
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EFFICIENT DISTRIBUTED PRINCIPAL COMPONENT
ANALYSIS WITH PARALLEL DEFLATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We study a distributed Principal Component Analysis (PCA) framework where
each worker targets a distinct eigenvector and refines its solution by updating from
intermediate solutions provided by peers deemed as “superior”. Drawing intuition
from the delation methods, which is traditionally used in centralized eigenvalue
problems, our method breaks the sequential dependency in between the deflation
steps and allows asynchronous updates of workers while incurring only a small
communication cost. To our knowledge, a critical gap in the literature –the the-
oretical underpinning of such distributed, dynamic interactions among workers–
has remained unaddressed until now. This paper offers the first theoretical analy-
sis explaining why, how, and when these intermediate, hierarchical updates lead to
practical and provable convergence in distributed environments. Our theoretical
contributions demonstrate that such a distributed PCA algorithm not only con-
verges effectively but does so in a manner that is favorably scalable. We also
demonstrate through experiments that our proposed framework offers comparable
performance to EigenGame-µ, the state-of-the-art model-parallel PCA solver.

1 INTRODUCTION

Currently, datasets have gotten dramatically large, encompassing billions, if not trillions, of entries
spanning various domains Zhong et al. (2019); Liu et al. (2023); Penedo et al. (2024a); Soldaini et al.
(2024); Wang et al. (2022); Schuhmann et al. (2022); Raffel et al. (2020); Penedo et al. (2024b);
Xue et al. (2020); Abadji et al. (2022). This scale made it necessary to advance various distributed
optimization protocols, such as federated learning Brendan et al. (2016), and, notably, the develop-
ment of multiple distributed ML software packages Kim & Kang; Dean et al. (2012). Specialized
frameworks such as Ray Liang et al. (2018), Spark Meng et al. (2016), Hadoop Apache Software
Foundation, and JAX Bradbury et al. (2018) have surged in popularity due to their ability to enhance
computational speed significantly.

However, at the algorithmic level, most distributed implementations try to simulate the behavior of
the centralized versions of the underlying algorithms. That is, how distributed algorithms navigate
the parameter landscape is often designed such that we achieve a similar outcome as if data is
available in one location. There are a few key reasons for this:

• Mathematical Understanding: When there is sufficient theoretical understanding of the central-
ized version, it is often a desired goal to attain the same result by designing algorithms to emulate
the centralized counterparts. This ensures consistency and theoretical understanding.

• Algorithm Simplicity: Since centralized algorithms are better understood, distributed variants
that replicate the algorithms’ outcomes automatically enjoy the same simplicity and interpretation.

• Benchmarking: By simulating the centralized execution, comparing the accuracy and conver-
gence properties of the distributed implementation in practice becomes easier.

Yet, precisely simulating centralized algorithms in a distributed environment could pose some chal-
lenges. Take as a characteristic feature the notion of synchrony in distributed implementations, as
this leads to training dynamics closer to centralized training. Synchronization among workers means
proper orchestration, especially in large-scale settings with high-dimensional models and datasets
Zeng et al. (2024); Tan et al. (2022). Synchronized implementations that wait for some or all workers
to finish each iteration before proceeding can suffer from stragglers and load imbalance Wang et al.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(2023a); Ambati et al. (2019). Yet, while asynchronous motions seem like a favorable alternative,
developing an asynchronous learning method is often complicated Stripelis et al. (2022); Tyagi &
Swany (2023); Huba et al. (2022), set aside the lack of theoretical understanding in many cases.1

Based on the dilemma between orchestrating (or not) workers in a distributed system, this work
focuses on a relatively simple problem: the Principal Component Analysis (PCA) Pearson (1901);
Hotelling (1933); Wold et al. (1987); Majumdar (2009); Wang et al. (2013); d’Aspremont et al.
(2007); Jiang et al. (2011); Zou et al. (2006) and its distributed implementation. Despite its “sim-
plicity”, the quest for a distributed PCA algorithm is still an active research area. It has recently
gained momentum with the EigenGame implementation Gemp et al. (2020). EigenGame shows
strides toward optimizing PCA for distributed computing environments, with ideas borrowed from
game theory and implementations that mimic centralized versions. To retain its theoretical guaran-
tees, EigenGame follows a strict hierarchy where each worker is responsible for a single component,
and all workers respect hierarchy by waiting for their “superior” principal components (i.e., eigen-
components associated with larger eigenvalues) to be adequately estimated.2

Our approach and contributions. This work advances distributed PCA by building upon a collab-
orative computation model as in Gemp et al. (2020). Unlike traditional distributed PCA approaches
that mimic centralized algorithms, our method innovates by allowing parallel computation of eigen-
vectors without strict sequential dependencies among the workers. This paradigm shift not only
addresses the inherent inefficiencies of previous methods but also enhances the scalability and con-
vergence speed. Herein, we delineate our primary contributions:

• Novel Algorithmic Framework: We propose a novel distributed PCA algorithm that fundamentally
changes the computational dynamics. Using the covariance matrix, our approach enables multiple
workers to perform eigenvector calculations in parallel. This method diverges from the traditional
sequential computation models, significantly reducing total computation time.

• Extension to Stochastic PCA: in cases where the covariance is unknown or cannot be efficiently
estimated, our algorithm can be easily modified to accommodate data that comes in mini-batches.

• Theoretical Advancements: We provide a robust theoretical framework that validates the con-
vergence properties of our proposed algorithm. By formalizing the interaction between parallel
computations and convergence rates, we establish a new theoretical benchmark for distributed
PCA algorithms. This contribution underscores our algorithm’s efficiency and enhances the un-
derstanding of parallel deflation processes in PCA.

• Empirical Validation: Through extensive experiments, we demonstrate the practical efficacy of
our algorithm. Our results show that our approach at least meets the performance of existing
baseline algorithms even on datasets as large as ImageNet Deng et al. (2009). These experiments
substantiate our theoretical claims and highlight the real-world applicability of our method.

These contributions mark a significant step forward in distributed computing for PCA, providing
theoretical insights and practical tools for data analysis applications.

1.1 RELATED WORKS

Centralized approaches. Principal Component Analysis (PCA) has been a cornerstone of statistical
data analysis since 1901 Pearson (1901). Hotelling later expanded on Pearson’s work, formalizing
PCA within a multivariate analysis framework Hotelling (1933). Classical PCA typically involves
the eigendecomposition of the data covariance matrix Jolliffe (2002).

With the advent of large datasets, iterative and gradient-based methods for PCA have gained promi-
nence. These methods are particularly advantageous for large-scale data, where traditional eigende-
composition becomes computationally impractical. Krasulina and Oja & Karhunen proposed two of
the earliest stochastic gradient descent methods for online PCA Krasulina (1969); Oja & Karhunen
(1985). The application of the least square minimization to the PCA has also received attention
Miao & Hua (1998); Yang (1995); Bannour & Azimi-Sadjadi (1995); Kung et al. (1994). More re-
cently, Arora et al. (2012) and Shamir (2015) have proposed efficient stochastic optimization meth-

1In fact, asynchrony has been a topic of debate in distributed neural network training, where asynchronous
training often inherently suffers from lower accuracy compared to synchronized analogs, resulting in the dom-
inance of synchronized methods in neural network training Campos et al. (2017); Chen et al. (2017).

2We note here that even in this case, theory in Gemp et al. (2020) does not characterize how approximate
estimates in eigencomponents higher in the “hierarchy” affect calculations in subsequent estimates.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

ods that adapt to the streaming model of data (stochastic) and focused on the theoretical guarantees
of gradient-based methods in such non-convex scenarios; see also Boutsidis et al. (2014); Garber
et al. (2015); Shamir (2016); Kim & Klabjan (2020). Other approaches include manifold methods
Demidovich et al. (2024); Chen et al. (2024); Wang et al. (2023b); Absil et al. (2008), Frank-Wolfe
methods Beznosikov et al. (2023), Gauss-Newton methods Zhou et al. (2023), coordinate descent
methods Lei et al. (2016), accelerated methods Xu et al. (2018), as well as variants of the PCA prob-
lem itself Journée et al. (2010); Yuan & Zhang (2013); Han & Liu (2014); Kim & Klabjan (2019);
Kim et al. (2019). Nevertheless, these methods are primarily designed as centralized algorithms.

Distributed approaches. The line of work in Kannan et al. (2014); Liang et al. (2014); Boutsidis
et al. (2016); Fan et al. (2019) utilizes randomized linear algebra and singular value decompositions
of randomized projections of data in a distributed setting, leading to favorable theoretical results. For
the case of distributed multiple eigenvector/subspace computation, Li et al. (2021) consider the dis-
tributed truncated singular value decomposition (SVD) problem and rely on FedAvg ideas McMahan
et al. (2017) with local iterations. There, each worker utilizes an Orthogonal Procrustes Transfor-
mation Schönemann (1966); Cape (2020) to estimate the multiple subspace problem. However, this
line of work assumes that the covariance matrix is known or can be efficiently estimated.

For distributed leading principal component computation, Garber et al. (2017) consider the stochas-
tic setting and replace the Power Iteration scheme with convex optimization motions for better effi-
ciency. Huang & Pan (2020) proposes a round-efficient solution by leveraging the connection to Rie-
mannian optimization; similarly, see Alimisis et al. (2021). Recently, Wang et al. (2023b) proposed
a Riemannian gradient-type method that admits low per-iteration computational and communication
costs and can be readily implemented in an asynchronous setting. Beyond the classical distributed
setting, there are works on the Byzantine and adversarial scenario Charisopoulos & Damle (2022);
Zari et al. (2022), the streaming case Allen-Zhu & Li (2017); Yu et al. (2017), shift-and-invert pre-
conditioning approaches Garber et al. (2016), and coreset-based approaches Feldman et al. (2020).

The papers above consider the data-parallel setting, where the data is distributed across machines,
and each worker solve for all the principal components with its local data. DeepMind’s EigenGame
Gemp et al. (2020) introduced a model-parallel approach, framing each principal component as a
player in a collaborative game. EigenGame optimizes the utility of each vector sequentially using
Riemannian gradient ascent, but is also extended to the distributed scenario, where players can
maximize their utility simultaneously, resulting in a model-parallel algorithm where solving each
principal component is distributed across machines. The paper provided a convergence proof for the
sequential process where vectors are optimized in a hierarchical order. However, for the distributed
version, they didn’t analyze how approximate steps affect overall convergence. A later improvement
Gemp et al. (2022) was proposed, but also lacks theoretical guarantees for the distributed setting.

Our work complements existing literature both theoretically and practically. Unlike sequential ap-
proaches, our method does not require the completion of previous principal component computations
before proceeding to the next. Moreover, We provide a comprehensive convergence analysis, estab-
lishing a stronger theoretical foundation than EigenGame, while maintaining practical efficiency.

2 PROBLEM STATEMENT AND BACKGROUND

Let Y ∈ Rn×d be the matrix representing an aggregation of n properly scaled, centered data points,
each with d features. The empirical covariance matrix is given by Σ = Y⊤Y ∈ Rd×d. Let u⋆

k and
λ⋆
k be the kth eigenvector and eigenvalue of Σ, with λ⋆

1 ≥ · · · ≥ λ⋆
d. Then u⋆

k is the kth principal
component of the data matrix Y. Therefore, when Σ can be easily computed, principal component
analysis aims at finding the top-K eigenvectors of the empirical covariance matrix Σ, where K ≤ d.

The leading eigenvector problem. Finding the leading eigenvector is the cornerstone of finding
multiple eigenvectors, and is thus utilized by many PCA algorithms. Mathematically, the problem
of finding the leading eigenvector u⋆

1 can be formulated as the following optimization problem:
u⋆
1 = argmax

v∈Rd:∥v∥2=1

v⊤Σv. (1)

In practice, algorithms like power iteration and Hebb’s rule are used to solve the leading eigenvector.
Definition 1 (Power Iteration). The power iteration algorithm PowIter (Σ,v, T) outputs a vector
xT based on the following iterates:

x̂t+1 = Σxt; xt+1 = x̂t+1/ ∥x̂t+1∥2 .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Definition 2 (Hebb’s Rule). The Hebb’s Rule Hebb (Σ,v, T) with some fixed step size η outputs a
vector xT based on the following iterates:

x̂t+1 = xt + ηΣxt; xt+1 = x̂t+1/ ∥x̂t+1∥2 .
Under mild assumptions, the output xT of both the power iteration and Hebb’s rule converges to the
top eigenvector of the input matrix Σ, as the number of steps T →∞. Notably, the power iteration
enjoys a linear convergence rate Shamir (2015).

