
Partial Information Decomposition via Normalizing
Flows in Latent Gaussian Distributions

Wenyuan Zhao1 Adithya Balachandran2 Chao Tian1 Paul Pu Liang2

1Texas A&M University
2Massachusetts Institute of Technology

1{wyzhao, chao.tian}@tamu.edu, 2{adithyab, ppliang}@mit.edu

Abstract

The study of multimodality has garnered significant interest in fields where the
analysis of interactions among multiple information sources can enhance predictive
modeling, data fusion, and interpretability. Partial information decomposition (PID)
has emerged as a useful information-theoretic framework to quantify the degree to
which individual modalities independently, redundantly, or synergistically convey
information about a target variable. However, existing PID methods depend on
optimizing over a joint distribution constrained by estimated pairwise probability
distributions, which are costly and inaccurate for continuous and high-dimensional
modalities. Our first key insight is that the problem can be solved efficiently
when the pairwise distributions are multivariate Gaussians, and we refer to this
problem as Gaussian PID (GPID). We propose a new gradient-based algorithm
that substantially improves the computational efficiency of GPID based on an
alternative formulation of the underlying optimization problem. To generalize the
applicability to non-Gaussian data, we learn information-preserving encoders to
transform random variables of arbitrary input distributions into pairwise Gaussian
random variables. Along the way, we resolved an open problem regarding the
optimality of joint Gaussian solutions for GPID. Empirical validation in diverse
synthetic examples demonstrates that our proposed method provides more accurate
and efficient PID estimates than existing baselines. We further evaluate a series of
large-scale multimodal benchmarks to show its utility in real-world applications of
quantifying PID in multimodal datasets and selecting high-performing models.

1 Introduction

Multimodal machine learning is a fast-growing subarea of artificial intelligence research that aims to
develop systems capable of integrating and fusing many heterogeneous modalities [2, 31]. In addition
to much empirical progress, there has been a recent drive toward building theoretical foundations to
understand when information in individual modalities is important and how this information becomes
contextualized in the presence of other modalities [32]. This aspect of quantifying interactions
provides valuable insights into the significance of different modalities, the necessary amount of data
required in each modality, and the methods most suitable for fusing multimodal representations [15,
18, 26, 27, 35, 61]. Partial Information Decomposition (PID), an advanced framework rooted in
information theory, has been used as a formal framework to analyze how information is distributed
among multiple data sources for a target task variable [5, 17, 55].

One fundamental challenge of PID is its high computational complexity, especially when the size and
dimensionality of the datasets are large [43]. Accurate estimation of information-theoretic measures,
such as mutual information (MI), from empirical data is non-trivial and even prohibitive, particularly
for high-dimensional or continuous distributions [38]. Estimating PID also presents a significant

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

challenge, as analytic approximations of these quantities can only be obtained when the features are
pointwise discrete or low-dimensional. However, for large-scale datasets, the number of optimization
variables can be exponential in the number of neurons [53]. The computational burden requires
significant approximations or simplifications based on sampling that may compromise the accuracy of
PID estimation [12]. Therefore, it is necessary to develop a PID estimator that applies to continuous
and high-dimensional multimodal data.

In this paper, we identify the first key insight that PID for Gaussian distributions, known as Gaussian
PID (GPID), is scalable for continuous modalities. We first develop a new algorithm for GPID,
which is exact and efficient in multivariate Gaussian distributions with high dimensionality. The
second insight is to learn feature encoders to transform arbitrary input distributions into a latent
Gaussian space, without violating the information interactions between the original modalities.
This transformation can be done by normalizing flows [39], whose invertible bijections preserve
information while bringing the joint distributions closer to Gaussians [7]. Subsequently, the PID
estimate can be dramatically simplified in latent Gaussian distributions, which enjoy a closed-form
analysis of differential entropy and MI. We summarize the following contributions in this paper:

1. We propose a new gradient-based algorithm, called Thin-PID, which significantly enhances
the computational efficiency of PID estimates in latent Gaussian distributions.

2. We develop a new framework, called Flow-PID, to generalize Gaussian PID algorithms to
arbitrary input modalities using flow-based information-preserving encoders.

3. We demonstrate the improved accuracy and efficiency of our proposed Thin-PID and Flow-
PID on diverse synthetic datasets with ground truth information labels. Further evaluation
on a series of large-scale multimodal benchmarks shows its utility in real-world applications.

Finally, we release the data and code for Thin-PID and Flow-PID to encourage further studies of
multimodal information and modeling at https://github.com/warrenzha/flow-pid.

2 Background and related work

Let X1, X2, Y be three random vectors of dimension dX1
, dX2

, dY in their respective alphabets X1,
X2, and Y . Denote ∆ as the set of joint distributions in (X1,X2,Y). In multimodal learning, we are
concerned with inferring on the class label or regression value Y , whether the modalities X1 and X2

can provide useful information together, beyond their unique information, and how much common
information for Y we can ascribe to both X1 and X2.

2.1 Partial information decomposition

PID decomposes the total information Ip(X1, X2;Y), where Ip denotes the Shannon mutual infor-
mation [9] in joint distribution p, between the target Y and two basic features (X1, X2) into four
non-negative parts [55]:

Ip(X1, X2;Y) = U1(Y ;X1\X2) + U2(Y ;X2\X1) +R(Y ;X1, X2) + S(Y ;X1, X2), (1)
where the four terms on the right-hand side respectively represent the information regarding Y that
is uniquely in X1, uniquely in X2, redundantly in either X1 or X2, synergistically in both X1 and
X2. It is also often required that the decomposition satisfy the conditions on individual information:
Ip(Y ;X1) = R(Y ;X1, X2) + U1(Y ;X1\X2), Ip(Y ;X2) = R(Y ;X1, X2) + U2(Y ;X2\X1).

The decomposition is not unique, since we only have three linear equations to specify four variables.
We adopt the definition of PID introduced by Bertschinger et al. [5], which appears to align effectively
with multimodal learning applications and has been shown to facilitate model selection [27].
Definition 2.1 (PID). The redundant, unique, and synergistic information are given by

R = max
q∈∆p

Iq(X1;X2;Y), (2)

U1 = min
q∈∆p

Iq(X1;Y |X2), U2 = min
q∈∆p

Iq(X2;Y |X1), (3)

S = Ip(X1, X2;Y)− min
q∈∆p

Iq(X1, X2;Y), (4)

where ∆p := {q ∈ ∆ : q(xi, y) = p(xi, y), ∀y ∈ Y, xi ∈ Xi, i ∈ [2]}, and Iq is the mutual
information (MI) over the joint distribution q(x1, x2, y). Note that ∆p only preserves the marginals
p(x1, y) and p(x2, y), but not necessarily the joint distribution p(x1, x2, y).

2

https://github.com/warrenzha/flow-pid

2.2 Normalizing flows

Estimating MI and differential entropy in PID can be very challenging for high-dimensional data, un-
less in multivariate Gaussian distributions. Normalizing flows are a class of machine learning models
that are used to transform a simple, tractable probability distribution (e.g. Gaussian distributions) to a
more complex distribution, while preserving exact likelihood computation and invertibility [39]:

x = f(z) := fk ◦ fk−1 ◦ · · · ◦ f1(z), (5)

where f(·) is invertible and differentiable, z = f−1(x) and pX(x) = pZ(z)
∣∣det ∂z∂x ∣∣−1

.

Unlike generative modeling, we adopt the inverse process of normalizing flows in PID to transform
complex input modalities in such a way that MI can be preserved and computed using latent repre-
sentations Ip(fX(X); fY (Y)) = Ip(X;Y). Subsequently, information interactions are computed
efficiently in latent Gaussian distributions. This motivates us to design a novel framework for PID
estimators by training normalizing flows that preserve the total information Ip(X1, X2;Y) and
transform input modalities into latent spaces that are well approximated by multivariate Gaussian
representations.

2.3 Related work

PID estimation: There have been some recent efforts on PID estimators. Liang et al. [27] introduced
the CVX estimator, which formulates the PID definition as a convex optimization problem that can be
solved if X1 and X2 are discrete and small. Liang et al. [27] also developed the BATCH algorithm,
which approximates PID for large datasets by parameterizing the joint distribution q with neural
networks and normalization to satisfy marginal constraints. Therefore, several of these methods are
limited in scope and do not scale well to continuous, high-dimensional data. Venkatesh et al. [52]
introduced ∼G-PID, which restricts q(x1, x2, y) ∈ ∆p to joint Gaussian distributions, where PID
values are easier to estimate given the analytical entropy and MI. However, the optimality of joint
Gaussian distributions remains an open question, which implies that the joint Gaussian solution may
not be true in general and only provides an optimizing bound for GPID estimation.

Information theory estimation: Neural estimators of information-theoretic quantities have become
essential tools in machine learning due to their ability to scale to high-dimensional, continuous data.
Mutual Information Neural Estimator (MINE) leverages the Donsker–Varadhan representation of
the KL divergence to construct a variational lower bound on MI [4]. Alternative estimators based
on f -divergences, including NWJ [36] and InfoNCE [37], provide tighter bounds in specific cases.
Entropy estimation has also been addressed via neural score matching and normalizing flows [44].
More recent works include [7, 16, 22]. These methods optimize variational bounds via gradient
descent, which is parameterized by neural networks [40]. Such approaches cannot be directly adapted
for PID estimation due to the additional optimization problem in Equations (2) to (4).

Information-theoretic multimodal learning: Estimating multimodal information has been a critical
step toward developing better benchmarks and algorithms for multimodal learning. Several bench-
marks are categorized by the types of information that modalities contribute, which subsequently
inspire research into new multimodal fusion methods [30]. Deeper studies of multimodal information
have also inspired new ways to guide the collection of pre-training data [6] and new multimodal
pre-training objectives [34]. Multimodal contrastive learning is a popular approach in which repre-
sentations of the same concept expressed in different modalities are matched together (i.e., positive
pairs) and those of different concepts are far apart (i.e., negative pairs) [13, 25, 41]. It can be shown
that contrastive learning provably captures redundant information across the two views [47, 48], and
recent work has proposed extensions to capture unique and synergistic information [11, 28].

3 A new Gaussian PID theory and algorithm

In this section, we present a new PID estimator for Gaussian distributions and establish the notation
set we use in the rest of the paper. The first contribution of this paper is to show that the optimal
solution of the restricted PID optimization is jointly Gaussian. Secondly, we propose a new algorithm
for GPID, which significantly enhances computational efficiency for high-dimensional features.

