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ABSTRACT

We study a distributed Principal Component Analysis (PCA) framework where
each worker targets a distinct eigenvector and refines its solution by updating from
intermediate solutions provided by peers deemed as “superior”. Drawing intuition
from the delation methods, which is traditionally used in centralized eigenvalue
problems, our method breaks the sequential dependency in between the deflation
steps and allows asynchronous updates of workers while incurring only a small
communication cost. To our knowledge, a critical gap in the literature –the the-
oretical underpinning of such distributed, dynamic interactions among workers–
has remained unaddressed until now. This paper offers the first theoretical analy-
sis explaining why, how, and when these intermediate, hierarchical updates lead to
practical and provable convergence in distributed environments. Our theoretical
contributions demonstrate that such a distributed PCA algorithm not only con-
verges effectively but does so in a manner that is favorably scalable. We also
demonstrate through experiments that our proposed framework offers comparable
performance to EigenGame-µ, the state-of-the-art model-parallel PCA solver.

1 INTRODUCTION

Currently, datasets have gotten dramatically large, encompassing billions, if not trillions, of entries
spanning various domains Zhong et al. (2019); Liu et al. (2023); Penedo et al. (2024a); Soldaini et al.
(2024); Wang et al. (2022); Schuhmann et al. (2022); Raffel et al. (2020); Penedo et al. (2024b);
Xue et al. (2020); Abadji et al. (2022). This scale made it necessary to advance various distributed
optimization protocols, such as federated learning Brendan et al. (2016), and, notably, the develop-
ment of multiple distributed ML software packages Kim & Kang; Dean et al. (2012). Specialized
frameworks such as Ray Liang et al. (2018), Spark Meng et al. (2016), Hadoop Apache Software
Foundation, and JAX Bradbury et al. (2018) have surged in popularity due to their ability to enhance
computational speed significantly.

However, at the algorithmic level, most distributed implementations try to simulate the behavior of
the centralized versions of the underlying algorithms. That is, how distributed algorithms navigate
the parameter landscape is often designed such that we achieve a similar outcome as if data is
available in one location. There are a few key reasons for this:

• Mathematical Understanding: When there is sufficient theoretical understanding of the central-
ized version, it is often a desired goal to attain the same result by designing algorithms to emulate
the centralized counterparts. This ensures consistency and theoretical understanding.

• Algorithm Simplicity: Since centralized algorithms are better understood, distributed variants
that replicate the algorithms’ outcomes automatically enjoy the same simplicity and interpretation.

• Benchmarking: By simulating the centralized execution, comparing the accuracy and conver-
gence properties of the distributed implementation in practice becomes easier.

Yet, precisely simulating centralized algorithms in a distributed environment could pose some chal-
lenges. Take as a characteristic feature the notion of synchrony in distributed implementations, as
this leads to training dynamics closer to centralized training. Synchronization among workers means
proper orchestration, especially in large-scale settings with high-dimensional models and datasets
Zeng et al. (2024); Tan et al. (2022). Synchronized implementations that wait for some or all workers
to finish each iteration before proceeding can suffer from stragglers and load imbalance Wang et al.
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(2023a); Ambati et al. (2019). Yet, while asynchronous motions seem like a favorable alternative,
developing an asynchronous learning method is often complicated Stripelis et al. (2022); Tyagi &
Swany (2023); Huba et al. (2022), set aside the lack of theoretical understanding in many cases.1

Based on the dilemma between orchestrating (or not) workers in a distributed system, this work
focuses on a relatively simple problem: the Principal Component Analysis (PCA) Pearson (1901);
Hotelling (1933); Wold et al. (1987); Majumdar (2009); Wang et al. (2013); d’Aspremont et al.
(2007); Jiang et al. (2011); Zou et al. (2006) and its distributed implementation. Despite its “sim-
plicity”, the quest for a distributed PCA algorithm is still an active research area. It has recently
gained momentum with the EigenGame implementation Gemp et al. (2020). EigenGame shows
strides toward optimizing PCA for distributed computing environments, with ideas borrowed from
game theory and implementations that mimic centralized versions. To retain its theoretical guaran-
tees, EigenGame follows a strict hierarchy where each worker is responsible for a single component,
and all workers respect hierarchy by waiting for their “superior” principal components (i.e., eigen-
components associated with larger eigenvalues) to be adequately estimated.2

Our approach and contributions. This work advances distributed PCA by building upon a collab-
orative computation model as in Gemp et al. (2020). Unlike traditional distributed PCA approaches
that mimic centralized algorithms, our method innovates by allowing parallel computation of eigen-
vectors without strict sequential dependencies among the workers. This paradigm shift not only
addresses the inherent inefficiencies of previous methods but also enhances the scalability and con-
vergence speed. Herein, we delineate our primary contributions:

• Novel Algorithmic Framework: We propose a novel distributed PCA algorithm that fundamentally
changes the computational dynamics. Using the covariance matrix, our approach enables multiple
workers to perform eigenvector calculations in parallel. This method diverges from the traditional
sequential computation models, significantly reducing total computation time.

• Extension to Stochastic PCA: in cases where the covariance is unknown or cannot be efficiently
estimated, our algorithm can be easily modified to accommodate data that comes in mini-batches.

• Theoretical Advancements: We provide a robust theoretical framework that validates the con-
vergence properties of our proposed algorithm. By formalizing the interaction between parallel
computations and convergence rates, we establish a new theoretical benchmark for distributed
PCA algorithms. This contribution underscores our algorithm’s efficiency and enhances the un-
derstanding of parallel deflation processes in PCA.

• Empirical Validation: Through extensive experiments, we demonstrate the practical efficacy of
our algorithm. Our results show that our approach at least meets the performance of existing
baseline algorithms even on datasets as large as ImageNet Deng et al. (2009). These experiments
substantiate our theoretical claims and highlight the real-world applicability of our method.

These contributions mark a significant step forward in distributed computing for PCA, providing
theoretical insights and practical tools for data analysis applications.

1.1 RELATED WORKS

Centralized approaches. Principal Component Analysis (PCA) has been a cornerstone of statistical
data analysis since 1901 Pearson (1901). Hotelling later expanded on Pearson’s work, formalizing
PCA within a multivariate analysis framework Hotelling (1933). Classical PCA typically involves
the eigendecomposition of the data covariance matrix Jolliffe (2002).

With the advent of large datasets, iterative and gradient-based methods for PCA have gained promi-
nence. These methods are particularly advantageous for large-scale data, where traditional eigende-
composition becomes computationally impractical. Krasulina and Oja & Karhunen proposed two of
the earliest stochastic gradient descent methods for online PCA Krasulina (1969); Oja & Karhunen
(1985). The application of the least square minimization to the PCA has also received attention
Miao & Hua (1998); Yang (1995); Bannour & Azimi-Sadjadi (1995); Kung et al. (1994). More re-
cently, Arora et al. (2012) and Shamir (2015) have proposed efficient stochastic optimization meth-

1In fact, asynchrony has been a topic of debate in distributed neural network training, where asynchronous
training often inherently suffers from lower accuracy compared to synchronized analogs, resulting in the dom-
inance of synchronized methods in neural network training Campos et al. (2017); Chen et al. (2017).

2We note here that even in this case, theory in Gemp et al. (2020) does not characterize how approximate
estimates in eigencomponents higher in the “hierarchy” affect calculations in subsequent estimates.
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ods that adapt to the streaming model of data (stochastic) and focused on the theoretical guarantees
of gradient-based methods in such non-convex scenarios; see also Boutsidis et al. (2014); Garber
et al. (2015); Shamir (2016); Kim & Klabjan (2020). Other approaches include manifold methods
Demidovich et al. (2024); Chen et al. (2024); Wang et al. (2023b); Absil et al. (2008), Frank-Wolfe
methods Beznosikov et al. (2023), Gauss-Newton methods Zhou et al. (2023), coordinate descent
methods Lei et al. (2016), accelerated methods Xu et al. (2018), as well as variants of the PCA prob-
lem itself Journée et al. (2010); Yuan & Zhang (2013); Han & Liu (2014); Kim & Klabjan (2019);
Kim et al. (2019). Nevertheless, these methods are primarily designed as centralized algorithms.

Distributed approaches. The line of work in Kannan et al. (2014); Liang et al. (2014); Boutsidis
et al. (2016); Fan et al. (2019) utilizes randomized linear algebra and singular value decompositions
of randomized projections of data in a distributed setting, leading to favorable theoretical results. For
the case of distributed multiple eigenvector/subspace computation, Li et al. (2021) consider the dis-
tributed truncated singular value decomposition (SVD) problem and rely on FedAvg ideas McMahan
et al. (2017) with local iterations. There, each worker utilizes an Orthogonal Procrustes Transfor-
mation Schönemann (1966); Cape (2020) to estimate the multiple subspace problem. However, this
line of work assumes that the covariance matrix is known or can be efficiently estimated.

For distributed leading principal component computation, Garber et al. (2017) consider the stochas-
tic setting and replace the Power Iteration scheme with convex optimization motions for better effi-
ciency. Huang & Pan (2020) proposes a round-efficient solution by leveraging the connection to Rie-
mannian optimization; similarly, see Alimisis et al. (2021). Recently, Wang et al. (2023b) proposed
a Riemannian gradient-type method that admits low per-iteration computational and communication
costs and can be readily implemented in an asynchronous setting. Beyond the classical distributed
setting, there are works on the Byzantine and adversarial scenario Charisopoulos & Damle (2022);
Zari et al. (2022), the streaming case Allen-Zhu & Li (2017); Yu et al. (2017), shift-and-invert pre-
conditioning approaches Garber et al. (2016), and coreset-based approaches Feldman et al. (2020).

