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Abstract: Natural language is becoming increasingly important in robot control
for both high-level planning and goal-directed conditioning of motor skills. While
a number of solutions have been proposed already, it is yet to be seen what ar-
chitecture will succeed in seamlessly integrating language, vision, and action. To
better understand the landscape of existing methods, we propose to view the algo-
rithms from the perspective of “Language-Based Task Representations”, i.e., cat-
egorizing the methods that condition robot action generation on natural language
commands according to their task representation and embedding architecture. Our
proposed taxonomy intuitively groups existing algorithms, highlights their com-
monalities and distinctions, and suggests directions for further investigation.
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1 Introduction
The rapid advent of Large Language Models (LLM) and related multi-modal architectures has
demonstrated the power of general-purpose self-supervised pre-training on multi-task datasets [1].
These advancements have been quickly adopted in robotics for task planning, reasoning, skill condi-
tioning, and more [2, 3, 4]. However, the search for the most general and efficient system architecture
that integrates language representations with vision and other sensory modalities as well as robot ac-
tions is still ongoing. In this paper, we systematically investigate the landscape of the methods in this
area, published predominantly within the last four years, that incorporate natural language represen-
tations into robot control. Due to the fast pace of the field, we may have not covered all the papers,
but we made the best effort to highlight the representative papers in each category of methods.

As a unifying perspective, we propose to consider language-based task representations. The key
question for connecting language to action is How should language be grounded in observations
such that a downstream policy can generate task-specific actions for fine-grained control? This
overall problem can be split into two parts. First, learning ‘sufficient’ task representations that
contain all task-relevant information. Second, training a task-conditioned policy that utilizes these
learned representations. In the following, we show how different approaches solve these two sub-
problems, and we identify and contrast their corresponding design choices.

This paper focuses on the interface between language commands and low-level robot control ac-
tions, i.e., language-conditioned robot control. For applications of language to high-level plan-
ning/decision making and embodied AI, we refer to [5, 6]. We further restrict the scope to only
those approaches that have been demonstrated on real or simulated robot platforms. In addition, all
considered algorithms are vision-based and output discrete or continuous control actions that can
modulate the robot behavior at a fine-grained level, such as end-effector waypoints. Thus, we leave
out the approaches that output language skill labels that are used for calling pre-defined skills from
an existing skill-library. Instead, we are interested in the interplay between the representations of
language, vision, and action.
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Figure 1: Proposed taxonomy of task representations. The two main categories of the taxonomy
are Implicit and Explicit, each containing two sub-categories. Implicit Representations can be
Localized or Distributed. Explicit Representations are either Flat or Sequential.

2 Language-Based Task Representations for Robot Control

A task refers to a specific goal or objective described in natural language that a robot needs to
achieve in a given environment. It can be formulated as a process, such as grab the block, or as a
description of the target outcome, e.g., red block on blue block. A task itself is abstract and context-
independent, since the same task can be given to different robots in different environments. Only
the task execution is context-dependent.

A Task Tepresentation (TR) encodes all the necessary information about the task in the context
of the current observation or observation history regarding what to achieve, such that the down-
stream task-conditioned policy can figure out how to achieve it. Therefore, if task representations
are disentangled, the policy can easily distinguish between and generalize across tasks.

Task representations can have a range of implementations, from a raw concatenation of representa-
tions of each individual modality, e.g., vision and language, to a refined and processed output, such
as a list of end-effector waypoints (see Fig. 1). The choice of the task representation is intertwined
with the choice of the policy implementation, i.e., if the task representation is unstructured (e.g.,
concatenation of embeddings), the policy needs to learn a complex mapping to generate actions,
whereas a very structured task representation, (e.g., an action-value function) allows the policy to
be extremely simple (e.g., a maximization operator). Figure 1 shows our taxonomy of task repre-
sentations, which has two levels: implicit vs. explicit, and localized vs. distributed. The following
sections describe each category in greater detail.