3

Definition 3.1 (GPID). Let ∆G be the set of joint distributions, where p(x1, y) and p(x2, y) are
pairwise Gaussian. The synergistic information S about Y in X1 and X2 is given by

S = Ip(X1, X2;Y)− min
q∈∆G

p

Iq(X1, X2;Y), (6)

where ∆G
p := {q ∈ ∆G : q(xi, y) = p(xi, y), ∀y ∈ Y, xi ∈ Xi, i ∈ [2]}. Subsequently,

redundant and unique information can be computed by R = maxq∈∆G
p
Iq(X1;X2;Y) and U1 =

minq∈∆G
p
Iq (X1;Y |X2), U2 = minq∈∆G

p
Iq (X2;Y |X1) respectively.

GPID is exactly the PID problem when the pairwise marginals are known to be Gaussians. We
adopt the following notation in the subsequent discussion. Suppose [X⊤, Y ⊤]⊤ are jointly Gaussian
vectors. Without loss of generality, we assume that they have zero mean and use the following
notation to denote the covariance matrices. More detailed derivation can be found in Appendix A.

• ΣXY denotes the (dX + dY)× (dX + dY) auto-covariance matrix of the vector [X⊤, Y ⊤]⊤.
• Σoff

XY denotes the dX × dY cross-covariance matrix (off-diagonal of ΣXY) between X and Y .

3.1 Optimality of joint Gaussian solution

In [52], instead of solving GPID, the authors directly restricted the set ∆G
p in GPID by placing

the additional constraint that q(x1, x2, y) is Gaussian, and then optimized within this restricted set,
without showing that doing so does not cause any loss of optimality. In other words, ∼G-PID may
only provide a lower bound of S for GPID in general.

Question: Is joint Gaussian solution q(x1, x2, y) indeed optimal for GPID?
Answer: Yes. It is optimal as long as p(x1, y) and p(x2, y) are Gaussians.

Optimality: We next show that there always exists a jointly Gaussian optimizer q(x1, x2, y) for
GPID in Definition 3.1. Recall that we are interested in the following optimization problem:

min
q∈∆G

p

Iq(X1, X2;Y) = min
q∈∆G

p

{hq(Y)− hq (Y |X1, X2)} , (7)

where hq(·) denotes the differential entropy of the distribution q. Since the marginal q(y) is preserved
to be the same as in both p(x1, y) and p(x2, y), the problem is clearly equivalent to:

max
q∈∆G

p

hq (Y |X1, X2) . (8)

The key to establishing the optimality of Gaussian solutions is the inequality given in Lemma 3.2,
whose proof is given in Appendix A.1. It now only remains to argue that the upper bound on the
right-hand side of (9) can be achieved with a jointly Gaussian q̂ ∈ ∆G

p for any q ∈ ∆G
p . This

is obvious since q̂ has the same first and second moments as q(x1, x2, y), and we have q ∈ ∆G
p .

Therefore, it is without loss of optimality to restrict the set ∆G
p to only joint Gaussians.

Lemma 3.2. For any q(x1, x2, y) with finite first and second moments, we have

hq (Y |X1, X2) ≤ hq̂ (Y |X1, X2) , (9)

where q̂(x1, x2, y) is a jointly Gaussian distribution with the same first and second moments as
q(x1, x2, y).

3.2 Thin-PID: a new algorithm for GPID

We are now in a position to discuss the problem of how to compute GPID. Recall that Venkatesh
and Schamberg [53] used a two-user Gaussian broadcast channel to interpret GPID, where Y is the
transmitter input variable, and X1, X2 are the channel outputs at the two individual receivers:

X1 = H1Y + n1 and X2 = H2Y + n2. (10)

Without loss of generality, we assume that n1 and n2 are independent additive white noise, i.e.,
Σn1

= ΣX1|Y = IdX1
and Σn2

= ΣX2|Y = IdX2
. Otherwise, we can perform receiver-side

linear transformations through eigenvalue decomposition. For the same reason, we can assume

4

Table 1: Complexity analysis of different GPID algorithms. The complexities of ED and SVD
are cubic in the values shown in the table. Thin-PID achieves better complexity on any scale of
computation.

ED SVD Lin-Eqn Solve Mul

Thin-PID – min(dX1
, dX2

) 2 ∗min(dX1
, dX2

) 4 ∗min(dX1
, dX2

)
Tilde-PID dX1

+ dX2
max(dX1

, dX2
) 2 ∗ (dX1

+ dX2
) 8 ∗ (dX1

+ dX2
)

Y ∼ N (0,ΣY) has zero-mean. Although the constraints on p(x1, y) and p(x2, y) can be specified by
ΣX1Y and ΣX1Y (or equivalent Σn1

and Σn2
)1, the joint distribution of n1 and n2 for q(X1, X2, Y)

remains to be optimized. However, they can be assumed to be jointly Gaussian with covariance
Σn1n2

as shown in Section 3.1.

Using the interpretation of the Gaussian broadcast channel, synergistic information S for GPID can
be recast as the cooperative gain with the input signal Y [46]. As a result, minq∈∆G

p
Iq(X1, X2;Y)

in S can be determined by optimizing the worst possible correlation between n1 and n2 in the least
favorable noise problem [58].
Theorem 3.3 (Thin-PID). The optimization problem of synergistic information S in Definition 3.1
can be recast as minimizing the following objective function:

minimize: L
(
Σoff
n1n2

)
= log

∣∣HΣYH
⊤ +Σn1n2

∣∣
|Σn1n2 |

,

subject to: Σn1 = Σn2 = I, Σn1n2 ⪰ 0,

(11)

where H := [H⊤
1 , H

⊤
2]⊤ is the concatenation of two channel matrices, and Σn1n2

is the covariance
of two joint noise vectors n1 and n2 with cross-covariance Σoff

n1n2
.

In this objective, H and ΣY are constants that can be estimated directly from the marginals and will
not affect the optimization. Similarly, Σn1

and Σn2
, which are diagonal block matrices of sizes

dX1
× dX1

and dX2
× dX2

, can be whitened as identity matrices before optimizing GPID. Therefore,
the only variable to be optimized is Σoff

n1n2
, which is the off-diagonal block matrix of Σn1n2

.
Proposition 3.4 (Projected gradient descent for Thin-PID). The gradient of the unconstrained
objective L(Σoff

n1n2
) in Equation (11) with respect to Σoff

n1n2
is given by

∇L
(
Σoff
n1n2

)
=−G−1

1,1G1,2B
−1 +Σoff

n1n2

(
I − Σ

off⊤
n1n2

Σoff
n1n2

)−1

, (12)

where B = G2,2 −G⊤
1,2G

−1
1,1G1,2, and we define the block matrix as

G :=

[
G1,1 G1,2

G⊤
1,2 G2,2

]
= HΣYH

⊤ +Σn1n2
, G1,2 ∈ RdX1

×dX2 . (13)

The gradient descent updates on Σoff
n1n2

: Σoff
n1n2

← RProp(Σoff
n1n2

) [42].

The projection operator onto the constraint set can be obtained by taking the singular value decom-
position (SVD) on Σoff

n1n2
:

SVD
(
Σoff
n1n2

)
= UΛV ⊤, (14)

Proj(Σoff
n1n2

)← U Λ̄V ⊤, (15)

where Λ := diag(λi), λ̄i := min (max (0, λi) , 1) and Λ̄ := diag(λ̄i).

Complexity analysis: In Thin-PID, the computational bottleneck comes from determining SVD
and inverting matrices. SVD on Σoff

n1n2
requires O

(
min(dX1

, dX2
)3
)

complexity. For the inverse
matrices, note that G−1

1,1 is constant and only needs to be computed once. The other inverse can
be computed by solving linear equations with complexity O(d3X2

). Without loss of generality, we

1The joint covariance ΣXiY can be fully specified by ΣXi|Y = Σni since ΣY is constant which can be
directly computed from target Y .

5

X1

X2

Y

Data 1

Data 2

Flows

f1(X1)

fY(Y)

f2(X2)

Latent Gaussian marginals

p(x1, y) ≈ N(μ1, ΣX1Y)

p(x2, y) ≈ N(μ2, ΣX2Y)

Interprete as Gaussian PID

Y
H1

H2

n1

n2
X1

X2

Gaussian broadcast channel

Estimate: H1, H2, ΣY Thin-PID Optimizer

Thin-PID objective

Figure 1: Flow-PID learns latent Gaussian encoders, parameterized by the Cartesian flow f1×f2×fY ,
to transform input modalities (X1, X2, Y) into Gaussian marginal distributions. Then, PID values
can be computed efficiently via Thin-PID under the equivalent interpretation of GPID.

assume dX1
≥ dX2

since we can always exchange input modalities. In contrast, the state-of-the-
art Tilde-PID2 proposed by Venkatesh et al. [52] requires the eigenvalue decomposition (ED) on
Σn1n2 with the dominant complexity O

(
(dX1 + dX2)

3
)
. As shown in Table 1, Thin-PID achieves

significant improvement in computational efficiency, especially when the feature dimensions are high
and dX1 ≫ dX2 . More detailed complexity analysis is shown in Appendix A.4.

4 Learning a latent Gaussian encoder via normalizing flows

When the marginal distributions p(x1, y) and p(x2, y) are not Gaussian, computing PID from data
samples requires estimating the joint distribution in some manner. We propose a novel approach
where we learn a feature encoder transforming (X1, X2, Y) into a latent space, such that they are well-
approximated by Gaussian marginal distributions, then utilizing Thin-PID to perform the computation
in an efficient way when modalities are continuous and high-dimensional.

Let X̂1 = f1(X1), X̂2 = f2(X2), Ŷ = fY (Y) be three transformations that are defined by three
neural networks, respectively. Given the dataset D = {(x(j)1 , x

(j)
2 , y(j)), j = 1, 2, . . . , N}, ideally

the transformations should satisfy the conditions: 1) The transformations are invertible such that the
MI does not change; 2) The marginal distributions p(x̂1, ŷ) and p(x̂2, ŷ) are well-approximated by
Gaussian distributions. Our goal is to learn a Cartesian product of normalizing flows f1 × f2 × fY
which will preserve the total mutual information as Ip̂(f1(X1), f2(X2); fY (Y)) = Ip(X1, X2;Y)
according to Theorem 4.1. We refer to this method as Flow-PID, illustrated in Figure 1.

Theorem 4.1 (Invariance of total MI under bijective mappings). Let X1, X2, Y be absolutely contin-
uous vectors, f1 : X1 → RdX1 , f2 : X2 → RdX2 and fY : Y → RdY be bijective piecewise smooth
mappings with tractable Jacobians. Then Ip̂(f1(X1), f2(X2); fY (Y)) = Ip(X1, X2;Y).

Corollary 4.2. Under the same conditions in Theorem 4.1, the PID of (f1(X1), f2(X2), fY (Y)) is
the same as the PID of (X1, X2, Y).