The papers above consider the data-parallel setting, where the data is distributed across machines,
and each worker solve for all the principal components with its local data. DeepMind’s EigenGame
Gemp et al. (2020) introduced a model-parallel approach, framing each principal component as a
player in a collaborative game. EigenGame optimizes the utility of each vector sequentially using
Riemannian gradient ascent, but is also extended to the distributed scenario, where players can
maximize their utility simultaneously, resulting in a model-parallel algorithm where solving each
principal component is distributed across machines. The paper provided a convergence proof for the
sequential process where vectors are optimized in a hierarchical order. However, for the distributed
version, they didn’t analyze how approximate steps affect overall convergence. A later improvement
Gemp et al. (2022) was proposed, but also lacks theoretical guarantees for the distributed setting.

Our work complements existing literature both theoretically and practically. Unlike sequential ap-
proaches, our method does not require the completion of previous principal component computations
before proceeding to the next. Moreover, We provide a comprehensive convergence analysis, estab-
lishing a stronger theoretical foundation than EigenGame, while maintaining practical efficiency.

2 PROBLEM STATEMENT AND BACKGROUND

Let Y ∈ Rn×d be the matrix representing an aggregation of n properly scaled, centered data points,
each with d features. The empirical covariance matrix is given by Σ = Y⊤Y ∈ Rd×d. Let u⋆

k and
λ⋆
k be the kth eigenvector and eigenvalue of Σ, with λ⋆

1 ≥ · · · ≥ λ⋆
d. Then u⋆

k is the kth principal
component of the data matrix Y. Therefore, when Σ can be easily computed, principal component
analysis aims at finding the top-K eigenvectors of the empirical covariance matrix Σ, where K ≤ d.

The leading eigenvector problem. Finding the leading eigenvector is the cornerstone of finding
multiple eigenvectors, and is thus utilized by many PCA algorithms. Mathematically, the problem
of finding the leading eigenvector u⋆

1 can be formulated as the following optimization problem:
u⋆
1 = argmax

v∈Rd:∥v∥2=1

v⊤Σv. (1)

In practice, algorithms like power iteration and Hebb’s rule are used to solve the leading eigenvector.
Definition 1 (Power Iteration). The power iteration algorithm PowIter (Σ,v, T ) outputs a vector
xT based on the following iterates:

x̂t+1 = Σxt; xt+1 = x̂t+1/ ∥x̂t+1∥2 .

3
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Definition 2 (Hebb’s Rule). The Hebb’s Rule Hebb (Σ,v, T ) with some fixed step size η outputs a
vector xT based on the following iterates:

x̂t+1 = xt + ηΣxt; xt+1 = x̂t+1/ ∥x̂t+1∥2 .
Under mild assumptions, the output xT of both the power iteration and Hebb’s rule converges to the
top eigenvector of the input matrix Σ, as the number of steps T →∞. Notably, the power iteration
enjoys a linear convergence rate Shamir (2015).

Top-K eigenvector using sequential deflation. An extension of (1) is the top-K eigenvector prob-
lem, where one aims to find u⋆

1, . . .u
⋆
K . Since u⋆

1, . . . ,u
⋆
K form an orthonormal set, finding the

top-K eigenvector can be mathematically formulated as:
U⋆ = [u⋆

1, . . . ,u
⋆
K ] ∈ argmax

V∈{Q:,:K : Q∈SO(d)}
⟨ΣV,V⟩ , (2)

where SO(d) denotes the group of rotations about a fixed point in d-dimensional Euclidean space.

Algorithm 1 Parallel Deflation

Require: Σ ∈ Rd×d; # of eigenvectors (workers) K;
sub-routine for top eigenvector PCA(·, ·, ·); # of iter-
ations T ; global communication rounds L ≥ K.

Ensure: Approximate eigenvectors {vk}Kk=1.
1: for k = 1, . . . ,K do
2: Randomly initialize v̂k,init with unit norm;
3: end for
4: for ℓ = 1, . . . , L do
5: parfor k = 1, . . . ,K do
6: if k ≤ ℓ then
7: Receive v1,ℓ−1, . . . ,vk−1,ℓ−1

8: ∆k′,ℓ = vk′,ℓ−1v
⊤
k′,ℓ−1Σvk′,ℓ−1v

⊤
k′,ℓ−1

9: Σk,ℓ = Σ−∑k−1
k′=1 ∆k′,ℓ

10: vk,ℓ ← Top1 (Σk,ℓ,vk,ℓ−1, T )
11: Broadcast vk,ℓ

12: else
13: vk,ℓ := v̂k,init;
14: end if
15: end parfor
16: end for
17: return {vk,L}Kk=1

A classical way to solve (2) is through
deflation Hotelling (1933). Deflation
operates in the following manner. Once
the top component u⋆

1 is approximated,
the matrix Σ undergoes further process-
ing to reside in the subspace orthogonal
to the one spanned by the first eigenvec-
tor. This process is iterated by finding
the leading eigenvector as in (1) on the
deflated matrix, resulting in an approxi-
mation of the second component u⋆

2, and
so forth, as described below:

Σ1 = Σ; vk = Top1 (Σk, v̂k, T ) ;

Σk+1 = Σk − vkv
⊤
k Σkvkv

⊤
k , (3)

where Top1 (Σk, v̂k, T ) abstractly de-
notes any iterative algorithm initialized
at v̂k and returns a normalized ap-
proximation of the top eigenvector of
the deflated matrix Σk after T itera-
tions of execution. Consider the eigen-
decomposition Σ =

∑d
k′=1 λ

⋆
k′u⋆

k′u⋆⊤
k′ .

When T → ∞ and Top1 (Σk, v̂k, T )
solves the top eigenvector of Σ exactly,
one can show that Σk =

∑d
k′=k λ

⋆
k′u⋆

k′u⋆⊤
k′ and vk = u⋆

k. However, when T is finite, it is shown in
Liao et al. (2023) that each Top1 (Σk, v̂k, T ) produces a non-negligible error that accumulates and
propagates through the deflation process.

Stochastic algorithm to find top-1 principal component. When the dataset becomes large, the
covariance matrix Σ may not be efficiently computed, making the previous routine of first computing
the covariance matrix and then its eigenvector infeasible. Alternatively, people estimate Σ with
Σ̂ = Ŷ⊤Ŷ, where Ŷ is a mini-batch of the dataset. In this case, Hebb’s rule can be written as

x̂t+1 = xt + ηŶ⊤
(
Ŷxt

)
;xt+1 = ˆxt+1/ ∥ ˆxt+1∥2

Notice that the stochastic estimate of the covariance matrix Σ̂ is never explicitly computed.

3 PARALLEL DEFLATION ALGORITHM

Here we introduce our algorithm that computes the top-K principal components in a distributed
environment. Our algorithm allows for parallel computation, significantly accelerating the process
by overcoming the inherent sequential dependencies of traditional deflation techniques.

Algorithm overview. In our framework, we assign the task of computing each of the K prin-
cipal components to K distinct workers. Each worker k is responsible for computing the kth

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

principal component. The crux of our method lies in the modification of the traditional defla-
tion process to suit a distributed setting. In a typical sequential deflation, the matrix required
for computing the kth eigenvector is derived only after obtaining the first k − 1 eigenvectors.
This sequential dependency restricts parallelism. Our approach introduces an innovative twist:

Worker 1 Worker 2 Worker 3

Σ1,0

Σ1,1

Σ1,2

Σ1,3

v1,0

v1,1

v1,2

v1,3

Σ2,0

Σ2,1

Σ2,2

Σ2,3

v2,0

v2,1

v2,2

v2,3

Σ3,0

Σ3,1

Σ3,2

Σ3,3

v3,0

v3,1

v3,2

v3,3

Top1(Σ1,0,v1,0)

Top1(Σ1,1,v1,1)

Top1(Σ1,2,v1,2)

Top1(Σ1,3,v1,3)

Top1(Σ2,1,v2,1)

Top1(Σ2,2,v2,2)

Top1(Σ2,3,v2,3)

Top1(Σ3,1,v3,1)

Top1(Σ3,2,v3,2)

Figure 1: Illustration of the parallel deflation algorithm.

–Initial Estimation: Each worker k
begins by computing an inexact ver-
sion of the kth deflated matrix, using
preliminary estimates of the first k−1
eigenvectors produced by the corre-
sponding workers.

–Iterative Refinement: Concurrently,
workers refining the first k− 1 eigen-
vectors provide updated estimates to
worker k. This enables worker k to
refine the deflated matrix iteratively
and improve the accuracy of the kth
eigenvector estimation.

The main idea of introducing paral-
lelism into the computation scheme is
that worker k does not wait for the
first k − 1 eigenvectors to be fully
solved before solving the kth eigen-
vector. The parallel deflation algo-
rithm is given in Algorithm 1.

The whole computation process is di-
vided into L communication rounds
(Line 4). In the ℓth communication
round, the kth worker will compute
an approximation of the kth princi-
pal component vk,ℓ by running their
own sub-routine in parallel, follow-
ing the rule that the kth worker only
deflates its matrix and start comput-
ing the kth principal component af-
ter the first k − 1 workers have com-
puted some rough estimation of the

first k−1 principal components (Lines 7-10). Therefore, in the ℓth communication round, there can
be two scenarios for worker k: i) if ℓ < k, this means that not all of the first k − 1 workers have
computed some approximation of their own principal component. Therefore, worker k does not
deflate the matrix and output vk,ℓ = v̂k,init; ii) If ℓ ≥ k, then the first k − 1 workers have at least
computed one approximation of their own principal component. In this case, worker k deflates the
matrix using the most updated vectors v1,ℓ−1, . . .vk−1,ℓ−1 (Line 7), compute its approximation of
the kth principal component by calling the Top1 (·) on the deflated matrix starting from its output
in the previous communication round (Line 10), and then broadcast the current approximation to
the other workers for the next communication round (Line 11). An illustration of the algorithm is
given in Figure 1.

Extension to Stochastic PCA. The algorithm described above can be applied to the case where
the covariance matrix is either known or can be efficiently estimated. However, in many machine
learning scenarios, the covariance matrix may not be direcly accessible. For instance, when data
drawn from an underlying distribution comes in a streaming fashion Allen-Zhu & Li (2017), the
traditional approach of first estimating the covariance matrix and then solves for its eigenvector is
no longer efficient. Moreover, for large datasets that contains hundreds of thousands of features, it is
impossible to compute or even store the covariance matrix Gemp et al. (2022; 2020). In these cases,
our algorithm can be adapted to estimate the principal components in a stochastic fashion.