2.1 Implicit Task Representations

An Implicit Task Representation (ITR) is internal to the neural network and is not directly human-
interpretable, such as an embedding vector or weights of a whole neural network. ITR’s are com-
monly produced by auto-encoding architectures or via self-attention/cross-attention modules. There
is a number of distinguishing features of different implicit task representations. On the highest level,
a categorization into localized and distributed representations can be made.

2.1.1 Implicit Localized Task Representations
An Implicit Localized Task Representation (ILTR) captures all task-relevant information within
a single concrete abstraction, e.g., a latent vector (see Fig. 2). An ILTR can be seen as grounding
language instructions in the visual observations of the robot. Given the ILTR, robot actions can be
generated in a context-specific and task-directed manner by conditioning the policy on the ILTR.
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Figure 2: Implicit
Localized Task
Representations
(ILTR).

A key question here is What information does the ILTR encode and how much
does the policy need to learn? Therefore, it is crucial to consider how the
policy conditioning mechanism is implemented: whether the policy gets raw
observations as input in addition to the task representation, or whether it only
gets the task representation.

Observation-Conditioned Policies
A large set of methods use task representations as a conditioning/context vari-
able ct, i.e., as an additional input to the policy, π(at|ot, ct(o0:t, l)), along
with the current observation ot. The task representation ct is conditioned
on a language embedding l and the observation history o0:t, thus encoding
a skill to execute or a goal to reach. Still, the policy gets the current ob-
servation ot as an additional direct input. Note that the history-dependence
may be incorporated to a varying degree, distinguishing between static con-
text, ct(o0, l), used in [7, 8, 9], and dynamic context, ct(o0:t, l), employed
in [10, 11, 12]. Below we describe the algorithms that employ observation-conditioned policies in
more detail, paying particular attention to feature representation. A list overview of these methods
can be found in the top row of Fig. 2.

There is a significant variability among the methods in how they implement feature alignment, i.e.,
the combination of vision, language, proprioception, and other modalities to obtain a task represen-
tation. First, we describe methods that use static context embeddings, i.e., the task representation
does not change during the task execution. LangLfP [7] and HULC [8] employ generic latent
representations, given as the latent distribution of a Sequence-to-Sequence Conditional Variational
Autoencoder (seq2seq cVAE) [13] tailored to robotic action generation. In this case, the ILTR is a
sampled latent plan that encodes how to get from the current state to a latent goal state. CLASP [9]
focuses on learning a shared representation for a given language task and its corresponding state-
action trajectory. Separate encoders of both modalities output the parameters of a Gaussian distri-
bution. To align the modalities, CLASP leverages the contrastive loss of CLIP [14]. Additional
loss components are introduced through auxiliary learning tasks. Within behavior generation, the
authors generate 2D delta actions for tabletop rearrangement based on the current observation and
the language embedding sampled from the shared distributional representation.

Observation-conditioned policies with dynamic context employ further feature encoding architec-
tures. LanguagePolicies [10] leverage object-centric representations, aligning features of detected
objects in the current observation with a given language task via an attention network. The out-
put gets concatenated with the language task encoding and passed through a single fully connected
layer to yield an ILTR, on which an underlying movement primitive is conditioned. Hiveformer [11]
additionally incorporates multi-view observations and the full observation history into the task rep-
resentation. They employ the default CLIP model for language task embedding, while training
a UNet [15] for multi-view observation encoding. A multimodal transformer, that relates the
encoded current observation with the encoded observation history and language task embedding,
outputs the ILTR on which the next end-effector pose and gripper state gets predicted. Along
with continuous embeddings, discrete task representations can be utilized. LISA [12] leverages
VQ-VAE [16] to learn a low-dimensional discrete codebook of skills, similar to HULC. Given
a language-labeled state-action trajectory, a causal transformer predicts a skill code which gets
mapped to the closest vector in the codebook; this codebook vector plays the role of the discrete
ILTR in this case.

