Under review as a conference paper at ICLR 2025

EFFICIENT DISTRIBUTED PRINCIPAL COMPONENT
ANALYSIS WITH PARALLEL DEFLATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We study a distributed Principal Component Analysis (PCA) framework where
each worker targets a distinct eigenvector and refines its solution by updating from
intermediate solutions provided by peers deemed as “superior”. Drawing intuition
from the delation methods, which is traditionally used in centralized eigenvalue
problems, our method breaks the sequential dependency in between the deflation
steps and allows asynchronous updates of workers while incurring only a small
communication cost. To our knowledge, a critical gap in the literature —the the-
oretical underpinning of such distributed, dynamic interactions among workers—
has remained unaddressed until now. This paper offers the first theoretical analy-
sis explaining why, how, and when these intermediate, hierarchical updates lead to
practical and provable convergence in distributed environments. Our theoretical
contributions demonstrate that such a distributed PCA algorithm not only con-
verges effectively but does so in a manner that is favorably scalable. We also
demonstrate through experiments that our proposed framework offers comparable
performance to EigenGame-y, the state-of-the-art model-parallel PCA solver.

1 INTRODUCTION

Currently, datasets have gotten dramatically large, encompassing billions, if not trillions, of entries
spanning various domains|Zhong et al.|(2019);|Liu et al.|(2023));|Penedo et al.[(2024a);|Soldaini et al.
(2024); 'Wang et al.| (2022); Schuhmann et al.| (2022)); Raffel et al.| (2020); |Penedo et al.| (2024b);
Xue et al.| (2020); |Abadji et al|(2022). This scale made it necessary to advance various distributed
optimization protocols, such as federated learning Brendan et al.| (2016), and, notably, the develop-
ment of multiple distributed ML software packages [Kim & Kang; |Dean et al.|(2012). Specialized
frameworks such as Ray |[Liang et al| (2018), Spark Meng et al.| (2016)), Hadoop |Apache Software
Foundation, and JAX Bradbury et al.|(2018)) have surged in popularity due to their ability to enhance
computational speed significantly.

However, at the algorithmic level, most distributed implementations try to simulate the behavior of
the centralized versions of the underlying algorithms. That is, how distributed algorithms navigate
the parameter landscape is often designed such that we achieve a similar outcome as if data is
available in one location. There are a few key reasons for this:

* Mathematical Understanding: When there is sufficient theoretical understanding of the central-
ized version, it is often a desired goal to attain the same result by designing algorithms to emulate
the centralized counterparts. This ensures consistency and theoretical understanding.

* Algorithm Simplicity: Since centralized algorithms are better understood, distributed variants
that replicate the algorithms’ outcomes automatically enjoy the same simplicity and interpretation.

* Benchmarking: By simulating the centralized execution, comparing the accuracy and conver-
gence properties of the distributed implementation in practice becomes easier.

Yet, precisely simulating centralized algorithms in a distributed environment could pose some chal-
lenges. Take as a characteristic feature the notion of synchrony in distributed implementations, as
this leads to training dynamics closer to centralized training. Synchronization among workers means
proper orchestration, especially in large-scale settings with high-dimensional models and datasets
Zeng et al.|(2024); Tan et al.|(2022). Synchronized implementations that wait for some or all workers
to finish each iteration before proceeding can suffer from stragglers and load imbalance |Wang et al.

Under review as a conference paper at ICLR 2025

(2023a); /Ambati et al.| (2019). Yet, while asynchronous motions seem like a favorable alternative,
developing an asynchronous learning method is often complicated [Stripelis et al.| (2022); [Tyagi &
Swany| (2023)); Huba et al.| (2022), set aside the lack of theoretical understanding in many cases

Based on the dilemma between orchestrating (or not) workers in a distributed system, this work
focuses on a relatively simple problem: the Principal Component Analysis (PCA) |[Pearson| (1901);
Hotelling (1933); Wold et al.| (1987); Majumdar| (2009); [Wang et al. (2013)); |d’ Aspremont et al.
(2007); Jiang et al.| (2011); Zou et al.|(2006) and its distributed implementation. Despite its “sim-
plicity”, the quest for a distributed PCA algorithm is still an active research area. It has recently
gained momentum with the EigenGame implementation (Gemp et al.| (2020). EigenGame shows
strides toward optimizing PCA for distributed computing environments, with ideas borrowed from
game theory and implementations that mimic centralized versions. To retain its theoretical guaran-
tees, EigenGame follows a strict hierarchy where each worker is responsible for a single component,
and all workers respect hierarchy by waiting for their “superior” principal components (i.e., eigen-
components associated with larger eigenvalues) to be adequately estimatedE]

Our approach and contributions. This work advances distributed PCA by building upon a collab-
orative computation model as in|Gemp et al.| (2020). Unlike traditional distributed PCA approaches
that mimic centralized algorithms, our method innovates by allowing parallel computation of eigen-
vectors without strict sequential dependencies among the workers. This paradigm shift not only
addresses the inherent inefficiencies of previous methods but also enhances the scalability and con-
vergence speed. Herein, we delineate our primary contributions:

* Novel Algorithmic Framework: We propose a novel distributed PCA algorithm that fundamentally
changes the computational dynamics. Using the covariance matrix, our approach enables multiple
workers to perform eigenvector calculations in parallel. This method diverges from the traditional
sequential computation models, significantly reducing total computation time.

* Extension to Stochastic PCA: in cases where the covariance is unknown or cannot be efficiently
estimated, our algorithm can be easily modified to accommodate data that comes in mini-batches.

* Theoretical Advancements: We provide a robust theoretical framework that validates the con-
vergence properties of our proposed algorithm. By formalizing the interaction between parallel
computations and convergence rates, we establish a new theoretical benchmark for distributed
PCA algorithms. This contribution underscores our algorithm’s efficiency and enhances the un-
derstanding of parallel deflation processes in PCA.

* Empirical Validation: Through extensive experiments, we demonstrate the practical efficacy of
our algorithm. Our results show that our approach at least meets the performance of existing
baseline algorithms even on datasets as large as ImageNet|Deng et al.|(2009). These experiments
substantiate our theoretical claims and highlight the real-world applicability of our method.

These contributions mark a significant step forward in distributed computing for PCA, providing
theoretical insights and practical tools for data analysis applications.

1.1 RELATED WORKS

Centralized approaches. Principal Component Analysis (PCA) has been a cornerstone of statistical
data analysis since 1901 [Pearson| (1901). Hotelling later expanded on Pearson’s work, formalizing
PCA within a multivariate analysis framework |[Hotelling| (1933). Classical PCA typically involves
the eigendecomposition of the data covariance matrix Jolliffe| (2002).

With the advent of large datasets, iterative and gradient-based methods for PCA have gained promi-
nence. These methods are particularly advantageous for large-scale data, where traditional eigende-
composition becomes computationally impractical. Krasulina and Oja & Karhunen proposed two of
the earliest stochastic gradient descent methods for online PCA |Krasulinal (1969); |Oja & Karhunen
(1985)). The application of the least square minimization to the PCA has also received attention
Miao & Hual (1998)); |Yang| (1995)); Bannour & Azimi-Sadjadi (1995); |Kung et al.|(1994). More re-
cently, |Arora et al.[|(2012) and [Shamir| (2015) have proposed efficient stochastic optimization meth-

'In fact, asynchrony has been a topic of debate in distributed neural network training, where asynchronous
training often inherently suffers from lower accuracy compared to synchronized analogs, resulting in the dom-
inance of synchronized methods in neural network training|Campos et al.|(2017);/Chen et al.|(2017).

2We note here that even in this case, theory in Gemp et al. (2020) does not characterize how approximate
estimates in eigencomponents higher in the “hierarchy” affect calculations in subsequent estimates.

Under review as a conference paper at ICLR 2025

ods that adapt to the streaming model of data (stochastic) and focused on the theoretical guarantees
of gradient-based methods in such non-convex scenarios; see also Boutsidis et al.| (2014); |Garber,
et al.| (2015); Shamir| (2016); Kim & Klabjan| (2020). Other approaches include manifold methods
Demidovich et al.|(2024)); |Chen et al.| (2024); Wang et al.| (2023b)); |Absil et al.[(2008)), Frank-Wolfe
methods |Beznosikov et al.| (2023), Gauss-Newton methods [Zhou et al.| (2023)), coordinate descent
methods|Lei et al.|(2016), accelerated methods [Xu et al.|(2018)), as well as variants of the PCA prob-
lem itself Journée et al.| (2010); [Yuan & Zhang| (2013); [Han & Liu|(2014); Kim & Klabjan|(2019);
Kim et al.| (2019). Nevertheless, these methods are primarily designed as centralized algorithms.

Distributed approaches. The line of work in [Kannan et al.| (2014); [Liang et al.[(2014); Boutsidis
et al.|(2016); [Fan et al.|(2019) utilizes randomized linear algebra and singular value decompositions
of randomized projections of data in a distributed setting, leading to favorable theoretical results. For
the case of distributed multiple eigenvector/subspace computation, |Li et al.|(2021) consider the dis-
tributed truncated singular value decomposition (SVD) problem and rely on FedAvg ideas McMahan
et al.[(2017) with local iterations. There, each worker utilizes an Orthogonal Procrustes Transfor-
mation |Schonemann| (1966); [Cape| (2020) to estimate the multiple subspace problem. However, this
line of work assumes that the covariance matrix is known or can be efficiently estimated.

For distributed leading principal component computation, |Garber et al.|(2017) consider the stochas-
tic setting and replace the Power Iteration scheme with convex optimization motions for better effi-
ciency. [Huang & Pan|(2020) proposes a round-efficient solution by leveraging the connection to Rie-
mannian optimization; similarly, see |Alimisis et al.[(2021). Recently, [Wang et al.| (2023b)) proposed
a Riemannian gradient-type method that admits low per-iteration computational and communication
costs and can be readily implemented in an asynchronous setting. Beyond the classical distributed
setting, there are works on the Byzantine and adversarial scenario |(Charisopoulos & Damle|(2022);
Zari et al|(2022)), the streaming case |Allen-Zhu & Li| (2017); [Yu et al.| (2017), shift-and-invert pre-
conditioning approaches |Garber et al.|(2016), and coreset-based approaches Feldman et al.| (2020).