Let Ŷ denote the mini-batch that the algorithm receives in the tth iteration. Starting from Line 8,
whose major computation burden is on v⊤

k′,ℓ−1Σvk′,ℓ−1, we notice that the covariance matrix is

5
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estimated as Σ ≈ Σ̂ = Ŷ⊤Ŷ. In this case, we have:
v⊤
k′,ℓ−1Σ̂vk′,ℓ−1 = v⊤

k′,ℓ−1Ŷ
⊤Ŷvk′,ℓ−1 = ∥Ŷvk′,ℓ−1∥22.

Therefore, each ∆k′,ℓ in Algorithm 1 can be written as ∆k′,ℓ = ∥Ŷvk′,ℓ−1∥22vk′,ℓ−1v
⊤
k′,ℓ−1. Thus,

Line 9 becomes:
Σk,ℓ ≈ Σ̂k = Ŷ⊤Ŷ −

k−1∑
k′=1

∥Ŷvk′,ℓ−1∥22vk′,ℓ−1v
⊤
k′,ℓ−1.

This new form of Σk,ℓ allows an efficient estimation of the matrix-vector product Σk,ℓx, as in:

λ̂k′ = ∥Ŷvk′∥22; ∀k′ ∈ [k − 1]; Σk,ℓx = Ŷ⊤Ŷxt −
k−1∑
k′=1

λ̂k′
(
v⊤
k′,ℓ−1xt

)
· vk′,ℓ−1. (4)

In the current form of Algorithm 1, the computation of Lines 8-9 takes O
(
Kd2

)
time. Moreover,

calling the Top1 function in Lines 10, any matrix-vector multiplication Σk,ℓx will take O
(
d2
)

time. Notice that in (4), the complexity of computing each Yvk′ is O (nd). Thus computing λ̂k′

takes O (nd). In total,(4) has a complexity of O (Knd). In (4), computing the first term Ŷ⊤Ŷx

involves computing first yt = Ŷxt, which takes O (nd), and then Ŷ⊤yt, which also takes O (nd).
Thus, computing the first term Ŷ⊤Ŷxt takes O (nd) in total. For the second term, each summand
takes O(d) to compute, giving the complexity of computing the second term as O (kd). Therefore,
each iteration of (4) takes O ((n+ k)d). This implies a saving in the computation cost, since in this
case, n is the batch size and can be much smaller than d. The complete algorithm in the stochastic
setting is given in Algorithm 2 in the Appendix.

Connection with EigenGame. The EigenGame Gemp et al. (2020) considers the problem of solv-
ing the top-K eigenvectors of a matrix as a game between K players, with the kth player solving vk

by maximizing its utility: vk = argmaxv:∥v∥2=1 Uk (v | v1, . . .vk−1), where:

Uk
(
v | {vk′}k−1

k′=1

)
= v⊤Σv −

k−1∑
k′=1

(
v⊤
k′Σv

)2
v⊤
k′Σvk′

. (5)

Similarly, the deflation algorithm in (2) also bears a game formulation, where the utility of the kth
player is given by:

Vk

(
v | {vk′}k−1

k′=1

)
= v⊤

(
Σ−

k−1∑
k′=1

vk′v⊤
k′Σvk′v⊤

k′

)
v = v⊤Σv −

k−1∑
k′=1

v⊤
k′Σvk′ ·

(
v⊤
k′v
)2

. (6)

It should be noted that both the EigenGame utility Uk and the deflation utility Vk depend on only
the policy of the first k− 1 players. Moreover, when the first k− 1 players recovers the top-(k− 1)
eigenvectors exactly, we shall have:

Vk
(
v | {u⋆

k′}k−1
k′=1

)
= v⊤Σv −

k−1∑
k′=1

λ⋆
k′

(
v⊤u⋆

k′

)2
= Uk

(
v | {u⋆

k′}k−1
k′=1

)
.

To this end, we can also show that the set of true eigenvectors {u⋆
k}Kk=1 is the unique strict Nash

Equilibrium defined by the utilities in (6). The proof of Theorem 1 is deferred to Appendix A.
Theorem 1. Assume that the covariance matrix Σ has positive and strictly decreasing eigenvalues
λ⋆
1 > · · · > λ⋆

K > 0. Then, {u⋆
k}Kk=1 is the unique strict Nash Equilibrium defined by the utilities in

(6) up to sign perturbation, i.e., replacing u⋆
k with −u⋆

k.

4 CONVERGENCE GUARANTEE FOR PARALLEL DEFLATION ALGORITHM

We provide a convergence guarantee for the parallel deflation algorithm in Algorithm 1. The pivot of
the convergence analysis will be to track the dynamics of {Σk,ℓ}Kk=1 and {vk,ℓ}Kk=1 as ℓ increases.
The dynamics of the two sequences from Algorithm 1 can be compactly represented as:

Σk,ℓ = Σ−
k−1∑
k′=1

vk′,ℓ−1v
⊤
k′,ℓ−1Σvk′,ℓ−1v

⊤
k′,ℓ−1; vk,ℓ = Top1 (Σk,ℓ,vk,ℓ−1) ; ∀ℓ ≥ k.

Here, we embed the number of solver steps T in the property of the abstract local solver Top1(·).
Indeed, if Top1(·) returns the exact top eigenvector of the input matrix every time it is called, then

6
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we can easily see that vk,ℓ = u⋆
k for all ℓ ≥ k. When Top1(·) returns an inexact estimate of the

input matrix sequentially, i.e., worker k waits until the top-(k − 1) worker no longer improves the
estimation of the top-(k − 1) eigenvectors, the error is analyzed by Liao et al. (2023).

Our scenario is further complicated by the continuous improvement of the eigenvector estimates
used to deflate the matrix: in each communication round, the Top1(·) function, called by worker k,
will start at the estimate of the top eigenvector of the deflated matrix in the previous round but will
be fitted to the top eigenvector of the deflated matrix in the current round. Our convergence analysis
tackles this complicated dynamic by utilizing the following abstraction of the Top1(·) sub-routine.

Assumption 1. Let Σ̂ ∈ Rd×d be a real symmetric matrix. Let λ⋆ be its eigenvalue with the largest
absolute value, and let u⋆ be the corresponding eigenvector of λ⋆. We assume that there exists a
real value F

(
Σ̂
)
∈ (0, 1) that depends on Σ̂ such that for any x0 ∈ Rd, Top1(·) satisfies:∥∥∥Top1(Σ̂,x0

)
− u⋆

∥∥∥
2
≤ F

(
Σ̂
)
∥x0 − u⋆∥2 .

Assumption 1 can be easily guaranteed. as long as the Top1(·) algorithm enjoys a non-asymptotic
convergence to the top eigenvector; see the Related Works section above. With Assumption 1, the
convergence of Algorithm 1 is given by the following theorem.

Theorem 2. Assume that Assumption 1 holds, and let Fk = maxℓ≥k F
(
Σ̂k,ℓ

)
. Let W−1 (·) be the

Lambert-W function in the −1 branch3, and define for a > 0:

Ŵ (a) =

{−W−1 (−a) if a ∈ (0, e−1)

1 if a ∈ [e−1,∞)

Let {mk}Kk=0 be a sequence of numbers denoting the convergence rates of recovering the K eigen-
vectors, where mk = max

{
Fk,

1
k + k−1

k mk−1

}
and m0 = 1 as a dummy starting point. Let

{sk}nk=1 be a sequence of integers denoting the starting communication round where the K eigen-
vectors’ error recovery enters the linear convergence phase, respectively. To be more specific, let
s1 = 1 and for all k ∈ [K − 1] and k′ ∈ [k]:

sk+1 ≥ max

{
Ŵ (mk log 1/mk)

log 1/mk

,
kmk + 1

1−mk

}
+

Ŵ
(

λ⋆
k+1−λ⋆

k+2

12kλ⋆
k′

(log 1/mk)
2
)

log 1/mk′
+ sk′ . (7)

Then, we have that the following holds for all k ∈ [K]
∥vk,ℓ − u⋆

k∥2 ≤ 6 (ℓ− sk + 2)mℓ−sk+1
k ; ∀ℓ ≥ sk − 1. (8)

In words, Theorem 2 says that starting from the skth communication round, the recovery error of
the kth eigenvector converges according to a nearly-linear convergence rate given in (8). However,
the convergence starting point sk for the kth eigenvector must be later than the convergence starting
point for the 1, . . . , k − 1th eigenvector for a number of communication rounds. This delay in the
convergence starting point is characterized in (7). Intuitively, the starting point sk denotes the index
of the communication round where the top-(k − 1) eigenvectors have been estimated accurately
enough for the kth worker to make positive progress.

Remark 1. By the definition that mk = max
{
Fk,

1
k + k−1

k mk−1

}
, one could see that mk < 1

since Fk < 1 for all k ∈ [K]. The convergence rate in (8) involves the product of a linear term
ℓ − sk + 2 and an exponential term mℓ−sk+1

k . When ℓ is large enough, mℓ−sk+1
k decays at a much

faster speed than the increase of ℓ− sk + 2, thus giving a nearly-linear convergence rate.

Remark 2. Upper bound on the separation between the sk’s. By using the inequality that
W−1(e

−u−1) ≥ −1 −
√
2u − u Chatzigeorgiou (2013), we could obtain that Ŵ (a) ≤ log 1/a +√

2(log 1/a− 1)+1 when a ∈ (0, e−1). Therefore, we can conclude that Ŵ = O(max{1, log 1/a}).
Notice that (7) requires that sk+1, the starting point of the linear convergence for the error of vk+1,ℓ,
must be later than s1, . . . , sk for some steps. Using the bound of Ŵ (a), one could simplify (7) to:

sk+1 ≥ sk +O

(
max

{(
log

1

mk

)−1(
1 + log

kλ⋆
k

λ⋆
k+1 − λ⋆

k+2

)
,
kmk + 1

1−mk

})
.