Task-Conditioned Policies
The second big category of algorithms conditions the policy π on the task representation ct alone,
π(at|ct(o0:t, l)), meaning that the current observation ot gets completely integrated into the context
variable ct together with the history o0:t−1 and the language embedding l before entering the policy.
Therefore, all task representations in this category are dynamic, i.e., the context variable ct depends
on the current observation ot in a non-trivial manner. An overview list of methods in this category
can be found in the bottow row of Fig. 2.
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BC-Z [17] and GRIF [18] specify a task using either language or vision and map both modalities into
a shared task embedding space, similar to LangLfP and HULC. BC-Z leverages human demonstra-
tion videos next to language tasks, while GRIF uses pairs of (initial, goal)-images. In addition, GRIF
explicitly aligns both task specifications by contrastive learning before training the downstream pol-
icy, while BC-Z trains the task encoders and downstream policy together. Both methods obtain the
ILTR by using Feature-wise Linear Modulation (FiLM) layers [19] to condition the ResNet en-
coding of the current visual observation on an obtained latent task embedding. The ouput passes
fully connected layer to predict deterministic continuous robotic actions in BC-Z and stochastic
continous actions in GRIF.

Instead of using the current observation alone, RT-1 [20] encodes an observation history of 6 im-
ages using EfficientNet [21] and conditions the architecture on language tasks using FiLM-layers.
Obtained vision-language tokens are further compressed by a TokenLearner [22] whose output cor-
responds to the ILTR. In the following, a decoder-only transformer policy generates action tokens
for an 11-DoF discretized action space (6-DoF end-effector pose + gripper state + 3-DoF base +
action mode). The FiLM layers are further used in MT-ACT [23]. Similar to LangLfP and HULC,
they leverage a cVAE architecture to capture the multimodal trajectory distribution in the teleop-
eration dataset. A distinguishing feature is the combined use of FiLM-layers and encoder-decoder
Transformer. MT-ACT produces a sequence of 8-DoF robot actions (7-DoF joint positions + gripper
state) where the next action is the temporal ensemble of predicted actions for the next timestep[24].

Next to FiLM-conditioning, some methods also leverage the attention mechanism for vision-
language alignment. LAVA [3] fuses image encodings with language embeddings via cross-
attention frame-by-frame, and subsequently applies self-attention to the obtained vision-language
embedding sequence, average-pooling the resulting output time series over the time dimension to
obtain the ILTR. The downstream policy is a deep residual MLP which controls the robot end-
effector with 2D delta actions in a tabletop rearrangement scenario. Instead of separately encoding
the vision and language modality, InstructRL [25] leverages a pre-trained Multimodal Masked
Autoencoder (M3AE) [26] to encode both modalities together. The ILTR consists of the limited
history of vision-language encodings of all cameras as well as linear mappings of proprioception
and action information to the same representation space. InstructRL’s transformer-based policy cap-
tures the relationships among all the different features and predicts action tokens which are then
passed into a feature map to predict the next 7-DoF keyframe action (6-DoF end-effector pose +
gripper state). A keyframe action fulfills at least one of two criterions: the gripper state changes
or velocities approach near zero [27]. Voltron [28] also jointly encodes the vision and language
modality by following a masked autoencoding pipeline. However, while M3AE learns to purely
reconstruct masked (image, text) pairs, Voltron introduces a trade-off parameter between language-
conditioned image reconstruction and image-based language generation. The choice of language
generation over masked language modeling is especially beneficial for short, predictable language
labels. The learned encoder weights get frozen and the latent representation, corresponding to the
ILTR, is used for downstream language-conditioned robotic manipulation by MLP-mapping to the
next best end-effector keyframe pose.