The papers above consider the data-parallel setting, where the data is distributed across machines,
and each worker solve for all the principal components with its local data. DeepMind’s EigenGame
Gemp et al.| (2020) introduced a model-parallel approach, framing each principal component as a
player in a collaborative game. EigenGame optimizes the utility of each vector sequentially using
Riemannian gradient ascent, but is also extended to the distributed scenario, where players can
maximize their utility simultaneously, resulting in a model-parallel algorithm where solving each
principal component is distributed across machines. The paper provided a convergence proof for the
sequential process where vectors are optimized in a hierarchical order. However, for the distributed
version, they didn’t analyze how approximate steps affect overall convergence. A later improvement
Gemp et al.[(2022) was proposed, but also lacks theoretical guarantees for the distributed setting.

Our work complements existing literature both theoretically and practically. Unlike sequential ap-
proaches, our method does not require the completion of previous principal component computations
before proceeding to the next. Moreover, We provide a comprehensive convergence analysis, estab-
lishing a stronger theoretical foundation than EigenGame, while maintaining practical efficiency.

2 PROBLEM STATEMENT AND BACKGROUND

Let Y € R™*? be the matrix representing an aggregation of n properly scaled, centered data points,
each with d features. The empirical covariance matrix is given by £ = Y'Y € R?*4, Let u} and
Aj be the kth eigenvector and eigenvalue of X, with A} > --- > A’. Then uj is the kth principal
component of the data matrix Y. Therefore, when 3 can be easily computed, principal component
analysis aims at finding the top-K eigenvectors of the empirical covariance matrix 3, where K < d.

The leading eigenvector problem. Finding the leading eigenvector is the cornerstone of finding
multiple eigenvectors, and is thus utilized by many PCA algorithms. Mathematically, the problem
of finding the leading eigenvector uj can be formulated as the following optimization problem:
uj = argmax v' Xv. (1)
veR?[|v]|2=1
In practice, algorithms like power iteration and Hebb’s rule are used to solve the leading eigenvector.

Definition 1 (Power Iteration). The power iteration algorithm PowIter (X, v, T) outputs a vector
xr based on the following iterates: . .
Xer1 = 2xe; Xey1 = X1/ [[Keg |l -

Under review as a conference paper at ICLR 2025

Definition 2 (Hebb’s Rule). The Hebb’s Rule Hebb (X, v, T') with some fixed step size) outputs a
vector X based on the following iterates:

Xep1 = X 102Xy X1 = X1/ [[Xigaly -

Under mild assumptions, the output x7 of both the power iteration and Hebb’s rule converges to the
top eigenvector of the input matrix X, as the number of steps 1" — co. Notably, the power iteration
enjoys a linear convergence rate |Shamir| (2015)).

Top-K eigenvector using sequential deflation. An extension of (I]) is the top-K eigenvector prob-

lem, where one aims to find uj,...uj. Since uj,...,u} form an orthonormal set, finding the
top-K eigenvector can be mathematically formulated as:
U* =[ul,...,uk] € arg max (EV,V), (2)

Ve{Q. .x: QeSO(d)}

where SO(d) denotes the group of rotations about a fixed point in d-dimensional Euclidean space.
A classical way to solve is through : .
deflation Hoteﬂing (1933@ Deﬂati%n Algorithm I Parallel Deflation
operates in the following manner. Once Require: ¥ € R?*94; # of eigenvectors (workers) K;
the top component uj is approximated, sub-routine for top eigenvector PCA(-, -, -); # of iter-
the matrix X undergoes further process- ations 7'; global communication rounds L > K.
il’lg to reside in the subspace orthogonal Ensure: Approximate eigen\/ectors {Vk}é{:l'
to the one spanned by the first eigenvec- 1: fork =1,..., K do
tor. This process is iterated by finding 2 Randomly initialize V ;,;+ with unit norm;
the leading eigenvector as in (I)) on the 3. end for
deflated matrix, resulting in an approxi- 4: for/=1,...,L do
mation of the second component u3, and ;. parfork=1,... K do
6
7
8

so forth, as described below: if k£ < 7 then

=% vy, =Topl (Sh, i T); Receive vy ¢_1,. ~+7Vk—1,2—1 .
B T T : Apr g = Vi 01V g 1 25V 01V g q
Y1 =g — Vv Bpvevg, () k—1
9: 2k-72 =3 - Zk':l Ak",@
where Topl (X, Vg, T) abstractly de- 10: Vieo < Topl (Bke, Vie—1,T)
notes any iterative algorithm initialized 1. Broadcast vy, ¢
at vy and returns a normalized ap- 12 else 7
proximation of the top eigenvector of 3. Vit = VEinics
the deflated matrix X, after T itera- 14: end if
tions of execution. Consider the eigen- 5. end parfor

decomposition = 3¢, A*,uf,ui/. 16: end for .
When T' — oo and Topl (X, vg,T) 17: return {vy .}, _,
solves the top eigenvector of 3 exactly,
one can show that 33, = ZZ,: p Apurur and vy, = uj. However, when T is finite, it is shown in
Liao et al.| (2023) that each Topl (X, Vg, T) produces a non-negligible error that accumulates and
propagates through the deflation process.

Stochastic algorithm to find top-1 principal component. When the dataset becomes large, the
covariance matrix 3 may not be efficiently computed, making the previous routine of first computing
the covariance matrix and then its eigenvector infeasible. Alternatively, people estimate 3 with

3= YTY where Y is a mini-batch of the dataset. In this case, Hebb’s rule can be written as
~ ST~ ~ ~
X1 =%+ 1Y (Yxt> sXer1 = X1/ |1xdvly

Notice that the stochastic estimate of the covariance matrix 3 is never explicitly computed.

3 PARALLEL DEFLATION ALGORITHM

Here we introduce our algorithm that computes the top-K principal components in a distributed
environment. Our algorithm allows for parallel computation, significantly accelerating the process
by overcoming the inherent sequential dependencies of traditional deflation techniques.

Algorithm overview. In our framework, we assign the task of computing each of the K prin-
cipal components to K distinct workers. Each worker k is responsible for computing the kth

Under review as a conference paper at ICLR 2025

principal component. The crux of our method lies in the modification of the traditional defla-
tion process to suit a distributed setting. In a typical sequential deflation, the matrix required
for computing the kth eigenvector is derived only after obtaining the first k — 1 eigenvectors.
This sequential dependency restricts parallelism. Our approach introduces an innovative twist:
—Initial Estimation: Each worker k
Worker 1 Worker 2 Worker 3 begins by computing an inexact ver-
T %o S SR sion of the kth deflated matrix, using
preliminary estimates of the first k—1
eigenvectors produced by the corre-
sponding workers.

<
)
<
()

—Iterative Refinement: Concurrently,
workers refining the first k£ — 1 eigen-
vectors provide updated estimates to
worker k. This enables worker & to
refine the deflated matrix iteratively
and improve the accuracy of the kth
eigenvector estimation.

@ (@ (| oommm
G ¢ Q| o

V2 1 V3,1

<
<
<

| o

The main idea of introducing paral-
lelism into the computation scheme is
that worker k& does not wait for the
first k — 1 eigenvectors to be fully
solved before solving the kth eigen-
vector. The parallel deflation algo-
rithm is given in Algorithm[T]

<
)
)

The whole computation process is di-
vided into L communication rounds
(Line 4). In the /th communication
round, the kth worker will compute
an approximation of the kth princi-
pal component vy, ¢ by running their
) own sub-routine in parallel, follow-
ing the rule that the kth worker only
deflates its matrix and start comput-
ing the kth principal component af-
Figure 1: Ilustration of the parallel deflation algorithm. ter the first £ — 1 workers have com-
puted some rough estimation of the
first k — 1 principal components (Lines 7-10). Therefore, in the /th communication round, there can
be two scenarios for worker k: i) if ¢ < k, this means that not all of the first k¥ — 1 workers have
computed some approximation of their own principal component. Therefore, worker £ does not
deflate the matrix and output vi, ¢ = ¥ ini¢; 94) If € > k, then the first £ — 1 workers have at least
computed one approximation of their own principal component. In this case, worker k£ deflates the
matrix using the most updated vectors vy ¢—1,...Vvi—1¢—1 (Line 7), compute its approximation of
the kth principal component by calling the Top1 (-) on the deflated matrix starting from its output
in the previous communication round (Line 10), and then broadcast the current approximation to
the other workers for the next communication round (Line 11). An illustration of the algorithm is
given in Figure[T]

Extension to Stochastic PCA. The algorithm described above can be applied to the case where
the covariance matrix is either known or can be efficiently estimated. However, in many machine
learning scenarios, the covariance matrix may not be direcly accessible. For instance, when data
drawn from an underlying distribution comes in a streaming fashion |Allen-Zhu & Li| (2017), the
traditional approach of first estimating the covariance matrix and then solves for its eigenvector is
no longer efficient. Moreover, for large datasets that contains hundreds of thousands of features, it is
impossible to compute or even store the covariance matrix Gemp et al.| (2022 [2020). In these cases,
our algorithm can be adapted to estimate the principal components in a stochastic fashion.

Let Y denote the mini-batch that the algorithm receives in the tth iteration. Starting from Line 8,
whose major computation burden is on v}, , XV ¢_1, we notice that the covariance matrix is

Under review as a conference paper at ICLR 2025

estimated as ¥ ~ 3 = Y Y. In this case, we have:
T : T T Y 2
Vk',eqzvk’,éfl = Vk',eqY Yvir 1= HYVk:’,Zlez-
Therefore, each Ay, in Algorithmcan be written as Ay ;= || Y Vg o—1/|3Vir o—1v), ,_ ;. Thus,

Line 9 becomes: k—1
s T O 2 T
She R B =YY = > [Yvi e l3Vae1vib oo

k=1
This new form of 3J;, , allows an efficient estimation of the matrix-vector product 3, (X, as in:
k—1
3 Y 2 T 3 T
/\k" = ||YVk/||2; Vk‘/ € [k‘ - 1]; Ek,gx =Y YXt - Z /\k’ (Vk/7é_1xt) Vi e—1- (4)
k=1

In the current form of Algorithm |1} the computation of Lines 8-9 takes O (K d2) time. Moreover,
calling the Topl function in Lines 10, any matrix-vector multiplication 3, ,x will take O (d2)
time. Notice that in , the complexity of computing each Yvy is O (nd). Thus computing 5%/
takes O (nd). In total,(4) has a complexity of O (Knd). In , computing the first term Y T Yx
involves computing first y; = Y'x,, which takes O (nd), and then Y Ty,, which also takes O (nd).
Thus, computing the first term Y TYx, takes O (nd) in total. For the second term, each summand
takes O(d) to compute, giving the complexity of computing the second term as O (kd). Therefore,
each iteration of @) takes O ((n + k)d). This implies a saving in the computation cost, since in this
case, n is the batch size and can be much smaller than d. The complete algorithm in the stochastic
setting is given in Algorithm 2]in the Appendix.