Top-K eigenvector using sequential deflation. An extension of (1) is the top-K eigenvector prob-
lem, where one aims to find u⋆

1, . . .u
⋆
K . Since u⋆

1, . . . ,u
⋆
K form an orthonormal set, finding the

top-K eigenvector can be mathematically formulated as:
U⋆ = [u⋆

1, . . . ,u
⋆
K] ∈ argmax

V∈{Q:,:K : Q∈SO(d)}
⟨ΣV,V⟩ , (2)

where SO(d) denotes the group of rotations about a fixed point in d-dimensional Euclidean space.

Algorithm 1 Parallel Deflation

Require: Σ ∈ Rd×d; # of eigenvectors (workers) K;
sub-routine for top eigenvector PCA(·, ·, ·); # of iter-
ations T ; global communication rounds L ≥ K.

Ensure: Approximate eigenvectors {vk}Kk=1.
1: for k = 1, . . . ,K do
2: Randomly initialize v̂k,init with unit norm;
3: end for
4: for ℓ = 1, . . . , L do
5: parfor k = 1, . . . ,K do
6: if k ≤ ℓ then
7: Receive v1,ℓ−1, . . . ,vk−1,ℓ−1

8: ∆k′,ℓ = vk′,ℓ−1v
⊤
k′,ℓ−1Σvk′,ℓ−1v

⊤
k′,ℓ−1

9: Σk,ℓ = Σ−∑k−1
k′=1 ∆k′,ℓ

10: vk,ℓ ← Top1 (Σk,ℓ,vk,ℓ−1, T)
11: Broadcast vk,ℓ

12: else
13: vk,ℓ := v̂k,init;
14: end if
15: end parfor
16: end for
17: return {vk,L}Kk=1

A classical way to solve (2) is through
deflation Hotelling (1933). Deflation
operates in the following manner. Once
the top component u⋆

1 is approximated,
the matrix Σ undergoes further process-
ing to reside in the subspace orthogonal
to the one spanned by the first eigenvec-
tor. This process is iterated by finding
the leading eigenvector as in (1) on the
deflated matrix, resulting in an approxi-
mation of the second component u⋆

2, and
so forth, as described below:

Σ1 = Σ; vk = Top1 (Σk, v̂k, T) ;

Σk+1 = Σk − vkv
⊤
k Σkvkv

⊤
k , (3)

where Top1 (Σk, v̂k, T) abstractly de-
notes any iterative algorithm initialized
at v̂k and returns a normalized ap-
proximation of the top eigenvector of
the deflated matrix Σk after T itera-
tions of execution. Consider the eigen-
decomposition Σ =

∑d
k′=1 λ

⋆
k′u⋆

k′u⋆⊤
k′ .

When T → ∞ and Top1 (Σk, v̂k, T)
solves the top eigenvector of Σ exactly,
one can show that Σk =

∑d
k′=k λ

⋆
k′u⋆

k′u⋆⊤
k′ and vk = u⋆

k. However, when T is finite, it is shown in
Liao et al. (2023) that each Top1 (Σk, v̂k, T) produces a non-negligible error that accumulates and
propagates through the deflation process.

Stochastic algorithm to find top-1 principal component. When the dataset becomes large, the
covariance matrix Σ may not be efficiently computed, making the previous routine of first computing
the covariance matrix and then its eigenvector infeasible. Alternatively, people estimate Σ with
Σ̂ = Ŷ⊤Ŷ, where Ŷ is a mini-batch of the dataset. In this case, Hebb’s rule can be written as

x̂t+1 = xt + ηŶ⊤
(
Ŷxt

)
;xt+1 = ˆxt+1/ ∥ ˆxt+1∥2

Notice that the stochastic estimate of the covariance matrix Σ̂ is never explicitly computed.

3 PARALLEL DEFLATION ALGORITHM

Here we introduce our algorithm that computes the top-K principal components in a distributed
environment. Our algorithm allows for parallel computation, significantly accelerating the process
by overcoming the inherent sequential dependencies of traditional deflation techniques.

Algorithm overview. In our framework, we assign the task of computing each of the K prin-
cipal components to K distinct workers. Each worker k is responsible for computing the kth

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

principal component. The crux of our method lies in the modification of the traditional defla-
tion process to suit a distributed setting. In a typical sequential deflation, the matrix required
for computing the kth eigenvector is derived only after obtaining the first k − 1 eigenvectors.
This sequential dependency restricts parallelism. Our approach introduces an innovative twist:

Worker 1 Worker 2 Worker 3

Σ1,0

Σ1,1

Σ1,2

Σ1,3

v1,0

v1,1

v1,2

v1,3

Σ2,0

Σ2,1

Σ2,2

Σ2,3

v2,0

v2,1

v2,2

v2,3

Σ3,0

Σ3,1

Σ3,2

Σ3,3

v3,0

v3,1

v3,2

v3,3

Top1(Σ1,0,v1,0)

Top1(Σ1,1,v1,1)

Top1(Σ1,2,v1,2)

Top1(Σ1,3,v1,3)

Top1(Σ2,1,v2,1)

Top1(Σ2,2,v2,2)

Top1(Σ2,3,v2,3)

Top1(Σ3,1,v3,1)

Top1(Σ3,2,v3,2)

Figure 1: Illustration of the parallel deflation algorithm.

–Initial Estimation: Each worker k
begins by computing an inexact ver-
sion of the kth deflated matrix, using
preliminary estimates of the first k−1
eigenvectors produced by the corre-
sponding workers.

–Iterative Refinement: Concurrently,
workers refining the first k− 1 eigen-
vectors provide updated estimates to
worker k. This enables worker k to
refine the deflated matrix iteratively
and improve the accuracy of the kth
eigenvector estimation.

The main idea of introducing paral-
lelism into the computation scheme is
that worker k does not wait for the
first k − 1 eigenvectors to be fully
solved before solving the kth eigen-
vector. The parallel deflation algo-
rithm is given in Algorithm 1.

The whole computation process is di-
vided into L communication rounds
(Line 4). In the ℓth communication
round, the kth worker will compute
an approximation of the kth princi-
pal component vk,ℓ by running their
own sub-routine in parallel, follow-
ing the rule that the kth worker only
deflates its matrix and start comput-
ing the kth principal component af-
ter the first k − 1 workers have com-
puted some rough estimation of the

first k−1 principal components (Lines 7-10). Therefore, in the ℓth communication round, there can
be two scenarios for worker k: i) if ℓ < k, this means that not all of the first k − 1 workers have
computed some approximation of their own principal component. Therefore, worker k does not
deflate the matrix and output vk,ℓ = v̂k,init; ii) If ℓ ≥ k, then the first k − 1 workers have at least
computed one approximation of their own principal component. In this case, worker k deflates the
matrix using the most updated vectors v1,ℓ−1, . . .vk−1,ℓ−1 (Line 7), compute its approximation of
the kth principal component by calling the Top1 (·) on the deflated matrix starting from its output
in the previous communication round (Line 10), and then broadcast the current approximation to
the other workers for the next communication round (Line 11). An illustration of the algorithm is
given in Figure 1.

Extension to Stochastic PCA. The algorithm described above can be applied to the case where
the covariance matrix is either known or can be efficiently estimated. However, in many machine
learning scenarios, the covariance matrix may not be direcly accessible. For instance, when data
drawn from an underlying distribution comes in a streaming fashion Allen-Zhu & Li (2017), the
traditional approach of first estimating the covariance matrix and then solves for its eigenvector is
no longer efficient. Moreover, for large datasets that contains hundreds of thousands of features, it is
impossible to compute or even store the covariance matrix Gemp et al. (2022; 2020). In these cases,
our algorithm can be adapted to estimate the principal components in a stochastic fashion.

Let Ŷ denote the mini-batch that the algorithm receives in the tth iteration. Starting from Line 8,
whose major computation burden is on v⊤

k′,ℓ−1Σvk′,ℓ−1, we notice that the covariance matrix is

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

estimated as Σ ≈ Σ̂ = Ŷ⊤Ŷ. In this case, we have:
v⊤
k′,ℓ−1Σ̂vk′,ℓ−1 = v⊤

k′,ℓ−1Ŷ
⊤Ŷvk′,ℓ−1 = ∥Ŷvk′,ℓ−1∥22.

Therefore, each ∆k′,ℓ in Algorithm 1 can be written as ∆k′,ℓ = ∥Ŷvk′,ℓ−1∥22vk′,ℓ−1v
⊤
k′,ℓ−1. Thus,

Line 9 becomes:
Σk,ℓ ≈ Σ̂k = Ŷ⊤Ŷ −

k−1∑
k′=1

∥Ŷvk′,ℓ−1∥22vk′,ℓ−1v
⊤
k′,ℓ−1.

This new form of Σk,ℓ allows an efficient estimation of the matrix-vector product Σk,ℓx, as in:

λ̂k′ = ∥Ŷvk′∥22; ∀k′ ∈ [k − 1]; Σk,ℓx = Ŷ⊤Ŷxt −
k−1∑
k′=1

λ̂k′
(
v⊤
k′,ℓ−1xt

)
· vk′,ℓ−1. (4)

In the current form of Algorithm 1, the computation of Lines 8-9 takes O
(
Kd2

)
time. Moreover,

calling the Top1 function in Lines 10, any matrix-vector multiplication Σk,ℓx will take O
(
d2
)

time. Notice that in (4), the complexity of computing each Yvk′ is O (nd). Thus computing λ̂k′

takes O (nd). In total,(4) has a complexity of O (Knd). In (4), computing the first term Ŷ⊤Ŷx

involves computing first yt = Ŷxt, which takes O (nd), and then Ŷ⊤yt, which also takes O (nd).
Thus, computing the first term Ŷ⊤Ŷxt takes O (nd) in total. For the second term, each summand
takes O(d) to compute, giving the complexity of computing the second term as O (kd). Therefore,
each iteration of (4) takes O ((n+ k)d). This implies a saving in the computation cost, since in this
case, n is the batch size and can be much smaller than d. The complete algorithm in the stochastic
setting is given in Algorithm 2 in the Appendix.

Connection with EigenGame. The EigenGame Gemp et al. (2020) considers the problem of solv-
ing the top-K eigenvectors of a matrix as a game between K players, with the kth player solving vk

by maximizing its utility: vk = argmaxv:∥v∥2=1 Uk (v | v1, . . .vk−1), where:

Uk
(
v | {vk′}k−1

k′=1

)
= v⊤Σv −

k−1∑
k′=1

(
v⊤
k′Σv

)2
v⊤
k′Σvk′

. (5)

Similarly, the deflation algorithm in (2) also bears a game formulation, where the utility of the kth
player is given by:

Vk

(
v | {vk′}k−1

k′=1

)
= v⊤

(
Σ−

k−1∑
k′=1

vk′v⊤
k′Σvk′v⊤

k′

)
v = v⊤Σv −

k−1∑
k′=1

v⊤
k′Σvk′ ·

(
v⊤
k′v
)2

. (6)

It should be noted that both the EigenGame utility Uk and the deflation utility Vk depend on only
the policy of the first k− 1 players. Moreover, when the first k− 1 players recovers the top-(k− 1)
eigenvectors exactly, we shall have:

Vk
(
v | {u⋆

k′}k−1
k′=1

)
= v⊤Σv −

k−1∑
k′=1

λ⋆
k′

(
v⊤u⋆

k′

)2
= Uk

(
v | {u⋆

k′}k−1
k′=1

)
.

To this end, we can also show that the set of true eigenvectors {u⋆
k}Kk=1 is the unique strict Nash

Equilibrium defined by the utilities in (6). The proof of Theorem 1 is deferred to Appendix A.
Theorem 1. Assume that the covariance matrix Σ has positive and strictly decreasing eigenvalues
λ⋆
1 > · · · > λ⋆

K > 0. Then, {u⋆
k}Kk=1 is the unique strict Nash Equilibrium defined by the utilities in

(6) up to sign perturbation, i.e., replacing u⋆
k with −u⋆

k.