3The Lambert-W function in the −1-branch is defined as the inverse of the function f(x) = xex when
x ∈ (−∞,−1).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300
T × `

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Er
ro

r

P-Deflation, T = 1
EigGame-α, T = 1
EigGame-µ, T = 1

P-Deflation, T = 5
EigGame-α, T = 5
EigGame-µ, T = 5

(a)

0 50 100 150 200 250
T × `

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Er
ro

r

P-Deflation, T = 1
EigGame-α, T = 1
EigGame-µ, T = 1

P-Deflation, T = 5
EigGame-α, T = 5
EigGame-µ, T = 5

(b)

0 50 100 150 200 250 300
T × `

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Er
ro

r

P-Deflation, T = 1
EigGame-α, T = 1
EigGame-µ, T = 1

P-Deflation, T = 5
EigGame-α, T = 5
EigGame-µ, T = 5

(c)

Figure 2: Comparison of the convergence behavior of parallel deflation, EigenGame-α, and
EigenGame-µ in deterministic setting on (a). synthetic dataset with power-law decaying eigen-
values, (b). synthetic dataset with exponentially decaying eigenvalues, and (c). MNIST dataset.

This simplification implies that a smaller mk would cause a smaller decay between sk and sk+1.
Since mk depends on Fk, a smaller mk can be achieved by doing more local steps in the call to
Top1(·). However, since the decay between sk and sk+1 is measured in terms of the communication
rounds, doing more local steps also increases the computation time per round in the delayed periods.

Sketch of Proof. The key challenge in proving Theorem 2 lies in handling the dynamic, asyn-
chronous nature of our algorithm. Unlike sequential deflation, where each principal component is
computed after the previous ones have converged and stays fixed, our method deals with simulta-
neous updates of all principal components. This requires careful analysis of how errors propagate
and accumulate across different workers. To start, we derive upper bounds of the per-iteration dif-
ference between the actual deflated matrix Σk and the ideal deflated matrix Σ∗

k and the difference
between the estimated eigenvector vk,ℓ and the ground-truth eigenvector u∗

k. Notice that these two
upper bounds are inter-dependent. We apply Davis-Kahan SinΘ Theorem Davis & Kahan (1970) to
derive the bound between the matrices’ top-eigenvectors based on the matrix differences. Next, we
carefully choose a convergence starting point sk for each eigenvector. Construct two simpler two-
dimensional sequences {Bk,ℓ} and {Gk,ℓ} starting from sk’s that upper bound these differences.
Lastly, we unroll the bounds on {Bk,ℓ} and {Gk,ℓ} to arrive at a closed form upper bound on error
of the estimated eigenvector vk,ℓ. The detailed proof is deferred to Appendix B.

5 EXPERIMENTS

In this section, we experimentally verify the performance of the parallel deflation algorithm.

Baseline algorithms. We compared the parallel deflation algorithm with power iteration as the
Top1 subroutine with the distributed version of EigenGame-α Gemp et al. (2020) and EigenGame-
µ Gemp et al. (2022). It should be noticed that EigenGame-α was proposed as a sequential princi-
pal component recovery algorithm and can be adapted as a distributed algorithm. Moreover, both
EigenGame-α and EigenGame-µ are restricted to the case of one iteration of update per communica-
tion round. We modified their algorithm to generalize to multiple iterations of update in Algorithm 3
and Algorithm 4 in Appendix D. As in the implementation of Gemp et al. (2020) ad Gemp et al.
(2022), we do not project the utility gradient to the unit sphere.

Evaluation Metric. We evaluate the performance of the three algorithms by computing how close
the recovered principal component is to the true eigenvector of the covariance matrix. In particular,
notice that if a vector u⋆

k is the kth principal component (equivalently kth eigenvector of the covari-
ance matrix), then −u⋆

k is also the kth principal component. Therefore, for the set of true principal
components {u⋆

k}Kk=1 and a set of recovered principal component {vk}Kk=1, we use the following
metric to compute the approximation error

E
(
{u⋆

k}Kk=1, {vk}Kk=1

)
=

(
1

K

K∑
k=1

min
s∈{±1}

∥u⋆
k − s · vk∥22

) 1
2

(9)

Deterministic Experiments. For synthetic experiments, we choose the number of features d =
1000, which gives the covariance matrices Σ ∈ R1000×1000. We consider Σ generated with two
different eigenvalue spectra: i) a power-law decaying spectrum λ⋆

k = 1√
k

, and ii) an exponential

8
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decaying spectrum λ⋆
k = 1

1.1k
. We choose the number of local updates in each communication round

T to be T ∈ {1, 5}. We ran parallel deflation, EigenGame-α, and EigenGame-µ to recover the top-
30 eigenvectors (K = 30). For each setting, we run 10 trials with different random initialization.

Figure 2a presents the convergence behavior of the three algorithms with T ∈ {1, 5} on the synthetic
matrix with λ⋆

k = 1√
k

. Both EigenGame-µ and parallel deflation demonstrate stable convergence to a
low error value under the case of T = 1 and T = 5, with parallel deflation converging slightly slower
than EigenGame-µ in the first 200 total steps, and then arriving at a lower error than EigenGame-
µ in the last 100 total steps. On the other hand, EigenGame-α shows unstable convergence that
appears to be significantly slower than EigenGame-µ and parallel deflation. Figure 2b presents the
result on the synthetic matrix with λ⋆

k = 1
1.1k

. In general, the convergence behavior is similar to
Figure 2a, with parallel deflation and EigenGame-µ exhibiting a fast and stable convergence, and
EigenGame-α being slower. In both Figure 2a and Figure 2b, the setting of T = 1 shows a faster
convergence than T = 5. This is because T = 1 allows more communication in a fixed number of
total steps T × L, which keeps the deflated matrices of each local worker to be better updated.

We also use the real-world dataset of MNIST, which contains n = 60000 hand-written digits, to
compute the covariance. In particular, each 28× 28 image is first divided by 255 for numerical sta-
bility and then flattened into a vector yi of d = 784 features. Similar to the synthetic experiments,
we also choose T ∈ {1, 5} and aim at recovering the top-30 eigenvectors. The result on the MNIST
dataset is presented in Figure 2c. Similar convergence behavior of the three algorithms, where par-
allel deflation and EigenGame-µ demonstrate similar convergence speed, and EigenGame-α con-
verges much slower. Noticeably, for EigenGame-α, we could observe that the case T = 1 converges
even slower than the case T = 5. We hypothesize that this is because one local iteration is not
sufficient for the top eigenvector solvers to provide an accurate enough estimate for the following
solvers to make positive progress.

Stochastic Setting. In the stochastic experiments, we first test the algorithm’s performance on a
synthetic Gaussian distribution. We generate a covariance matrix Σ with power-law decaying spec-
trum as in the deterministic experiments. However, instead of directly passing it to the PCA solver,
we sample I.I.D. samples fromN (0,Σ) and pass the sampled data batches to parallel deflation and
EigenGame in a streaming fashion. We use a decaying step size for all three algorithms, and the
result is given in Figure 3a. In this setting, parallel deflation shows a slightly worse performance
than the two EigenGame algorithms. We hypothesis that this is because parallel deflation is more
sensitive to the step size tuning in the stochastic case.

In Figure 3b, we plot the performance of parallel deflation and EigenGame in the stochastic setting
of the MNIST dataset. That is, batches of the MNIST training set is sampled in each iteration
and passed to the algorithms. We observe that parallel deflation achieves a similar performance to
EigenGame-µ, with a slightly faster convergence speed in the early phase of the algorithm.

In addition, we also test the performance of parallel deflation on the ImageNet dataset Deng et al.
(2009) that contains 1.2M images. In particular, each 224 × 224 image is flattened into a vector of
dimension 50176. The large scale of the dataset makes it impossible to even compute or store the
covariance matrix on a single device. We use both parallel deflation and EigenGame-µ to compute
the top-10 eigenvector of the dataset. It should be noted that since no ”ground-truth” principal
component is know, we can no longer use the metric in (9). Instead, we notice that, since finding
the kth eigenvector can be seen as maximizing v⊤Σv given that v is orthogonal to all previous
eigenvectors, we can use an aggregation of the terms v⊤

k Σvk as a metric to evaluate the quanlity
of the solved principal components. To follow the internal hierarchy of the eigenvectors that the
leading eigenvectors are free to explore more space and thus are expected to attain a larger v⊤Σv,
we penalize terms with larger index with a discounting factor. This result in the following metrix

M
(
{vk}Kk=1

)
=

K∑
k=1

1

k
v⊤
k Σvk =

1

n

n∑
i=1

K∑
k=1

(
ȳ⊤
i vk

)2
k

(10)

Notice that a larger value ofM (·) implies a better quality of the recovered eigenvectors. In practice,

we compute this metric by using a batched aggregation of the terms (ȳ⊤
i vk)

2

k over all i ∈ [n]. We
plot the result in Figure 3c, and we could observe that in this large scale dataset, our algorithm can
keep up with the performance of the state-of-the-art algorithm EigenGame-µ.
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Figure 3: Comparison of the convergence behavior of parallel deflation, EigenGame-α, and
EigenGame-µ in stochastic setting on (a). synthetic dataset with power-law decaying eigenvalues,
(b). MNIST dataset, and (c) ImageNet dataset.
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Figure 4: Ablation study of the parallel deflation algorithm. (a) shows the benefit of the run-time by
increasing the parallelism. (b) shows the benefit of decreasing the communication cost by increasing
the number of local iterations.