MUTEX [29] combines multiple features of previously described approaches. They specify the
task in six different modalities, from video demonstrations over text instructions to speech goals.
Task specifications are separately encoded, masked and projected into a common embedding space.
Resulting tokens are fused with observation tokens through multiple self- and cross-attention layer
before being passed to a Transformer decoder to predict a Gaussian mixture model for continuous
actions and the masked tokens.

2.1.2 Implicit Distributed Task Representations

An Implicit Distributed Task Representation (IDTR), in contrast to the localized TR, cannot be
pinpointed to one particular location within the neural network but is rather spread across the weights
and layers of abstraction. The models in this category are potentially very powerful because they do
not have the artificial bottlenecks of ILTR’s with pre-defined dimensionality but rather can leverage
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the full bandwidth of network connections. The drawback, however, is that the ease of sharing of
the embeddings and the modularity are reduced in these models.

RT-2∙VIMA

Figure 3: Implicit
Distributed Task
Representations
(IDTR).

The two notable IDTR models are VIMA [30] and RT-2 [31]. VIMA leverages
object-centric representations, similar to Language Policies [10]. They en-
code an observation-action history conditioned on a given multimodal prompt
through a series of cross-attention layers alternating with self-attention lay-
ers, thereby intermixing the representations at multiple levels in the hierar-
chy. The output is an action token that gets mapped to start and goal SE(2)
poses. Due to its architecture, VIMA allows for interleaving text and im-
ages within the task specification. RT-2, on the other hand, co-fine-tunes
large vision-language models [32, 4] to directy perform closed-loop robot
control by representing robot actions as language tokens. Each dimension of the 7-DoF action
space (6-DoF end-effector pose + gripper extension) is uniformly discretized into 256 bins denoted
by successive natural numbers corresponding to tokens. Thus, RT-2 represents a truly end-to-end
monolithic vision-language-action model capable of online robot control at 1-5Hz depending on the
model size.

2.2 Explicit Task Representations

An Explicit Task Representation (ETR) is given by a structured and generally human-interpretable
abstraction, such as a reward function or a value function. ETR’s enable modular design, with
outputs of each module being testable independently.

2.2.1 Explicit Flat Task Representations

Concept2Robot 
LAMP∙LCA

Language Costs
LIV∙LOReL

PixL2R∙VoxPoser 
ZSRM

CLIPort∙Masked-
Spot-Q∙Perceiver-

Actor∙RVT
LAD∙MDT∙SUDD

Figure 4: Explicit
Flat Task Represen-
tations (EFTR).

An Explicit Flat Task Representation (EFTR) is an ETR that is given by
a concrete localized object at the output of a neural network, e.g., a value
map. The EFTR then serves as a compact representation of all the infor-
mation needed for the policy to make the decision what action to take. We
discern Reward-, Value-, and Score-based EFTR’s (R-, V-, and S-EFTR’s, re-
spectively). Similar to ILTR, the distinction between these categories is in
the amount of computation and reasoning the policy needs to do, e.g., for R-
EFTR’s, the policy needs to optimize the long-term sum of rewards, whereas
V-EFTR directly provides the Q-function which only needs to be maximized.

Reward-Based Task Representations
Reward-Based Explicit Flat Task Representations (R-EFTR) provide a
sparse or dense supervision signal to the policy in the form of a reward/cost.
The policy is then either trained to optimize this reward or a trajectory planner
is used. In the following, we describe the algorithms in this category, paying
special attention to how the rewards are generated and how the subsequent policy is implemented
and trained.

Reward Generation. A common approach to reward generation is to train a reward model from
scratch. PixL2R [33] and Concept2Robot [34] both predict whether a given video sequence and a
language task are related. While Concept2Robot trains a video classification network to evaluate
the video of a fully recorded trajectory, PixL2R uses a regression loss to also predict the relatedness
score of partial trajectories. The binary classifier of LOReL [35] instead predicts whether going from
an initial to the current observation solves the given language task.