4 CONVERGENCE GUARANTEE FOR PARALLEL DEFLATION ALGORITHM

We provide a convergence guarantee for the parallel deflation algorithm in Algorithm 1. The pivot of
the convergence analysis will be to track the dynamics of {Σk,ℓ}Kk=1 and {vk,ℓ}Kk=1 as ℓ increases.
The dynamics of the two sequences from Algorithm 1 can be compactly represented as:

Σk,ℓ = Σ−
k−1∑
k′=1

vk′,ℓ−1v
⊤
k′,ℓ−1Σvk′,ℓ−1v

⊤
k′,ℓ−1; vk,ℓ = Top1 (Σk,ℓ,vk,ℓ−1) ; ∀ℓ ≥ k.

Here, we embed the number of solver steps T in the property of the abstract local solver Top1(·).
Indeed, if Top1(·) returns the exact top eigenvector of the input matrix every time it is called, then

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

we can easily see that vk,ℓ = u⋆
k for all ℓ ≥ k. When Top1(·) returns an inexact estimate of the

input matrix sequentially, i.e., worker k waits until the top-(k − 1) worker no longer improves the
estimation of the top-(k − 1) eigenvectors, the error is analyzed by Liao et al. (2023).

Our scenario is further complicated by the continuous improvement of the eigenvector estimates
used to deflate the matrix: in each communication round, the Top1(·) function, called by worker k,
will start at the estimate of the top eigenvector of the deflated matrix in the previous round but will
be fitted to the top eigenvector of the deflated matrix in the current round. Our convergence analysis
tackles this complicated dynamic by utilizing the following abstraction of the Top1(·) sub-routine.

Assumption 1. Let Σ̂ ∈ Rd×d be a real symmetric matrix. Let λ⋆ be its eigenvalue with the largest
absolute value, and let u⋆ be the corresponding eigenvector of λ⋆. We assume that there exists a
real value F

(
Σ̂
)
∈ (0, 1) that depends on Σ̂ such that for any x0 ∈ Rd, Top1(·) satisfies:∥∥∥Top1(Σ̂,x0

)
− u⋆

∥∥∥
2
≤ F

(
Σ̂
)
∥x0 − u⋆∥2 .

Assumption 1 can be easily guaranteed. as long as the Top1(·) algorithm enjoys a non-asymptotic
convergence to the top eigenvector; see the Related Works section above. With Assumption 1, the
convergence of Algorithm 1 is given by the following theorem.

Theorem 2. Assume that Assumption 1 holds, and let Fk = maxℓ≥k F
(
Σ̂k,ℓ

)
. Let W−1 (·) be the

Lambert-W function in the −1 branch3, and define for a > 0:

Ŵ (a) =

{−W−1 (−a) if a ∈ (0, e−1)

1 if a ∈ [e−1,∞)

Let {mk}Kk=0 be a sequence of numbers denoting the convergence rates of recovering the K eigen-
vectors, where mk = max

{
Fk,

1
k + k−1

k mk−1

}
and m0 = 1 as a dummy starting point. Let

{sk}nk=1 be a sequence of integers denoting the starting communication round where the K eigen-
vectors’ error recovery enters the linear convergence phase, respectively. To be more specific, let
s1 = 1 and for all k ∈ [K − 1] and k′ ∈ [k]:

sk+1 ≥ max

{
Ŵ (mk log 1/mk)

log 1/mk

,
kmk + 1

1−mk

}
+

Ŵ
(

λ⋆
k+1−λ⋆

k+2

12kλ⋆
k′

(log 1/mk)
2
)

log 1/mk′
+ sk′ . (7)

Then, we have that the following holds for all k ∈ [K]
∥vk,ℓ − u⋆

k∥2 ≤ 6 (ℓ− sk + 2)mℓ−sk+1
k ; ∀ℓ ≥ sk − 1. (8)

In words, Theorem 2 says that starting from the skth communication round, the recovery error of
the kth eigenvector converges according to a nearly-linear convergence rate given in (8). However,
the convergence starting point sk for the kth eigenvector must be later than the convergence starting
point for the 1, . . . , k − 1th eigenvector for a number of communication rounds. This delay in the
convergence starting point is characterized in (7). Intuitively, the starting point sk denotes the index
of the communication round where the top-(k − 1) eigenvectors have been estimated accurately
enough for the kth worker to make positive progress.

Remark 1. By the definition that mk = max
{
Fk,

1
k + k−1

k mk−1

}
, one could see that mk < 1

since Fk < 1 for all k ∈ [K]. The convergence rate in (8) involves the product of a linear term
ℓ − sk + 2 and an exponential term mℓ−sk+1

k . When ℓ is large enough, mℓ−sk+1
k decays at a much

faster speed than the increase of ℓ− sk + 2, thus giving a nearly-linear convergence rate.

Remark 2. Upper bound on the separation between the sk’s. By using the inequality that
W−1(e

−u−1) ≥ −1 −
√
2u − u Chatzigeorgiou (2013), we could obtain that Ŵ (a) ≤ log 1/a +√

2(log 1/a− 1)+1 when a ∈ (0, e−1). Therefore, we can conclude that Ŵ = O(max{1, log 1/a}).
Notice that (7) requires that sk+1, the starting point of the linear convergence for the error of vk+1,ℓ,
must be later than s1, . . . , sk for some steps. Using the bound of Ŵ (a), one could simplify (7) to:

sk+1 ≥ sk +O

(
max

{(
log

1

mk

)−1(
1 + log

kλ⋆
k

λ⋆
k+1 − λ⋆

k+2

)
,
kmk + 1

1−mk

})
.

3The Lambert-W function in the −1-branch is defined as the inverse of the function f(x) = xex when
x ∈ (−∞,−1).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300
T × `

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Er
ro

r

P-Deflation, T = 1
EigGame-α, T = 1
EigGame-µ, T = 1

P-Deflation, T = 5
EigGame-α, T = 5
EigGame-µ, T = 5

(a)

0 50 100 150 200 250
T × `

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Er
ro

r

P-Deflation, T = 1
EigGame-α, T = 1
EigGame-µ, T = 1

P-Deflation, T = 5
EigGame-α, T = 5
EigGame-µ, T = 5

(b)

0 50 100 150 200 250 300
T × `

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Er
ro

r

P-Deflation, T = 1
EigGame-α, T = 1
EigGame-µ, T = 1

P-Deflation, T = 5
EigGame-α, T = 5
EigGame-µ, T = 5

(c)

Figure 2: Comparison of the convergence behavior of parallel deflation, EigenGame-α, and
EigenGame-µ in deterministic setting on (a). synthetic dataset with power-law decaying eigen-
values, (b). synthetic dataset with exponentially decaying eigenvalues, and (c). MNIST dataset.

This simplification implies that a smaller mk would cause a smaller decay between sk and sk+1.
Since mk depends on Fk, a smaller mk can be achieved by doing more local steps in the call to
Top1(·). However, since the decay between sk and sk+1 is measured in terms of the communication
rounds, doing more local steps also increases the computation time per round in the delayed periods.

Sketch of Proof. The key challenge in proving Theorem 2 lies in handling the dynamic, asyn-
chronous nature of our algorithm. Unlike sequential deflation, where each principal component is
computed after the previous ones have converged and stays fixed, our method deals with simulta-
neous updates of all principal components. This requires careful analysis of how errors propagate
and accumulate across different workers. To start, we derive upper bounds of the per-iteration dif-
ference between the actual deflated matrix Σk and the ideal deflated matrix Σ∗

k and the difference
between the estimated eigenvector vk,ℓ and the ground-truth eigenvector u∗

k. Notice that these two
upper bounds are inter-dependent. We apply Davis-Kahan SinΘ Theorem Davis & Kahan (1970) to
derive the bound between the matrices’ top-eigenvectors based on the matrix differences. Next, we
carefully choose a convergence starting point sk for each eigenvector. Construct two simpler two-
dimensional sequences {Bk,ℓ} and {Gk,ℓ} starting from sk’s that upper bound these differences.
Lastly, we unroll the bounds on {Bk,ℓ} and {Gk,ℓ} to arrive at a closed form upper bound on error
of the estimated eigenvector vk,ℓ. The detailed proof is deferred to Appendix B.

5 EXPERIMENTS

In this section, we experimentally verify the performance of the parallel deflation algorithm.

Baseline algorithms. We compared the parallel deflation algorithm with power iteration as the
Top1 subroutine with the distributed version of EigenGame-α Gemp et al. (2020) and EigenGame-
µ Gemp et al. (2022). It should be noticed that EigenGame-α was proposed as a sequential princi-
pal component recovery algorithm and can be adapted as a distributed algorithm. Moreover, both
EigenGame-α and EigenGame-µ are restricted to the case of one iteration of update per communica-
tion round. We modified their algorithm to generalize to multiple iterations of update in Algorithm 3
and Algorithm 4 in Appendix D. As in the implementation of Gemp et al. (2020) ad Gemp et al.
(2022), we do not project the utility gradient to the unit sphere.

Evaluation Metric. We evaluate the performance of the three algorithms by computing how close
the recovered principal component is to the true eigenvector of the covariance matrix. In particular,
notice that if a vector u⋆

k is the kth principal component (equivalently kth eigenvector of the covari-
ance matrix), then −u⋆

k is also the kth principal component. Therefore, for the set of true principal
components {u⋆

k}Kk=1 and a set of recovered principal component {vk}Kk=1, we use the following
metric to compute the approximation error

E
(
{u⋆

k}Kk=1, {vk}Kk=1

)
=

(
1

K

K∑
k=1

min
s∈{±1}

∥u⋆
k − s · vk∥22

) 1
2

(9)

Deterministic Experiments. For synthetic experiments, we choose the number of features d =
1000, which gives the covariance matrices Σ ∈ R1000×1000. We consider Σ generated with two
different eigenvalue spectra: i) a power-law decaying spectrum λ⋆

k = 1√
k

, and ii) an exponential

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

decaying spectrum λ⋆
k = 1

1.1k
. We choose the number of local updates in each communication round

T to be T ∈ {1, 5}. We ran parallel deflation, EigenGame-α, and EigenGame-µ to recover the top-
30 eigenvectors (K = 30). For each setting, we run 10 trials with different random initialization.

Figure 2a presents the convergence behavior of the three algorithms with T ∈ {1, 5} on the synthetic
matrix with λ⋆

k = 1√
k

. Both EigenGame-µ and parallel deflation demonstrate stable convergence to a
low error value under the case of T = 1 and T = 5, with parallel deflation converging slightly slower
than EigenGame-µ in the first 200 total steps, and then arriving at a lower error than EigenGame-
µ in the last 100 total steps. On the other hand, EigenGame-α shows unstable convergence that
appears to be significantly slower than EigenGame-µ and parallel deflation. Figure 2b presents the
result on the synthetic matrix with λ⋆

k = 1
1.1k

. In general, the convergence behavior is similar to
Figure 2a, with parallel deflation and EigenGame-µ exhibiting a fast and stable convergence, and
EigenGame-α being slower. In both Figure 2a and Figure 2b, the setting of T = 1 shows a faster
convergence than T = 5. This is because T = 1 allows more communication in a fixed number of
total steps T × L, which keeps the deflated matrices of each local worker to be better updated.

We also use the real-world dataset of MNIST, which contains n = 60000 hand-written digits, to
compute the covariance. In particular, each 28× 28 image is first divided by 255 for numerical sta-
bility and then flattened into a vector yi of d = 784 features. Similar to the synthetic experiments,
we also choose T ∈ {1, 5} and aim at recovering the top-30 eigenvectors. The result on the MNIST
dataset is presented in Figure 2c. Similar convergence behavior of the three algorithms, where par-
allel deflation and EigenGame-µ demonstrate similar convergence speed, and EigenGame-α con-
verges much slower. Noticeably, for EigenGame-α, we could observe that the case T = 1 converges
even slower than the case T = 5. We hypothesize that this is because one local iteration is not
sufficient for the top eigenvector solvers to provide an accurate enough estimate for the following
solvers to make positive progress.

Stochastic Setting. In the stochastic experiments, we first test the algorithm’s performance on a
synthetic Gaussian distribution. We generate a covariance matrix Σ with power-law decaying spec-
trum as in the deterministic experiments. However, instead of directly passing it to the PCA solver,
we sample I.I.D. samples fromN (0,Σ) and pass the sampled data batches to parallel deflation and
EigenGame in a streaming fashion. We use a decaying step size for all three algorithms, and the
result is given in Figure 3a. In this setting, parallel deflation shows a slightly worse performance
than the two EigenGame algorithms. We hypothesis that this is because parallel deflation is more
sensitive to the step size tuning in the stochastic case.