Connection with EigenGame. The EigenGame Gemp et al.| (2020) considers the problem of solv-
ing the top-K eigenvectors of a matrix as a game between K players, with the kth player solving vy,
by maximizing its utility: vj = arg maxy.v|,=1 U (v |vi,...VE_1), where:
k—1 T 2
_ Ve, 2V
e (v tvtf) =vimv - 30 D)

k'=1

&)

Vg, Evk/ '

Similarly, the deflation algorithm in (2)) also bears a game formulation, where the utility of the kth
player is given by:

k—1 k—1
2
Vi (v | {vk/}']z;ll) =v' (E - Z Vk/v,I/Evk/v,j) v=v v - Z Vi SV (v,j/v) . (6)
k=1 k=1
It should be noted that both the EigenGame utility {/;, and the deflation utility V), depend on only
the policy of the first k — 1 players. Moreover, when the first k — 1 players recovers the top-(k — 1)
eigenvectors exactly, we shall have:

k-1
_ 2 _
Vi (v | {u}, ﬁ,:ﬂ) =v Zv— E Ay (viug) =U (V | {uj]Z/:ll) .
k'=1

To this end, we can also show that the set of true eigenvectors {u}}/ is the unique strict Nash
Equilibrium defined by the utilities in (6). The proof of Theorem[I]is deferred to Appendix [A]

Theorem 1. Assume that the covariance matrix X has positive and strictly decreasing eigenvalues
AT > > X > 0. Then, {u;}i(:l is the unique strict Nash Equilibrium defined by the utilities in
(6) up to sign perturbation, i.e., replacing uj, with —uy.

4 CONVERGENCE GUARANTEE FOR PARALLEL DEFLATION ALGORITHM

We provide a convergence guarantee for the parallel deflation algorithm in Algorithm[I] The pivot of
the convergence analysis will be to track the dynamics of {2 ¢}, and {vy ¢}/, as £ increases.
The dynamics of the two sequences from Algorithm [I]can be compactly represented as:
k—1
Yhe=%— Z Vk/,e—1V;I/,g_1Evk/,e—1V;I/7g_1; Ve = Topl (B, Vie—1); VL>k.
k=1

Here, we embed the number of solver steps T in the property of the abstract local solver Top1(-).
Indeed, if Top1(-) returns the exact top eigenvector of the input matrix every time it is called, then

Under review as a conference paper at ICLR 2025

we can easily see that v, , = uj for all £ > k. When Topl(-) returns an inexact estimate of the
input matrix sequentially, i.e., worker k& waits until the top-(k — 1) worker no longer improves the
estimation of the top-(k — 1) eigenvectors, the error is analyzed by Liao et al.| (2023).

Our scenario is further complicated by the continuous improvement of the eigenvector estimates
used to deflate the matrix: in each communication round, the Top1(-) function, called by worker &,
will start at the estimate of the top eigenvector of the deflated matrix in the previous round but will
be fitted to the top eigenvector of the deflated matrix in the current round. Our convergence analysis
tackles this complicated dynamic by utilizing the following abstraction of the Top1(-) sub-routine.

Assumption 1. Let 3 € R4 pe q real symmetric matrix. Let * be its eigenvalue with the largest
absolute value, and let u* be the corresponding eigenvector of *. We assume that there exists a

real value F (ﬁ]) € (0, 1) that depends on S such that for any xo € R?, Topl(:) satisfies:
HTopl (2,){0) —u* , <F (ﬁ)) |xo — u*|,.

Assumption can be easily guaranteed. as long as the Top1(-) algorithm enjoys a non-asymptotic
convergence to the top eigenvector; see the Related Works section above. With Assumption (1} the
convergence of Algorithm[I]is given by the following theorem.

Theorem 2. Assume that Assumption|l|holds, and let F}, = maxy>j, F (ihg) Let W_1 () be the
Pl and define for a > 0:

Lambert-W function in the —1 branch

- ~W_i(~a) ifac(0,e!
1974 (a) — 1 () f (il)
1 ifa€le !, 00)
Let {mk}szo be a sequence of numbers denoting the convergence rates of recovering the K eigen-
vectors, where my = max {fk, % + %mk_l} and mg = 1 as a dummy starting point. Let

{sk}}_, be a sequence of integers denoting the starting communication round where the K eigen-
vectors’ error recovery enters the linear convergence phase, respectively. To be more specific, let
s1=1andforallk € [K — 1] and k' € [k]:

o A1 =Mk 2
- W (mylogY/mi) kmy +1 N w (kﬁlk,\;’jﬂ (log */my)) N o
5 ma S
k1 = hax logl/m, 7 1—my log 1/m,. F
Then, we have that the following holds for all k € [K]|
IVee = uilly, <6(£— s +2)m T VE> s, — 1. (8)

In words, Theorem [2| says that starting from the sith communication round, the recovery error of
the kth eigenvector converges according to a nearly-linear convergence rate given in (8). However,
the convergence starting point sy, for the kth eigenvector must be later than the convergence starting
point for the 1, ...,k — 1th eigenvector for a number of communication rounds. This delay in the
convergence starting point is characterized in (7). Intuitively, the starting point s, denotes the index
of the communication round where the top-(k — 1) eigenvectors have been estimated accurately
enough for the kth worker to make positive progress.

Remark 1. By the definition that mj; = max {fk, % + mk,l}, one could see that my < 1
since Fj, < 1 for all k& € [K]. The convergence rate in (8) involves the product of a linear term
¢ — s, + 2 and an exponential term mi_s"*l. When ¢ is large enough, mi_s’“ﬂ decays at a much

faster speed than the increase of £ — s; + 2, thus giving a nearly-linear convergence rate.
Remark 2. Upper bound on the separation between the s;’s. By using the inequality that
W_1(e 1) > —1 — v/2u — u|Chatzigeorgiou| (2013), we could obtain that W (a) < log/a +

v/2(log '/a — 1)+1 when a € (0, e~ 1). Therefore, we can conclude that W = O(max{1,log !/a}).
Notice that (/) requires that s 1, the starting point of the linear convergence for the error of v 1 ¢,

must be later than sy, . .., s for some steps. Using the bound of W(a), one could simplify (7) to:

-1
1 kA: k 1
Sk+1 = Sk + O | max log — 1+log — k " , Mk + .
my bl — Migo 1 —my

3The Lambert-W function in the —1-branch is defined as the inverse of the function f(z) = ze” when
z € (—o0,—1).

Under review as a conference paper at ICLR 2025

14
1.2
1.0

14
12
1.0

508 508
=) =)
= 0.6 i 0.6
0.4 0.4
0.2 0.2
0.0 0.0
0 50 100 150 200 250 300 0 50 100 150 200 250 0 50 100 150 200 250 300
Tx{ Txt Tx{
P-Deflation, T = 1 —— P-Deflation, T = 5 P-Deflation, T =1 —— P-Deflation, T = 5 P-Deflation, T = 1 —— P-Deflation, T = 5
EigGame-a, T = 1 EigGame-a, T =5 EigGame-a, T = 1 EigGame-a, T = 5 EigGame-a, T = 1 FigGame-x, T =5
—— EigGame-, T =1 EigGame-y, T = 5 EigGame-yi, T = 1 EigGame-yi, T =5 —— EigGame-, T =1 EigGame-j, T = 5
(a) (b) (©)

Figure 2: Comparison of the convergence behavior of parallel deflation, EigenGame-«, and
EigenGame-;: in deterministic setting on (a). synthetic dataset with power-law decaying eigen-
values, (b). synthetic dataset with exponentially decaying eigenvalues, and (c). MNIST dataset.

This simplification implies that a smaller m; would cause a smaller decay between sj and sj1.
Since my, depends on Fj, a smaller my, can be achieved by doing more local steps in the call to
Topl(-). However, since the decay between s, and sy 1 is measured in terms of the communication
rounds, doing more local steps also increases the computation time per round in the delayed periods.

Sketch of Proof. The key challenge in proving Theorem [2] lies in handling the dynamic, asyn-
chronous nature of our algorithm. Unlike sequential deflation, where each principal component is
computed after the previous ones have converged and stays fixed, our method deals with simulta-
neous updates of all principal components. This requires careful analysis of how errors propagate
and accumulate across different workers. To start, we derive upper bounds of the per-iteration dif-
ference between the actual deflated matrix 3 and the ideal deflated matrix X7 and the difference
between the estimated eigenvector vy, ¢ and the ground-truth eigenvector uj,. Notice that these two
upper bounds are inter-dependent. We apply Davis-Kahan Sin® Theorem Davis & Kahan|(1970) to
derive the bound between the matrices’ top-eigenvectors based on the matrix differences. Next, we
carefully choose a convergence starting point s; for each eigenvector. Construct two simpler two-
dimensional sequences {By, ¢} and {Gj ¢} starting from s;’s that upper bound these differences.
Lastly, we unroll the bounds on {By, ¢} and {G}, ¢} to arrive at a closed form upper bound on error
of the estimated eigenvector vy, ¢. The detailed proof is deferred to Appendix [B}

5 EXPERIMENTS

In this section, we experimentally verify the performance of the parallel deflation algorithm.

Baseline algorithms. We compared the parallel deflation algorithm with power iteration as the
Top1l subroutine with the distributed version of EigenGame-a |Gemp et al.|(2020) and EigenGame-
1 Gemp et al.| (2022). It should be noticed that EigenGame-a was proposed as a sequential princi-
pal component recovery algorithm and can be adapted as a distributed algorithm. Moreover, both
EigenGame-« and EigenGame-p are restricted to the case of one iteration of update per communica-
tion round. We modified their algorithm to generalize to multiple iterations of update in Algorithm]3]
and Algorithm [in Appendix [D] As in the implementation of |(Gemp et al.| (2020) ad |Gemp et al.
(2022), we do not project the utility gradient to the unit sphere.

Evaluation Metric. We evaluate the performance of the three algorithms by computing how close
the recovered principal component is to the true eigenvector of the covariance matrix. In particular,
notice that if a vector uy is the kth principal component (equivalently kth eigenvector of the covari-
ance matrix), then —uj is also the kth principal component. Therefore, for the set of true principal
components {u}}% | and a set of recovered principal component {v;}X_ |, we use the following
metric to compute the approximation error 1

2

K

* 1 : *

£({whs. nhis) = | ¢ ng{lgll} [ug — s vkl)
k=1

Deterministic Experiments. For synthetic experiments, we choose the number of features d =

1000, which gives the covariance matrices 3 € R1000x1000 We consider 3 generated with two

different eigenvalue spectra: i) a power-law decaying spectrum A} = ﬁ, and 4¢) an exponential

Under review as a conference paper at ICLR 2025

decaying spectrum A} = + 1k We choose the number of local updates in each communication round
TtobeT € {1,5}. We ran parallel deflation, EigenGame-c, and EigenGame-1 to recover the top-

30 eigenvectors (K = 30). For each setting, we run 10 trials with different random initialization.