Ablation studies. We conducted additional ablation studies for the parallel deflation algorithms,
with the results presented in Figure 4. In Figure 4a, we conduct additional experiments comparing
how different choices of the number of local updates T contribute to the convergence speed. In
particular, since in each communication round, the local updates of all workers are done in parallel,
T × ℓ would represent the total time elapsed under the ideal scenario of no communication cost. We
could see from Figure 4a that a smaller T results in a faster convergence speed. Remarkably, since
we choose T×L = 1200 and aim at recovering 30 eigenvectors, the case where T = 40 corresponds
to L = 30, demonstrating the convergence behavior of the sequential deflation algorithm. Figure 4a
thus supports that introducing additional parallelism into the deflation algorithm indeed speeds up
the computation process. On the other hand, Figure 4b considers the case where the communication
cost is the major burden. In this case, we can run the parallel deflation algorithm with a larger
number of local updates, hoping to make more progress within one communication round. Indeed,
Figure 4b shows that a large number of local updates result in a faster convergence within a fixed
number of communication rounds on larger datasets.

6 CONCLUSION

In this paper, we present a novel algorithmic framework for computing the principal components in
a distributed fashion. Based on the classical deflation method to solve for the top-K eigenvectors of
a matrix, our algorithm distributes the workload of computing each eigenvector to a single worker.
We introduce additional parallelism by early-starting the computation of the following eigenvectors
based on the initial rough estimation of leading principal components and continuously refining the
local deflated matrix based on updated estimated principal components. We show that our algo-
rithmic framework has a similar game-theoretic formulation as the EigenGame, while enjoying a
nice convergence guarantee even in the distributed case. Moreover, through experiments, we show
that our algorithm converges at a comparable speed to the EigenGame-µ, and is faster than the
EigenGame-α. Future work can focus on empirically examining the potential of using other Top1
subroutines in our parallel deflation algorithm, such as Oja’s rule.
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A MISSING PROOF FROM SECTION 3

Proof of Theorem 1. Let u⋆
1, . . . ,u

⋆
d be the set of eigenvectors of Σ, and λ⋆

1, . . . , λ
⋆
d be the corre-

sponding eigenvalues, potentially with some λk = 0. Recall that in the game formulation of the
deflation algorithm, the utility function of the kth player is given by

Vk
(
v | {vk′}k−1

k′=1

)
= v⊤Σv −

k−1∑
k′=1

v⊤
k′Σvk′ ·

(
v⊤
k′v
)2

and when vk′ = u⋆
k′ for k′ ∈ [k − 1], we have

Vk
(
v | {u⋆

k′}k−1
k′=1

)
= v⊤Σv −

k−1∑
k′=1

λ⋆
k′ ·
(
v⊤
k′v
)2

It should be noted that Σ has the eigendecomposition Σ =
∑d

k′=1 λ
⋆
k′u⋆

k′u⋆⊤
k′ . Therefore we can

rewrite v⊤Σv as
∑d

k′=1 λ
⋆
k′

(
v⊤u⋆

k′

)2
. Thus, the utility becomes

Vk
(
v | {u⋆

k′}dk′=1

)
=

k−1∑
k′=k

λ⋆
k′

(
v⊤u⋆

k′

)2
Since u⋆

1, . . . ,u
⋆
d spans Rd and are mutually orthogonal, we can write v =

∑d
j=1 βju

⋆
j . where∑d

j=1 β
2
j = 1. Then we have

Vk
(
v | {u⋆

k′}dk′=1

)
=

k−1∑
k′=k

λ⋆
k′

 d∑
j=1

βju
⋆⊤
j u⋆

k′

2

=

k−1∑
k′=k

λ⋆
k′β2

k′

Since λk’s are strictly decreasing and positive, we must have that the maximum of
Vk
(
v | {u⋆

k′}dk′=1

)
is only attained when β2

k = 1, which implies that v = ±u⋆
k will be the only

optimal policies for player k.

The uniqueness can be shown by induction. To start, we notice that V1 does not depend on the policy
of the other plays. Therefore, the only optimal policy for player 1 is v1 = ±u⋆

1. This shows the
base case. Now, assume that within the top-(k− 1) players, the optimal policies are vk′ = ±u⋆

k′ for
k′ ∈ [k − 1]. By the formulation of the utility functions, these optimal policies are not affected by
the policy of player k, . . . ,K. Moreover, it should be noted that the utility of player k only depends
on the top-(k − 1) players. Therefore, the optimal policy for player k must be vk = ±u⋆

k. This
finishes the inductive step and completes the proof.

B MISSING PROOF FROM SECTION 4

We first introduce a tool that we will utilize in the proof in this section.

Lemma 1 (sinΘ Theorem Davis & Kahan (1970)). Let M∗ ∈ Rd×d and let M = M∗ +H. Let a∗1
and a1 be the top eigenvectors of M∗ and M, respectively. Then we have:

sin∠ {a∗1,a1} ≤
∥H∥2

minj ̸=k |σ∗
k − σj |

.

B.1 PROOF OF THEOREM 2

Define Σ⋆
k =

∑d
k=1 λ

⋆
ku

⋆
ku

⊤⋆
k as the ”ground-truth” deflation matrix. Recall that the parallel defla-

tion algorithm executes

Σk,ℓ = Σ−
k−1∑
k′=1

vk′,ℓ−1v
⊤
k′,ℓ−1Σvk′,ℓ−1v

⊤
k′,ℓ−1; vk,ℓ = Top1 (Σk,ℓ,vk,ℓ−1) (11)
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Let uk,ℓ denote the top eigenvector of Σk,ℓ. In particular, it suffices to show that the quantity
∥vk,ℓ − u⋆

k∥
2
2 decreases as ℓ increases. Combining Assumption 1 and the definition that Fk =

maxℓ≥k F (Σk,ℓ),we have that
∥vk,ℓ − uk,ℓ∥2 ≤ Fk ∥vk,ℓ−1 − uk,ℓ∥2 (12)

We could upper bound ∥vk,ℓ−1 − uk,ℓ∥2 using

∥vk,ℓ−1 − uk,ℓ∥2 ≤ ∥vk,ℓ−1 − uk,ℓ−1∥2 + ∥uk,ℓ − uk,ℓ−1∥2
≤ ∥vk,ℓ−1 − uk,ℓ−1∥2 + ∥uk,ℓ − u⋆

k∥2 + ∥uk,ℓ−1 − u⋆
k∥2

Combining this upper bound with (12) gives
∥vk,ℓ − uk,ℓ∥2 ≤ Fk

(
∥vk,ℓ−1 − uk,ℓ−1∥2 + ∥uk,ℓ − u⋆

k∥2 + ∥uk,ℓ−1 − u⋆
k∥2
)

(13)
Moreover, the triangle inequality implies that

∥vk,ℓ − u⋆
k∥2 ≤ ∥vk,ℓ − uk,ℓ∥2 + ∥uk,ℓ − u⋆

k∥2 (14)
Now, (13) and (14) give a pretty good characterization of the propagation of the errors. It remains
to characterize ∥uk,ℓ − u⋆

k∥2 for each ℓ, and then we can dive into solving the recurrence. A naive
bound would be that ∥uk,ℓ − u⋆

k∥2 ≤ 2, as ∥uk,ℓ∥2 = ∥u⋆
k∥2 = 1. However, notice that uk,ℓ is

the top eigenvector of Σk,ℓ and Σ⋆
k, respective. Thus, we can invoke the Davis-Kahan Theorem to

obtain a tighter bound. This property is given by Lemma 2, whose proof is deferred to Appendix B.2.
Lemma 2. Assume that 1 = λ⋆

1 > λ⋆
2 > . . . . If the following inequality holds for some c0 > 1

k−1∑
k′=1

λ⋆
k′ ∥u⋆

k′ − vk′,ℓ−1∥2 ≤
c0 − 1

4c0

(
λ⋆
k − λ⋆

k+1

)
(15)

then we have that

∥uk,ℓ − u⋆
k∥2 ≤

4c0
λ⋆
k − λ⋆

k+1

k−1∑
k′=1

λ⋆
k′ ∥u⋆

k′ − vk′,ℓ−1∥2 (16)

Now, we are going to use induction to proceed with the proof. Notice that, in order to control
∥uk,ℓ − u⋆

k∥2 using Lemma 2, one only need to control the recovery error of all previous eigenvec-
tors ∥u⋆

k′ − vk′,ℓ−1∥2, as given in (15). Thus, fix some k, we will assume the inductive hypothesis
that there exists some s such that for all ℓ ≥ s, we can guarantee (15). For the case of k = 1, this is
obvious, as the left-hand side of (15) is 0. When k ≥ 1 and we can gather the conditions as

∥vk,ℓ − uk,ℓ∥2 ≤ Fk,ℓ

(
∥vk,ℓ−1 − uk,ℓ−1∥2 + ∥uk,ℓ − u⋆

k∥2 + ∥uk,ℓ−1 − u⋆
k∥2
)

∥u⋆
k − vk,ℓ∥2 ≤ ∥vk,ℓ − uk,ℓ∥2 + ∥uk,ℓ − u⋆

k∥2

∥uk,ℓ − u⋆
k∥2 ≤

4c0
λ⋆
k − λ⋆

k+1

k−1∑
k′=1

λ⋆
k′ ∥u⋆

k′ − vk′,ℓ−1∥2 ; ∀ℓ ≥ sk

For simplicity, we let
∥vk,ℓ − uk,ℓ∥2 =: Dk,ℓ; ∥uk,ℓ − u⋆

k∥2 =: Bk,ℓ; ∥u⋆
k − vk,ℓ∥2 =: Gk,ℓ

Moreover, we let Ck = 4c0
λ⋆
k−λ⋆

k+1
. Then the iterates are simplified to

Dk,ℓ ≤ Fk (Dk,ℓ−1 +Bk,ℓ +Bk,ℓ−1)