In Figure 3b, we plot the performance of parallel deflation and EigenGame in the stochastic setting
of the MNIST dataset. That is, batches of the MNIST training set is sampled in each iteration
and passed to the algorithms. We observe that parallel deflation achieves a similar performance to
EigenGame-µ, with a slightly faster convergence speed in the early phase of the algorithm.

In addition, we also test the performance of parallel deflation on the ImageNet dataset Deng et al.
(2009) that contains 1.2M images. In particular, each 224 × 224 image is flattened into a vector of
dimension 50176. The large scale of the dataset makes it impossible to even compute or store the
covariance matrix on a single device. We use both parallel deflation and EigenGame-µ to compute
the top-10 eigenvector of the dataset. It should be noted that since no ”ground-truth” principal
component is know, we can no longer use the metric in (9). Instead, we notice that, since finding
the kth eigenvector can be seen as maximizing v⊤Σv given that v is orthogonal to all previous
eigenvectors, we can use an aggregation of the terms v⊤

k Σvk as a metric to evaluate the quanlity
of the solved principal components. To follow the internal hierarchy of the eigenvectors that the
leading eigenvectors are free to explore more space and thus are expected to attain a larger v⊤Σv,
we penalize terms with larger index with a discounting factor. This result in the following metrix

M
(
{vk}Kk=1

)
=

K∑
k=1

1

k
v⊤
k Σvk =

1

n

n∑
i=1

K∑
k=1

(
ȳ⊤
i vk

)2
k

(10)

Notice that a larger value ofM (·) implies a better quality of the recovered eigenvectors. In practice,

we compute this metric by using a batched aggregation of the terms (ȳ⊤
i vk)

2

k over all i ∈ [n]. We
plot the result in Figure 3c, and we could observe that in this large scale dataset, our algorithm can
keep up with the performance of the state-of-the-art algorithm EigenGame-µ.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 100 200 300 400 500 600
T × `

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Er
ro

r

P-Deflation, T = 1
EigGame-α, T = 1
EigGame-µ, T = 1

P-Deflation, T = 5
EigGame-α, T = 5
EigGame-µ, T = 5

(a)

0 200 400 600 800 1000 1200
T × `

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Er
ro

r

P-Deflation, T = 1
EigGame-α, T = 1
EigGame-µ, T = 1

P-Deflation, T = 5
EigGame-α, T = 5
EigGame-µ, T = 5

(b)

10 20 30 40 50 60 70 80
`

0

20

40

60

80

100

M
et

ri
c

EigenGame-µ, T=10 P-Deflation, T=10

(c)

Figure 3: Comparison of the convergence behavior of parallel deflation, EigenGame-α, and
EigenGame-µ in stochastic setting on (a). synthetic dataset with power-law decaying eigenvalues,
(b). MNIST dataset, and (c) ImageNet dataset.

0 200 400 600 800 1000 1200
T × `

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Er
ro

r

T = 1
T = 5
T = 10
T = 20
T = 40

(a)

0 25 50 75 100 125 150 175 200
`

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Er
ro

r

T = 1
T = 3
T = 5

(b)

Figure 4: Ablation study of the parallel deflation algorithm. (a) shows the benefit of the run-time by
increasing the parallelism. (b) shows the benefit of decreasing the communication cost by increasing
the number of local iterations.

Ablation studies. We conducted additional ablation studies for the parallel deflation algorithms,
with the results presented in Figure 4. In Figure 4a, we conduct additional experiments comparing
how different choices of the number of local updates T contribute to the convergence speed. In
particular, since in each communication round, the local updates of all workers are done in parallel,
T × ℓ would represent the total time elapsed under the ideal scenario of no communication cost. We
could see from Figure 4a that a smaller T results in a faster convergence speed. Remarkably, since
we choose T×L = 1200 and aim at recovering 30 eigenvectors, the case where T = 40 corresponds
to L = 30, demonstrating the convergence behavior of the sequential deflation algorithm. Figure 4a
thus supports that introducing additional parallelism into the deflation algorithm indeed speeds up
the computation process. On the other hand, Figure 4b considers the case where the communication
cost is the major burden. In this case, we can run the parallel deflation algorithm with a larger
number of local updates, hoping to make more progress within one communication round. Indeed,
Figure 4b shows that a large number of local updates result in a faster convergence within a fixed
number of communication rounds on larger datasets.

6 CONCLUSION

In this paper, we present a novel algorithmic framework for computing the principal components in
a distributed fashion. Based on the classical deflation method to solve for the top-K eigenvectors of
a matrix, our algorithm distributes the workload of computing each eigenvector to a single worker.
We introduce additional parallelism by early-starting the computation of the following eigenvectors
based on the initial rough estimation of leading principal components and continuously refining the
local deflated matrix based on updated estimated principal components. We show that our algo-
rithmic framework has a similar game-theoretic formulation as the EigenGame, while enjoying a
nice convergence guarantee even in the distributed case. Moreover, through experiments, we show
that our algorithm converges at a comparable speed to the EigenGame-µ, and is faster than the
EigenGame-α. Future work can focus on empirically examining the potential of using other Top1
subroutines in our parallel deflation algorithm, such as Oja’s rule.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Julien Abadji, Pedro Ortiz Suarez, Laurent Romary, and Benoı̂t Sagot. Towards a cleaner document-
oriented multilingual crawled corpus. arXiv preprint arXiv:2201.06642, 2022.

P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix manifolds.
Princeton University Press, 2008.

Foivos Alimisis, Peter Davies, Bart Vandereycken, and Dan Alistarh. Distributed principal compo-
nent analysis with limited communication. Advances in Neural Information Processing Systems,
34:2823–2834, 2021.

Zeyuan Allen-Zhu and Yuanzhi Li. First efficient convergence for streaming k-PCA: a global, gap-
free, and near-optimal rate. In 2017 IEEE 58th Annual Symposium on Foundations of Computer
Science (FOCS), pp. 487–492. IEEE, 2017.

Pradeep Ambati, David Irwin, Prashant Shenoy, Lixin Gao, Ahmed Ali-Eldin, and Jeannie Albrecht.
Understanding synchronization costs for distributed ml on transient cloud resources, 06 2019.
URL https://lass.cs.umass.edu/papers/pdf/ic2e19.pdf.

Apache Software Foundation. Hadoop. URL https://hadoop.apache.org.

Raman Arora, Andrew Cotter, Karen Livescu, and Nathan Srebro. Stochastic optimization for PCA
and PLS. In 2012 50th annual allerton conference on communication, control, and computing
(allerton), pp. 861–868. IEEE, 2012.

Sami Bannour and Mahmood R Azimi-Sadjadi. Principal component extraction using recursive least
squares learning. IEEE Transactions on Neural Networks, 6(2):457–469, 1995.

Aleksandr Beznosikov, David Dobre, and Gauthier Gidel. Sarah Frank-Wolfe: Methods for con-
strained optimization with best rates and practical features. arXiv preprint arXiv:2304.11737,
2023.

Christos Boutsidis, Dan Garber, Zohar Karnin, and Edo Liberty. Online principal components anal-
ysis. In Proceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete algorithms,
pp. 887–901. SIAM, 2014.

Christos Boutsidis, David P Woodruff, and Peilin Zhong. Optimal principal component analysis in
distributed and streaming models. In Proceedings of the forty-eighth annual ACM symposium on
Theory of Computing, pp. 236–249, 2016.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jax.

McMahan H Brendan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-efficient learning of deep networks from decentralized data, 2016. URL https:
//arxiv.org/abs/1602.05629.

Vı́ctor Campos, Francesc Sastre, Maurici Yagües, Mı́riam Bellver, Xavier Giró-i Nieto, and Jordi
Torres. Distributed training strategies for a computer vision deep learning algorithm on a dis-
tributed gpu cluster. Procedia Computer Science, 108:315–324, 2017. doi: 10.1016/j.procs.2017.
05.074.

Joshua Cape. Orthogonal Procrustes and norm-dependent optimality. The Electronic Journal of
Linear Algebra, 36:158–168, 2020.

Vasileios Charisopoulos and Anil Damle. Communication-efficient distributed eigenspace estima-
tion with arbitrary node failures. Advances in Neural Information Processing Systems, 35:18197–
18210, 2022.

11

https://lass.cs.umass.edu/papers/pdf/ic2e19.pdf
https://hadoop.apache.org
http://github.com/google/jax
http://github.com/google/jax
https://arxiv.org/abs/1602.05629
https://arxiv.org/abs/1602.05629

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ioannis Chatzigeorgiou. Bounds on the lambert function and their application to the outage analysis
of user cooperation. IEEE Communications Letters, 17(8):1505–1508, August 2013. ISSN 1089-
7798. doi: 10.1109/lcomm.2013.070113.130972. URL http://dx.doi.org/10.1109/
LCOMM.2013.070113.130972.

Jianmin Chen, Xinghao Pan, Rajat Monga, Samy Bengio, and Rafal Jozefowicz. Revisiting dis-
tributed synchronous sgd, 03 2017. URL https://arxiv.org/abs/1604.00981.

Pengwen Chen, Chung-Kuan Cheng, and Chester Holtz. Sequential subspace methods on Stiefel
manifold optimization problems. arXiv preprint arXiv:2404.13301, 2024.

A. d’Aspremont, L. El Ghaoui, M.I. Jordan, and G.R.G. Lanckriet. A direct formulation for sparse
pca using semidefinite programming. SIAM review, 49(3):434–448, 2007.

Chandler Davis and W. M. Kahan. The rotation of eigenvectors by a perturbation. iii. SIAM Journal
on Numerical Analysis, 7(1):1–46, 1970. ISSN 00361429. URL http://www.jstor.org/
stable/2949580.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Marc’aurelio
Ranzato, Andrew Senior, Paul Tucker, Ke Yang, et al. Large scale distributed deep networks.
Advances in neural information processing systems, 25, 2012.

Yury Demidovich, Grigory Malinovsky, and Peter Richtarik. Streamlining in the Riemannian
realm: Efficient riemannian optimization with loopless variance reduction. arXiv preprint
arXiv:2403.06677, 2024.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

Jianqing Fan, Dong Wang, Kaizheng Wang, and Ziwei Zhu. Distributed estimation of principal
eigenspaces. Annals of statistics, 47(6):3009, 2019.

Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny data: Constant-
size coresets for k-means, PCA, and projective clustering. SIAM Journal on Computing, 49(3):
601–657, 2020.

Dan Garber, Elad Hazan, and Tengyu Ma. Online learning of eigenvectors. In International Con-
ference on Machine Learning, pp. 560–568. PMLR, 2015.

Dan Garber, Elad Hazan, Chi Jin, Cameron Musco, Praneeth Netrapalli, Aaron Sidford, et al. Faster
eigenvector computation via shift-and-invert preconditioning. In International Conference on
Machine Learning, pp. 2626–2634. PMLR, 2016.

Dan Garber, Ohad Shamir, and Nathan Srebro. Communication-efficient algorithms for distributed
stochastic principal component analysis. In International Conference on Machine Learning, pp.
1203–1212. PMLR, 2017.

Ian Gemp, Brian McWilliams, Claire Vernade, and Thore Graepel. Eigengame: Pca as a nash
equilibrium, 10 2020. URL https://arxiv.org/abs/2010.00554.

Ian Gemp, Brian McWilliams, Claire Vernade, and Thore Graepel. Eigengame unloaded: When
playing games is better than optimizing, 2022.

Fang Han and Han Liu. Scale-invariant sparse PCA on high-dimensional meta-elliptical data. Jour-
nal of the American Statistical Association, 109(505):275–287, 2014.

Harold Hotelling. Analysis of a complex of statistical variables into principal components. Journal
of educational psychology, 24(6):417, 1933.

Long-Kai Huang and Sinno Pan. Communication-efficient distributed PCA by Riemannian opti-
mization. In International Conference on Machine Learning, pp. 4465–4474. PMLR, 2020.