Corollary 4.3. Let (X,Y) be absolutely continuous with PDF p(x, y). Let q(x, y) be a PDF defined
in the same space as p(x, y). Then |Ip (X;Y)− Iq (X;Y)| ≤ KL (p(x, y)∥q(x, y)).

4.1 Gaussian marginal loss

Theorem 4.1 and Corollary 4.2 imply that PID can be solved in a latent space through invertible
transformations that preserve the total information. However, it could restrict the possible distributions
to an unknown family. Instead, we approximate the PDF in latent space via variational Gaussian
marginals q(x1, y) and q(x1, y) with tractable pointwise MI, and train q and f1×f2×fY to minimize
the discrepancy between the real and the approximated total MI.

To regularize the Cartesian flows with Gaussian marginal distributions, we simultaneously min-
imize KL(p(x̂1, ŷ)∥N (µ1,ΣX1Y)) and KL(p(x̂2, ŷ)∥N (µ2,ΣX2Y)), where ΣX1Y and ΣX2Y

are the covariance of the variational Gaussian marginals, and KL(·∥·) denotes the KL diver-
gence. Note that maximizing the likelihood of f1(X1) × fY (Y) and f2(X2) × fY (Y) also min-
imizes KL

(
pX1Y ◦ (f−1

1 × g−1)∥N (µ1,ΣX1Y)
)

and KL
(
pX2Y ◦ (f−1

2 × g−1)∥N (µ2,ΣX2Y)
)
.

2We refer to ∼G-PID as Tilde-PID in the sequel.

6

0.0 1.0 1.7 2.8 4.6 7.7 12
.9

21
.5

35
.9

59
.9

10
0.0

Noise in X2 given X1,

0.0

0.1

0.2

0.3

0.4

0.5

Pa
rti

al
 in

fo
rm

at
io

n
(b

its
) Unique and Redundant

0.0
0

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
9

Noise correlation,

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Unique and Synergistic

0.0
0

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
9

Noise correlation,

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Redundant and Synergistic PID component
I(Y ; (X1, X2))
U1
U2
R
S

PID definition
Thin-PID
Tilde-PID
Ground truth

Figure 2: PID values for 1D Gaussian example with different types of interactions. Thin-PID and
Tilde-PID agree exactly with the ground truth.

Therefore, the Gaussian marginal regularizer is equivalent to maximize the log-likelihood of
{(x(j)i , y(j))}Nj=1 such that x(j)i = f−1

i (x̂
(j)
i), y(j) = g−1(ŷ(j)), where (x̂

(j)
i , ŷ(j)) are sampled

from variational Gaussian distribution N (µi,ΣXiY).

Proposition 4.4 (Gaussian marginal loss for Flow-PID). Given data samples {(x(j)1 , x
(j)
2 , y(j))}, the

Gaussian marginal objective for p(x̂i, ŷ) is given by

LN (x
(j)
i , y(j)) = LN (µi,ΣXiY

)(x̂
(j)
i , ŷ(j)) + log

∣∣∣∣det ∂f1(xi)∂xi

∣∣∣∣+ log

∣∣∣∣det ∂fY (y)∂y

∣∣∣∣ , (16)

where µi and ΣXiY are determined by the Gaussian maximum likelihood. The objective function of
the latent Gaussian encoder is

Lflow({X1, X2, Y }) = LN ({(X1, Y)}) + LN ({(X2, Y)}). (17)

5 Synthetic PID validation

In this section, we validate our Thin-PID and Flow-PID on synthetic Gaussian and non-Gaussian
examples with known ground truth, compared with Tilde-PID designed for GPID [52], CVX, and
BATCH designed for features with discrete support [27]. Details of experimental settings are
provided in Appendix C.

5.1 Validating Thin-PID on canonical Gaussian examples

1D broadcast channel: We first validate the accuracy of Thin-PID on canonical Gaussian examples
with dX1 = dX2 = dY = 1. Let Y ∼ N (0, 1). We design 3 cases with: 1) unique and redundant;
2) unique and synergistic; 3) redundant and synergistic information. Detailed settings can be found
in Appendix C.1. The ground truth can be solved exactly by MMI-PID [3] when p(x1, x2, y) is 1D
Gaussian. The degrees of interactions estimated by Thin-PID and Tilde-PID are shown in Figure 2.
We observe that Thin-PID exactly recovers the ground truth in all three canonical Gaussian cases,
which corroborates the correctness of our proposed Thin-PID algorithm for GPID.

GPID examples at higher dimensionality: (i) Cooperative Gain: Let X1,1 = αY1 + n1,1,
X2,1 = Y1 + n2,1, X1,2 = Y2 + n1,2, X2,2 = 3Y2 + n2,2, where Y1, Y2, n1,i, n2,i ∼ i.i.d. N (0, 1),
i = 1, 2. Here, (X1,1, X2,1, Y1) is independent of (X1,2, X2,2, Y2). Using the additive property, we
are able to aggregate the PID values derived from their separate decompositions, each of which is
associated with a known ground truth, as determined by the MMI-PID, considering Y1 and Y2 as
scalars. (ii) Rotation: Let X1 = H1R(θ)Y , where H1 is a diagonal matrix with diagonal entries
3 and 1, and R(θ) is a 2 × 2 rotation matrix that rotates Y at an angle θ. When θ = 0, X1 has a
higher gain for Y1 and X2 has higher gain for Y2. When θ increases to π/2, X1 and X2 have equal
gains for both Y1 and Y2 (barring a difference in sign). Since (X1,1, X2,1, Y1) is not independent of
(X1,2, X2,2, Y2) for all θ, we only know the ground truth at the endpoints.

Results. The results of examples (i) and (ii) are shown in Figure 3. We observe that Thin-PID
achieves the best accuracy with the error < 10−12, while the absolute error of Tilde-PID is > 10−8.

7

0.0
0

0.3
3

0.6
7

0.9
9

1.3
3

1.6
7

2.0
0

2.3
3

2.6
7

3.0
0

Gain in X1,

0.0

0.5

1.0

1.5

2.0

2.5

Pa
rti

al
 in

fo
rm

at
io

n
(b

its
)

Increasing Gain in X1

0.0
0

0.3
3

0.6
7

0.9
9

1.3
3

1.6
7

2.0
0

2.3
3

2.6
7

3.0
0

Gain in X1,

10 16

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

Er
ro

r (
bi

ts
)

Error in gain example

0.0
0

0.1
0

0.1
4

0.2
0

0.2
8

0.4
0

0.5
6

0.7
9

1.1
1

1.5
7

Angle,

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Pa
rti

al
 in

fo
rm

at
io

n
(b

its
)

Rotation of X1 w.r.t. X2
PID component

I(Y ; (X1, X2))
U1
U2
R
S

PID definition
Thin-PID
Tilde-PID
MMI-PID
Ground truth

Figure 3: Left: PID values in Example (i); right: PID values in Example (ii); middle: absolute error
between different GPID algorithms and the ground truth. Thin-PID achieves the best accuracy with
< 10−12 error, while the absolute error of Tilde-PID is > 10−8.

Table 2: Non-Gaussian multi-dimensional examples: Tilde-PID is estimated from a sample covariance
on 1e6 realizations of transformed non-Gaussian variables. Flow-PID is estimated on the latent
Gaussian representations by normalizing flows. Only Flow-PID agrees with the truth.

Dim (2, 2, 2) (10, 5, 2) (30, 10, 2) (100, 60, 2)
PID R U1 U2 S R U1 U2 S R U1 U2 S R U1 U2 S
Tilde-PID 0.18 0.29 0.76 0.02 0.84 0 1.19 0.16 1.09 0 0.88 0.19 1.48 0 1.97 0.13
Flow-PID 0.62 0.91 0.50 0.11 2.36 0.32 0.19 0.45 2.18 1.13 0 0.17 4.34 0.36 0 0.25
Truth 0.79 1.46 0.58 0.18 2.96 0.54 0.26 0.58 2.92 2.18 0 0.25 5.71 1.01 0 0.57

25
0

50
0

75
0

10
00

dX1 (dX2 = 0.6 * dX1)

0

50

100

150

200

Ex
ec

ut
io

n
Ti

m
e

(s
)

Thin PID
Tilde PID

25
0

50
0

75
0

10
00

dX1 (dX2 = 100)

0

10

20

30

40

50

Figure 4: Time analysis: Thin-PID achieves
10× speed of Tilde-PID.

Time analysis: As discussed in Table 1, Thin-PID sig-
nificantly improves the computational efficiency when
the feature dimension is high. We report the execution
time of GPID algorithms when the feature dimension
increases in 2 cases: 1) both dX1

and dX2
increase; 2)

dX1
increases from 100 to 1000 with fixed dX2

= 100.
Figure 4 shows that Thin-PID costs much less time
than Tilde-PID with a speed of more than 10× when
min(dX1 , dX2) > 100.

5.2 Flow-PID on non-Gaussian examples

Multivariate Gaussian with invertible nonlinear
transformation: Next we evaluate the Flow-PID when
p(xi, y) is no longer Gaussian. We sample from the joint Gaussian vectors (X1, X2, Y) ∼
N (0,ΣX1X2Y), and transform samples to (X̃1, X̃2, Ỹ) through absolutely invertible nonlinear func-
tion (more details in Appendix C.2). According to Theorem 4.1, the MI of (X̃1, X̃2, Ỹ) remains
the same as that of (X1, X2, Y), but they are no longer pairwise Gaussian after the transformation.
For Tilde-PID, the degree of interactions are computed by directly estimating the covariance of
non-Gaussian samples. The “exact" PID is obtained by feeding the Gaussian covariance ΣX1X2Y to
GPID directly. From Table 2, Flow-PID aligns with the exact truth in relative PID values, whereas
Tilde-PID fails with distorted nature and degree of interactions.

Specialized interactions with discrete targets: Although GPID is designed for continuous modalities
and targets, we evaluate its generalization to cases with discrete targets. Three latent vectors
z1, z2, zc ∼ N (0,Σ) are employed to quantify the information unique to x1, x2, and common
to both, respectively. [z1, zc] is transformed to high-dimensional x1 using a fixed transformation
T1. Similarly, [z2, zc] is transformed to x2 via T2. By assigning different weights to [z1, z2, zc],
we create ten synthetic datasets with different types of specialized interactions. As indicated in
Table 3, Flow-PID not only accurately assigns the prevalent type of interaction, but also provides
better quantification of the degrees of specialized interactions compared to BATCH. A noteworthy
observation is that the estimation of PID regarding synergy S proves to be the most challenging and

8

Table 3: Specialized interactions with discrete labels: Flow-PID provides more accurate PID values
than BATCH, especially on datasets with high synergistic interactions. The specialized interactions
determined by PID estimators are highlighted in bold.