Flgurempresents the convergence behavior of the three algorithms with T" € {1, 5} on the synthetic
matrix with A} = ﬁ Both EigenGame-1 and parallel deflation demonstrate stable convergence to a

low error value under the case of 7' = 1 and T" = 5, with parallel deflation converging slightly slower
than EigenGame-p in the first 200 total steps, and then arriving at a lower error than EigenGame-
1 in the last 100 total steps. On the other hand, EigenGame-a shows unstable convergence that
appears to be significantly slower than ElgenGame (e and parallel deflation. Figure 2b|presents the
result on the synthetic matrix with A} = - 1k In general, the convergence behavior is similar to
Figure [2a] with parallel deflation and EigenGame-1 exhibiting a fast and stable convergence, and
EigenGame-« being slower. In both Figure 2a) and Figure [2b] the setting of 7" = 1 shows a faster
convergence than 7' = 5. This is because 7' = 1 allows more communication in a fixed number of
total steps 1" x L, which keeps the deflated matrices of each local worker to be better updated.

We also use the real-world dataset of MNIST, which contains n = 60000 hand-written digits, to
compute the covariance. In particular, each 28 x 28 image is first divided by 255 for numerical sta-
bility and then flattened into a vector y; of d = 784 features. Similar to the synthetic experiments,
we also choose T € {1, 5} and aim at recovering the top-30 eigenvectors. The result on the MNIST
dataset is presented in Figure Similar convergence behavior of the three algorithms, where par-
allel deflation and EigenGame-yu demonstrate similar convergence speed, and EigenGame-« con-
verges much slower. Noticeably, for EigenGame-a, we could observe that the case 7' = 1 converges
even slower than the case 7' = 5. We hypothesize that this is because one local iteration is not
sufficient for the top eigenvector solvers to provide an accurate enough estimate for the following
solvers to make positive progress.

Stochastic Setting. In the stochastic experiments, we first test the algorithm’s performance on a
synthetic Gaussian distribution. We generate a covariance matrix 3 with power-law decaying spec-
trum as in the deterministic experiments. However, instead of directly passing it to the PCA solver,
we sample LI.D. samples from N (0, 3) and pass the sampled data batches to parallel deflation and
EigenGame in a streaming fashion. We use a decaying step size for all three algorithms, and the
result is given in Figure [3a} In this setting, parallel deflation shows a slightly worse performance
than the two EigenGame algorithms. We hypothesis that this is because parallel deflation is more
sensitive to the step size tuning in the stochastic case.

In Figure[3b] we plot the performance of parallel deflation and EigenGame in the stochastic setting
of the MNIST dataset. That is, batches of the MNIST training set is sampled in each iteration
and passed to the algorithms. We observe that parallel deflation achieves a similar performance to
EigenGame-p, with a slightly faster convergence speed in the early phase of the algorithm.

In addition, we also test the performance of parallel deflation on the ImageNet dataset Deng et al.
(2009) that contains 1.2M images. In particular, each 224 x 224 image is flattened into a vector of
dimension 50176. The large scale of the dataset makes it impossible to even compute or store the
covariance matrix on a single device. We use both parallel deflation and EigenGame-u to compute
the top-10 eigenvector of the dataset. It should be noted that since no “ground-truth” principal
component is know, we can no longer use the metric in @I) Instead, we notice that, since finding
the kth eigenvector can be seen as maximizing v' Xv glven that v is orthogonal to all previous
eigenvectors, we can use an aggregation of the terms v, | ¥v, as a metric to evaluate the quanlity
of the solved principal components. To follow the internal hierarchy of the eigenvectors that the
leading eigenvectors are free to explore more space and thus are expected to attain a larger v T Xv,
we penalize terms with larger index with a discounting factor. This result in the following metrix

2

M) = 3 el = 1303 (10

Notice that a larger value of M (-) implies a better quality of the recovered eigenvectors. In practice,

_T 2
we compute this metric by using a batched aggregation of the terms (y+k) over all i € [n]. We
plot the result in Figure [3c| and we could observe that in this large scale dataset, our algorithm can
keep up with the performance of the state-of-the-art algorithm EigenGame- .

Under review as a conference paper at ICLR 2025

14

12 100

i
1.0 80 7
508 /
0.6 g o0 /
QU /
0.4 S 40 /
- 02 20
0.0
0 100 200 300 400 500 600 0 200 400 600 800 1000 1200 0
Txt Txt 0 20 30 40 50 60 70 80
P-Deflation, T =1 —— P-Deflation, T =5 P-Deflation, T =1 —— P-Deflation, T =5 ¢
EigGame-a, T = 1 EigGame-a, T = 5 EigGame-a, T = 1 EigGame-a, T = 5 EigenGame-;, T=10 —y— P-Deflation, T=10
EigGame-y, T = 1 EigGame-;, T =5 EigGame-ji, T = 1 EigGame-, T =5
(@) (b) (©

Figure 3: Comparison of the convergence behavior of parallel deflation, EigenGame-«, and
EigenGame- 1 in stochastic setting on (a). synthetic dataset with power-law decaying eigenvalues,
(b). MNIST dataset, and (c) ImageNet dataset.

14 14 o

1.2 1.2 T=3

1.0 1.0 T=5
508 5 0.8
£ I
& 0.6 & 0.6

0.4 0.4

0.2 0.2

0.0 0.0

0 200 400 600 800 1000 1200 0 25 50 75 100 125 150 175 200
Txt
(@ (b)

Figure 4: Ablation study of the parallel deflation algorithm. (a) shows the benefit of the run-time by
increasing the parallelism. (b) shows the benefit of decreasing the communication cost by increasing
the number of local iterations.

Ablation studies. We conducted additional ablation studies for the parallel deflation algorithms,
with the results presented in Figure[d In Figure fal we conduct additional experiments comparing
how different choices of the number of local updates 7' contribute to the convergence speed. In
particular, since in each communication round, the local updates of all workers are done in parallel,
T x ¢ would represent the total time elapsed under the ideal scenario of no communication cost. We
could see from Figure [da] that a smaller 7" results in a faster convergence speed. Remarkably, since
we choose T'x L = 1200 and aim at recovering 30 eigenvectors, the case where 1" = 40 corresponds
to L = 30, demonstrating the convergence behavior of the sequential deflation algorithm. Figure @a]
thus supports that introducing additional parallelism into the deflation algorithm indeed speeds up
the computation process. On the other hand, Figure db|considers the case where the communication
cost is the major burden. In this case, we can run the parallel deflation algorithm with a larger
number of local updates, hoping to make more progress within one communication round. Indeed,
Figure [Ab] shows that a large number of local updates result in a faster convergence within a fixed
number of communication rounds on larger datasets.

6 CONCLUSION

In this paper, we present a novel algorithmic framework for computing the principal components in
a distributed fashion. Based on the classical deflation method to solve for the top-K eigenvectors of
a matrix, our algorithm distributes the workload of computing each eigenvector to a single worker.
We introduce additional parallelism by early-starting the computation of the following eigenvectors
based on the initial rough estimation of leading principal components and continuously refining the
local deflated matrix based on updated estimated principal components. We show that our algo-
rithmic framework has a similar game-theoretic formulation as the EigenGame, while enjoying a
nice convergence guarantee even in the distributed case. Moreover, through experiments, we show
that our algorithm converges at a comparable speed to the EigenGame-p, and is faster than the
EigenGame-«. Future work can focus on empirically examining the potential of using other Top1
subroutines in our parallel deflation algorithm, such as Oja’s rule.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Julien Abadji, Pedro Ortiz Suarez, Laurent Romary, and Benoit Sagot. Towards a cleaner document-
oriented multilingual crawled corpus. arXiv preprint arXiv:2201.06642, 2022.

P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix manifolds.
Princeton University Press, 2008.

Foivos Alimisis, Peter Davies, Bart Vandereycken, and Dan Alistarh. Distributed principal compo-
nent analysis with limited communication. Advances in Neural Information Processing Systems,
34:2823-2834, 2021.

Zeyuan Allen-Zhu and Yuanzhi Li. First efficient convergence for streaming k-PCA: a global, gap-
free, and near-optimal rate. In 2017 IEEE 58th Annual Symposium on Foundations of Computer
Science (FOCS), pp. 487-492. IEEE, 2017.

Pradeep Ambati, David Irwin, Prashant Shenoy, Lixin Gao, Ahmed Ali-Eldin, and Jeannie Albrecht.
Understanding synchronization costs for distributed ml on transient cloud resources, 06 2019.
URL https://lass.cs.umass.edu/papers/pdf/ic2el9.pdf.

Apache Software Foundation. Hadoop. URL https://hadoop.apache.orq.

Raman Arora, Andrew Cotter, Karen Livescu, and Nathan Srebro. Stochastic optimization for PCA
and PLS. In 2012 50th annual allerton conference on communication, control, and computing
(allerton), pp. 861-868. IEEE, 2012.

Sami Bannour and Mahmood R Azimi-Sadjadi. Principal component extraction using recursive least
squares learning. IEEE Transactions on Neural Networks, 6(2):457-469, 1995.

Aleksandr Beznosikov, David Dobre, and Gauthier Gidel. Sarah Frank-Wolfe: Methods for con-
strained optimization with best rates and practical features. arXiv preprint arXiv:2304.11737,
2023.

Christos Boutsidis, Dan Garber, Zohar Karnin, and Edo Liberty. Online principal components anal-
ysis. In Proceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete algorithms,
pp- 887-901. SIAM, 2014.

Christos Boutsidis, David P Woodruff, and Peilin Zhong. Optimal principal component analysis in
distributed and streaming models. In Proceedings of the forty-eighth annual ACM symposium on
Theory of Computing, pp. 236-249, 2016.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jax.

McMahan H Brendan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agiiera y Arcas.
Communication-efficient learning of deep networks from decentralized data, 2016. URL https:
//arxiv.orqg/abs/1602.056209.

Victor Campos, Francesc Sastre, Maurici Yagiies, Miriam Bellver, Xavier Gir6-i Nieto, and Jordi
Torres. Distributed training strategies for a computer vision deep learning algorithm on a dis-
tributed gpu cluster. Procedia Computer Science, 108:315-324, 2017. doi: 10.1016/j.procs.2017.
05.074.