12

http://dx.doi.org/10.1109/LCOMM.2013.070113.130972
http://dx.doi.org/10.1109/LCOMM.2013.070113.130972
https://arxiv.org/abs/1604.00981
http://www.jstor.org/stable/2949580
http://www.jstor.org/stable/2949580
https://arxiv.org/abs/2010.00554

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Dzmitry Huba, John Nguyen, Kshitiz Malik, Ruiyu Zhu, Mike Rabbat, Ashkan Yousefpour, Carole-
Jean Wu, Hongyuan Zhan, Pavel Ustinov, Harish Srinivas, et al. Papaya: Practical, private, and
scalable federated learning. Proceedings of Machine Learning and Systems, 4:814–832, 2022.

Ruoyi Jiang, Hongliang Fei, and Jun Huan. Anomaly localization for network data streams with
graph joint sparse pca. In Proceedings of the 17th ACM SIGKDD, pp. 886–894. ACM, 2011.

Ian T Jolliffe. Principal component analysis for special types of data. Springer, 2002.

Michel Journée, Yurii Nesterov, Peter Richtárik, and Rodolphe Sepulchre. Generalized power
method for sparse principal component analysis. Journal of Machine Learning Research, 11
(2), 2010.

Ravi Kannan, Santosh Vempala, and David Woodruff. Principal component analysis and higher
correlations for distributed data. In Conference on Learning Theory, pp. 1040–1057. PMLR,
2014.

Cheolmin Kim and Diego Klabjan. A simple and fast algorithm for ℓ1-norm kernel PCA. IEEE
transactions on pattern analysis and machine intelligence, 42(8):1842–1855, 2019.

Cheolmin Kim and Diego Klabjan. Stochastic variance-reduced algorithms for PCA with arbitrary
mini-batch sizes. In International Conference on Artificial Intelligence and Statistics, pp. 4302–
4312. PMLR, 2020.

Cheolmin Kim, Youngseok Kim, and Diego Klabjan. Scale invariant power iteration. arXiv preprint
arXiv:1905.09882, 2019.

Sung Kim and Jenny Kang. Optional: Data parallelism — pytorch tutorials 2.3.0+cu121
documentation. URL https://pytorch.org/tutorials/beginner/blitz/data_
parallel_tutorial.html.

TP Krasulina. The method of stochastic approximation for the determination of the least eigenvalue
of a symmetrical matrix. USSR Computational Mathematics and Mathematical Physics, 9(6):
189–195, 1969.

Sun-Yuan Kung, Konstantinos I Diamantaras, and Jin-Shiuh Taur. Adaptive principal component
extraction (APEX) and applications. IEEE transactions on signal processing, 42(5):1202–1217,
1994.

Qi Lei, Kai Zhong, and Inderjit S Dhillon. Coordinate-wise power method. Advances in Neural
Information Processing Systems, 29, 2016.

Xiang Li, Shusen Wang, Kun Chen, and Zhihua Zhang. Communication-efficient distributed SVD
via local power iterations. In International Conference on Machine Learning, pp. 6504–6514.
PMLR, 2021.

Eric Liang, Richard Liaw, Philipp Moritz, Robert Nishihara, Roy Fox, Ken Goldberg, Joseph E.
Gonzalez, Michael I. Jordan, and Ion Stoica. Rllib: Abstractions for distributed reinforcement
learning. arXiv:1712.09381 [cs], 06 2018. URL https://arxiv.org/abs/1712.09381.

Yingyu Liang, Maria-Florina F Balcan, Vandana Kanchanapally, and David Woodruff. Improved
distributed principal component analysis. Advances in neural information processing systems,
27, 2014.

Fangshuo Liao, Junhyung Lyle Kim, Cruz Barnum, and Anastasios Kyrillidis. On the error-
propagation of inexact deflation for principal component analysis, 2023.

Xu Liu, Yutong Xia, Yuxuan Liang, Junfeng Hu, Yiwei Wang, Lei Bai, Chao Huang, Zhenguang
Liu, Bryan Hooi, and Roger Zimmermann. Largest: A benchmark dataset for large-scale traffic
forecasting, 11 2023. URL https://openreview.net/forum?id=loOw3oyhFW.

A Majumdar. Image compression by sparse pca coding in curvelet domain. Signal, image and video
processing, 3(1):27–34, 2009.

13

https://pytorch.org/tutorials/beginner/blitz/data_parallel_tutorial.html
https://pytorch.org/tutorials/beginner/blitz/data_parallel_tutorial.html
https://arxiv.org/abs/1712.09381
https://openreview.net/forum?id=loOw3oyhFW

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkataraman, Davies Liu,
Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, et al. MLlib: Machine learning in apache
spark. Journal of Machine Learning Research, 17(34):1–7, 2016.

Yongfeng Miao and Yingbo Hua. Fast subspace tracking and neural network learning by a novel
information criterion. IEEE Transactions on Signal Processing, 46(7):1967–1979, 1998.

Erkki Oja and Juha Karhunen. On stochastic approximation of the eigenvectors and eigenvalues of
the expectation of a random matrix. Journal of mathematical analysis and applications, 106(1):
69–84, 1985.

Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space. The London,
Edinburgh, and Dublin philosophical magazine and journal of science, 2(11):559–572, 1901.

Guilherme Penedo, Hynek Kydlı́ček, Leandro von Werra, and Thomas Wolf. FineWeb, 2024a. URL
https://huggingface.co/datasets/HuggingFaceFW/fineweb.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Hamza Alobeidli,
Alessandro Cappelli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The refined-
web dataset for falcon llm: Outperforming curated corpora with web data only. Advances in
Neural Information Processing Systems, 36, 2024b.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Peter H Schönemann. A generalized solution of the orthogonal procrustes problem. Psychometrika,
31(1):1–10, 1966.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
open large-scale dataset for training next generation image-text models. Advances in Neural
Information Processing Systems, 35:25278–25294, 2022.

Ohad Shamir. A stochastic PCA and SVD algorithm with an exponential convergence rate. In
International conference on machine learning, pp. 144–152. PMLR, 2015.

Ohad Shamir. Fast stochastic algorithms for SVD and PCA: Convergence properties and convexity.
In International Conference on Machine Learning, pp. 248–256. PMLR, 2016.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Authur,
Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, Valentin Hofmann, Ananya Harsh
Jha, Sachin Kumar, Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson, Jacob Morrison, Niklas
Muennighoff, Aakanksha Naik, Crystal Nam, Matthew E. Peters, Abhilasha Ravichander, Kyle
Richardson, Zejiang Shen, Emma Strubell, Nishant Subramani, Oyvind Tafjord, Pete Walsh, Luke
Zettlemoyer, Noah A. Smith, Hannaneh Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge,
and Kyle Lo. Dolma: an Open Corpus of Three Trillion Tokens for Language Model Pretraining
Research. arXiv preprint, 2024.

Dimitris Stripelis, Paul M. Thompson, and José Luis Ambite. Semi-synchronous federated learning
for energy-efficient training and accelerated convergence in cross-silo settings. ACM Transactions
on Intelligent Systems and Technology, 13:1–29, 10 2022. doi: 10.1145/3524885.

Miaoquan Tan, Wai-Xi Liu, Junming Luo, Haosen Chen, and Zhen-Zheng Guo. Adaptive syn-
chronous strategy for distributed machine learning. International Journal of Intelligent Systems,
37:11713–11741, 09 2022. doi: 10.1002/int.23060.

Sahil Tyagi and Martin Swany. Accelerating distributed ml training via selective synchronization,
10 2023. URL https://arxiv.org/abs/2307.07950.

14

https://huggingface.co/datasets/HuggingFaceFW/fineweb
https://arxiv.org/abs/2307.07950

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Irene Wang, Prashant J. Nair, and Divya Mahajan. Fluid: Mitigating stragglers in federated learning
using invariant dropout, 09 2023a. URL https://arxiv.org/abs/2307.02623.

Xiaolu Wang, Yuchen Jiao, Hoi-To Wai, and Yuantao Gu. Incremental aggregated riemannian gra-
dient method for distributed pca. In International Conference on Artificial Intelligence and Statis-
tics, pp. 7492–7510. PMLR, 2023b.

Zhaoran Wang, Fang Han, and Han Liu. Sparse principal component analysis for high dimensional
multivariate time series. In Proceedings of the Sixteenth International Conference on Artificial
Intelligence and Statistics, pp. 48–56, 2013.

Zijie J. Wang, Evan Montoya, David Munechika, Haoyang Yang, Benjamin Hoover, and
Duen Horng Chau. DiffusionDB: A large-scale prompt gallery dataset for text-to-image genera-
tive models. arXiv:2210.14896 [cs], 2022. URL https://arxiv.org/abs/2210.14896.

Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis. Chemomet-
rics and Intelligent Laboratory Systems, 2:37–52, 08 1987. doi: 10.1016/0169-7439(87)
80084-9. URL https://www.sciencedirect.com/science/article/abs/pii/
0169743987800849.

Peng Xu, Bryan He, Christopher De Sa, Ioannis Mitliagkas, and Chris Re. Accelerated stochastic
power iteration. In International Conference on Artificial Intelligence and Statistics, pp. 58–67.
PMLR, 2018.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. mT5: A massively multilingual pre-trained text-to-text transformer.
arXiv preprint arXiv:2010.11934, 2020.

Bin Yang. Projection approximation subspace tracking. IEEE Transactions on Signal processing,
43(1):95–107, 1995.

Wenjian Yu, Yu Gu, Jian Li, Shenghua Liu, and Yaohang Li. Single-pass PCA of large high-
dimensional data. arXiv preprint arXiv:1704.07669, 2017.

Xiao-Tong Yuan and Tong Zhang. Truncated power method for sparse eigenvalue problems. Journal
of Machine Learning Research, 14(4), 2013.

Oualid Zari, Javier Parra-Arnau, Ayşe Ünsal, Thorsten Strufe, and Melek Önen. Membership in-
ference attack against principal component analysis. In International Conference on Privacy in
Statistical Databases, pp. 269–282. Springer, 2022.

Yanguo Zeng, Meiting Xue, Peiran Xu, Yukun Shi, Kaisheng Zeng, Jilin Zhang, and Lupeng Yue. A
synchronous parallel method with parameters communication prediction for distributed machine
learning. LNICST, 563:385–403, 01 2024. doi: 10.1007/978-3-031-54531-3 21.

Xu Zhong, Jianbin Tang, and Antonio Jimeno Yepes. Publaynet: largest dataset ever for document
layout analysis, 08 2019. URL https://arxiv.org/abs/1908.07836.

Siyun Zhou, Xin Liu, and Liwei Xu. Stochastic Gauss–Newton algorithms for online PCA. Journal
of Scientific Computing, 96(3):72, 2023.

Hui Zou, Trevor Hastie, and Robert Tibshirani. Sparse principal component analysis. Journal of
computational and graphical statistics, 15(2):265–286, 2006.

15

https://arxiv.org/abs/2307.02623
https://arxiv.org/abs/2210.14896
https://www.sciencedirect.com/science/article/abs/pii/0169743987800849
https://www.sciencedirect.com/science/article/abs/pii/0169743987800849
https://arxiv.org/abs/1908.07836

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A MISSING PROOF FROM SECTION 3

Proof of Theorem 1. Let u⋆
1, . . . ,u

⋆
d be the set of eigenvectors of Σ, and λ⋆

1, . . . , λ
⋆
d be the corre-

sponding eigenvalues, potentially with some λk = 0. Recall that in the game formulation of the
deflation algorithm, the utility function of the kth player is given by

Vk
(
v | {vk′}k−1

k′=1

)
= v⊤Σv −

k−1∑
k′=1

v⊤
k′Σvk′ ·

(
v⊤
k′v
)2

and when vk′ = u⋆
k′ for k′ ∈ [k − 1], we have

Vk
(
v | {u⋆

k′}k−1
k′=1

)
= v⊤Σv −

k−1∑
k′=1

λ⋆
k′ ·
(
v⊤
k′v
)2

It should be noted that Σ has the eigendecomposition Σ =
∑d

k′=1 λ
⋆
k′u⋆

k′u⋆⊤
k′ . Therefore we can

rewrite v⊤Σv as
∑d

k′=1 λ
⋆
k′

(
v⊤u⋆

k′

)2
. Thus, the utility becomes

Vk
(
v | {u⋆

k′}dk′=1

)
=

k−1∑
k′=k

λ⋆
k′

(
v⊤u⋆

k′

)2
Since u⋆

1, . . . ,u
⋆
d spans Rd and are mutually orthogonal, we can write v =

∑d
j=1 βju

⋆
j . where∑d

j=1 β
2
j = 1. Then we have

Vk
(
v | {u⋆

k′}dk′=1

)
=

k−1∑
k′=k

λ⋆
k′

 d∑
j=1

βju
⋆⊤
j u⋆

k′

2

=

k−1∑
k′=k

λ⋆
k′β2

k′

Since λk’s are strictly decreasing and positive, we must have that the maximum of
Vk
(
v | {u⋆

k′}dk′=1

)
is only attained when β2

k = 1, which implies that v = ±u⋆
k will be the only

optimal policies for player k.