Task DR DU1
DU2

DS
PID R U1 U2 S R U1 U2 S R U1 U2 S R U1 U2 S
BATCH 0.29 0.02 0.02 0 0 0.30 0 0 0 0 0.30 0 0.11 0.02 0.02 0.15
Flow-PID 0.51 0 0 0 0 0.49 0 0 0 0 0.51 0 0.12 0 0 0.30
Truth 0.58 0 0 0 0 0.56 0 0 0 0 0.54 0 0 0 0 0.56

Task y = f(z1, z
∗
2 , z

∗
c) y = f(z1, z2, z

∗
c) y = f(z∗1 , z

∗
2 , zc)

PID R U1 U2 S R U1 U2 S R U1 U2 S
BATCH 0.04 0.09 0 0.06 0.11 0.02 0.02 0.10 0.11 0 0.02 0.05
Flow-PID 0.06 0.17 0 0.12 0.20 0 0 0.23 0.10 0 0 0.08
Truth 0 0.25 0 0.25 0.18 0 0 0.36 0.22 0 0 0.22

Task y = f(z∗1 , z
∗
2 , z

∗
c) y = f(z∗2 , z

∗
c) y = f(z∗2 , zc)

PID R U1 U2 S R U1 U2 S R U1 U2 S
BATCH 0.06 0.01 0.01 0.06 0.07 0 0.06 0 0.19 0 0.06 0
Flow-PID 0.08 0 0 0.23 0.10 0 0.11 0 0.30 0 0.12 0
Truth 0.13 0 0 0.27 0.21 0 0.21 0.0 0.34 0 0.17 0

Table 4: Estimating PID on MultiBench datasets [30]. Flow-PID recognizes more modality
interactions than CVX/BATCH, and effectively highlights dominant modalities.

Datasets AV-MNIST UR-FUNNY
Modalities Vision, Audio Vision, Audio Vision, Text Audio, Text
PID R U1 U2 S R U1 U2 S R U1 U2 S R U1 U2 S
CVX/BATCH 0.10 0.97 0.03 0.08 0.02 0.04 0 0.06 0.06 0 0.04 0.11 0.02 0 0.08 0.07
Flow-PID 0.12 0.53 0 0.09 0.19 0 0.98 0.28 0.04 0 1.19 0.03 0.03 0 1.22 0.12

Datasets MOSI MOSEI MUStARD
Modalities Vision, Audio Audio, Text Vision, Audio Vision, Text Audio, Text
PID R U1 U2 S R U1 U2 S R U1 U2 S R U1 U2 S R U1 U2 S
CVX/BATCH 0.03 0.17 0.16 0.76 0.22 0.04 0.09 0.13 0.14 0.01 0.01 0.2 0.14 0.02 0.01 0.34 0.14 0.01 0.01 0.37
Flow-PID 0.58 0 0.60 0.44 0.78 0 3.06 0.66 0.40 0 0.29 0.27 0.45 0 0.54 0.41 0.66 0 0.92 0.30

results in overestimated redundancy R in BATCH. Conversely, Flow-PID mitigates this issue by
achieving lower R and higher S.

6 Real-world applications of PID

Real-world multimodal benchmarks. We use a collection of real-world multimodal datasets in
MultiBench [30], which spans 10 diverse modalities (images, video, audio, text, time-series), 15
prediction tasks, and 5 research areas. These datasets are designed to test a combination of feature
learning and arbitrarily complex interactions under different multimodal fusion models in the real
world. For datasets with available modality features (images, text), we use an end-to-end Flow-PID
estimator. For other modalities (audio, time-series), we first use pretrained encoders to obtain features
before Flow-PID (full dataset and experimental settings are available in Appendix D).

Results. From Table 4, we observe that Flow-PID effectively highlights dominant modalities by
assigning higher unique information to sources with stronger predictive contributions. Although
the ground truth for real-world datasets is unknown (and may not be determined), this allows us to
quantitatively assess which modalities are most informative for the task, offering deeper insight into
modality importance beyond standard accuracy metrics. An interesting observation is that the total
information (R + U1 + U2 + S) recognized by Flow-PID is much larger than BATCH. The total
information in a dataset yields an upper bound on multimodal model performance. On many of these
datasets, multimodal models achieve over 75% accuracy, while the total information is often under
0.5 for BATCH in Figure 5.

Real-world datasets with task-driven and causally relevant interactions. We conducted Flow-
PID on 2 real-world datasets with expected interactions, which are causally relevant to the tasks,
to demonstrate our method in additional application areas and with unexplored modalities. 1) We
quantified the PID of predicting the breast cancer stage from protein expression and microRNA
expression on the TCGA-BRCA dataset. Flow-PID identified strong uniqueness for the modality of
microRNA expression as well as moderate amounts of redundancy and synergy. These results are

9

also in line with modern research, which suggests microRNA changes as a direct result of cancer
progression. 2) The results on VQA (Visual Question Answering) show the expected high synergy
since the image and question complement each other to predict the answer. The detailed experimental
results are shown in Table 5.

Table 5: Flow-PID on real datasets with task-driven interactions.

Dataset dim-X1 dim-X2 R U1 U2 S Expected interaction

TCGA 487 1881 0.41 0.0 1.07 0.34 U2

VQA2.0 768 1000 0.22 0.26 0.0 0.76 S

Table 6: Model selection performance on new datasets D compared to the best-performing model.

Synthetic AV-MNIST ENRICO UR-FUNNY MOSI MUStARD

Flow-PID 99.76% 100% 100% 96.72% 99.67% 98.19%
BATCH 99.91% 99.85% 100% 98.58% 99.35% 95.15%

AV-MNIST (V, A)

UR-FUNNY (V, A)

UR-FUNNY (V, T)

UR-FUNNY (A, T)

MUSTARD (V, A)

MUSTARD (V, T)

MUSTARD (A, T)

MOSI (V, A)

MOSEI (A, T)
0

1

2

3

4

To
ta

l m
ut

ua
l i

nf
or

m
at

io
n

(b
its

) CVX
BATCH
FLOW

Figure 5: Total mutual information determined
by Flow-PID and BATCH/CVX estimators.

Model Selection. After conducting evaluations
on diverse multimodal datasets, we are interested in
whether GPID is beneficial in selecting the most ap-
propriate model capable of addressing the requisite
interactions for a dataset. Given a new datasetD, we
measure the difference in normalized PID values be-
tween D and D′ among a suite of 10 pretrained syn-
thetic datasets with different types of specialized in-
teractions. For each D′, we pretrain 8 different mul-
timodal fusions, rank the similarities to the unseen
dataset, s(D,D′) =

∑
I∈{R,U1,U2,S} |ID − ID′ |,

and recommend the top-3 models on the most sim-
ilar dataset D∗. Table 6 indicates that the selected
models achieve more than 96% of the accuracy of
the best-performing model. UR-FUNNY records
the comparatively lower accuracy, likely due to the
significantly higher amount of unique information in the text modality compared to vision and audio.

7 Conclusion

In this paper, we aim to develop a new and efficient PID framework for continuous and high-
dimensional modalities, of which PID estimates could be inaccurate and burdensome. We first
identified that PID is easier to solve in latent Gaussian distributions without loss of optimality, and
proposed a new GPID algorithm that significantly enhances the computational efficiency compared
to the state-of-the-art algorithms. Secondly, we develop a latent Gaussian encoder via normalizing
flows to generalize GPID algorithms to non-Gaussian cases. Through comprehensive experiments,
we demonstrated that our proposed method provides more accurate and efficient PID estimates than
existing baselines, and showed the utility in diverse multimodal datasets and applications by dataset
quantification and model selection.

Limitations: 1) The latent Gaussian encoders only approximate the marginal distributions through
invertible bijective mappings, which introduce bias when the divergence between approximated
Gaussian distributions and true underlying marginals is large. 2) Although Thin-PID is exact in GPID
cases, the accuracy of Flow-PID largely depends on the performance of latent Gaussian encoders, and
the optimization error could increase with more intricate underlying features or fewer data samples.
3) It is challenging to rigorously justify the quantification on real-world datasets, as the generation of
multimodal data is unknown.

Future work can leverage Flow-PID to expand datasets with specific objectives, enhance multi-task
representation learning within the context of higher-dimensional data and continuous targets, and
explore the fine-tuning or pretraining of a large model under the guidance of Flow-PID.

10

Acknowledgments

The work of Wenyuan Zhao and Chao Tian is partly supported by NSF via grant DMS-2312173. We
also acknowledge Nvidia for their GPU support.

References
[1] Allison, P. D. (1977). Testing for interaction in multiple regression. American journal of

sociology, 83(1):144–153.

[2] Baltrušaitis, T., Ahuja, C., and Morency, L.-P. (2018). Multimodal machine learning: A survey
and taxonomy. IEEE transactions on pattern analysis and machine intelligence, 41(2):423–443.

[3] Barrett, A. B. (2015). Exploration of synergistic and redundant information sharing in static and
dynamical gaussian systems. Physical Review E, 91(5):052802.

[4] Belghazi, M. I., Baratin, A., Rajeshwar, S., Ozair, S., Bengio, Y., Courville, A., and Hjelm, D.
(2018). Mutual information neural estimation. In International conference on machine learning,
pages 531–540. PMLR.

[5] Bertschinger, N., Rauh, J., Olbrich, E., Jost, J., and Ay, N. (2014). Quantifying unique information.
Entropy, 16(4):2161–2183.

[6] Birhane, A., Prabhu, V. U., and Kahembwe, E. (2021). Multimodal datasets: misogyny, pornog-
raphy, and malignant stereotypes. arXiv preprint arXiv:2110.01963.

[7] Butakov, I., Tolmachev, A., Malanchuk, S., Neopryatnaya, A., and Frolov, A. (2024). Mutual
information estimation via normalizing flows. arXiv preprint arXiv:2403.02187.

[8] Castro, S., Hazarika, D., Pérez-Rosas, V., Zimmermann, R., Mihalcea, R., and Poria, S. (2019).
Towards multimodal sarcasm detection (an _obviously_ perfect paper). In ACL.

[9] Cover, T. M. (1999). Elements of information theory. John Wiley & Sons.

[10] Ding, D. Y., Li, S., Narasimhan, B., and Tibshirani, R. (2022). Cooperative learning for
multiview analysis. Proceedings of the National Academy of Sciences, 119(38):e2202113119.

[11] Dufumier, B., Castillo-Navarro, J., Tuia, D., and Thiran, J.-P. (2024). What to align in multi-
modal contrastive learning? arXiv:2409.07402 [cs].

[12] Ehrlich, D. A., Schick-Poland, K., Makkeh, A., Lanfermann, F., Wollstadt, P., and Wibral, M.
(2024). Partial information decomposition for continuous variables based on shared exclusions:
Analytical formulation and estimation. Physical Review E, 110(1):014115.