Joshua Cape. Orthogonal Procrustes and norm-dependent optimality. The Electronic Journal of
Linear Algebra, 36:158-168, 2020.

Vasileios Charisopoulos and Anil Damle. Communication-efficient distributed eigenspace estima-

tion with arbitrary node failures. Advances in Neural Information Processing Systems, 35:18197—
18210, 2022.

11

https://lass.cs.umass.edu/papers/pdf/ic2e19.pdf
https://hadoop.apache.org
http://github.com/google/jax
http://github.com/google/jax
https://arxiv.org/abs/1602.05629
https://arxiv.org/abs/1602.05629

Under review as a conference paper at ICLR 2025

Ioannis Chatzigeorgiou. Bounds on the lambert function and their application to the outage analysis
of user cooperation. IEEE Communications Letters, 17(8):1505-1508, August 2013. ISSN 1089-
7798. doi: 10.1109/1comm.2013.070113.130972. URL http://dx.doi.org/10.1109/
LCOMM.2013.070113.130972.

Jianmin Chen, Xinghao Pan, Rajat Monga, Samy Bengio, and Rafal Jozefowicz. Revisiting dis-
tributed synchronous sgd, 03 2017. URL https://arxiv.org/abs/1604.00981l

Pengwen Chen, Chung-Kuan Cheng, and Chester Holtz. Sequential subspace methods on Stiefel
manifold optimization problems. arXiv preprint arXiv:2404.13301, 2024.

A. d’Aspremont, L. El Ghaoui, M.I. Jordan, and G.R.G. Lanckriet. A direct formulation for sparse
pca using semidefinite programming. SIAM review, 49(3):434-448, 2007.

Chandler Davis and W. M. Kahan. The rotation of eigenvectors by a perturbation. iii. SIAM Journal
on Numerical Analysis, 7(1):1-46, 1970. ISSN 00361429. URL http://www. jstor.org/
stable/2949580!

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Marc’aurelio
Ranzato, Andrew Senior, Paul Tucker, Ke Yang, et al. Large scale distributed deep networks.
Advances in neural information processing systems, 25, 2012.

Yury Demidovich, Grigory Malinovsky, and Peter Richtarik. Streamlining in the Riemannian
realm: Efficient riemannian optimization with loopless variance reduction. arXiv preprint
arXiv:2403.06677, 2024.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp- 248-255, 2009. doi: 10.1109/CVPR.2009.5206848.

Jianging Fan, Dong Wang, Kaizheng Wang, and Ziwei Zhu. Distributed estimation of principal
eigenspaces. Annals of statistics, 47(6):3009, 2019.

Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny data: Constant-
size coresets for k-means, PCA, and projective clustering. SIAM Journal on Computing, 49(3):
601-657, 2020.

Dan Garber, Elad Hazan, and Tengyu Ma. Online learning of eigenvectors. In International Con-
ference on Machine Learning, pp. 560-568. PMLR, 2015.

Dan Garber, Elad Hazan, Chi Jin, Cameron Musco, Praneeth Netrapalli, Aaron Sidford, et al. Faster
eigenvector computation via shift-and-invert preconditioning. In International Conference on
Machine Learning, pp. 2626-2634. PMLR, 2016.

Dan Garber, Ohad Shamir, and Nathan Srebro. Communication-efficient algorithms for distributed
stochastic principal component analysis. In International Conference on Machine Learning, pp.

1203-1212. PMLR, 2017.

Ian Gemp, Brian McWilliams, Claire Vernade, and Thore Graepel. Eigengame: Pca as a nash
equilibrium, 10 2020. URL https://arxiv.org/abs/2010.00554.

Ian Gemp, Brian McWilliams, Claire Vernade, and Thore Graepel. Eigengame unloaded: When
playing games is better than optimizing, 2022.

Fang Han and Han Liu. Scale-invariant sparse PCA on high-dimensional meta-elliptical data. Jour-
nal of the American Statistical Association, 109(505):275-287, 2014.

Harold Hotelling. Analysis of a complex of statistical variables into principal components. Journal
of educational psychology, 24(6):417, 1933.

Long-Kai Huang and Sinno Pan. Communication-efficient distributed PCA by Riemannian opti-
mization. In International Conference on Machine Learning, pp. 4465-4474. PMLR, 2020.

12

http://dx.doi.org/10.1109/LCOMM.2013.070113.130972
http://dx.doi.org/10.1109/LCOMM.2013.070113.130972
https://arxiv.org/abs/1604.00981
http://www.jstor.org/stable/2949580
http://www.jstor.org/stable/2949580
https://arxiv.org/abs/2010.00554

Under review as a conference paper at ICLR 2025

Dzmitry Huba, John Nguyen, Kshitiz Malik, Ruiyu Zhu, Mike Rabbat, Ashkan Yousefpour, Carole-
Jean Wu, Hongyuan Zhan, Pavel Ustinov, Harish Srinivas, et al. Papaya: Practical, private, and
scalable federated learning. Proceedings of Machine Learning and Systems, 4:814-832, 2022.

Ruoyi Jiang, Hongliang Fei, and Jun Huan. Anomaly localization for network data streams with
graph joint sparse pca. In Proceedings of the 17th ACM SIGKDD, pp. 886—894. ACM, 2011.

Ian T Jolliffe. Principal component analysis for special types of data. Springer, 2002.

Michel Journée, Yurii Nesterov, Peter Richtarik, and Rodolphe Sepulchre. Generalized power
method for sparse principal component analysis. Journal of Machine Learning Research, 11
(2), 2010.

Ravi Kannan, Santosh Vempala, and David Woodruff. Principal component analysis and higher
correlations for distributed data. In Conference on Learning Theory, pp. 1040-1057. PMLR,
2014.

Cheolmin Kim and Diego Klabjan. A simple and fast algorithm for ¢1-norm kernel PCA. IEEE
transactions on pattern analysis and machine intelligence, 42(8):1842-1855, 2019.

Cheolmin Kim and Diego Klabjan. Stochastic variance-reduced algorithms for PCA with arbitrary
mini-batch sizes. In International Conference on Artificial Intelligence and Statistics, pp. 4302—
4312. PMLR, 2020.

Cheolmin Kim, Youngseok Kim, and Diego Klabjan. Scale invariant power iteration. arXiv preprint
arXiv:1905.09882, 2019.

Sung Kim and Jenny Kang. Optional: Data parallelism — pytorch tutorials 2.3.0+cul21
documentation. URL https://pytorch.org/tutorials/beginner/blitz/data_
parallel_tutorial.htmll

TP Krasulina. The method of stochastic approximation for the determination of the least eigenvalue
of a symmetrical matrix. USSR Computational Mathematics and Mathematical Physics, 9(6):
189-195, 1969.

Sun-Yuan Kung, Konstantinos I Diamantaras, and Jin-Shiuh Taur. Adaptive principal component
extraction (APEX) and applications. IEEE transactions on signal processing, 42(5):1202-1217,
1994.

Qi Lei, Kai Zhong, and Inderjit S Dhillon. Coordinate-wise power method. Advances in Neural
Information Processing Systems, 29, 2016.

Xiang Li, Shusen Wang, Kun Chen, and Zhihua Zhang. Communication-efficient distributed SVD
via local power iterations. In International Conference on Machine Learning, pp. 6504—-6514.
PMLR, 2021.

Eric Liang, Richard Liaw, Philipp Moritz, Robert Nishihara, Roy Fox, Ken Goldberg, Joseph E.
Gonzalez, Michael 1. Jordan, and Ion Stoica. Rllib: Abstractions for distributed reinforcement
learning. arXiv:1712.09381 [cs],062018. URL https://arxiv.org/abs/1712.09381l

Yingyu Liang, Maria-Florina F Balcan, Vandana Kanchanapally, and David Woodruff. Improved
distributed principal component analysis. Advances in neural information processing systems,
27,2014.

Fangshuo Liao, Junhyung Lyle Kim, Cruz Barnum, and Anastasios Kyrillidis. On the error-
propagation of inexact deflation for principal component analysis, 2023.

Xu Liu, Yutong Xia, Yuxuan Liang, Junfeng Hu, Yiwei Wang, Lei Bai, Chao Huang, Zhenguang
Liu, Bryan Hooi, and Roger Zimmermann. Largest: A benchmark dataset for large-scale traffic
forecasting, 11 2023. URL https://openreview.net/forum?id=1o00w3oyhFW.

A Majumdar. Image compression by sparse pca coding in curvelet domain. Signal, image and video
processing, 3(1):27-34, 2009.

13

https://pytorch.org/tutorials/beginner/blitz/data_parallel_tutorial.html
https://pytorch.org/tutorials/beginner/blitz/data_parallel_tutorial.html
https://arxiv.org/abs/1712.09381
https://openreview.net/forum?id=loOw3oyhFW

Under review as a conference paper at ICLR 2025

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273-1282. PMLR, 2017.

Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkataraman, Davies Liu,
Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, et al. MLIib: Machine learning in apache
spark. Journal of Machine Learning Research, 17(34):1-7, 2016.

Yongfeng Miao and Yingbo Hua. Fast subspace tracking and neural network learning by a novel
information criterion. /IEEE Transactions on Signal Processing, 46(7):1967-1979, 1998.

Erkki Oja and Juha Karhunen. On stochastic approximation of the eigenvectors and eigenvalues of

the expectation of a random matrix. Journal of mathematical analysis and applications, 106(1):
69-84, 1985.

Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space. The London,
Edinburgh, and Dublin philosophical magazine and journal of science, 2(11):559-572, 1901.

Guilherme Penedo, Hynek Kydli¢ek, Leandro von Werra, and Thomas Wolf. FineWeb, 2024a. URL
https://huggingface.co/datasets/HuggingFaceFW/finewebl

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Hamza Alobeidli,
Alessandro Cappelli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The refined-
web dataset for falcon 1lm: Outperforming curated corpora with web data only. Advances in
Neural Information Processing Systems, 36, 2024b.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1-67, 2020.

Peter H Schonemann. A generalized solution of the orthogonal procrustes problem. Psychometrika,
31(1):1-10, 1966.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
open large-scale dataset for training next generation image-text models. Advances in Neural
Information Processing Systems, 35:25278-25294, 2022.

Ohad Shamir. A stochastic PCA and SVD algorithm with an exponential convergence rate. In
International conference on machine learning, pp. 144-152. PMLR, 2015.