Rewards can also be generated by pre-trained foundation models. ZSRM [36] and LCA [37] fine-
tune CLIP [14] on in-domain data and leverage the cosine similarity between the CLIP-encoded task
description and the image observation as the reward. LAMP [38] chooses pre-trained R3M [39] over
other vision-language models as it is explicitly trained to understand temporal information within
videos. LAMP leverages the score predictor of R3M to measure task progress under a given lan-
guage task and weights this reward with a novelty-based exploration score. VoxPoser [40] generates
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voxel value maps in 3D observation space using the reasoning and coding capabilities of an LLM.
Based on a given instruction, the LLM calls perception APIs to obtain spatial-geometric information
of the scene and then generates numpy operations to manipulate 3D reward arrays. This results in
sparse voxel value maps which get densified via smoothing operations.

Alternatively, preferences or value differences can be utilized for reward generation. LIV [41]
learns an embedding space where the similarity metric between an observation and a language task
corresponds to an implicit value function. The value difference of two subsequent states is then
used as a reward. Language Costs [42] uses language preferences to correct hand-crafted costmaps.
A generative model is trained to output language-conditioned 2D costmaps and binary masks over
them which are combined using element-wise multiplication. The result gets added to the hand-
crafted costmaps to close the misalignment gap between the intended and executed tasks.

Policy Learning. Depending on how the learned reward model is used for policy learning, we dis-
tinguish between pure learned-reward methods that use only the learned rewards and composite-
reward methods that combine the learned and the environment rewards. We further distinguish
between model-free and model-based methods according to the RL algorithm used, noting that the
learned reward model can also be directly used for Model Predictive Control (MPC) [35, 41, 42, 40].

Concept2Robot [34] and ZSRM [36] are pure learned-reward methods, that employ model-free RL
to train single-task policies which are subsequently used to train a multi-task policy via Behavior
Cloning (BC). This two-step process is more stable for multi-task training as the learned reward sig-
nal may be noisy and biased towards some tasks. LAMP [38] is another pure learned-reward method
that similarly questions the reliability of the vision-language reward models and suggests using them
only for pre-training. LAMP pre-trains a model-based RL algorithm using solely the learned re-
ward model and fine-tunes pre-trained skills using downstream environment reward. In comparison
to a randomly initialized agent, the pre-trained agent is biased to explore semantic meaningful paths
and is able to quickly adapt to unseen task rewards during fine-tuning.

On the other hand, PixL2R [33] is a composite-reward method, that uses the predicted relatedness
score as an intermediate reward for potential-based reward shaping [43] to train single-task model-
free RL policies. Likewise, as a composite-reward method, LCA [37] leverages a learned reward
model to provide additional guidance to a model-free RL agent by generating and evaluating sub-
tasks on which a self-imitation policy is trained in a collect-infer cycle [44].

Value-Based Task Representations
While reward-based representations still require the dynamics model of the environment or need to
train a policy to optimize the reward, Value-Based Explicit Flat Task Representations (V-EFTR)
bake the dynamics together with the reward into a Q-function. By taking the maximum argument
over the Q-function, the next optimal end-effector position or pose is obtained which can be reached
using a motion planner or movement primitive.

Masked-SPOT-Q [45] represents language-conditioned pick-and-place locations by pixel-based Q-
functions. It leverages the vision-only robot manipulation model SPOT-Q [46] to determine how
to act, developing a transformer model that predicts where to act. This transformer model maps a
language task and a visual observation into distinct spatial image masks for picking and placing.
These masks are combined with the Q-function of SPOT-Q to obtain language-conditioned pixel-
wise Q-values.

In contrast, CLIPort [47] not only predicts pick-and-place locations but full SE(2) end-effector
poses. It extends Transporter [48] to enable language-conditioning by adding a semantic network to
the spatial Transporter network. The semantic network consists of the image and language encoders
of pre-trained CLIP [14] and an introduced decoder which outputs a Q-function-based affordance
map used for pick-and-place end-effector pose prediction.