[13] Frome, A., Corrado, G. S., Shlens, J., Bengio, S., Dean, J., Ranzato, M., and Mikolov, T. (2013).
Devise: A deep visual-semantic embedding model. In Advances in neural information processing
systems, pages 2121–2129.

[14] Fukui, A., Park, D. H., Yang, D., Rohrbach, A., Darrell, T., and Rohrbach, M. (2016). Multi-
modal compact bilinear pooling for visual question answering and visual grounding. In Conference
on Empirical Methods in Natural Language Processing, pages 457–468. ACL.

[15] Gao, J., Li, P., Chen, Z., and Zhang, J. (2020). A survey on deep learning for multimodal data
fusion. Neural Computation, 32(5):829–864.

[16] Gowri, G., Lun, X., Klein, A., and Yin, P. (2024). Approximating mutual information of high-
dimensional variables using learned representations. Advances in Neural Information Processing
Systems, 37:132843–132875.

[17] Griffith, V. and Koch, C. (2014). Quantifying synergistic mutual information. In Guided
self-organization: inception, pages 159–190. Springer.

[18] Guo, W., Wang, J., and Wang, S. (2019). Deep multimodal representation learning: A survey.
Ieee Access, 7:63373–63394.

11

[19] Hasan, M. K., Rahman, W., Zadeh, A. B., Zhong, J., Tanveer, M. I., Morency, L.-P., and
Hoque, M. E. (2019). Ur-funny: A multimodal language dataset for understanding humor. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages
2046–2056.

[20] Hastie, T. and Tibshirani, R. (1987). Generalized additive models: some applications. Journal
of the American Statistical Association, 82(398):371–386.

[21] Hou, M., Tang, J., Zhang, J., Kong, W., and Zhao, Q. (2019). Deep multimodal multilinear
fusion with high-order polynomial pooling. Advances in Neural Information Processing Systems,
32:12136–12145.

[22] Hu, Z., Kang, S., Zeng, Q., Huang, K., and Yang, Y. (2024). Infonet: Neural estimation of
mutual information without test-time optimization. arXiv preprint arXiv:2402.10158.

[23] Jaccard, J. and Turrisi, R. (2003). Interaction effects in multiple regression. sage.

[24] Jayakumar, S. M., Czarnecki, W. M., Menick, J., Schwarz, J., Rae, J., Osindero, S., Teh,
Y. W., Harley, T., and Pascanu, R. (2020). Multiplicative interactions and where to find them. In
International Conference on Learning Representations.

[25] Jia, C., Yang, Y., Xia, Y., Chen, Y.-T., Parekh, Z., and Pham, H. (2021). Scaling up visual and
vision-language representation learning with noisy text supervision. In ICML, pages 4904–4916.
PMLR.

[26] Li, J., Selvaraju, R., Gotmare, A., Joty, S., Xiong, C., and Hoi, S. C. H. (2021). Align before
fuse: Vision and language representation learning with momentum distillation. Advances in neural
information processing systems, 34:9694–9705.

[27] Liang, P. P., Cheng, Y., Fan, X., Ling, C. K., Nie, S., Chen, R., Deng, Z., Allen, N., Auerbach,
R., Mahmood, F., et al. (2024). Quantifying & modeling multimodal interactions: An information
decomposition framework. Advances in Neural Information Processing Systems, 36.

[28] Liang, P. P., Deng, Z., Ma, M., Zou, J., Morency, L.-P., and Salakhutdinov, R. (2023). Factorized
contrastive learning: Going beyond multi-view redundancy. In NeurIPS.

[29] Liang, P. P., Liu, Z., Tsai, Y.-H. H., Zhao, Q., Salakhutdinov, R., and Morency, L.-P. (2019).
Learning representations from imperfect time series data via tensor rank regularization. In ACL.

[30] Liang, P. P., Lyu, Y., Fan, X., Wu, Z., Cheng, Y., Wu, J., Chen, L., Wu, P., Lee, M. A., Zhu,
Y., et al. (2021). Multibench: Multiscale benchmarks for multimodal representation learning.
Advances in neural information processing systems, 2021(DB1):1.

[31] Liang, P. P., Zadeh, A., and Morency, L.-P. (2022a). Foundations and trends in multimodal
machine learning: Principles, challenges, and open questions. arXiv preprint arXiv:2209.03430.

[32] Liang, V. W., Zhang, Y., Kwon, Y., Yeung, S., and Zou, J. Y. (2022b). Mind the gap: Under-
standing the modality gap in multi-modal contrastive representation learning. Advances in Neural
Information Processing Systems, 35:17612–17625.

[33] Liu, Z., Shen, Y., Lakshminarasimhan, V. B., Liang, P. P., Zadeh, A. B., and Morency, L.-P.
(2018). Efficient low-rank multimodal fusion with modality-specific factors. In Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 2247–2256.

[34] McKinzie, B., Gan, Z., Fauconnier, J.-P., Dodge, S., Zhang, B., Dufter, P., Shah, D., Du, X.,
Peng, F., Belyi, A., et al. (2024). Mm1: methods, analysis and insights from multimodal llm
pre-training. In European Conference on Computer Vision, pages 304–323. Springer.

[35] Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., Ng, A. Y., et al. (2011). Multimodal deep
learning. In ICML, volume 11, pages 689–696.

[36] Nguyen, X., Wainwright, M. J., and Jordan, M. I. (2010). Estimating divergence functionals and
the likelihood ratio by convex risk minimization. In IEEE Transactions on Information Theory.

12

[37] Oord, A. v. d., Li, Y., and Vinyals, O. (2018). Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748.

[38] Pakman, A., Nejatbakhsh, A., Gilboa, D., Makkeh, A., Mazzucato, L., Wibral, M., and Schneid-
man, E. (2021). Estimating the unique information of continuous variables. Advances in neural
information processing systems, 34:20295–20307.

[39] Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., and Lakshminarayanan, B.
(2021). Normalizing flows for probabilistic modeling and inference. Journal of Machine Learning
Research, 22(57):1–64.

[40] Poole, B., Ozair, S., Van Den Oord, A., Alemi, A., and Tucker, G. (2019). On variational
bounds of mutual information. In International conference on machine learning, pages 5171–5180.
PMLR.

[41] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., and Agarwal, S. (2021). Learning
transferable visual models from natural language supervision. In ICML, pages 8748–8763. PMLR.

[42] Riedmiller, M. and Braun, H. (1993). A direct adaptive method for faster backpropagation
learning: The rprop algorithm. In IEEE international conference on neural networks, pages
586–591. IEEE.

[43] Schick-Poland, K., Makkeh, A., Gutknecht, A. J., Wollstadt, P., Sturm, A., and Wibral, M.
(2021). A partial information decomposition for discrete and continuous variables. arXiv preprint
arXiv:2106.12393.

[44] Song, J. and Ermon, S. (2020). Understanding the limitations of variational mutual information
estimators. In International Conference on Learning Representations.

[45] Suzuki, M., Nakayama, K., and Matsuo, Y. (2016). Joint multimodal learning with deep
generative models. arXiv preprint arXiv:1611.01891.

[46] Tian, C. and Shamai, S. (2025). Broadcast channel cooperative gain: An operational interpreta-
tion of partial information decomposition. Entropy, 27(3):310.

[47] Tian, Y., Sun, C., Poole, B., Krishnan, D., Schmid, C., and Isola, P. (2020). What makes for
good views for contrastive learning? NeurIPS, 33:6827–6839.

[48] Tosh, C., Krishnamurthy, A., and Hsu, D. (2021). Contrastive learning, multi-view redundancy,
and linear models. In ALT.

[49] Tsai, Y.-H. H., Bai, S., Liang, P. P., Kolter, J. Z., Morency, L.-P., and Salakhutdinov, R. (2019a).
Multimodal transformer for unaligned multimodal language sequences. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, pages 6558–6569.

[50] Tsai, Y.-H. H., Liang, P. P., Zadeh, A., Morency, L.-P., and Salakhutdinov, R. (2019b). Learning
factorized multimodal representations. In International Conference on Learning Representations.

[51] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and
Polosukhin, I. (2017). Attention is all you need. In NIPS.

[52] Venkatesh, P., Bennett, C., Gale, S., Ramirez, T., Heller, G., Durand, S., Olsen, S., and Mihalas,
S. (2024). Gaussian partial information decomposition: Bias correction and application to high-
dimensional data. Advances in Neural Information Processing Systems, 36.

[53] Venkatesh, P. and Schamberg, G. (2022). Partial information decomposition via deficiency for
multivariate gaussians. In 2022 IEEE International Symposium on Information Theory (ISIT),
pages 2892–2897. IEEE.

[54] Vielzeuf, V., Lechervy, A., Pateux, S., and Jurie, F. (2018). Centralnet: a multilayer approach
for multimodal fusion. In Proceedings of the European Conference on Computer Vision (ECCV)
Workshops, pages 0–0.

[55] Williams, P. L. and Beer, R. D. (2010). Nonnegative decomposition of multivariate information.
arXiv preprint arXiv:1004.2515.

13

[56] Wu, M. and Goodman, N. (2018). Multimodal generative models for scalable weakly-supervised
learning. Advances in Neural Information Processing Systems, 31.

[57] Yao, S. and Wan, X. (2020). Multimodal transformer for multimodal machine translation. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online.
Association for Computational Linguistics.

[58] Yu, W. and Cioffi, J. M. (2004). Sum capacity of Gaussian vector broadcast channels. IEEE
Transactions on information theory, 50(9):1875–1892.

[59] Zadeh, A., Chen, M., Poria, S., Cambria, E., and Morency, L.-P. (2017). Tensor fusion network
for multimodal sentiment analysis. In Proceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 1103–1114.

[60] Zadeh, A. B., Liang, P. P., Poria, S., Cambria, E., and Morency, L.-P. (2018). Multimodal
language analysis in the wild: Cmu-mosei dataset and interpretable dynamic fusion graph. In ACL.

[61] Zhang, C., Yang, Z., He, X., and Deng, L. (2020). Multimodal intelligence: Representa-
tion learning, information fusion, and applications. IEEE Journal of Selected Topics in Signal
Processing, 14(3):478–493.

14

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes] .
Justification: We summarize our contributions of this paper in the abstract and introduction
regarding: theory and algorithm development, experimental validation and applications.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] .
Justification: We discuss the limitations in the last section where we conclude the paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes] .
Justification: We state the assumptions in definitions and theories. The proofs are included
in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.