Gk,ℓ ≤ Dk,ℓ +Bk,ℓ

Bk,ℓ ≤ Ck
k−1∑
k′=1

λ⋆
k′Gk′,ℓ−1

where we set G0,ℓ = 0 for all ℓ. Then Gk,ℓ can be written as

Gk,ℓ ≤ Fℓ−s
k Dk,s +

ℓ−1∑
ℓ′=s

Fℓ−ℓ′

k (Bk,ℓ′ +Bk,ℓ′−1) +Bk,ℓ

for any s ∈ [ℓ]. Here, the first term can be made small as long as we choose a large enough ℓ.
The third term is the unavoidable error propagation. The second term can cause Gk,ℓ to grow, and
needs a careful analysis. To understand the recurrence between Gk,ℓ and Bk,ℓ, we use the following
lemma
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Lemma 3. Let ŝk be given for all k ∈ [K] such that 1 ≤ ŝ1 ≤ · · · ≤ ŝK . Let sk ∈ Z be given for all
k ∈ [K] such that 1 = s0 ≤ s1 ≤ · · · ≤ sK . Consider the sequence {Bk,ℓ}∞ℓ=ŝk

and {Gk,ℓ}∞ℓ=sk−1

for all k ∈ [K] characterized by the following recurrence

Bk,ℓ ≤ Ck

k−1∑
k′=1

λ⋆
k′Gk′,ℓ−1

Gk,ℓ ≤ Fℓ−sk+1
k Dk,sk−1 +

ℓ−1∑
ℓ′=sk−1

Fℓ−ℓ′

k (Bk,ℓ′ +Bk,ℓ′−1) +Bk,ℓ

(17)

Let mk = max{Fk, γk−1} for all k ∈ [K] and m0 = −1. Let {γ}Kk=−1 be given such that
γ−1 = γ0 = 0 and γk = 1

k+1 + k
k+1mk for all k ∈ [K]. Define sequences {B̂k,ℓ}∞ℓ=ŝk

and
{Ĝk,ℓ}∞ℓ=sk−1 for all k ∈ [K] as

B̂k,ℓ =

{
min

{
2,mℓ−ŝk

k−1 (ℓ− ŝk + 1) B̂k,ŝk

}
if ℓ > ŝk

Ck

∑k−1
k′=1 λ

⋆
k′Ĝk′,ŝk−1 if ℓ = ŝk

Ĝk,ℓ =

{
mℓ−sk+1

k (ℓ− sk + 2)Ĝk,sk−1 if ℓ ≥ sk
Dk,sk−1 + B̂k,sk−1 + B̂k,sk−2 if ℓ = sk − 1

(18)

Suppose that ŝk+1 ≥ sk, and sk satisfies satisfies msk−ŝk−2
k−1 ≤ 1

sk−ŝk−1 and sk ≥ kmk−1

1−mk−1
+ŝk+2.

Moreover, suppose that B̂k,ŝk ≤ 2 for all k ∈ [K]. Then the following two conditions hold

1. B̂k,ℓ ≥ Bk,ℓ for all ℓ ≥ ŝk

2. Ĝk,ℓ ≥ Gk,ℓ for all ℓ ≥ sk − 1

The proof of Lemma 3 is deferred to Appendix B.3. Lemma 3 implies that under proper condition
of sk and ŝk, we have

Gk,ℓ ≤ Ĝk,ℓ

≤ max{Fk, γk−1}ℓ−sk+1(ℓ− sk + 1)Ĝk,sk−1

= max{Fk, γk−1}ℓ−sk+1(ℓ− sk + 1)
(
Dk,sk−1 + B̂k,sk−1 + B̂k,sk−2

)
By definition, we have that Dk,sk−1 = ∥vk,sk−1 − uk,sk−1∥2 ≤ 2. Moreover, the definition in (18)
gives that B̂k,sk−1 ≤ 2 and B̂k,sk−2 ≤ 2. Therefore, we can conclude that

Gk,ℓ ≤ 6(ℓ− sk + 1)max{Fk, γk−1}ℓ−sk+1

Now, we go back to the condition of sk and ŝk. The requirement of {sk}Kk=0 and {ŝk}Kk=1 can be
gathered below

1. 1 = s0 ≤ s1 ≤ . . . sK and 1 ≤ ŝ1 ≤ · · · ≤ ŝK

2. ŝk+1 ≥ sk and sk ≥ kmk−1

1−mk−1
+ ŝk + 2

3. msk
k−1 − ŝk − 2 ≤ 1

sk−ŝk−1

4. mℓ−ŝk
k−1 (ℓ− ŝk + 1)

∑k−1
k′=1 λ

⋆
k′Ĝk′,ŝk−1 ≤ c0−1

4c0

(
λ⋆
k − λ⋆

k+1

)
for all ℓ ≥ ŝk

where the first three conditions are directly required by Lemma 3, and the fourth condition is required
because the upper bound on Bk,ℓ in (17) hold only when

k−1∑
k′=1

λ⋆
k′ ∥u⋆

k′ − vk′,ℓ−1∥2 ≤
c0 − 1

4c0

(
λ⋆
k − λ⋆

k+1

)
from Lemma 2. Notice that since B̂k,ŝk = Ck

∑k−1
k′=1 λ

⋆
k′Ĝk′,ŝk−1, enforcing the fourth condition

directly implies that B̂k,ŝk ≤ 2. Now, we are going to simplify these conditions. A useful tool will
be the following lemma, whose proof is provided in Appendix B.4.
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Lemma 4. Let m ∈ (0, 1) and ϵ ∈ R be given. Let g(x) = mx(x + 1), and let W−1 (·) be the
Lambert-W function. Then

1. When ϵ ≥ − 1
em logm , then any x ≥ 0 satisfies g(x) ≤ ϵ

2. When ϵ ≤ − 1
em logm , then any x ≥ 1

logmW−1 (ϵm logm)− 1 satisfies g(x) ≤ ϵ

Notice that #4 in the conditions above implies that ∥Σk,ℓ −Σ⋆
k∥F ≤ c0−1

c0

(
λ⋆
k − λ⋆

k+1

)
and

Bk,ŝk =

k−1∑
k′=1

λ⋆
k′Ĝk′,ŝk−1 ≤ c0 − 1

Choose c0 = 3 then guarantees that Bk,ŝk ≤ 2. Now, we aim at simplifying Condition #4 above. To
start, we notice that the term mℓ−ŝk

k−1 (ℓ− ŝk + 1) achieves global maximum at ℓ−ŝk = 1
log 1/mk−1

−1

with value 1
log 1/mk−1

m
1

log 1/mk−1
−1

k−1 . Therefore, it suffices to guarantee that

k−1∑
k′=1

λ⋆
k′Ĝk′,ŝk−1 ≤ − logmk−1 ·m

1
log mk−1

−1

k−1 · 1
6

(
λ⋆
k − λ⋆

k+1

)
From Lemma 3, we have that for ℓ ≥ sk − 1, Gk,ℓ ≤ Ĝk,ℓ, and

Ĝk,ℓ = mℓ−sk+1
k (ℓ− sk + 2) Ĝk,sk−1

with Ĝk,sk−1 ≤ 6. Therefore, it suffices to guarantee that
k−1∑
k′=1

λ⋆
k′m

ŝk−sk′+1
k′ (ŝk − sk′ + 2) Ĝk,sk′−1 ≤ − logmk−1 ·m

1
log mk−1

−1

k−1 · 1
6

(
λ⋆
k − λ⋆

k+1

)
which would be satisfied if we have

λ⋆
k′m

ŝk−sk′+1
k′ (ŝk − sk′ + 2) Ĝk,sk′−1 ≤ −

λ⋆
k − λ⋆

k+1

6(k − 1)
logmk−1 ·m

1
log mk−1

−1

k−1

Thus, ŝk must satisfy for all sk′

m
ŝk−sk′+1
k′ (ŝk − sk′ + 2) ≤ − λ⋆

k − λ⋆
k+1

36λ⋆
k′(k − 1)

logmk−1 ·m
1

log mk−1
−1

k−1 (19)

With the help of Lemma 4, Condition #3 transfers to

sk ≥
1

logmk−1
W−1 (mk−1 logmk−1) + ŝk + 1

Similarly, Condition #4 transfers to

ŝk ≥
1

logmk′
W−1

(
− λ⋆

k − λ⋆
k+1

36λ⋆
k′(k − 1)

logmk−1 ·m
1

log mk−1
−1

k−1 mk′ logmk′

)
+ sk′ − 2

which can be guaranteed as long as

ŝk ≥
1

logmk′
W−1

(
−λ⋆

k − λ⋆
k+1

36kλ⋆
k′

(logmk−1)
2 ·m

1
log mk−1

k−1

)
+ sk′ − 2

Gathering all requirements, we have

sk ≥ max

{
1

logmk−1
W−1 (mk−1 logmk−1) ,

(k − 1)mk−1 + 1

1−mk−1

}
+ ŝk + 1

ŝk ≥
1

logmk′
W−1

(
−λ⋆

k − λ⋆
k+1

36kλ⋆
k′

(logmk−1)
2 ·m

1
log mk−1

k−1

)
+ sk′ − 2

Plugging ŝk into the lower bound of sk shows that the condition in (7) suffice to guarantee that
Lemma 3 holds. Thus, we can conclude that

∥vk,ℓ − u⋆
k∥2 = Gk,ℓ ≤ 6 (ℓ− sk + 2)mℓ−sk+1

k

which finishes the proof.
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B.2 PROOF OF LEMMA 2