Ohad Shamir. Fast stochastic algorithms for SVD and PCA: Convergence properties and convexity.
In International Conference on Machine Learning, pp. 248-256. PMLR, 2016.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Authur,
Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, Valentin Hofmann, Ananya Harsh
Jha, Sachin Kumar, Li Lucy, Xinxi Lyu, Nathan Lambert, [an Magnusson, Jacob Morrison, Niklas
Muennighoff, Aakanksha Naik, Crystal Nam, Matthew E. Peters, Abhilasha Ravichander, Kyle
Richardson, Zejiang Shen, Emma Strubell, Nishant Subramani, Oyvind Tafjord, Pete Walsh, Luke
Zettlemoyer, Noah A. Smith, Hannaneh Hajishirzi, 1z Beltagy, Dirk Groeneveld, Jesse Dodge,
and Kyle Lo. Dolma: an Open Corpus of Three Trillion Tokens for Language Model Pretraining
Research. arXiv preprint, 2024.

Dimitris Stripelis, Paul M. Thompson, and José Luis Ambite. Semi-synchronous federated learning
for energy-efficient training and accelerated convergence in cross-silo settings. ACM Transactions
on Intelligent Systems and Technology, 13:1-29, 10 2022. doi: 10.1145/3524885.

Miaoquan Tan, Wai-Xi Liu, Junming Luo, Haosen Chen, and Zhen-Zheng Guo. Adaptive syn-
chronous strategy for distributed machine learning. International Journal of Intelligent Systems,
37:11713-11741, 09 2022. doi: 10.1002/int.23060.

Sahil Tyagi and Martin Swany. Accelerating distributed ml training via selective synchronization,
102023. URL https://arxiv.org/abs/2307.07950.

14

https://huggingface.co/datasets/HuggingFaceFW/fineweb
https://arxiv.org/abs/2307.07950

Under review as a conference paper at ICLR 2025

Irene Wang, Prashant J. Nair, and Divya Mahajan. Fluid: Mitigating stragglers in federated learning
using invariant dropout, 09 2023a. URL https://arxiv.org/abs/2307.02623|

Xiaolu Wang, Yuchen Jiao, Hoi-To Wai, and Yuantao Gu. Incremental aggregated riemannian gra-
dient method for distributed pca. In International Conference on Artificial Intelligence and Statis-
tics, pp- 7492-7510. PMLR, 2023b.

Zhaoran Wang, Fang Han, and Han Liu. Sparse principal component analysis for high dimensional
multivariate time series. In Proceedings of the Sixteenth International Conference on Artificial
Intelligence and Statistics, pp. 48-56, 2013.

Zijie J. Wang, Evan Montoya, David Munechika, Haoyang Yang, Benjamin Hoover, and
Duen Horng Chau. DiffusionDB: A large-scale prompt gallery dataset for text-to-image genera-
tive models. arXiv:2210.14896 [cs],2022. URL https://arxiv.org/abs/2210.14896.

Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis. Chemomet-
rics and Intelligent Laboratory Systems, 2:37-52, 08 1987. doi: 10.1016/0169-7439(87)
80084-9. URL https://www.sciencedirect.com/science/article/abs/pii/
01697439878008409.

Peng Xu, Bryan He, Christopher De Sa, Ioannis Mitliagkas, and Chris Re. Accelerated stochastic
power iteration. In International Conference on Artificial Intelligence and Statistics, pp. S8—67.
PMLR, 2018.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. mT5: A massively multilingual pre-trained text-to-text transformer.
arXiv preprint arXiv:2010.11934, 2020.

Bin Yang. Projection approximation subspace tracking. IEEE Transactions on Signal processing,
43(1):95-107, 1995.

Wenjian Yu, Yu Gu, Jian Li, Shenghua Liu, and Yaohang Li. Single-pass PCA of large high-
dimensional data. arXiv preprint arXiv:1704.07669, 2017.

Xiao-Tong Yuan and Tong Zhang. Truncated power method for sparse eigenvalue problems. Journal
of Machine Learning Research, 14(4), 2013.

Oualid Zari, Javier Parra-Arnau, Ayse Unsal, Thorsten Strufe, and Melek Onen. Membership in-
ference attack against principal component analysis. In International Conference on Privacy in
Statistical Databases, pp. 269-282. Springer, 2022.

Yanguo Zeng, Meiting Xue, Peiran Xu, Yukun Shi, Kaisheng Zeng, Jilin Zhang, and Lupeng Yue. A
synchronous parallel method with parameters communication prediction for distributed machine
learning. LNICST, 563:385-403, 01 2024. doi: 10.1007/978-3-031-54531-3_21.

Xu Zhong, Jianbin Tang, and Antonio Jimeno Yepes. Publaynet: largest dataset ever for document
layout analysis, 08 2019. URL https://arxiv.org/abs/1908.07836

Siyun Zhou, Xin Liu, and Liwei Xu. Stochastic Gauss—Newton algorithms for online PCA. Journal
of Scientific Computing, 96(3):72, 2023.

Hui Zou, Trevor Hastie, and Robert Tibshirani. Sparse principal component analysis. Journal of
computational and graphical statistics, 15(2):265-286, 2006.

15

https://arxiv.org/abs/2307.02623
https://arxiv.org/abs/2210.14896
https://www.sciencedirect.com/science/article/abs/pii/0169743987800849
https://www.sciencedirect.com/science/article/abs/pii/0169743987800849
https://arxiv.org/abs/1908.07836

Under review as a conference paper at ICLR 2025

A MISSING PROOF FROM SECTION 3]

Proof of Theoreml(l] Let uj, ..., u} be the set of eigenvectors of 3, and AJ, ..., A} be the corre-
sponding eigenvalues, potentially with some A\ = 0. Recall that in the game formulation of the
deflation algorithm, the utility function of the kth player is given by

k—1
Vi (v | {vk/}i,_:ll) =v' Zv— Z Vi SV (v;,v)2
k'=1

and when vy = uj, for &’ € [k — 1], we have

k—1
Vi (v | {ug Z,_:ll) =v'Zv - Z A (v,j,v)2
k=1

It should be noted that 32 has the eigendecomposition X = ZZ/:1 Afug,ul . Therefore we can

. 2 .
rewrite v ' Xv as Zz/=1 A (VTu;,) . Thus, the utility becomes

k—1
d T 2
Vi (v | {uz,}k,zl) = Z Mo (viag)
K=k
. d . o d
Since uj,...,u} spans R and are mutually orthogonal, we can write v =) =1 Bju;. where
ijl 87 = 1. Then we have

k—1 d S
d * * *
Vk- (V | {uzl}k/:l) = Z)*/ Zﬁjuj—ruk/ = Z A /ﬁz/

k' =k j=1 k'=k
Since Ap’s are strictly decreasing and positive, we must have that the maximum of
Vi (v | {ug,}z,zl) is only attained when 37 = 1, which implies that v = £uj will be the only
optimal policies for player k.
The uniqueness can be shown by induction. To start, we notice that ; does not depend on the policy
of the other plays. Therefore, the only optimal policy for player 1 is v; = £uj. This shows the
base case. Now, assume that within the top-(k — 1) players, the optimal policies are v = Fuj, for
k' € [k — 1]. By the formulation of the utility functions, these optimal policies are not affected by
the policy of player k, ..., K. Moreover, it should be noted that the utility of player k only depends

on the top-(k — 1) players. Therefore, the optimal policy for player £ must be v, = +uj. This
finishes the inductive step and completes the proof. O

B MISSING PROOF FROM SECTION [4]

We first introduce a tool that we will utilize in the proof in this section.

Lemma 1 (sin © Theorem Davis & Kahan|(1970)). Let M* € R4*? and let M = M* + H. Let a
and a; be the top eigenvectors of M* and M, respectively. Then we have:

Hll,

sin / a* a <—=
fai,auf < min;. |o}; — o]

B.1 PROOF OF THEOREM[Z]
Define X7 = ZZ=1 Afuju, * as the “ground-truth” deflation matrix. Recall that the parallel defla-
tion algorithm executes

k—1

T T _
Yre=%X— E Vi b1V g 1 2VE 01V p—15 Vi = Topl (Bge, Vie—1) (11)
k=1

16

Under review as a conference paper at ICLR 2025

Let uy ¢ denote the top eigenvector of 3 . In particular, it suffices to show that the quantity
Ivi,e — u2||§ decreases as ¢ increases. Combining Assumption [l|and the definition that 7}, =
maxy>y F (3 ¢),we have that

1Vie = upelly < F l[Vie—1 — urell, (12)
We could upper bound [|v ¢—1 — ug ¢||, using

ly < MVie—1 =k e—1lly + luke — k-1,
< [lvike—1 =g e-ally + ke — i ll, + k-1 —uill,
Combining this upper bound with (I2) gives
IVie = whelly < Fr (Vi1 = wreotlly + [uge = willy + a1 —uill,) (13)
Moreover, the triangle inequality implies that

|Vi,e—1 — Up e

Vi = willy < [1Vie = wrelly + llage — v, (14)
Now, and give a pretty good characterization of the propagation of the errors. It remains
to characterize |[uy, — uj||, for each £, and then we can dive into solving the recurrence. A naive
bound would be that |[ug,, — uj|l, < 2, as [[ugell, = [[uf|, = 1. However, notice that uy ¢ is
the top eigenvector of 3, , and X7, respective. Thus, we can invoke the Davis-Kahan Theorem to
obtain a tighter bound. This property is given by Lemma[2] whose proof is deferred to Appendix[B.2]

Lemma 2. Assume that 1 = A} > X5 > If the following inequality holds for some co > 1

k—1
co— 1
D Nl = vireally < = (M = Akga) (15)
co
k=1
then we have that
4c il
0
ke —will, < o > X lup = vir el (16)
k k+1 pr—q

Now, we are going to use induction to proceed with the proof. Notice that, in order to control
|lag,e — ||, using Lemma one only need to control the recovery error of all previous eigenvec-
tors [[uy, — Vs ¢—1,. as given in . Thus, fix some &, we will assume the inductive hypothesis
that there exists some s such that for all £ > s, we can guarantee . For the case of &k = 1, this is
obvious, as the left-hand side of is 0. When k£ > 1 and we can gather the conditions as

Vi = urelly < Fre (Vi1 = wre—1lly + g — willy + [luge—1 — uill,)

Wi = vielly < [Vie — g elly + [uge — uill,

k—1
e~ utlly < o SN g~ vl V> sy
kT Ml
For simplicity, we let
Vi —Urelly =: Dre; [ure —willy =t Bres |[uf — viell, = G
Moreover, we let C, = X7 fiﬂzﬁ . Then the iterates are simplified to