15

• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes] .
Justification: We disclose detailed settings of experiments in the appendix due to the page
limits. The code for reproducing the results are also provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes] .
Justification: The code is provided in a zip file for supplementary materials. Due to the size
limits, we only provide the source to download the data.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes] .
Justification: Detailed training and tests are shown in the appendix due to the pape limits.
We have a pointer in the main text.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No] .
Justification: The error bar for GPID is unnecessary since it is exact. For PID values in real-
world datasets, the ground truth is unknown. Thus we do not include such measurements.
But we discuss the robustness in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Answer: [Yes] .
Justification: We put the information on computer resources in the appendix due to the page
limits of the main text.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes] .
Justification: This is mainly a technical paper on designing algorithms and theories. All the
datasets used are open to the public.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA] .
Justification: This is a technical paper, which does not discuss the societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: This is a technical paper on building theories and algorithms. Such risks are
not posed in this paper.

18

https://neurips.cc/public/EthicsGuidelines

Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes] .
Justification: We cited all the references and the code from existing baselines.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes] .
Justification: The code for reproducing experimental results are included as an anonymized
zip file.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: This is a technical paper, and does not involve crowdsourcing nor research
with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

19

paperswithcode.com/datasets

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

20

Appendix

A The Gaussian PID theory and algorithm

Information theory quantifies how much information one variable X offers about another variable
Y , which is formulated by Shannon’s mutual information [9], represented as I(X;Y). It reflects
the decrease in entropy from H(Y) to H(Y |X) given X as input. However, extending mutual
information (MI) directly to three or more variables presents notable challenges. Specifically, the
three-way MI I(X1;X2;Y) can be both negative and positive, leading to considerable difficulty in
its interpretation when quantifying interactions between multiple variables.

Partial Information Decomposition (PID) [55] was introduced as a framework to extend information
theory to multiple variables. It decomposes the total information that two variables offer about a task
I(X1, X2;Y) into four components: redundancy R shared between X1 and X2, unique information
U1 specific to X1 and U2 to X2, and synergy S. These components must collectively fulfill the
following consistency equations:

R+ U1 = I(X1;Y), (18)
R+ U2 = I(X2;Y), (19)
U1 + S = I(X1;Y |X2), (20)
U2 + S = I(X2;Y |X1), (21)
R− S = I(X1;X2;Y). (22)

A definition of R was first proposed by Williams and Beer [55] and subsequently improved by
Bertschinger et al. [5], Griffith and Koch [17], which gives the PID definition we adopt in this work.
Definition A.1 (PID [27]). The redundant, unique, and synergistic information are given by

R = max
q∈∆p

Iq(X1;X2;Y), (23)

U1 = min
q∈∆p

Iq(X1;Y |X2), U2 = min
q∈∆p

Iq(X2;Y |X1), (24)

S = Ip(X1, X2;Y)− min
q∈∆p

Iq(X1, X2;Y), (25)

where ∆p := {q ∈ ∆ : q(xi, y) = p(xi, y), ∀y ∈ Y, xi ∈ Xi, i ∈ [2]}, and Iq is the mutual
information (MI) over the joint distribution q(x1, x2, y). Note that ∆p only preserves the marginals
p(x1, y) and p(x2, y), but not necessarily the joint distribution p(x1, x2, y).

The definition of PID enjoys two properties:

1. Non-negativity: all the four decomposed components (R,U1, U2, S) are non-negative.
2. Additivity: For two independent subsystems (Y1, X1,1, X2,1) and (Y2, X1,2, X2,2), we

have U1(Y : X1 \X2) = U1(Y1 : X1,1 \X2,1) + U1(Y2 : X1,2 \X2,2). This implies that
the PID of an isolated system should not depend on another isolated system.

The fundamental challenge of PID is estimating information-theoretic measures when the size and
dimensionality of the datasets are large [43]. Optimizing over the pointwise MI quantities can only be
obtained when the features are pointwise discrete or low-dimensional, and the number of optimization
variables is exponential in the number of neurons [53]. Our first key insight is that the measurement
of MI has a closed-form analysis when the pairwise distributions are multivariate Gaussians, and we
refer to this problem as Gaussian PID (GPID).
Definition A.2 (GPID). Let ∆G be the set of joint distributions, where p(x1, y) and p(x2, y) are
pairwise Gaussian. The redundant, unique, and synergistic information are given by

R = max
q∈∆G

p

Iq(X1;X2;Y), (26)

U1 = min
q∈∆G

p

Iq(X1;Y |X2), U2 = min
q∈∆G

p

Iq(X2;Y |X1), (27)

S = Ip(X1, X2;Y)− min
q∈∆G

p

Iq(X1, X2;Y), (28)

where
∆G
p := {q ∈ ∆G : q(xi, y) = p(xi, y), ∀y ∈ Y, xi ∈ Xi, i ∈ [2]}. (29)

21

Definition A.3 (∼G-PID [52]). Let p(x1, x2, y) be a joint Gaussian distribution. The redundant,
unique, and synergistic information are given by

R = max
q∈∆p

Iq(X1;X2;Y), (30)

U1 = min
q∈∆p

Iq(X1;Y |X2), U2 = min
q∈∆p

Iq(X2;Y |X1), (31)

S = Ip(X1, X2;Y)− min
q∈∆p

Iq(X1, X2;Y), (32)

where

∆p := {q is jointly Gaussian : q(xi, y) = p(xi, y), ∀y ∈ Y, xi ∈ Xi, i ∈ [2]}. (33)

Connections between PID definitions: GPID is exactly the PID problem when the pairwise
marginals p(x1, y) and p(x2, y) are known to be Gaussians. If the optimal q(x1, x2, y) in PID
is Gaussian for some p(x1, x2, y), then ∼G-PID is identical to PID for that p(x1, x2, y). Venkatesh
et al. [52] introduced ∼G-PID by directly placing the additional constraint that q(x1, x2, y) is Gaus-
sian. In Section 3.1, we show that the joint Gaussian solution in ∼G-PID is also optimal in GPID, but
this was left as an open question in [52].

Broadcast channel interpretation of GPID: Let two Gaussian marginals in GPID have covariance
ΣX1Y and ΣX2Y , respectively. We can interpret GPID in the following two-user Gaussian broadcast
channel:

X1 = H1Y + n1, (34)
X2 = H2Y + n2, (35)

where H1, H2, n1, n2 can be estimated from p(x1, y) and p(x2, y):

[X⊤
1 , Y

⊤]⊤ ∼ N (µ1,ΣX1Y), (36)

[X⊤
2 , Y

⊤]⊤ ∼ N (µ2,ΣX2Y), (37)

H1 = Σoff
X1Y , (38)

H2 = Σoff
X2Y , (39)

Σn1
= ΣX1

−H1ΣYH
⊤
1 , (40)

Σn2 = ΣX2 −H2ΣYH
⊤
2 . (41)

Full algorithm of Thin-PID: We derived the objective and the projected gradient descent method
in Theorem 3.3 and Proposition 3.4, respectively. The complete algorithm of Thin-PID is given as
follows.

Algorithm 1 Thin-PID algorithm.
Require: Channel matrix H = [H⊤

1 , H
⊤
2]⊤, covariance ΣY .

Initialize: Σoff (0)
n1n2 = H1H

+
2 , learning rate η(0), α = 0.999, β = 0.9

while not converged do
Compute ∇L

(
Σ

off (j)
n1n2

)
=
[
(HΣYH

⊤ +Σn1n2)
−1 − Σ−1

n1n2

]
up-off from Eq. (12-13)

Update Σoff
n1n2

using RProp [42]: Σoff (j+1)
n1n2 ← Σ

off (j)
n1n2 − αjη(j) ⊙∇L

(
Σ

off (j)
n1n2

)
SVD(Σ

off (j+1)
n1n2) = Udiag(λi)V ⊤ from Eq. (14)

Proj(Σoff (j+1)
n1n2) = Udiag (min (max(λi, 0), 1))V

⊤ from Eq. (15)
Update η(j+1) = η(j) ⊙ β−ψ(Σoff (j+1)

n1n2
)⊙ψ(Σoff (j)

n1n2
), ψ(Σoff (j)

n1n2) := Sgn(∇L(Σoff(j)
n1n2))

end while
return Σoff

n1n2

22

A.1 Proof of Lemma 3.2

For any random vectors X1, X2, Y that follow the distribution q(x1, x2, y),

hq(Y |X1, X2) = hq (Y − E(Y |X1, X2)|X1, X2) (42)
≤ hq (Y − E(Y |X1, X2)) (43)

≤ hq
(
N (0,ΣY−E(Y |X1,X2)

)
(44)

= hq̂

(
Ŷ − E(Ŷ |X̂1, X̂2)

)
(45)

= hq̂

(
Ŷ |X̂1, X̂2

)
(46)

where for clarity we also use X̂1, X̂2, Ŷ to denote the random variables that follow the distribution
q̂(x1, x2, y); the second inequality is because Gaussian distributions maximize the differential entropy
with the same second moment. h

(
N (0,ΣY−E(Y |X1,X2)

)
denotes the differential entropy of Gaussian

vector with zero mean and covariance the same as Y − E(Y |X1, X2), and the last two equalities are
because of the joint Gaussian distribution.

A.2 Proof of Theorem 3.3

The optimization problem we need to solve in Gaussian PID is

S = Ip(X1, X2;Y)− min
q∈∆G

p

Iq(X1, X2;Y), (47)

where

∆G
p := {q ∈ ∆G : q is jointly Gaussian, q(xi, y) = p(xi, y), ∀y ∈ Y, xi ∈ Xi, i ∈ [2]}. (48)

The random variables in the Gaussian PID interpreted by a Gaussian broadcast channel can be written
as [

X1

X2

]
=

[
H1

H2

]
Y +

[
n1
n2

]
, (49)

where Y ∼ N (0,ΣY), n1 ∼ N (0,Σn1), n2 ∼ N (0,Σn2), and H = [H⊤
1 , H

⊤
2]⊤ is the channel

matrix which can be directly estimated from Gaussian marginals p(x1, y) and p(x2, y).

We firstly consider the objective function Iq(X1, X2;Y). The differential entropy of a Gaussian
random vector X ∼ N (µX ,ΣX) is given by

h(X) =
n

2
log(2π) +

1

2
log |ΣX |+

1

2
n, (50)

where n is the dimension of vector X . Therefore, the MI between two random vectors X ∼
N (µX ,ΣX) and Y ∼ N (µY ,ΣY) is given by

I (X;Y) = h (X)− h (X|Y) (51)

=
1

2
log

|ΣX |∣∣ΣX|Y
∣∣ . (52)

Therefore, the objective we need to optimize in synergistic information S is

Iq(X1, X2;Y) =
1

2
log

|ΣX1X2 |∣∣ΣX1X2|Y
∣∣ (53)

=
1

2
log

∣∣HΣYH
⊤ +Σn1n2

∣∣
|Σn1n2 |

, (54)

where

Σn1n2
:=

[
Σn1 Σoff

n1n2

Σoff
n2n1

Σn2

]
. (55)

23

The second equality is because ΣX1X2|Y = Σn1n2 and ΣX1X2 = HΣYH
⊤+Σn1n2 using properties

of multivariate Gaussian distributions.