The uniqueness can be shown by induction. To start, we notice that V1 does not depend on the policy
of the other plays. Therefore, the only optimal policy for player 1 is v1 = ±u⋆

1. This shows the
base case. Now, assume that within the top-(k− 1) players, the optimal policies are vk′ = ±u⋆

k′ for
k′ ∈ [k − 1]. By the formulation of the utility functions, these optimal policies are not affected by
the policy of player k, . . . ,K. Moreover, it should be noted that the utility of player k only depends
on the top-(k − 1) players. Therefore, the optimal policy for player k must be vk = ±u⋆

k. This
finishes the inductive step and completes the proof.

B MISSING PROOF FROM SECTION 4

We first introduce a tool that we will utilize in the proof in this section.

Lemma 1 (sinΘ Theorem Davis & Kahan (1970)). Let M∗ ∈ Rd×d and let M = M∗ +H. Let a∗1
and a1 be the top eigenvectors of M∗ and M, respectively. Then we have:

sin∠ {a∗1,a1} ≤
∥H∥2

minj ̸=k |σ∗
k − σj |

.

B.1 PROOF OF THEOREM 2

Define Σ⋆
k =

∑d
k=1 λ

⋆
ku

⋆
ku

⊤⋆
k as the ”ground-truth” deflation matrix. Recall that the parallel defla-

tion algorithm executes

Σk,ℓ = Σ−
k−1∑
k′=1

vk′,ℓ−1v
⊤
k′,ℓ−1Σvk′,ℓ−1v

⊤
k′,ℓ−1; vk,ℓ = Top1 (Σk,ℓ,vk,ℓ−1) (11)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Let uk,ℓ denote the top eigenvector of Σk,ℓ. In particular, it suffices to show that the quantity
∥vk,ℓ − u⋆

k∥
2
2 decreases as ℓ increases. Combining Assumption 1 and the definition that Fk =

maxℓ≥k F (Σk,ℓ),we have that
∥vk,ℓ − uk,ℓ∥2 ≤ Fk ∥vk,ℓ−1 − uk,ℓ∥2 (12)

We could upper bound ∥vk,ℓ−1 − uk,ℓ∥2 using

∥vk,ℓ−1 − uk,ℓ∥2 ≤ ∥vk,ℓ−1 − uk,ℓ−1∥2 + ∥uk,ℓ − uk,ℓ−1∥2
≤ ∥vk,ℓ−1 − uk,ℓ−1∥2 + ∥uk,ℓ − u⋆

k∥2 + ∥uk,ℓ−1 − u⋆
k∥2

Combining this upper bound with (12) gives
∥vk,ℓ − uk,ℓ∥2 ≤ Fk

(
∥vk,ℓ−1 − uk,ℓ−1∥2 + ∥uk,ℓ − u⋆

k∥2 + ∥uk,ℓ−1 − u⋆
k∥2
)

(13)
Moreover, the triangle inequality implies that

∥vk,ℓ − u⋆
k∥2 ≤ ∥vk,ℓ − uk,ℓ∥2 + ∥uk,ℓ − u⋆

k∥2 (14)
Now, (13) and (14) give a pretty good characterization of the propagation of the errors. It remains
to characterize ∥uk,ℓ − u⋆

k∥2 for each ℓ, and then we can dive into solving the recurrence. A naive
bound would be that ∥uk,ℓ − u⋆

k∥2 ≤ 2, as ∥uk,ℓ∥2 = ∥u⋆
k∥2 = 1. However, notice that uk,ℓ is

the top eigenvector of Σk,ℓ and Σ⋆
k, respective. Thus, we can invoke the Davis-Kahan Theorem to

obtain a tighter bound. This property is given by Lemma 2, whose proof is deferred to Appendix B.2.
Lemma 2. Assume that 1 = λ⋆

1 > λ⋆
2 > If the following inequality holds for some c0 > 1

k−1∑
k′=1

λ⋆
k′ ∥u⋆

k′ − vk′,ℓ−1∥2 ≤
c0 − 1

4c0

(
λ⋆
k − λ⋆

k+1

)
(15)

then we have that

∥uk,ℓ − u⋆
k∥2 ≤

4c0
λ⋆
k − λ⋆

k+1

k−1∑
k′=1

λ⋆
k′ ∥u⋆

k′ − vk′,ℓ−1∥2 (16)

Now, we are going to use induction to proceed with the proof. Notice that, in order to control
∥uk,ℓ − u⋆

k∥2 using Lemma 2, one only need to control the recovery error of all previous eigenvec-
tors ∥u⋆

k′ − vk′,ℓ−1∥2, as given in (15). Thus, fix some k, we will assume the inductive hypothesis
that there exists some s such that for all ℓ ≥ s, we can guarantee (15). For the case of k = 1, this is
obvious, as the left-hand side of (15) is 0. When k ≥ 1 and we can gather the conditions as

∥vk,ℓ − uk,ℓ∥2 ≤ Fk,ℓ

(
∥vk,ℓ−1 − uk,ℓ−1∥2 + ∥uk,ℓ − u⋆

k∥2 + ∥uk,ℓ−1 − u⋆
k∥2
)

∥u⋆
k − vk,ℓ∥2 ≤ ∥vk,ℓ − uk,ℓ∥2 + ∥uk,ℓ − u⋆

k∥2

∥uk,ℓ − u⋆
k∥2 ≤

4c0
λ⋆
k − λ⋆

k+1

k−1∑
k′=1

λ⋆
k′ ∥u⋆

k′ − vk′,ℓ−1∥2 ; ∀ℓ ≥ sk

For simplicity, we let
∥vk,ℓ − uk,ℓ∥2 =: Dk,ℓ; ∥uk,ℓ − u⋆

k∥2 =: Bk,ℓ; ∥u⋆
k − vk,ℓ∥2 =: Gk,ℓ

Moreover, we let Ck = 4c0
λ⋆
k−λ⋆

k+1
. Then the iterates are simplified to

Dk,ℓ ≤ Fk (Dk,ℓ−1 +Bk,ℓ +Bk,ℓ−1)

Gk,ℓ ≤ Dk,ℓ +Bk,ℓ

Bk,ℓ ≤ Ck
k−1∑
k′=1

λ⋆
k′Gk′,ℓ−1

where we set G0,ℓ = 0 for all ℓ. Then Gk,ℓ can be written as

Gk,ℓ ≤ Fℓ−s
k Dk,s +

ℓ−1∑
ℓ′=s

Fℓ−ℓ′

k (Bk,ℓ′ +Bk,ℓ′−1) +Bk,ℓ

for any s ∈ [ℓ]. Here, the first term can be made small as long as we choose a large enough ℓ.
The third term is the unavoidable error propagation. The second term can cause Gk,ℓ to grow, and
needs a careful analysis. To understand the recurrence between Gk,ℓ and Bk,ℓ, we use the following
lemma

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Lemma 3. Let ŝk be given for all k ∈ [K] such that 1 ≤ ŝ1 ≤ · · · ≤ ŝK . Let sk ∈ Z be given for all
k ∈ [K] such that 1 = s0 ≤ s1 ≤ · · · ≤ sK . Consider the sequence {Bk,ℓ}∞ℓ=ŝk

and {Gk,ℓ}∞ℓ=sk−1

for all k ∈ [K] characterized by the following recurrence

Bk,ℓ ≤ Ck

k−1∑
k′=1

λ⋆
k′Gk′,ℓ−1

Gk,ℓ ≤ Fℓ−sk+1
k Dk,sk−1 +

ℓ−1∑
ℓ′=sk−1

Fℓ−ℓ′

k (Bk,ℓ′ +Bk,ℓ′−1) +Bk,ℓ

(17)

Let mk = max{Fk, γk−1} for all k ∈ [K] and m0 = −1. Let {γ}Kk=−1 be given such that
γ−1 = γ0 = 0 and γk = 1

k+1 + k
k+1mk for all k ∈ [K]. Define sequences {B̂k,ℓ}∞ℓ=ŝk

and
{Ĝk,ℓ}∞ℓ=sk−1 for all k ∈ [K] as

B̂k,ℓ =

{
min

{
2,mℓ−ŝk

k−1 (ℓ− ŝk + 1) B̂k,ŝk

}
if ℓ > ŝk

Ck

∑k−1
k′=1 λ

⋆
k′Ĝk′,ŝk−1 if ℓ = ŝk

Ĝk,ℓ =

{
mℓ−sk+1

k (ℓ− sk + 2)Ĝk,sk−1 if ℓ ≥ sk
Dk,sk−1 + B̂k,sk−1 + B̂k,sk−2 if ℓ = sk − 1

(18)

Suppose that ŝk+1 ≥ sk, and sk satisfies satisfies msk−ŝk−2
k−1 ≤ 1

sk−ŝk−1 and sk ≥ kmk−1

1−mk−1
+ŝk+2.

Moreover, suppose that B̂k,ŝk ≤ 2 for all k ∈ [K]. Then the following two conditions hold

1. B̂k,ℓ ≥ Bk,ℓ for all ℓ ≥ ŝk

2. Ĝk,ℓ ≥ Gk,ℓ for all ℓ ≥ sk − 1

The proof of Lemma 3 is deferred to Appendix B.3. Lemma 3 implies that under proper condition
of sk and ŝk, we have

Gk,ℓ ≤ Ĝk,ℓ

≤ max{Fk, γk−1}ℓ−sk+1(ℓ− sk + 1)Ĝk,sk−1

= max{Fk, γk−1}ℓ−sk+1(ℓ− sk + 1)
(
Dk,sk−1 + B̂k,sk−1 + B̂k,sk−2

)
By definition, we have that Dk,sk−1 = ∥vk,sk−1 − uk,sk−1∥2 ≤ 2. Moreover, the definition in (18)
gives that B̂k,sk−1 ≤ 2 and B̂k,sk−2 ≤ 2. Therefore, we can conclude that

Gk,ℓ ≤ 6(ℓ− sk + 1)max{Fk, γk−1}ℓ−sk+1

Now, we go back to the condition of sk and ŝk. The requirement of {sk}Kk=0 and {ŝk}Kk=1 can be
gathered below

1. 1 = s0 ≤ s1 ≤ . . . sK and 1 ≤ ŝ1 ≤ · · · ≤ ŝK

2. ŝk+1 ≥ sk and sk ≥ kmk−1

1−mk−1
+ ŝk + 2

3. msk
k−1 − ŝk − 2 ≤ 1

sk−ŝk−1

4. mℓ−ŝk
k−1 (ℓ− ŝk + 1)

∑k−1
k′=1 λ

⋆
k′Ĝk′,ŝk−1 ≤ c0−1

4c0

(
λ⋆
k − λ⋆

k+1

)
for all ℓ ≥ ŝk

where the first three conditions are directly required by Lemma 3, and the fourth condition is required
because the upper bound on Bk,ℓ in (17) hold only when

k−1∑
k′=1

λ⋆
k′ ∥u⋆

k′ − vk′,ℓ−1∥2 ≤
c0 − 1

4c0

(
λ⋆
k − λ⋆

k+1

)
from Lemma 2. Notice that since B̂k,ŝk = Ck

∑k−1
k′=1 λ

⋆
k′Ĝk′,ŝk−1, enforcing the fourth condition

directly implies that B̂k,ŝk ≤ 2. Now, we are going to simplify these conditions. A useful tool will
be the following lemma, whose proof is provided in Appendix B.4.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Lemma 4. Let m ∈ (0, 1) and ϵ ∈ R be given. Let g(x) = mx(x + 1), and let W−1 (·) be the
Lambert-W function. Then