Dyo < F (Dgyo—1+ B¢ + Bre—1)
Gre < Do+ By
k—1
Bio <Cy Z Mo Grr o1
k=1
where we set Gy ¢ = 0 for all £. Then G}, ¢ can be written as
-1
Grye < Fy *Dis+ Z Fi " (B + Brg—1) + Bryg
U=s
for any s € [¢]. Here, the first term can be made small as long as we choose a large enough £.
The third term is the unavoidable error propagation. The second term can cause G, ¢ to grow, and
needs a careful analysis. To understand the recurrence between G, ¢ and By, ¢, we use the following
lemma

17

Under review as a conference paper at ICLR 2025

Lemma 3. Ler 5y, be given for all k € [K] suchthar1 < §; < --- < 8k. Let s, € Z be given for all
k € [K] suchthat 1 = sq < s1 < -+ < sgi. Consider the sequence { By, ¢}72; and {Gre}72,,
Sor all k € [K] characterized by the following recurrence

k—1
By < Cy Z Mo G o1
k=1
-1 a7)
Gro <Fy "'Dig1+ Y Fi " (Bre + Bre-1) + Bry
E/:Sk—l
Let my, = max{Fy,Yk_1} for all k € [K] and mg = —1. Let {y}X_ | be given such that

vY_1 =7 = 0and v, = k%‘_l + ki-umk for all k € [K]. Define sequences {Bk,(}?’;gk and
{Gk7g}z°isk_1f0r all k € |[K] as
A {min {2, ml =% (0= 3+ 1) Bhék} if > 3,
kol = _ .))
Ck 22/:11)\zle/7§k_1 lffzsk

(18)
ék , = mi_sk-i_l(f — Sk + 2)Gk,sk—1 ifl > sy
' Dy sp—1+ Brsj,—1 + Brs,—2 ifl=s,—1
Suppose that 5i,11 > si, and sy, satisfies satisfies mZ’Sérz < s;rérl and sy, > llin;f;_ll + 8, +2.

Moreover, suppose that Ek7 s, < 2 forall k € [K). Then the following two conditions hold

I. Byy> By foralll > 3
2. Gk,g Z Gk,ngFallf 2 Sk — 1

The proof of Lemma 3]is deferred to Appendix Lemma [3]implies that under proper condition
of s; and §j, we have

Gre < Gry
< max{ Fy, 71} = s+ 1)Ghs 1
= max{Fp, yo_1 (0 — 55 + 1) (Dk,sk—l 4+ Bpo1 + Ek“qk_Q)
By definition, we have that Dy s, 1 = Vi ae—1 — Wk o, —1]l, < 2. Moreover, the definition in
gives that By, 5, 1 < 2and By s, 2 < 2. Therefore, we can conclude that
Gro < 6(0— s + 1) max{Fp,yp_1 o+

Now, we go back to the condition of sj and ;. The requirement of {sj }/*) and {8}/ | can be
gathered below

:sogslg...sKand1§§1§"'§§K

. ke .
841 > sy and sy > g = 4 8y 42

- sk7§k71

1.
2.

3omk 5 —2< —1
4 (0= 36+ 1) Y My Grrs 1 < 92 (M — Ay forall £ > 3

where the first three conditions are directly required by Lemma[3] and the fourth condition is required
because the upper bound on By, ¢ in (T7) hold only when

k-1

co—1
Z Mo (g = v e—afy < 2 (N = Xeg1)
] 400

from Lemma Notice that since Bk, s = Ck Z’,z,;ll AE,G‘ & s,—1. enforcing the fourth condition

directly implies that Bk, 5. < 2. Now, we are going to simplify these conditions. A useful tool will
be the following lemma, whose proof is provided in Appendix [B-4]

18

Under review as a conference paper at ICLR 2025

Lemma 4. Lerm € (0,1) and ¢ € R be given. Let g(x) = m®(x + 1), and let W_; (-) be the
Lambert-W function. Then

1. When € > —————, then any x > 0 satisfies g(x) < €

em log m’

2. Whene < W’ then any © > long— (emlogm) — 1 satisfies g(x) < €

Notice that #4 in the conditions above implies that || X, , — X7 ||, < <= ! (Ng— A% +1) and

k—1
Bis = Y MiGrgo1 <co—1
k=1
Choose ¢y = 3 then guarantees that By, 5, < 2. Now, we aim at simplifying Condition #4 above. To
start, we notice that the term m} 5 (¢ — §; + 1) achieves global maximum at /—3;, = m—
1 9
with value b%mlof [/™=1 " Therefore, it suffices to guarantee that
gl/my_, "k—1
k-1 . L1
R e
Z Mo Grr 5—1 < —logmgy -y, 2 i (N = Xet1)

k'=1

From Lemma we have that for £ > s, — 1, G ¢ < Gkﬂz, and
Gre= Z ST — 5 +2) Grosro1
with G k,sp,—1 < 6. Therefore, it suffices to guarantee that

1 —

, Togmp_q1 1
jg: Mo~ (8 = s +2) Gy < —logmpmy - my I 2 (N = M)

k=1
which would be satisfied if we have
AF— A% e ——
* Sp—spr+1 k k+1 log my, _
ey K (8K — sw +2) G s —1 < 776(k—) logmp_1-my_; """
Thus, §; must satisfy for all s
Sp—sur+1 (2) AZ B)‘2+1 1 W_l (19)
My, Sk — Sk + o o logmy_1 - my
k 36A% (k—1) k=1
With the help of Lemmafd] Condition #3 transfers to
1
sp > —————W_1 (mp_1logmy_1) + 38 +1
log my—1
Similarly, Condition #4 transfers to
1)\2 -)\z:—‘rl Tog 'rr}, -
5> B 1 . k—1 .1 , , —9
Sk = log e 1 (736)\2,@: D OgME—1 My, _q mp logmy) + Sk

which can be guaranteed as long as

> 1 W /\2 - >‘2+1 (1)2 ﬁ“ _|_ 2
562 fogme T Taekay, OBTE=1)T e

Gathering all requirements, we have

1 (k — 1)ymp_1 +1

S > max{ W_q (mg—1logmi_1), } + 8+ 1

logmy_1 1—mg_q

S > 1 W —M(lo me_1)?- mlogn{k Y s —2
k= logmk/ -t Sﬁk)\zl &1 k=1 F

Plugging 5 into the lower bound of sj;, shows that the condition in suffice to guarantee that
Lemma 3|holds. Thus, we can conclude that

Vi = uilly = Gre < 6(€— s +2)my "+
which finishes the proof.

19

Under review as a conference paper at ICLR 2025

B.2 PROOF OF LEMMA[2

Applying the Davis-Kahan Theorem, if we let Ay41¢ = Amax (3k.¢), then for all &, ¢ such that
125 — kel p < Af — Aiyq, we have

.
lug,e — uzll, < N rre
By definition, we have
: k—1
=3 - Z /\2,112,1127; Ehg =3 - Z (V,I,,@_li)vk@g_l) Vk/7é_lvljl7é_1
k=1 k=1

Thus, we can write the difference between the two matrices as

k—1 k—1
= Zhe= Y (M = Vi BViee) Vi v+ > Mo (Vi eV ey — ujug)

k=1 k=1

It is easy to see that for v o and v}, with unit norm,

||Vklyg_1V;—/7£_1 uz,uk/ |2 =2-2 <vk/75_1,u2,>2 S ||u2, — Vk/,Z—IHE

Moreover to bound ’/\Z, - v;’zililvk/,g_l , = Vi -1 — Uj,, and write

Vh v = (ufy —) S(uf, —8) =\ — 20,8 uf, + 8 26
Therefore, we have

k/ Vk’ — IEvk/ /. 1| = ‘—QAkzéTuk, + 6T25‘ S 2)*/ ||Vk/’g,1 - U_Z/HQ-F)\T ||Vk/7g,1 - u2,||§
This gives
k—1
12 = Siellp < 30 (37 Ik = vivmally + A% g — v)
k=1
We then need to assume that, for some ¢y > 1,
Z Mol = vl < 20 (A - M)
k=1 dco

In this scenario, we can conclude that |[u}, — vi/ ¢—1]|, < A;. Combined with the condition that
7 =1, we have

k—1
|25 — Bl < 4 Z Mo lagr = vier o1l < o ()* 1)
k./f
Moreover, we have
4 k—1
ag,e —ug|, < N i Z Mo gy = v e, < /* — Z Mo g = v el

k:-‘rl k=
where the last inequality follows from A} —Apy1,0 > Ni—Ap, — |2} — Ek,EHF > é (Ar = Ney1)
B.3 PROOF OF LEMMA[3]

To start, we will need to prove an auxiliary lemma

Lemma 5. Let the sequence {Bkl}t?isk,l-;-l be defined as
Bk,[= min {Q,mi:‘i" (f - §k + 1) Bk7§k}

with some By, s < 2and my_y € (0,1). Then for all s that satisfies m;_7 S < # and

s> M + 81, we have that

— 1—my
R 1 k-1 b=s
Broe<|=4+—msu_ By, s
k,£_<k+ 2 my 1> k

20

Under review as a conference paper at ICLR 2025

Proof. To start, by definition, we can write Bk’s as
Bk:,s = min {2, miii’“ (s—38+1) Eksk}
Since Bk,gk < 2, we have
mz 1 (s—sk—i—l)Bks,c <2m;_ ‘i (s—8+1)<
s—38y,

where the last inequality follows from the condition m;_7* <

< —L __ Therefore, we can write
s—Sp+1

Bk,s as
Bk g = mz 61]“ (S — ék =+ 1) Bk‘,ék
Recall that for any £ > s we have

Bk,(= min {Q,miiglk (E - §k + 1) Bk7§k}

Plugging in Bksk = (mz P (s— 8+ 1)) Bk,s we have

{—5.+1 4
B < s
k¢ mk 1 s—58,+1 ks
4
0 —5,+1 .
l—s k
Smk (H 3) Bk,s
0=s+1 k
<my* (s_Sk:i_l) Bi.s
S — Sk
_ 2 1 s
<mk S Sk:l- > Bk,s
S — Sk
1 k-1 \7°.
< (=4 —m By s
_<k+ . mk) ko,
kmy

where the last inequality is because s > T T 81, implies that

A kmy
s—4&,+1 Tl (k=1mp+1 1 k-1
LD TR T« . d - el
mp, PR < my 1,1%16 A k+ P
This completes the proof. O

We will use induction on & to prove the lemma.

Base Case: k£ = 1. In this case, by the definition of Bl,éu we have Blm = (0. Moreover, by
the definition of Bl,é for ¢ > s;, we have Bl,ﬁ = mg_é"' (—38+1) Bkgk = 0. Lastly, by the
definition of By ¢, we have By o = 0. Therefore, we must have that BLZ =0=DByforall{ > 3.
This shows Condition #1. Using Bl,l = 0 = By 4, we can derive that CAJM = Ff_sﬁlDl,sl,l, and

Gy = }"f*SlHDle_l. This implies that G , < éLg, and shows Condition #2. Thus, we have
shown that the case k = 1 holds.