Next, we consider the constraints on Gaussian marginals q(x1, y) = p(x1, y), q(x2, y) = p(x2, y).
Note that p(x1, y) and p(x2, y) are already preserved by Σn1

and Σn2
. Without loss of generality,

we can assume ΣX1|Y = Σn1
= IdX1

and ΣX2|Y = Σn2
= IdX2

since we can always perform
receiver side linear transformations to individually whiten the X1 and X2 channels. Therefore, the
only optimization variable in Iq(X1, X2;Y) is Σoff

n1n2
.

Therefore, the optimization problem can be recast as

minimize: L
(
Σoff
n1n2

)
= log

∣∣HΣYH
⊤ +Σn1n2

∣∣
|Σn1n2

|
,

subject to: Σn1
= Σn2

= I,

Σn1n2
⪰ 0.

(56)

A.3 Proof of Proposition 3.4

Gradient. Let G := HΣYH
⊤ +Σn1n2

. Assuming that G is positive definite, then we have

∇G log det(G) = G−1. (57)

Therefore, the gradient of the unconstrained objective function in Equation (11) with respect to Σn1n2

is given by

∇Σn1n2
log

|G|
|Σn1n2 |

= G−1 − Σ−1
n1n2

. (58)

Using the block matrix formulas, the gradient with respect to Σoff
n1n2

is thus given by

∇L
(
Σoff
n1n2

)
=
[
G−1 − Σ−1

n1n2

]
up-off , (59)

where the subscript "up-off" denotes the upper off-diagonal block matrix.

We firstly compute the inverse of G := HΣYH
⊤ +Σn1n2 . Define the block matrices

HΣYH
⊤ +Σn1n2

:=

[
G1,1 G1,2

G⊤
1,2 G2,2

]
, Σn1n2

:=

[
Σn1

Σoff
n1n2

Σoff
n2n1

Σn2

]
, (60)

where

G1,1 = H1ΣYH
⊤
1 +Σn1 , (61)

G2,2 = H2ΣYH
⊤
2 +Σn2 , (62)

G1,2 = H1ΣYH
⊤
2 +Σoff

n1n2
. (63)

Using the block matrix inverse formulas, the upper off-diagonal of G−1 is given by

−G−1
1,1G1,2

(
G2,2 −G⊤

1,2G
−1
1,1G1,2

)−1
. (64)

Similarly, the upper of-diagonal of Σ−1
n1n2

is given by

−Σoff
n1n2

(
I − Σoff ⊤

n1n2
Σoff
n1n2

)−1
, (65)

if Σn1
and Σn2

are identity matrices without loss of generality.

Therefore, the gradient of the unconstrained objective is given by

∇L
(
Σoff
n1n2

)
=−G−1

1,1G1,2

(
G2,2 −G⊤

1,2G
−1
1,1G1,2

)−1
+Σoff

n1n2

(
I − Σoff ⊤

n1n2
Σoff
n1n2

)−1
. (66)

24

Projection operator. The optimization variable Σoff
n1n2

is an off-diagonal block of Σn1n2 , which is
the matrix constrained by

Σn1n2
:=

[
I Σoff

n1n2

Σoff
n2n1

I

]
. (67)

Note that Σn1 and Σn2 can always be whitened by performing receiver-side linear transformations
after we estimate H1, H2,ΣY from the data. Therefore, the constraint on the projection we need to
consider is [

I Σoff
n1n2

Σoff
n2n1

I

]
⪰ 0. (68)

By the Schur complement conditions for positive definiteness,

Σn1n2
⪰ 0⇐⇒

∥∥Σoff
n1n2

∥∥
2
≤ 1. (69)

Therefore, we only need to show that the projection of Σoff
n1n2

onto the spectral norm ball{
Σoff
n1n2

: ∥Σoff
n1n2
∥2 ≤ 1

}
is achieved by shrinking the singular values of Σoff

n1n2
via

Proj(Σoff
n1n2

) = Udiag (min (max(λi, 0), 1))V
⊤, (70)

where Σoff
n1n2

= UΛV ⊤ is the SVD of Σoff
n1n2

.

To find the projection onto the spectral norm ball, we want to solve

min
Σ
∥Σ− Σoff

n1n2
∥2F , (71)

s.t. ∥Σ∥2 ≤ 1. (72)

Let Σoff
n1n2

= UΛV ⊤ with Λ := diag(λi). We apply the same decomposition to Σ = U Λ̄V ⊤, where
Λ̄ is not necessarily diagonal. However, we can always set the off-diagonal blocks to zeros without
increasing the Frobenius norm.

Write Σ = D +O, where D is the diagonal matrix of Σ and O is the pure off-diagonal matrix. Since
the Frobenius inner product is the usual Euclidean one on entries, the diagonal and off-diagonal
subspaces are orthogonal. Hence, we have∥∥Σ− Σoff

n1n2

∥∥2
F
=
∥∥D − Σoff

n1n2

∥∥2
F
+ ∥O∥2F ≥

∥∥D − Σoff
n1n2

∥∥2
F
. (73)

For the feasibility of the spectral norm ball, it is obvious because

∥diag(Σ)∥2 = max
i
|σii| ≤ ∥Σ∥2 . (74)

Now it is feasible to restrict Λ̄ to be a diagonal matrix. Because the Frobenius norm is unitary-
invariant, we can simplify:

∥Σ− Σoff
n1n2
∥2F = ∥Λ̄− Λ∥2F =

r∑
i=1

(
λ̄i − λi

)2
. (75)

Thus, we only need to solve:

min
{λ̄i}

r∑
i=1

(
λ̄i − λi

)2
s.t. max

i
|λ̄i| ≤ 1. (76)

Note that the SVD of real matrices always gives nonnegative eigenvalues. Therefore, λi and λ̄i
should be non-negative, and the optimal solution is given by

λ̄i = min(max(λi, 0), 1). (77)

Then the projection operator is given by

Proj(Σoff
n1n2

)← Udiag
(
λ̄i
)
V ⊤. (78)

25

A.4 Computational complexity

In this section, we discuss the computational complexity of different GPID algorithms. The state-
of-the-art GPID algorithm is Tilde-PID [52], which is shown to be faster than other older baselines
(MMI-PID [3], δ-PID [53]). We identify the difference between our work and Tilde-PID as follows:

(i) We compute the PID of a different objective function. Although the optimized variable is the same,
Σn1n2 , the computation of the gradient in each iteration is significantly different. For Thin-PID, G−1

1,1
in Eq. (12) is a constant and does not need to be computed in each iteration. The other inverses
of the matrix in each iteration can be computed by solving a set of linear equations with variables
min(dX1 , dX2), while Tilde-PID requires solving linear equations with dominant variables of size
dX1

+ dX2
.

(ii) We use a different projection operator on Σn1n2
. Although the constraint is Σn1n2

⪰ 0, we only
work on the upper off-diagonal Σoff

n1n2
since the diagonal blocks are identity matrices. The Thin-PID

requires SVD in Σoff
n1n2

, which has O(min(dX1 , dX2)
3) complexity. However, Tilde-PID requires the

eigenvalue decomposition in Σn1n2 of size (dX1 +dX2)× (dX1 +dX2), which has O((dX1 +dX2)
3)

complexity, and additional SVD in the projector with O(max(dX1 , dX2)
3) complexity.

Table A.1: Complexity analysis of different GPID algorithms. The complexities of ED and SVD
are cubic in the values shown in the table. Thin-PID achieves better complexity on any scale of
computation.

ED SVD Lin-Eqn Solve Mul

Thin-PID – min(dX1
, dX2

) 2 ∗min(dX1
, dX2

) 4 ∗min(dX1
, dX2

)
Tilde-PID dX1 + dX2 max(dX1 , dX2) 2 ∗ (dX1 + dX2) 8 ∗ (dX1 + dX2)

B Latent Gaussian encoders and normalizing flows

When the marginal distributions p(x1, y) and p(x2, y) are not Gaussian, we learn a feature encoder
transforming (X1, X2, Y) into a latent space such that they are well-approximated by Gaussian
marginal distributions, then using Thin-PID to compute PID values in the GPID problem.

Information-preserving encoder: Let X̂1 = f1(X1), X̂2 = f2(X2), Ŷ = fY (Y) be three transfor-
mations defined by three neural networks, respectively. Ideally, the transformations should satisfy the
following conditions:

1. Transformations are invertible, so that the MI does not change.
2. p(x̂1, ŷ) and p(x̂2, ŷ) are well approximated by Gaussian distributions.

Flow-PID: This transformation can be performed by normalizing flows [39], whose invertible
bijections preserve information while bringing the joint distributions closer to Gaussians [7]. We
established the theory of invariant total MI and PID under bijective mappings in Theorem 4.1 and
Corollary 4.2. Our goal is to learn a Cartesian product of normalizing flows f1 × f2 × fY that
preserves the total mutual information as Ip̂(f1(X1), f2(X2); fY (Y)) = Ip(X1, X2;Y). For the
constraint set on ∆G

p , we proposed the regularization with the Gaussian marginal loss in Corollary
4.3 and Proposition 4.4.

B.1 Proof of Theorem 4.1

Lemma B.1 ([7]). Let ξ : Ω→ Rn′
be an absolutely continuous random vector, and let g : Rn′ → Rn

be an injective piecewise-smooth mapping with Jacobian J , satisfying n ≥ n′ and det(J⊤J) ̸= 0
almost everywhere. Let PDFs pξ and pξ|η exist. Then,

I(ξ; η) = I(g(ξ); η). (79)

By Lemma B.1, we only need to show I(f1(X1), f2(X2);Y) = I(X1, X2;Y). Let g(X1, X2) =
[f1(X1), f2(X2)] be the concatenation of f1(X1) and f2(X2). It is obvious that concatenation is
also bijective and invertible. Therefore, we have

I(f1(X1), f2(X2);Y) = I(g(X1, X2);Y) = I(X1, X2;Y), (80)
where the second equality is because g(X1, X2) is invertible and bijective.

26

Algorithm 2 Flow-PID algorithm
Require: Multimodal dataset X1 ∈ Xn1 , X2 ∈ Xn2 , Y ∈ Yn.