Applying the Davis-Kahan Theorem, if we let λk+1,ℓ = λmax (Σk,ℓ), then for all k, ℓ such that
∥Σ⋆

k −Σk,ℓ∥F < λ⋆
k − λ⋆

k+1, we have

∥uk,ℓ − u⋆
k∥2 ≤

∥Σ⋆
k −Σk,ℓ∥F

λ⋆
k − λk+1,ℓ

By definition, we have

Σ⋆
k = Σ−

k−1∑
k′=1

λ⋆
k′u⋆

k′u⋆⊤
k′ ; Σk,ℓ = Σ−

k−1∑
k′=1

(
v⊤
k′,ℓ−1Σvk′,ℓ−1

)
vk′,ℓ−1v

⊤
k′,ℓ−1

Thus, we can write the difference between the two matrices as

Σ⋆
k −Σk,ℓ =

k−1∑
k′=1

(
λ⋆
k′ − v⊤

k′,ℓ−1Σvk′,ℓ−1

)
vk′,ℓ−1v

⊤
k′,ℓ−1 +

k−1∑
k′=1

λ⋆
k′

(
vk′,ℓ−1v

⊤
k′,ℓ−1 − u⋆

k′u⋆⊤
k′

)
It is easy to see that for vk′,ℓ−1 and v⋆

k′ with unit norm,∥∥vk′,ℓ−1v
⊤
k′,ℓ−1 − u⋆

k′u⋆⊤
k′

∥∥2
2
= 2− 2 ⟨vk′,ℓ−1,u

⋆
k′⟩2 ≤ ∥u⋆

k′ − vk′,ℓ−1∥22
Moreover to bound

∣∣∣λ⋆
k′ − v⊤

k′,ℓ−1Σvk′,ℓ−1

∣∣∣, we denote δ = vk′,ℓ−1 − u⋆
k′ , and write

v⊤
k′,ℓ−1Σvk′,ℓ−1 = (u⋆

k′ − δ)
⊤
Σ (u⋆

k′ − δ) = λ⋆
k′ − 2λ⋆

k′δ⊤u⋆
k′ + δ⊤Σδ

Therefore, we have∣∣λ⋆
k′ − v⊤

k′,ℓ−1Σvk′,ℓ−1

∣∣ = ∣∣−2λk′δ⊤u⋆
k′ + δ⊤Σδ

∣∣ ≤ 2λ⋆
k′ ∥vk′,ℓ−1 − u⋆

k′∥2+λ⋆
1 ∥vk′,ℓ−1 − u⋆

k′∥22
This gives

∥Σ⋆
k −Σk,ℓ∥F ≤

k−1∑
k′=1

(
3λ⋆

k′ ∥u⋆
k′ − vk′,ℓ−1∥2 + λ⋆

1 ∥u⋆
k′ − vk′,ℓ−1∥22

)
We then need to assume that, for some c0 > 1,

k−1∑
k′=1

λ⋆
k′ ∥u⋆

k′ − vk′,ℓ−1∥2 ≤
c0 − 1

4c0

(
λ⋆
k − λ⋆

k+1

)
In this scenario, we can conclude that ∥u⋆

k′ − vk′,ℓ−1∥2 ≤ λ⋆
k. Combined with the condition that

λ⋆
1 = 1, we have

∥Σ⋆
k −Σk,ℓ∥F ≤ 4

k−1∑
k′=1

λ⋆
k′ ∥u⋆

k′ − vk′,ℓ−1∥2 ≤
c0 − 1

c0

(
λ⋆
k − λ⋆

k+1

)
Moreover, we have

∥uk,ℓ − u⋆
k∥2 ≤

4

λ⋆
k − λk+1,ℓ

k−1∑
k′=1

λ⋆
k′ ∥u⋆

k′ − vk′,ℓ−1∥2 ≤
4c0

λ⋆
k − λ⋆

k+1

k−1∑
k′=1

λ⋆
k′ ∥u⋆

k′ − vk′,ℓ−1∥2

where the last inequality follows from λ⋆
k−λk+1,ℓ ≥ λ⋆

k−λ⋆
k+1−∥Σ⋆

k −Σk,ℓ∥F ≥ 1
c0

(
λ⋆
k − λ⋆

k+1

)
B.3 PROOF OF LEMMA 3

To start, we will need to prove an auxiliary lemma

Lemma 5. Let the sequence {B̂k,ℓ}∞ℓ=sk−1+1 be defined as

B̂k,ℓ = min
{
2,mℓ−ŝk

k−1 (ℓ− ŝk + 1) B̂k,ŝk

}
with some B̂k,ŝk ≤ 2 and mk−1 ∈ (0, 1). Then for all s that satisfies ms−ŝk

k−1 ≤ 1
s−ŝk+1 and

s ≥ kmk−1

1−mk−1
+ ŝk, we have that

B̂k,ℓ ≤
(
1

k
+

k − 1

k
mk−1

)ℓ−s

B̂k,s

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Proof. To start, by definition, we can write B̂k,s as

B̂k,s = min
{
2,ms−ŝk

k−1 (s− ŝk + 1) B̂k,ŝk

}
Since B̂k,ŝk ≤ 2, we have

ms−ŝk
k−1 (s− ŝk + 1) B̂k,ŝk ≤ 2ms−ŝk

k−1 (s− ŝk + 1) ≤ 2

where the last inequality follows from the condition ms−ŝk
k−1 ≤ 1

s−ŝk+1 . Therefore, we can write
B̂k,s as

B̂k,s = ms−ŝk
k−1 (s− ŝk + 1) B̂k,ŝk

Recall that for any ℓ ≥ s we have

B̂k,ℓ = min
{
2,mℓ−ŝk

k−1 (ℓ− ŝk + 1) B̂k,ŝk

}
Plugging in B̂k,ŝk =

(
ms−ŝk

k−1 (s− ŝk + 1)
)−1

B̂k,s we have

B̂k,ℓ ≤ mℓ−s
k−1 ·

ℓ− ŝk + 1

s− ŝk + 1
· B̂k,s

≤ mℓ−s
k

(
ℓ∏

ℓ′=s+1

ℓ′ − ŝk + 1

ℓ′ − ŝk

)
· B̂k,s

≤ mℓ−s
k

(
s− ŝk + 1

s− ŝk

)ℓ−s

B̂k,s

=

(
mk ·

s− ŝk + 1

s− ŝk

)ℓ−s

B̂k,s

≤
(
1

k
+

k − 1

k
mk

)ℓ−s

B̂k,s

where the last inequality is because s ≥ kmk

1−mk
+ ŝk implies that

mk ·
s− ŝk + 1

s− ŝk
≤ mk ·

kmk

1−mk
+ 1

kmk

1−mk

=
(k − 1)mk + 1

k
=

1

k
+

k − 1

k
mk

This completes the proof.

We will use induction on k to prove the lemma.

Base Case: k = 1. In this case, by the definition of B̂1,ŝ1 , we have B̂1,s1 = 0. Moreover, by
the definition of B̂1,ℓ for ℓ ≥ s1, we have B̂1,ℓ = mℓ−ŝk

0 (ℓ− ŝk + 1) B̂k,ŝk = 0. Lastly, by the
definition of B1,ℓ, we have B1,ℓ = 0. Therefore, we must have that B̂1,ℓ = 0 = B1,ℓ for all ℓ ≥ ŝ1.
This shows Condition #1. Using B̂1,ℓ = 0 = B1,ℓ, we can derive that Ĝ1,ℓ = Fℓ−s1+1

1 D1,s1−1, and
G1,ℓ = Fℓ−s1+1

1 D1,s1−1. This implies that G1,ℓ ≤ Ĝ1,ℓ, and shows Condition #2. Thus, we have
shown that the case k = 1 holds.

Inductive Step. Now, we assume that for all k̂ ≤ k, the following holds

1. B̂k̂,ℓ ≥ Bk̂,ℓ for all ℓ ≥ ŝk̂

2. Ĝk̂,ℓ ≥ Gk̂,ℓ for all ℓ ≥ sk̂ − 1

We wish to show that the above three conditions hold for k̂ = k+1. We start by showing Condition
#1 for k̂ = k + 1. By Condition #2 in the inductive hypothesis, we have that Ĝk̂,ℓ ≥ Gk̂,ℓ for all
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ℓ ≥ sk̂ − 1. Since ŝk+1 ≥ sk̂ for all k̂ ≤ k, we have that Ĝk̂,ℓ ≥ Gk̂,ℓ for all ℓ ≥ ŝk+1 − 1.
Therefore, in the case of ℓ = ŝk+1

Bk+1,ℓ ≤ Ck+1

k∑
k′=1

λ⋆
k′Gk′,ℓ−1 ≤ Ck+1

k∑
k′=1

λ⋆
k′Ĝk′,ℓ−1 = B̂k,ℓ

Next, we show that B̂k+1,ℓ ≥ Bk+1,ℓ for all ℓ ≥ ŝk+1. If B̂k+1,ℓ ≥ 2, then we directly have
B̂k+1,ℓ ≥ Bk+1,ℓ since Bk+1,ℓ ≤ 2. Otherwise, suppose B̂k+1,ℓ ≤ 2. Since ŝk+1 ≥ sk′ for all
k′ ≤ k, by the definition of Ĝk,ℓ, we have

Ĝk′,ŝk+1−1 = m
ŝk+1−sk′
k′ (ŝk+1 − sk′ + 1) Ĝk′,sk′−1

Based on the definition of B̂k+1,sk , and since mk ≥ mk′ for all k ≥ k, we have that

B̂k+1,ℓ = m
ℓ−ŝk+1

k (ℓ− ŝk+1 + 1) B̂k+1,ŝk+1

= m
ℓ−ŝk+1

k (ℓ− ŝk+1 + 1)Ck+1

k∑
k′=1

λ⋆
k′Ĝk′,ŝk+1−1

≥ Ck+1

k∑
k′=1

λ⋆
k′m

ℓ−ŝk+1

k′ (ℓ− ŝk+1 + 1) Ĝk′,ŝk+1−1

≥ Ck+1

k∑
k′=1

λ⋆
k′m

ℓ−sk′
k′ (ℓ− ŝk+1 + 1) (sk+1 − sk′ + 1) Ĝk′,sk′−1

≥ Ck+1

k∑
k′=1

λ⋆
k′m

ℓ−sk′
k′ (ℓ− sk′ + 1) Ĝk′,sk′−1

= Ck+1

k∑
k′=1

λ⋆
k′Ĝk′,ℓ−1

where the third to the last inequality is due to (ℓ− ŝk+1 + 1)+(sk+1 − sk′ + 1)− 1 = ℓ− sk′ +1,
and for all a ≥ 1, b ≥ 1, we will have ab ≥ a + b − 1. By the inductive hypothesis, we have that
Ĝk′,ℓ ≥ Gk′,ℓ for all ℓ ≥ ŝk+1 ≥ sk′ − 1. Therefore, it must hold that