Inductive Step. Now, we assume that for all k < k, the following holds

1. BMszeforall€>sk

2. G];ZZGE,ZfOI”aHfZSE—l

We wish to show that the above three conditions hold for k = k -+ 1. We start by showmg Condition
#lfork =k + 1. By Condition #2 in the inductive hypothesis, we have that G; e = G; ;.o for all

21

Under review as a conference paper at ICLR 2025

¢ > s, — 1. Since k41 > s, for all k < k, we have that G , > G, forall £ > &4y — 1.
Therefore, in the case of ¢/ = 5,1

k k
Bry1,e < Crqa Z Mo Grro—1 < Crpa Z Mo Grro—1 = By
k=1 k'=1
Next, we show that Bk+1,é > Bjyyiforall £ > 544, If Bk+1,f > 2, then we directly have
Brt1,6 > Bp4,e since By ¢ < 2. Otherwise, suppose B¢ < 2. Since 5341 > sy for all
k' < k, by the definition of G, ¢, we have

a s —Spr (A A
Girspor—1 =mp, 7 (Spqr — sir + 1) G s, -1
Based on the definition of Bk+17sk’ and since my, > my for all k > k, we have that

A 0—3p, R A
Bii1=m, Tl =8+ 1) Bk'+1,§k+1

k
£—35p ~ A
=my e (f — Sk4+1 + 1) Ok-l-l Z)‘Z’Gk/ﬁkﬂ—l
k'=1

k
§ : £—38p41 A A
Z Ck+1)\Z/mk, + (E — Sk+1 + 1) Gk’7§k+1—1
k'=1

k
L—s,.1 ~ A
> Ck+1 Z)\Z/mk/ Sk (6 — Spy1 T+ 1) (3k+1 — Sk + 1) Gk/,sk/—l
k'=1

k
f* ’ A
> O D My ™ (€= s +1) G g1
k'=1

k
= Cr1 E Mo G o1
k=1

where the third to the last inequality is due to ({ — 841 + 1)+ (Spr1 — S + 1) —1 =0 — 510 + 1,
and for all @ > 1,b > 1, we will have ab > a + b — 1. By the inductive hypothesis, we have that
G o> Gy g forall € > §,11 > sy — 1. Therefore, it must hold that

k

Bt 2> Cria Z AoGrre—1 > Biyiye
k=1

This proves Condition #1 for k = k + 1. Next, we will prove Condition #2 for k =k + 1. To start,
when ¢ = si1 — 1, we have

Gk+1,z = Dpi1,sp41-1+ Bk+1,sk+1—1 + Bk+17sk+1—2
while by (T7) we have
Gry1,e < Dig1,sp1-1 + Brgt,si—1
Since BIH_LS,CH_Q > 0 and Ek+1,5k+1_1 > Biy1,s,.,—1 as proved above for sp11 > 8pp1 — 2,
we must have that CAT‘;HM > G41,0 When £ = s;,1 — 1. Next, we show that CAJ;HL@ > Gy
when ¢ > s;1 — 1. To start,
-1
Gri10 < k;ik+1+1Dk+1,sk+171 + Z ffﬁl (Brt1,e0 + Brg1,00—1) + Brg1,e
U=sp41—1
¢
< fﬁ;ik“HDkH,skﬂq + Z fﬁ;f (Bi+1,00 + Brt1,0-1)
U=sp41—1
‘
<]:;f;ik+l+le+l,sk+1—1 + Z]:;fﬁ/ (Bk+1,€’ + Bk+1,é’—1)

Z’:Sk+1—1

22

Under review as a conference paper at ICLR 2025

By definition of Bk+1,é, invoking Lemmawith § = Sg4+1 — 2and s = sg41 — 1, we have that, as

. Sky1—8ky1—2 1 (k+1)my A .
long as sy satisfies m;; < S saoT and sp41 > S + Sk4+1 + 2, it holds that
5 l—sp41+2 A
Bri1o <, Bry1,s,1-2
> l—sp41+1 A
Bri1e < Bry1,s,1-1

for all > s;,. Therefore

¢
—spq1+l o0 (£ A
Gri1e < f}fﬂ T Digtspy—1 + Z Fri1 (Bk+1,€' + Bk+1,€’—1>

Z’:Sk+1 -1

£
—Sk+1+1 0—0 U—spi1+1l (A 5
= Fo " D Y F (Bk+1,Sk+1—1 + Bk-+1,sk+1—2>
O=spy1—1

| 3 3

< max{Fpq1, 6} (Dk+1,8k+1—1 + (€= sp1+1) (Bk+175k+1—1 + Bk+1,5k+1_2)>
L—sy 1 ® .

< max{]:kJrlka} skt (E — Sk4+1 + 1) (Dk+173k+1*1 + Bk+1,8k+1*1 + Bk+1,5k+172)

= Gy,
where in the last equality we use my11 = max{Fy11,7x} and
Grit,s01-1 = Diy1,sp01—1+ Brat,sp—1 + Bryt,s, -2
This proves Condition #2 under ¢ > si1 — 1, which finishes the induction step and completes the

proof.

B.4 PROOF OF LEMMA[]

m
elogm*

First, we prove the case € > — Notice that the function g(z) achieves global maximum at

1
. 1 ___q .
z = —+ — — 1 with value ——mT=i/m= ', Moreover, notice that
log 1/m log 1/m
1 S
]_ 1 1 m—logm e log m lOgm]_
m Tog 1/m = _ = — = — <e
log t/m mlogm mlogm emlogm

1

———_ In
emlogm

Therefore, for all x > 0 we would have g(z) < e. Next, we consider the case ¢ < —

_1

this case, r > Togm

W_1 (emlogm) — 1 implies that
(x +1)logm < W_; (emlogm)
By the monotonicity of W_1, we have

(z4+1) logm

(x+1)logm-e > emlogm

which gives (z + 1)e®!°8™ < ¢. Thus, we have g(x) = (z + 1)m?® < .

23

Under review as a conference paper at ICLR 2025

C STOCHASTIC PARALLEL DEFLATION ALGORITHM

In this section, we provide the explicit form of the stochastic version of the parallel deflation algo-
rithm as discussed in Section[3] Notice that in this algorithm we choose Hebb’s rule as the Top — 1
subroutine for the convenience of a clearer presentation. However, any subroutine that use 3, ¢ only
for a matrix-vector multiplication can enjoy a similar efficient implementation.

Algorithm 2 Stochastic Parallel Deflation with Hebb’s Rule

Require: Batch of data in the (¢, ¢)th iteration Yg,t; # of eigenvectors (workers) K; # of iterations
T'; global communication rounds L > K, step size n.

Ensure: Approximate eigenvectors {vk}szl.
1. fork=1,..., K do

2: Randomly initialize ¥, ; ;¢ With unit norm;

3: end for

4. for/=1,...,Ldo

5: fork=1,...,K do

6: if £ < ¢ then

7: Receive v ¢—1,...,Vi—1,0-1

8: V0,0 *= Vi-15

9: fort=1,...,Tdo

10: Moo = [Yeavir o—1ll3 VE € [k —1];

11: 8k.et = Y]I(,tYk,é,th,é,t—l - 2;:;11 Akt et (V;I/’g,lvk,e,tq) “Vgs o1
12: Vit = (V-1 — 18k,t,0)/ | Vi,et—1 — 18kt el
13: end for

14: Broadcast vy ¢ := vy o1

15: else

16: Vie = Vi init;

17: end if

18: end for

19: end for

20: return {Vk,L}kKﬂ

D BASELINE ALGORITHMS

We provide the generalization of the EigenGame-« (Gemp et al.| (2020) and EigenGame-u |Gemp
et al.| (2022)) algorithms with multiple iterations of local updates 7" > 1 in Algorithm [3| and Al-
gorithm {4 In particular, it should be noted that EigenGame-« and EigenGame-/ use covariance
matrices computed on subsets of the data in each iteration, where in our case we assume that the
covariance matrix is computed on the whole dataset before the algorithm runs. Moreover, if we
set ' = 1 in both Algorithm [3]and Algorithm [4] then we recover the original EigenGame-« and
EigenGame-p algorithms.

24

Under review as a conference paper at ICLR 2025

Algorithm 3 EigenGame-«

Require: ¥ € Raxd: # of eigenvectors (workers) K; # of iterations 7'; global communication
rounds L > K, step size 7.
Ensure: Approximate eigenvectors {vk},iil.

1. fork=1,..., K do

2: Randomly initialize Vv, in;+ With unit norm;

3: end for

4: for/=1,...,Ldo

5: fork=1,...,K do

6: if £ < /¢ then

7: Receive v p_1,...,Vi_1,0-1

8: Vi, 0,0 = Vi e-15

9: fort=1,....,Tdo ;

k—1 Vi g 13VEk -1

10: 8htt = BVE -1 — Dy V);T,’ijlzvk,fl XV o1
11: Viget = (Viee—1 = 08k,t,0)/ [[Vi,et—1 — 18k,t.ell5
12: end for
13: Broadcast vy ¢ := vy o1

14: else
15: Vie = Vi init;
16: end if

17: end for
18: end for

19: return {Vk,L}iil

Algorithm 4 EigenGame- 1

Require: ¥ € Raxd: # of eigenvectors (workers) K; # of iterations 7'; global communication
rounds L > K, step size 7.

. . K
Ensure: Approximate eigenvectors {vy},_;.

1. fork=1,..., K do

2: Randomly initialize ¥V}, ;5i+ With unit norm;

3: end for

4. for/=1,...,Ldo

5: fork=1,..., K do

6: if £ </ then

7: Receive Vie—1y--+3,Vk—10-1

8: V0,0 = Vi 0—13

9: fort=1,...,Tdo

10: 8k,0,t = XVEet-1— 22;11 Vi 01 BVE -1 Vi -1
11: Vet = (V-1 — 18k,e,0)/ [V,et—1 — 18k,t.ell5
12: end for

13: Broadcast vy ¢ := v o1

14: else

15: Vi, 1= Vi inits

16: end if

17: end for

18: end for

19: return {vk7L}§:1

25

	Introduction
	Related Works

	Problem statement and background
	Parallel Deflation Algorithm
	Convergence Guarantee for Parallel Deflation Algorithm
	Experiments
	Conclusion
	Missing Proof from Section 3
	Missing Proof from Section 4
	Proof of Theorem 2
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4

	Stochastic Parallel Deflation Algorithm
	Baseline Algorithms