One step further, Perceiver-Actor [49] extends the formulation of Q-functions as task representations
to manipulation tasks in SE(3). Following [50], Perceiver-Actor employs 3D voxelization to build
a structured observation space, and utilizes 6-DoF end-effector keyframes (waypoints) as actions.
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To deal with long vision-language sequences, Perceiver-Transformer [51] maps them to a lower-
dimensional latent space before processing and decoding the embeddings into separate action-value
functions for the end-effector’s translation, rotation and binary gripper state as well as a binary
collide variable of the used motion planner.

The voxel-based representations, however, significantly increase the training time. Therefore,
Robotic View Transformer (RVT) [52] proposes an image-based method for 3D object manipula-
tion, that instead of voxelizing multi-view observations, reconstructs a point cloud of the scene and
re-renders it from several virtual viewpoints before producing image tokens. The image tokens are
fed into a transformer model together with the encoded language task and gripper state. The output
of the transformer gets decoded into Q-functions as in Perceiver-Actor.

Score-Based Task Representations

Next to predicting the Q-function as the task representation, an increasingly popular approach is
to model the score function ∇aQ(s,a). SUDD [53], which adds language-conditioning to Diffu-
sion Policy [54], LAD [55] and MDT [56] are all formulated as Denoising Diffusion Probabilistic
Models (DDPMs) [57, 58, 59]. They train a noise prediction network to model the score function
of the conditional action distribution. During inference, they use the generative process of Denois-
ing Diffusion Implicit Models (DDIM) [60] to optimize a Gaussian noise sample with respect to
the gradient field to obtain a 7-DoF (6-Dof end-effector + gripper state) action sequence. The ac-
tion plan gets executed open-loop until a new sequence is sampled. A distinguishing feature is the
network architecture used for noise prediction. SUDD is based on Diffusion Policy which uses a
decoder-only transformer while LAD uses a modified temporal U-Net [61], similar to latent dif-
fusion models [62]. MDT allows for multimodal task specifications and uses an encoder-decoder
transformer architecture to further tackle the challenge of modality alignment.

2.2.2 Explicit Sequential Task Representations

DALL-E-Bot
F3RM∙KITE
LERF-TOGO 

ModAttn
ProgramPort

Figure 5: Explicit
Sequential Task
Representations
(ESTR).

An Explicit Sequential Task Representation (ESTR) consists of multiple
human-interpretable representations of a task, at different levels of abstrac-
tion or for different subtasks. The architecture is typically modular, with the
output of each sub-module corresponding to a part of the overall task repre-
sentation.

ESTR over different levels of abstraction is present in DALL-E-Bot [63],
a modular approach built around pre-trained DALL-E 2 [64] for object rear-
rangement tasks. Here, object-level segmentation masks of an initial scene
image and a DALL-E 2 generated goal image are being aligned to obtain
the transformations between objects. These transformations are used for rear-
ranging the objects with a sequence of pick-and-place operations. Each mod-
ule involved in this process contributes a different level of abstraction to the
ESTR, i.e. the generated rearrangement image, the segmentation masks, and the desired pick-and-
place poses. Similarly, KITE [65] also uses different levels of abstraction for its task representation
in a high-precision manipulation task. Given a fine-grained language task such as pick up the stuffed
bear by the ear, the described object part gets represented by a keypoint in the visual scene and an
LLM infers a task-matching language-labeled skill from a skill library. The selected skill consists
of a learned policy that outputs waypoints and a skill-specific controller that outputs a low-level
trajectory between the waypoints. The task representation is sequential because no single level of
abstraction, i.e., the skill label, the keypoint, and the waypoints, is enough for precise low-level
action generation.