1. When ϵ ≥ − 1
em logm , then any x ≥ 0 satisfies g(x) ≤ ϵ

2. When ϵ ≤ − 1
em logm , then any x ≥ 1

logmW−1 (ϵm logm)− 1 satisfies g(x) ≤ ϵ

Notice that #4 in the conditions above implies that ∥Σk,ℓ −Σ⋆
k∥F ≤ c0−1

c0

(
λ⋆
k − λ⋆

k+1

)
and

Bk,ŝk =

k−1∑
k′=1

λ⋆
k′Ĝk′,ŝk−1 ≤ c0 − 1

Choose c0 = 3 then guarantees that Bk,ŝk ≤ 2. Now, we aim at simplifying Condition #4 above. To
start, we notice that the term mℓ−ŝk

k−1 (ℓ− ŝk + 1) achieves global maximum at ℓ−ŝk = 1
log 1/mk−1

−1

with value 1
log 1/mk−1

m
1

log 1/mk−1
−1

k−1 . Therefore, it suffices to guarantee that

k−1∑
k′=1

λ⋆
k′Ĝk′,ŝk−1 ≤ − logmk−1 ·m

1
log mk−1

−1

k−1 · 1
6

(
λ⋆
k − λ⋆

k+1

)
From Lemma 3, we have that for ℓ ≥ sk − 1, Gk,ℓ ≤ Ĝk,ℓ, and

Ĝk,ℓ = mℓ−sk+1
k (ℓ− sk + 2) Ĝk,sk−1

with Ĝk,sk−1 ≤ 6. Therefore, it suffices to guarantee that
k−1∑
k′=1

λ⋆
k′m

ŝk−sk′+1
k′ (ŝk − sk′ + 2) Ĝk,sk′−1 ≤ − logmk−1 ·m

1
log mk−1

−1

k−1 · 1
6

(
λ⋆
k − λ⋆

k+1

)
which would be satisfied if we have

λ⋆
k′m

ŝk−sk′+1
k′ (ŝk − sk′ + 2) Ĝk,sk′−1 ≤ −

λ⋆
k − λ⋆

k+1

6(k − 1)
logmk−1 ·m

1
log mk−1

−1

k−1

Thus, ŝk must satisfy for all sk′

m
ŝk−sk′+1
k′ (ŝk − sk′ + 2) ≤ − λ⋆

k − λ⋆
k+1

36λ⋆
k′(k − 1)

logmk−1 ·m
1

log mk−1
−1

k−1 (19)

With the help of Lemma 4, Condition #3 transfers to

sk ≥
1

logmk−1
W−1 (mk−1 logmk−1) + ŝk + 1

Similarly, Condition #4 transfers to

ŝk ≥
1

logmk′
W−1

(
− λ⋆

k − λ⋆
k+1

36λ⋆
k′(k − 1)

logmk−1 ·m
1

log mk−1
−1

k−1 mk′ logmk′

)
+ sk′ − 2

which can be guaranteed as long as

ŝk ≥
1

logmk′
W−1

(
−λ⋆

k − λ⋆
k+1

36kλ⋆
k′

(logmk−1)
2 ·m

1
log mk−1

k−1

)
+ sk′ − 2

Gathering all requirements, we have

sk ≥ max

{
1

logmk−1
W−1 (mk−1 logmk−1) ,

(k − 1)mk−1 + 1

1−mk−1

}
+ ŝk + 1

ŝk ≥
1

logmk′
W−1

(
−λ⋆

k − λ⋆
k+1

36kλ⋆
k′

(logmk−1)
2 ·m

1
log mk−1

k−1

)
+ sk′ − 2

Plugging ŝk into the lower bound of sk shows that the condition in (7) suffice to guarantee that
Lemma 3 holds. Thus, we can conclude that

∥vk,ℓ − u⋆
k∥2 = Gk,ℓ ≤ 6 (ℓ− sk + 2)mℓ−sk+1

k

which finishes the proof.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

B.2 PROOF OF LEMMA 2

Applying the Davis-Kahan Theorem, if we let λk+1,ℓ = λmax (Σk,ℓ), then for all k, ℓ such that
∥Σ⋆

k −Σk,ℓ∥F < λ⋆
k − λ⋆

k+1, we have

∥uk,ℓ − u⋆
k∥2 ≤

∥Σ⋆
k −Σk,ℓ∥F

λ⋆
k − λk+1,ℓ

By definition, we have

Σ⋆
k = Σ−

k−1∑
k′=1

λ⋆
k′u⋆

k′u⋆⊤
k′ ; Σk,ℓ = Σ−

k−1∑
k′=1

(
v⊤
k′,ℓ−1Σvk′,ℓ−1

)
vk′,ℓ−1v

⊤
k′,ℓ−1

Thus, we can write the difference between the two matrices as

Σ⋆
k −Σk,ℓ =

k−1∑
k′=1

(
λ⋆
k′ − v⊤

k′,ℓ−1Σvk′,ℓ−1

)
vk′,ℓ−1v

⊤
k′,ℓ−1 +

k−1∑
k′=1

λ⋆
k′

(
vk′,ℓ−1v

⊤
k′,ℓ−1 − u⋆

k′u⋆⊤
k′

)
It is easy to see that for vk′,ℓ−1 and v⋆

k′ with unit norm,∥∥vk′,ℓ−1v
⊤
k′,ℓ−1 − u⋆

k′u⋆⊤
k′

∥∥2
2
= 2− 2 ⟨vk′,ℓ−1,u

⋆
k′⟩2 ≤ ∥u⋆

k′ − vk′,ℓ−1∥22
Moreover to bound

∣∣∣λ⋆
k′ − v⊤

k′,ℓ−1Σvk′,ℓ−1

∣∣∣, we denote δ = vk′,ℓ−1 − u⋆
k′ , and write

v⊤
k′,ℓ−1Σvk′,ℓ−1 = (u⋆

k′ − δ)
⊤
Σ (u⋆

k′ − δ) = λ⋆
k′ − 2λ⋆

k′δ⊤u⋆
k′ + δ⊤Σδ

Therefore, we have∣∣λ⋆
k′ − v⊤

k′,ℓ−1Σvk′,ℓ−1

∣∣ = ∣∣−2λk′δ⊤u⋆
k′ + δ⊤Σδ

∣∣ ≤ 2λ⋆
k′ ∥vk′,ℓ−1 − u⋆

k′∥2+λ⋆
1 ∥vk′,ℓ−1 − u⋆

k′∥22
This gives

∥Σ⋆
k −Σk,ℓ∥F ≤

k−1∑
k′=1

(
3λ⋆

k′ ∥u⋆
k′ − vk′,ℓ−1∥2 + λ⋆

1 ∥u⋆
k′ − vk′,ℓ−1∥22

)
We then need to assume that, for some c0 > 1,

k−1∑
k′=1

λ⋆
k′ ∥u⋆

k′ − vk′,ℓ−1∥2 ≤
c0 − 1

4c0

(
λ⋆
k − λ⋆

k+1

)
In this scenario, we can conclude that ∥u⋆

k′ − vk′,ℓ−1∥2 ≤ λ⋆
k. Combined with the condition that

λ⋆
1 = 1, we have

∥Σ⋆
k −Σk,ℓ∥F ≤ 4

k−1∑
k′=1

λ⋆
k′ ∥u⋆

k′ − vk′,ℓ−1∥2 ≤
c0 − 1

c0

(
λ⋆
k − λ⋆

k+1

)
Moreover, we have

∥uk,ℓ − u⋆
k∥2 ≤

4

λ⋆
k − λk+1,ℓ

k−1∑
k′=1

λ⋆
k′ ∥u⋆

k′ − vk′,ℓ−1∥2 ≤
4c0

λ⋆
k − λ⋆

k+1

k−1∑
k′=1

λ⋆
k′ ∥u⋆

k′ − vk′,ℓ−1∥2

where the last inequality follows from λ⋆
k−λk+1,ℓ ≥ λ⋆

k−λ⋆
k+1−∥Σ⋆

k −Σk,ℓ∥F ≥ 1
c0

(
λ⋆
k − λ⋆

k+1

)
B.3 PROOF OF LEMMA 3

To start, we will need to prove an auxiliary lemma

Lemma 5. Let the sequence {B̂k,ℓ}∞ℓ=sk−1+1 be defined as

B̂k,ℓ = min
{
2,mℓ−ŝk

k−1 (ℓ− ŝk + 1) B̂k,ŝk

}
with some B̂k,ŝk ≤ 2 and mk−1 ∈ (0, 1). Then for all s that satisfies ms−ŝk

k−1 ≤ 1
s−ŝk+1 and

s ≥ kmk−1

1−mk−1
+ ŝk, we have that

B̂k,ℓ ≤
(
1

k
+

k − 1

k
mk−1

)ℓ−s

B̂k,s

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Proof. To start, by definition, we can write B̂k,s as

B̂k,s = min
{
2,ms−ŝk

k−1 (s− ŝk + 1) B̂k,ŝk

}
Since B̂k,ŝk ≤ 2, we have

ms−ŝk
k−1 (s− ŝk + 1) B̂k,ŝk ≤ 2ms−ŝk

k−1 (s− ŝk + 1) ≤ 2

where the last inequality follows from the condition ms−ŝk
k−1 ≤ 1

s−ŝk+1 . Therefore, we can write
B̂k,s as

B̂k,s = ms−ŝk
k−1 (s− ŝk + 1) B̂k,ŝk

Recall that for any ℓ ≥ s we have

B̂k,ℓ = min
{
2,mℓ−ŝk

k−1 (ℓ− ŝk + 1) B̂k,ŝk

}
Plugging in B̂k,ŝk =

(
ms−ŝk

k−1 (s− ŝk + 1)
)−1

B̂k,s we have

B̂k,ℓ ≤ mℓ−s
k−1 ·

ℓ− ŝk + 1

s− ŝk + 1
· B̂k,s

≤ mℓ−s
k

(
ℓ∏

ℓ′=s+1

ℓ′ − ŝk + 1

ℓ′ − ŝk

)
· B̂k,s

≤ mℓ−s
k

(
s− ŝk + 1

s− ŝk

)ℓ−s

B̂k,s

=

(
mk ·

s− ŝk + 1

s− ŝk

)ℓ−s

B̂k,s

≤
(
1

k
+

k − 1

k
mk

)ℓ−s

B̂k,s

where the last inequality is because s ≥ kmk

1−mk
+ ŝk implies that

mk ·
s− ŝk + 1

s− ŝk
≤ mk ·

kmk

1−mk
+ 1

kmk

1−mk

=
(k − 1)mk + 1

k
=

1

k
+

k − 1

k
mk

This completes the proof.

We will use induction on k to prove the lemma.

Base Case: k = 1. In this case, by the definition of B̂1,ŝ1 , we have B̂1,s1 = 0. Moreover, by
the definition of B̂1,ℓ for ℓ ≥ s1, we have B̂1,ℓ = mℓ−ŝk

0 (ℓ− ŝk + 1) B̂k,ŝk = 0. Lastly, by the
definition of B1,ℓ, we have B1,ℓ = 0. Therefore, we must have that B̂1,ℓ = 0 = B1,ℓ for all ℓ ≥ ŝ1.
This shows Condition #1. Using B̂1,ℓ = 0 = B1,ℓ, we can derive that Ĝ1,ℓ = Fℓ−s1+1

1 D1,s1−1, and
G1,ℓ = Fℓ−s1+1

1 D1,s1−1. This implies that G1,ℓ ≤ Ĝ1,ℓ, and shows Condition #2. Thus, we have
shown that the case k = 1 holds.

Inductive Step. Now, we assume that for all k̂ ≤ k, the following holds

1. B̂k̂,ℓ ≥ Bk̂,ℓ for all ℓ ≥ ŝk̂

2. Ĝk̂,ℓ ≥ Gk̂,ℓ for all ℓ ≥ sk̂ − 1

We wish to show that the above three conditions hold for k̂ = k+1. We start by showing Condition
#1 for k̂ = k + 1. By Condition #2 in the inductive hypothesis, we have that Ĝk̂,ℓ ≥ Gk̂,ℓ for all

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

ℓ ≥ sk̂ − 1. Since ŝk+1 ≥ sk̂ for all k̂ ≤ k, we have that Ĝk̂,ℓ ≥ Gk̂,ℓ for all ℓ ≥ ŝk+1 − 1.
Therefore, in the case of ℓ = ŝk+1