B̂k+1,ℓ ≥ Ck+1

k∑
k′=1

λ⋆
k′Gk′,ℓ−1 ≥ Bk+1,ℓ

This proves Condition #1 for k̂ = k + 1. Next, we will prove Condition #2 for k̂ = k + 1. To start,
when ℓ = sk+1 − 1, we have

Ĝk+1,ℓ = Dk+1,sk+1−1 + B̂k+1,sk+1−1 + B̂k+1,sk+1−2

while by (17) we have
Gk+1,ℓ ≤ Dk+1,sk+1−1 +Bk+1,sk+1−1

Since B̂k+1,sk+1−2 ≥ 0 and B̂k+1,sk+1−1 ≥ Bk+1,sk+1−1 as proved above for sk+1 ≥ ŝk+1 − 2,
we must have that Ĝk+1,ℓ ≥ Gk+1,ℓ when ℓ = sk+1 − 1. Next, we show that Ĝk+1,ℓ ≥ Gk+1,ℓ

when ℓ > sk+1 − 1. To start,

Gk+1,ℓ ≤ Fℓ−sk+1+1
k+1 Dk+1,sk+1−1 +

ℓ−1∑
ℓ′=sk+1−1

Fℓ−ℓ′

k+1 (Bk+1,ℓ′ +Bk+1,ℓ′−1) +Bk+1,ℓ

≤ Fℓ−sk+1+1
k+1 Dk+1,sk+1−1 +

ℓ∑
ℓ′=sk+1−1

Fℓ−ℓ′

k+1 (Bk+1,ℓ′ +Bk+1,ℓ′−1)

≤ Fℓ−sk+1+1
k+1 Dk+1,sk+1−1 +

ℓ∑
ℓ′=sk+1−1

Fℓ−ℓ′

k+1

(
B̂k+1,ℓ′ + B̂k+1,ℓ′−1

)
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By definition of B̂k+1,ℓ, invoking Lemma 5 with s = sk+1 − 2 and s = sk+1 − 1, we have that, as
long as sk+1 satisfies msk+1−ŝk+1−2

k ≤ 1
sk+1−ŝk+1−1 and sk+1 ≥ (k+1)mk

1−mk
+ ŝk+1 +2, it holds that

B̂k+1,ℓ ≤ γ
ℓ−sk+1+2
k B̂k+1,sk+1−2

B̂k+1,ℓ ≤ γ
ℓ−sk+1+1
k B̂k+1,sk+1−1

for all ℓ ≥ sk. Therefore

Gk+1,ℓ ≤ Fℓ−sk+1+1
k+1 Dk+1,sk+1−1 +

ℓ∑
ℓ′=sk+1−1

Fℓ−ℓ′

k+1

(
B̂k+1,ℓ′ + B̂k+1,ℓ′−1

)

= Fℓ−sk+1+1
k+1 Dk+1,sk+1−1 +

ℓ∑
ℓ′=sk+1−1

Fℓ−ℓ′

k+1 γ
ℓ′−sk+1+1
k

(
B̂k+1,sk+1−1 + B̂k+1,sk+1−2

)
≤ max{Fk+1, γk}ℓ−sk+1+1

(
Dk+1,sk+1−1 + (ℓ− sk+1 + 1)

(
B̂k+1,sk+1−1 + B̂k+1,sk+1−2

))
≤ max{Fk+1, γk}ℓ−sk+1+1(ℓ− sk+1 + 1)

(
Dk+1,sk+1−1 + B̂k+1,sk+1−1 + B̂k+1,sk+1−2

)
= Ĝk+1,ℓ

where in the last equality we use mk+1 = max{Fk+1, γk} and

Ĝk+1,sk+1−1 = Dk+1,sk+1−1 + B̂k+1,sk+1−1 + B̂k+1,sk+1−2

This proves Condition #2 under ℓ > sk+1 − 1, which finishes the induction step and completes the
proof.

B.4 PROOF OF LEMMA 4

First, we prove the case ϵ ≥ − m
e logm . Notice that the function g(x) achieves global maximum at

x = 1
log 1/m − 1 with value 1

log 1/mm
1

log 1/m
−1. Moreover, notice that

1

log 1/m
m

1
log 1/m

−1 = −m
1

− log m

m logm
= −e−

1
log m ·logm

m logm
= − 1

em logm
≤ ϵ

Therefore, for all x ≥ 0 we would have g(x) ≤ ϵ. Next, we consider the case ϵ ≤ − 1
em logm . In

this case, x ≥ 1
logmW−1 (ϵm logm)− 1 implies that

(x+ 1) logm ≤W−1 (ϵm logm)

By the monotonicity of W−1, we have

(x+ 1) logm · e(x+1) logm ≥ ϵm logm

which gives (x+ 1)ex logm ≤ ϵ. Thus, we have g(x) = (x+ 1)mx ≤ ϵ.
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C STOCHASTIC PARALLEL DEFLATION ALGORITHM

In this section, we provide the explicit form of the stochastic version of the parallel deflation algo-
rithm as discussed in Section 3. Notice that in this algorithm we choose Hebb’s rule as the Top− 1
subroutine for the convenience of a clearer presentation. However, any subroutine that use Σk,ℓ only
for a matrix-vector multiplication can enjoy a similar efficient implementation.

Algorithm 2 Stochastic Parallel Deflation with Hebb’s Rule

Require: Batch of data in the (ℓ, t)th iteration Ŷℓ,t; # of eigenvectors (workers) K; # of iterations
T ; global communication rounds L ≥ K, step size η.

Ensure: Approximate eigenvectors {vk}Kk=1.
1: for k = 1, . . . ,K do
2: Randomly initialize v̂k,init with unit norm;
3: end for
4: for ℓ = 1, . . . , L do
5: for k = 1, . . . ,K do
6: if k ≤ ℓ then
7: Receive v1,ℓ−1, . . . ,vk−1,ℓ−1

8: vk,ℓ,0 := vk,ℓ−1;
9: for t = 1, . . . , T do

10: λ̂k′,ℓ,t = ∥Ŷℓ,tvk′,ℓ−1∥22 ∀k′ ∈ [k − 1];

11: gk,ℓ,t = Ŷ⊤
k,ℓ,tŶk,ℓ,tvk,ℓ,t−1 −

∑k−1
k′=1 λ̂k′,ℓ,t

(
v⊤
k′,ℓ−1vk,ℓ,t−1

)
· vk′,ℓ−1

12: vk,ℓ,t := (vk,ℓ,t−1 − ηgk,t,ℓ)/ ∥vk,ℓ,t−1 − ηgk,t,ℓ∥2
13: end for
14: Broadcast vk,ℓ := vk,ℓ,T

15: else
16: vk,ℓ := v̂k,init;
17: end if
18: end for
19: end for
20: return {vk,L}Kk=1

D BASELINE ALGORITHMS

We provide the generalization of the EigenGame-α Gemp et al. (2020) and EigenGame-µ Gemp
et al. (2022) algorithms with multiple iterations of local updates T ≥ 1 in Algorithm 3 and Al-
gorithm 4. In particular, it should be noted that EigenGame-α and EigenGame-µ use covariance
matrices computed on subsets of the data in each iteration, where in our case we assume that the
covariance matrix is computed on the whole dataset before the algorithm runs. Moreover, if we
set T = 1 in both Algorithm 3 and Algorithm 4, then we recover the original EigenGame-α and
EigenGame-µ algorithms.
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Algorithm 3 EigenGame-α

Require: Σ ∈ Rd×d; # of eigenvectors (workers) K; # of iterations T ; global communication
rounds L ≥ K, step size η.

Ensure: Approximate eigenvectors {vk}Kk=1.
1: for k = 1, . . . ,K do
2: Randomly initialize v̂k,init with unit norm;
3: end for
4: for ℓ = 1, . . . , L do
5: for k = 1, . . . ,K do
6: if k ≤ ℓ then
7: Receive v1,ℓ−1, . . . ,vk−1,ℓ−1

8: vk,ℓ,0 := vk,ℓ−1;
9: for t = 1, . . . , T do

10: gk,ℓ,t := Σvk,ℓ,t−1 −
∑k−1

k′=1

v⊤
k′,ℓ−1

Σvk,ℓ,t−1

v⊤
k′,ℓ−1

Σvk′,ℓ−1
·Σvk′,ℓ−1;

11: vk,ℓ,t := (vk,ℓ,t−1 − ηgk,t,ℓ)/ ∥vk,ℓ,t−1 − ηgk,t,ℓ∥2
12: end for
13: Broadcast vk,ℓ := vk,ℓ,T

14: else
15: vk,ℓ := v̂k,init;
16: end if
17: end for
18: end for
19: return {vk,L}Kk=1

Algorithm 4 EigenGame-µ

Require: Σ ∈ Rd×d; # of eigenvectors (workers) K; # of iterations T ; global communication
rounds L ≥ K, step size η.

Ensure: Approximate eigenvectors {vk}Kk=1.
1: for k = 1, . . . ,K do
2: Randomly initialize v̂k,init with unit norm;
3: end for
4: for ℓ = 1, . . . , L do
5: for k = 1, . . . ,K do
6: if k ≤ ℓ then
7: Receive v1,ℓ−1, . . . ,vk−1,ℓ−1

8: vk,ℓ,0 := vk,ℓ−1;
9: for t = 1, . . . , T do

10: gk,ℓ,t := Σvk,ℓ,t−1 −
∑k−1

k′=1 v
⊤
k′,ℓ−1Σvk,ℓ,t−1 · vk′,ℓ−1;

11: vk,ℓ,t := (vk,ℓ,t−1 − ηgk,t,ℓ)/ ∥vk,ℓ,t−1 − ηgk,t,ℓ∥2
12: end for
13: Broadcast vk,ℓ := vk,ℓ,T

14: else
15: vk,ℓ := v̂k,init;
16: end if
17: end for
18: end for
19: return {vk,L}Kk=1
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