Another line of research generates an ESTR around Neural Radiance Fields (NeRF) [66].
F3RM [67] generates a CLIP-based distilled feature field (DFF) and represents 6-DoF gripper
demonstration poses in it. During a sequential inference process, they can infer gripper poses that are
aligned with a given CLIP-encoded language task. LERF-TOGO [68] improves the spatial grouping
of LERF [69] relevancy outputs. In their sequential process, they reconstruct the scene, render an
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object-centric point cloud, extract a 3D object mask and condition an instructed object part on this
object mask to output a ranking of viable grasps.

Next to the different levels of task abstraction, the ESTR can also be composed of different sub-
task representations. ModAttn [70] divides a language task into subtasks where each subtask is
assigned to a module inside a single overarching neural network. A module is defined by a super-
vised attention layer trained to maximize subtask-specific attention map elements provided by the
user. Modules are arranged in a sequence where the output of one module corresponds to the
input of the next one. Information can further be propagated through attention layers using slot
attention [71]. The user can query each of the module outputs, e.g., the displacement of the end-
effector from the object to manipulate. The output of all modules together corresponds to the ESTR.
ModAttn outputs sequences of 6+1D gripper poses at every timestep. ProgramPort [72] is another
approach that generates subtasks. It uses Combinatory Categorial Grammar [73] to parse a given
language task into an executable program of hierarchically structured operations. An operation
calls a functional module which consist of learnable neural networks for either visual grounding
or action generation. E.g., filter calls a visual grounding module that localizes language-specified
objects in the current observation and outputs a visual mask. The sequential output of the visual
grounding modules corresponds to the ESTR. Based on the ESTR and the current observation, the
action module do based on CLIPort outputs pick-and-place SE(2) end-effector poses.

3 Discussion & Conclusion
In this paper, we have proposed a classification of methods for language-based robot control from the
perspective of task representations. We have identified several criteria which characterize different
methods and allow for a systematic categorization, depending on whether the task representations
are explicit, such as a value map over a voxelized 3D space, or implicit, such as a latent vector of
an auto-encoding architecture. Within each category, we further grouped the representations into
localized and distributed, according to the modularity of the corresponding network architectures.

Based on the presented overview, we can identify a number of commonalities and trends with regards
to the types of representations and their uses in different scenarios. The grounding of Implicit Lo-
calized Task Representations (ILTR) in the visual observation space is commonly accomplished
using auto-encoding architectures, self-/cross-attention layers, or via FiLM-conditioning (Sec 2.1.1).
While early methods typically leveraged pre-trained encoder models from the vision and language
domain, latest paper learn representations specifically tailored for downstream robotic action gener-
ation. A large number of approaches fall into the category of ILTR’s thanks to the convenience of
combining pre-trained encodings. However, the biggest and most powerful models, such as VIMA
and RT-2, instead favor Implicit Distributed Task Representations (IDTR), which leverage the
full representational power of the neural networks, spreading the representation across the weights
and layers. The trade off here is the loss of modularity and a higher computational cost (Sec. 2.1.2).

Explicit Flat Task Representations (EFTR) is the most widely used category of representations ac-
cording to our survey (see Sec. 2.2.1), thanks to the generality and interpretability of the reward- and
value-based task representations chiefly comprising this family of methods. Two important trends
in this category are the use of discretized space representations such as 3D voxelization and the
prediction of sparse keyframe actions. In addition, we note the rise in the popularity of score-based
task representations, which build upon the success of diffusion-based models in image generation.
Finally, Explicit Sequential Task Representations (ESTR) covered in Sec. 2.2.2, are yet relatively
uncommon, presumably because they deal with hierarchies of abstractions and sub-tasks, which are
still not well explored in the context of language-based robot control. Nevertheless, ESTR’s are well
suited for a more classical modular algorithm design paradigm, since every component produces an
explicit and interpretable output and can be debugged separately.

There are still many open research questions, and we hope that our review provides a perspective and
guidance within the vast design space of language-based robot control algorithms. In future work,
we aim to further study the properties of task representations, focusing on transfer and generalization
in the representation space, leveraging similarity and differences across tasks.
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