator equals 20 factorial (20!). Then, count how many such fractions exist. 981

So, to rephrase, we are looking for pairs of integers (a, b) such that: 982

1. 0 < a < b (since the fraction is between 0 and 1) 983

2. gcd(a, b) = 1 (the fraction is in lowest terms) 984

3. a · b = 20! (the product of numerator and denominator is 20!) 985

Therefore, the task reduces to finding the number of coprime pairs (a, b) with 0 < a < b and a · b = 20!. 986

Hmm, how do I approach this? Let me think. Since a and b are coprime and their product is 20!, they 987

must form a coprime pair of divisors of 20!. So, essentially, we need to count the number of ways to split 988

the prime factors of 20! into two coprime parts a and b, such that a < b. 989

But since a and b are coprime, they must share no common prime factors. That means all the prime 990

factors of 20! have to be partitioned between a and b, with no overlap. So, each prime factor in 20! must 991

go entirely to a or entirely to b. 992

Wait, that makes sense. Because if a prime p divides both a and b, then gcd(a, b) would be at least p, 993

contradicting the coprimality. Therefore, each prime in the prime factorization of 20! must be assigned 994

exclusively to either a or b. 995

Therefore, the problem becomes equivalent to finding the number of ways to partition the set of prime 996

factors of 20! into two non-empty subsets (since a and b must both be at least 1) such that the product of 997

the primes in each subset (with their respective exponents) gives a and b, and then ensuring that a < b. 998

But wait, actually, it’s not just the primes, but all the prime powers in the factorization of 20!. Because 999

20! has exponents for each prime. For example, 20! = 218 · 38 · 54 · 72 · 111 · 131 · 171 · 191 (let me check 1000

that later). So, each prime power must be entirely assigned to either a or b. 1001

But since a and b are coprime, as long as all occurrences of a prime are assigned to one side, they can be. 1002

So, the process is similar to assigning each prime in the prime factorization to either a or b. For each 1003
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distinct prime, we have two choices: assign all its exponents to a or to b. However, since the order matters1004

(a < b), but we have to account for that.1005

But wait, the number of coprime pairs (a, b) with a · b = N is 2k−1, where k is the number of distinct1006

prime factors of N . Because for each prime, you assign it to a or b, giving 2k possibilities. However,1007

since a and b are positive integers and a ≤ b, we divide by 2, but since N is a square only if there’s a1008

square factor, but in our case, since a and b are coprime, N cannot be a square unless all exponents are1009

even, but 20! has exponents which are not all even. Wait, but 20! is not a perfect square. Let me check.1010

Wait, 20! includes primes like 2, which has exponent 18 (even), 3 has exponent 8 (even), 54 (even), 721011

(even), but 11, 13, 17, 19 each have exponent 1 (odd). So, 20! is not a perfect square. Therefore, there1012

are no solutions where a = b. Therefore, the total number of unordered pairs {a, b} with a · b = N and1013

gcd(a, b) = 1 is 2k, where k is the number of distinct prime factors, divided by 2 (since unordered), which1014

would be 2k−1. But since we need ordered pairs (a, b) with a < b, the number would be 2k−1.1015

But hold on, in our problem, N is 20!, so k is the number of distinct prime factors of 20!.1016

Let me first compute the prime factors of 20!.1017

Primes less than or equal to 20 are: 2, 3, 5, 7, 11, 13, 17, 19. That’s 8 primes. Therefore, k = 8. Therefore,1018

the number of coprime pairs (a, b) with a · b = 20! would be 28−1 = 128.1019

1020

E License For Artifacts1021

In our experiments, we utilized the S1K dataset (Muennighoff et al., 2025) and several models, each1022

governed by specific licenses. The S1K dataset is released under the MIT License, which permits free1023

use, modification, and distribution for any purpose, provided that the original copyright and license terms1024

are retained. The Qwen2.5-7B and QwQ-Plus models (Yang et al., 2024) are licensed under Apache-2.0,1025

allowing for both personal and commercial use, with the requirement to include copyright and license1026

notices in any derivative works. Meanwhile, the DeepSeek r1 (Guo et al., 2025) and DeepSeek v3 (Liu1027

et al., 2024) models are distributed under the MIT License, offering similar permissive terms for usage and1028

distribution. These licensing frameworks ensure that our research complies with the conditions set forth1029

by the respective developers and institutions, while also facilitating the transparent and lawful utilization1030

of these artifacts in our study.1031

F AI Assistant Usage1032

During the research process, we utilized ChatGPT to polish some wording in the introduction section1033

of the paper. We used the auto-completion feature of GitHub Copilot to assist with the coding. We did1034

not overuse AI assistants in the writing and coding process. All text and code generated by AI assistants1035

have been thoroughly checked and verified by us to avoid potential ethical issues and program errors. The1036

final content and methods presented in this paper, as well as the coding work, are the original work of the1037

authors.1038
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