Bk+1,ℓ ≤ Ck+1

k∑
k′=1

λ⋆
k′Gk′,ℓ−1 ≤ Ck+1

k∑
k′=1

λ⋆
k′Ĝk′,ℓ−1 = B̂k,ℓ

Next, we show that B̂k+1,ℓ ≥ Bk+1,ℓ for all ℓ ≥ ŝk+1. If B̂k+1,ℓ ≥ 2, then we directly have
B̂k+1,ℓ ≥ Bk+1,ℓ since Bk+1,ℓ ≤ 2. Otherwise, suppose B̂k+1,ℓ ≤ 2. Since ŝk+1 ≥ sk′ for all
k′ ≤ k, by the definition of Ĝk,ℓ, we have

Ĝk′,ŝk+1−1 = m
ŝk+1−sk′
k′ (ŝk+1 − sk′ + 1) Ĝk′,sk′−1

Based on the definition of B̂k+1,sk , and since mk ≥ mk′ for all k ≥ k, we have that

B̂k+1,ℓ = m
ℓ−ŝk+1

k (ℓ− ŝk+1 + 1) B̂k+1,ŝk+1

= m
ℓ−ŝk+1

k (ℓ− ŝk+1 + 1)Ck+1

k∑
k′=1

λ⋆
k′Ĝk′,ŝk+1−1

≥ Ck+1

k∑
k′=1

λ⋆
k′m

ℓ−ŝk+1

k′ (ℓ− ŝk+1 + 1) Ĝk′,ŝk+1−1

≥ Ck+1

k∑
k′=1

λ⋆
k′m

ℓ−sk′
k′ (ℓ− ŝk+1 + 1) (sk+1 − sk′ + 1) Ĝk′,sk′−1

≥ Ck+1

k∑
k′=1

λ⋆
k′m

ℓ−sk′
k′ (ℓ− sk′ + 1) Ĝk′,sk′−1

= Ck+1

k∑
k′=1

λ⋆
k′Ĝk′,ℓ−1

where the third to the last inequality is due to (ℓ− ŝk+1 + 1)+(sk+1 − sk′ + 1)− 1 = ℓ− sk′ +1,
and for all a ≥ 1, b ≥ 1, we will have ab ≥ a + b − 1. By the inductive hypothesis, we have that
Ĝk′,ℓ ≥ Gk′,ℓ for all ℓ ≥ ŝk+1 ≥ sk′ − 1. Therefore, it must hold that

B̂k+1,ℓ ≥ Ck+1

k∑
k′=1

λ⋆
k′Gk′,ℓ−1 ≥ Bk+1,ℓ

This proves Condition #1 for k̂ = k + 1. Next, we will prove Condition #2 for k̂ = k + 1. To start,
when ℓ = sk+1 − 1, we have

Ĝk+1,ℓ = Dk+1,sk+1−1 + B̂k+1,sk+1−1 + B̂k+1,sk+1−2

while by (17) we have
Gk+1,ℓ ≤ Dk+1,sk+1−1 +Bk+1,sk+1−1

Since B̂k+1,sk+1−2 ≥ 0 and B̂k+1,sk+1−1 ≥ Bk+1,sk+1−1 as proved above for sk+1 ≥ ŝk+1 − 2,
we must have that Ĝk+1,ℓ ≥ Gk+1,ℓ when ℓ = sk+1 − 1. Next, we show that Ĝk+1,ℓ ≥ Gk+1,ℓ

when ℓ > sk+1 − 1. To start,

Gk+1,ℓ ≤ Fℓ−sk+1+1
k+1 Dk+1,sk+1−1 +

ℓ−1∑
ℓ′=sk+1−1

Fℓ−ℓ′

k+1 (Bk+1,ℓ′ +Bk+1,ℓ′−1) +Bk+1,ℓ

≤ Fℓ−sk+1+1
k+1 Dk+1,sk+1−1 +

ℓ∑
ℓ′=sk+1−1

Fℓ−ℓ′

k+1 (Bk+1,ℓ′ +Bk+1,ℓ′−1)

≤ Fℓ−sk+1+1
k+1 Dk+1,sk+1−1 +

ℓ∑
ℓ′=sk+1−1

Fℓ−ℓ′

k+1

(
B̂k+1,ℓ′ + B̂k+1,ℓ′−1

)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

By definition of B̂k+1,ℓ, invoking Lemma 5 with s = sk+1 − 2 and s = sk+1 − 1, we have that, as
long as sk+1 satisfies msk+1−ŝk+1−2

k ≤ 1
sk+1−ŝk+1−1 and sk+1 ≥ (k+1)mk

1−mk
+ ŝk+1 +2, it holds that

B̂k+1,ℓ ≤ γ
ℓ−sk+1+2
k B̂k+1,sk+1−2

B̂k+1,ℓ ≤ γ
ℓ−sk+1+1
k B̂k+1,sk+1−1

for all ℓ ≥ sk. Therefore

Gk+1,ℓ ≤ Fℓ−sk+1+1
k+1 Dk+1,sk+1−1 +

ℓ∑
ℓ′=sk+1−1

Fℓ−ℓ′

k+1

(
B̂k+1,ℓ′ + B̂k+1,ℓ′−1

)

= Fℓ−sk+1+1
k+1 Dk+1,sk+1−1 +

ℓ∑
ℓ′=sk+1−1

Fℓ−ℓ′

k+1 γ
ℓ′−sk+1+1
k

(
B̂k+1,sk+1−1 + B̂k+1,sk+1−2

)
≤ max{Fk+1, γk}ℓ−sk+1+1

(
Dk+1,sk+1−1 + (ℓ− sk+1 + 1)

(
B̂k+1,sk+1−1 + B̂k+1,sk+1−2

))
≤ max{Fk+1, γk}ℓ−sk+1+1(ℓ− sk+1 + 1)

(
Dk+1,sk+1−1 + B̂k+1,sk+1−1 + B̂k+1,sk+1−2

)
= Ĝk+1,ℓ

where in the last equality we use mk+1 = max{Fk+1, γk} and

Ĝk+1,sk+1−1 = Dk+1,sk+1−1 + B̂k+1,sk+1−1 + B̂k+1,sk+1−2

This proves Condition #2 under ℓ > sk+1 − 1, which finishes the induction step and completes the
proof.

B.4 PROOF OF LEMMA 4

First, we prove the case ϵ ≥ − m
e logm . Notice that the function g(x) achieves global maximum at

x = 1
log 1/m − 1 with value 1

log 1/mm
1

log 1/m
−1. Moreover, notice that

1

log 1/m
m

1
log 1/m

−1 = −m
1

− log m

m logm
= −e−

1
log m ·logm

m logm
= − 1

em logm
≤ ϵ

Therefore, for all x ≥ 0 we would have g(x) ≤ ϵ. Next, we consider the case ϵ ≤ − 1
em logm . In

this case, x ≥ 1
logmW−1 (ϵm logm)− 1 implies that

(x+ 1) logm ≤W−1 (ϵm logm)

By the monotonicity of W−1, we have

(x+ 1) logm · e(x+1) logm ≥ ϵm logm

which gives (x+ 1)ex logm ≤ ϵ. Thus, we have g(x) = (x+ 1)mx ≤ ϵ.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

C STOCHASTIC PARALLEL DEFLATION ALGORITHM

In this section, we provide the explicit form of the stochastic version of the parallel deflation algo-
rithm as discussed in Section 3. Notice that in this algorithm we choose Hebb’s rule as the Top− 1
subroutine for the convenience of a clearer presentation. However, any subroutine that use Σk,ℓ only
for a matrix-vector multiplication can enjoy a similar efficient implementation.

Algorithm 2 Stochastic Parallel Deflation with Hebb’s Rule

Require: Batch of data in the (ℓ, t)th iteration Ŷℓ,t; # of eigenvectors (workers) K; # of iterations
T ; global communication rounds L ≥ K, step size η.

Ensure: Approximate eigenvectors {vk}Kk=1.
1: for k = 1, . . . ,K do
2: Randomly initialize v̂k,init with unit norm;
3: end for
4: for ℓ = 1, . . . , L do
5: for k = 1, . . . ,K do
6: if k ≤ ℓ then
7: Receive v1,ℓ−1, . . . ,vk−1,ℓ−1

8: vk,ℓ,0 := vk,ℓ−1;
9: for t = 1, . . . , T do

10: λ̂k′,ℓ,t = ∥Ŷℓ,tvk′,ℓ−1∥22 ∀k′ ∈ [k − 1];

11: gk,ℓ,t = Ŷ⊤
k,ℓ,tŶk,ℓ,tvk,ℓ,t−1 −

∑k−1
k′=1 λ̂k′,ℓ,t

(
v⊤
k′,ℓ−1vk,ℓ,t−1

)
· vk′,ℓ−1

12: vk,ℓ,t := (vk,ℓ,t−1 − ηgk,t,ℓ)/ ∥vk,ℓ,t−1 − ηgk,t,ℓ∥2
13: end for
14: Broadcast vk,ℓ := vk,ℓ,T

15: else
16: vk,ℓ := v̂k,init;
17: end if
18: end for
19: end for
20: return {vk,L}Kk=1

D BASELINE ALGORITHMS

We provide the generalization of the EigenGame-α Gemp et al. (2020) and EigenGame-µ Gemp
et al. (2022) algorithms with multiple iterations of local updates T ≥ 1 in Algorithm 3 and Al-
gorithm 4. In particular, it should be noted that EigenGame-α and EigenGame-µ use covariance
matrices computed on subsets of the data in each iteration, where in our case we assume that the
covariance matrix is computed on the whole dataset before the algorithm runs. Moreover, if we
set T = 1 in both Algorithm 3 and Algorithm 4, then we recover the original EigenGame-α and
EigenGame-µ algorithms.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Algorithm 3 EigenGame-α

Require: Σ ∈ Rd×d; # of eigenvectors (workers) K; # of iterations T ; global communication
rounds L ≥ K, step size η.

Ensure: Approximate eigenvectors {vk}Kk=1.
1: for k = 1, . . . ,K do
2: Randomly initialize v̂k,init with unit norm;
3: end for
4: for ℓ = 1, . . . , L do
5: for k = 1, . . . ,K do
6: if k ≤ ℓ then
7: Receive v1,ℓ−1, . . . ,vk−1,ℓ−1

8: vk,ℓ,0 := vk,ℓ−1;
9: for t = 1, . . . , T do

10: gk,ℓ,t := Σvk,ℓ,t−1 −
∑k−1

k′=1

v⊤
k′,ℓ−1

Σvk,ℓ,t−1

v⊤
k′,ℓ−1

Σvk′,ℓ−1
·Σvk′,ℓ−1;

11: vk,ℓ,t := (vk,ℓ,t−1 − ηgk,t,ℓ)/ ∥vk,ℓ,t−1 − ηgk,t,ℓ∥2
12: end for
13: Broadcast vk,ℓ := vk,ℓ,T

14: else
15: vk,ℓ := v̂k,init;
16: end if
17: end for
18: end for
19: return {vk,L}Kk=1

Algorithm 4 EigenGame-µ

Require: Σ ∈ Rd×d; # of eigenvectors (workers) K; # of iterations T ; global communication
rounds L ≥ K, step size η.

Ensure: Approximate eigenvectors {vk}Kk=1.
1: for k = 1, . . . ,K do
2: Randomly initialize v̂k,init with unit norm;
3: end for
4: for ℓ = 1, . . . , L do
5: for k = 1, . . . ,K do
6: if k ≤ ℓ then
7: Receive v1,ℓ−1, . . . ,vk−1,ℓ−1

8: vk,ℓ,0 := vk,ℓ−1;
9: for t = 1, . . . , T do

10: gk,ℓ,t := Σvk,ℓ,t−1 −
∑k−1

k′=1 v
⊤
k′,ℓ−1Σvk,ℓ,t−1 · vk′,ℓ−1;

11: vk,ℓ,t := (vk,ℓ,t−1 − ηgk,t,ℓ)/ ∥vk,ℓ,t−1 − ηgk,t,ℓ∥2
12: end for
13: Broadcast vk,ℓ := vk,ℓ,T

14: else
15: vk,ℓ := v̂k,init;
16: end if
17: end for
18: end for
19: return {vk,L}Kk=1

25

	Introduction
	Related Works

	Problem statement and background
	Parallel Deflation Algorithm
	Convergence Guarantee for Parallel Deflation Algorithm
	Experiments
	Conclusion
	Missing Proof from Section 3
	Missing Proof from Section 4
	Proof of Theorem 2
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4

	Stochastic Parallel Deflation Algorithm
	Baseline Algorithms