Initialize Cartesian flow networks f1 × f2 × fY .
while not converged do

for sampled batch X1 ∈ Xm1 , X2 ∈ Xm2 , Y ∈ Ym do
Transform latent feature: X̂1 = f1(X1), X̂2 = f2(X2), Ŷ = fY (Y).
Compute the marginal loss of (X̂1, Ŷ) and (X̂2, Ŷ) using Eq. (16).
Compute the sum of two marginal losses using Eq. (17).
Perform a gradient step on the loss.

end for
end while
Calculate H1, H2,ΣY from Eq. (10) using (X̂1, X̂2, Ŷ)
Perform Thin-PID from Eq. (11-15) using H1, H2,ΣY
return PID values: R, U1, U2, S

B.2 Proof of Corollary 4.2

Let X̂1 = f1(X1), X̂2 = f2(X2), and Ŷ = fY (Y), where f1, f2, fY are invertible bijective
mappings. Define the set of distributions

∆p̂ =
{
q̂ : q̂(x̂1, ŷ) = p(f−1

1 (x̂1), f
−1
Y (ŷ)), q̂(x̂2, ŷ) = p(f−1

2 (x̂2), f
−1
Y (ŷ))

}
.

Since f1, f2, and fY are bijective mappings, this set is well-defined. Moreover, if (X1, X2, Y) are
jointly distributed according to p, then (X̂1, X̂2, Ŷ) are jointly distributed according to

p̂(x̂1, x̂2, ŷ) = p(f−1
1 (x̂1), f

−1
2 (x̂2), f

−1
Y (ŷ)).

We now show that there is a bijection between the sets ∆p and ∆p̂. Given any q ∈ ∆p, define q̂ ∈ ∆p̂

by
q̂(x̂1, x̂2, ŷ) = q(f−1

1 (x̂1), f
−1
2 (x̂2), f

−1
Y (ŷ)).

It is straightforward to verify that q̂ satisfies the required marginal constraints in ∆p̂, as the marginals
transform correctly under invertible mappings. Conversely, given any q̂ ∈ ∆p̂, we can recover the
corresponding q ∈ ∆p via the inverse transformations. Thus, the mapping between ∆p and ∆p̂ is a
bijection.

We can now prove the main result. By Theorem 4.1, we have

Ip(X1, X2;Y) = Ip̂(X̂1, X̂2; Ŷ). (81)

The PID solution in the original coordinates is given by minimizing the left-hand side of Equation (81)
over ∆p, while the PID solution in the transformed coordinates minimizes the right-hand side over
∆p̂. Because of the bijection between ∆p and ∆p̂, the optimization problems are equivalent, and the
minimum values are the same. Therefore, the synergy values in both sets of coordinates are the same.
We similarly conclude that all of the PID values are equal, as desired.

B.3 Proof of Corollary 4.3

Since q(x, y) is the PDF defined on the same space as p(x, y), we have

Ip(X;Y) = E log

[
p(x, y)

p(x)p(y)

]
= E log

[
q(x, y)

q(x)q(y)
· p(x, y)
q(x, y)

· q(x)q(y)
p(x)p(y)

]
(82)

= Iq (X;Y) + E log

[
p(x, y)

q(x, y)

]
+ E log

[
q(x)

p(x)

]
+ E log

[
q(y)

p(y)

]
(83)

= Iq (X;Y) + KL (p(x, y)∥q(x, y))− KL (p(x)⊗ p(y)∥q(x)⊗ q(y)) (84)

Firstly, since KL (p(x)⊗ p(y)∥q(x)⊗ q(y)) ≥ 0, we have

Ip(X;Y)− Iq(X;Y) ≤ KL (p(x, y)∥q(x, y)) . (85)

27

Secondly, given the monotonicity of the KL divergence, we have KL (p(x, y)∥q(x, y)) ≥
KL (p(x)∥q(x)) and KL (p(x, y)∥q(x, y)) ≥ KL (p(y)∥q(y)). Therefore, we have

Ip(X;Y)− Iq(X;Y) ≥ KL (p(x, y)∥q(x, y))− 2 · KL (p(x, y)∥q(x, y)) (86)
= −KL (p(x, y)∥q(x, y)) (87)

Combining the two directions, we have

|Ip(X;Y)− Iq(X;Y)| ≤ KL (p(x, y)∥q(x, y)) . (88)

B.4 Proof of Proposition 4.4

Let (X̂, Ŷ) = f(X,Y) = fX(X)× fY (Y) be a Cartesian normalizing flow. Using the change of
variables formula, we have

log p(x, y) = log p(x̂, ŷ) + log

∣∣∣∣det ∂f(x, y)∂(x, y)

∣∣∣∣ . (89)

For the Cartesian flow f = fX × fY , the Jacobian is block-diagonal. Therefore, we have

log

∣∣∣∣det ∂f(x, y)∂(x, y)

∣∣∣∣ = log

∣∣∣∣det ∂fX(x)

∂x

∣∣∣∣+ log

∣∣∣∣det ∂fY (y)∂y

∣∣∣∣ . (90)

Given a dataset D = {(x(j)1 , x
(j)
2 , y(j)), j = 1, 2, . . . , N}, note that maximizing the likelihood of

f1(X1)× fY (Y) and f2(X2)× fY (Y) also minimizes KL
(
pX1Y ◦ (f−1

1 × f−1
Y)∥N (µ1,ΣX1Y)

)
and KL

(
pX2Y ◦ (f−1

2 × f−1
Y)∥N (µ2,ΣX2Y)

)
. Therefore, the Gaussian marginal regularizer is

equivalent to maximizing the log-likelihood of {(x(j)i , y(j))}Nj=1 such that x(j)i = f−1
i (x̂

(j)
i), y(j) =

g−1(ŷ(j)), where (x̂
(j)
i , ŷ(j)) are sampled from variational Gaussian distribution N (µi,ΣXiY).

Therefore, we use the maximum-likelihood estimates of p(x1, y) and p(x2, y) to regularize the
supremum in Gaussian marginals

LN (x
(j)
i , y(j)) = LN (µi,ΣXiY

)(x̂
(j)
i , ŷ(j)) + log

∣∣∣∣det ∂f1(xi)∂xi

∣∣∣∣+ log

∣∣∣∣det ∂fY (y)∂y

∣∣∣∣ , (91)

where LN (µi,ΣXiY
)(x̂

(j)
i , ŷ(j)) is the likelihood of the latent multivariate Gaussian variables

µi = (µX̂i
, µŶ) =

 1

N

N∑
j=1

fi(x
(j)
i),

1

N

N∑
j=1

fY (y
(j)
i)

 , (92)

ΣXiY =
1

N

N∑
j=1

(
fi(x

(j)
i)− µX̂i

fY (y
(j))− µŶ

)(
fi(x

(j)
i)− µX̂i

fY (y
(j)
i)− µŶ

)⊤

, (93)

LN (µi,ΣXiY
)(x̂

(j)
i , ŷ(j)) := −1

2
log |ΣXiY | −

1

2

(
x
(j)
i − µi

)⊤
Σ−1
XiY

(
x
(j)
i − µi

)
. (94)

To simultaneously ensure that both p(x̂1, ŷ) and p(x̂2, ŷ) are approximately Gaussian, we train the
flow using the loss function

Lflow({X1, X2, Y }) = LN ({(X1, Y)}) + LN ({(X2, Y)}), (95)

where LN ({(Xi, Y)}) is estimated by Monte Carlo sampling

LN ({(Xi, Y)}) ≈ 1

N

N∑
j=1

LN (x
(j)
i , y(j)). (96)

C Experimental details for synthetic datasets

We provide the experimental details of Section 5: data generation, feature processing, model architec-
ture, and computing resources.

28

C.1 Canonical Gaussian examples

1D broadcast channel: We illustrated results on canonical 1D Gaussian examples in Figure 1 and
corroborate the correctness of Thin-PID by designing three cases:

Unique and redundant information (left):

Y ∼ N (0, 1) (97)
X1 = Y + n1, n1 ∼ N (0, 1), n1 ⊥⊥ Y, (98)

X2 = X1 + n2, n2 ∼ N (0, σ2), n2 ⊥⊥ X1. (99)

Unique and synergistic information (middle):

Y ∼ N (0, 1) (100)

X1 = Y + n1, n1, n2 ∼ N (0, σ2), (n1, n2) ⊥⊥ Y, (101)
X2 = n2, Corr(n1, n2) = ρ. (102)

Redundant and synergistic information (right):

Y ∼ N (0, 1) (103)
X1 = Y + n1, n1, n2 ∼ N (0, 1), (n1, n2) ⊥⊥ Y, (104)
X2 = Y + n2, Corr(n1, n2) = ρ. (105)

Additional experiments on GPID at higher dimensionality: We next design additional examples
to validate Thin-PID at higher dimensionality, which are also benchmarks in [52].

Case 1: Let X1,1 = αY1 + n1,1, X2,1 = Y1 + n2,1, X1,2 = Y2 + n1,2, X2,2 = 3Y2 + n2,2, where
Y1, Y2, n1,i, n2,i ∼ i.i.d. N (0, 1), i = 1, 2. Here, (X1,1, X2,1, Y1) is independent of (X1,2, X2,2, Y2).
Using the additive property, we are able to aggregate the PID values derived from their separate
decompositions, each of which is associated with a known ground truth, as determined by the
MMI-PID, considering Y1 and Y2 as scalars.

Case 2: Let Y and X2 be the same as in Case 1. Let X1 = H1R(θ)Y , where H1 is a diagonal matrix
with diagonal entries 3 and 1, and R(θ) is a 2× 2 rotation matrix that rotates Y at an angle θ. When
θ = 0, X1 has a higher gain for Y1 and X2 has higher gain for Y2. When θ increases to π/2, X1 and
X2 have equal gains for both Y1 and Y2 (barring a difference in sign). Since (X1,1, X2,1, Y1) is not
independent of (X1,2, X2,2, Y2) for all θ, we only know the ground truth at the endpoints.

Results. The results in Cases 1 and 2 are shown in Figure 3. The left and right subfigures show the
PID values of different GPID algorithms, and the middle one shows the absolute error between each
PID algorithm and the ground truth. We observe that Thin-PID achieves the best accuracy with the
error < 10−12, while the absolute error of Tilde-PID is > 10−8.

Case 3: We test the stability of Thin-PID at a higher dimensionality of d := dX1
= dX2

= dY . We
repeat the process of Case 1 and use additive property to concatenate (X1, X2, Y). Therefore, the
PID values should be doubled as we double the dimension d.

Results. The results of GPID with higher dimensionality are shown in Figure C.1. The PID values of
Thin-PID match ground truth by doubling in value when the dimension of (X1, X2, Y) doubles.

Accuracy. Figure C.2 shows the absolute errors in PID values using the Thin-PID algorithm. It
is observed that the absolute error of the Thin-PID algorithm remains constrained below around
10−9, even as the dimensionality extends to 1024. However, the absolute error of Tilde-PID in [52]
increases with increasing dimension and will exceed 10−5 when d > 1024. Therefore, Thin-PID is
not only more efficient but also more accurate than Tilde-PID.

C.2 Synthetic non-Gaussian examples

Multivariate Gaussian with invertible nonlinear transformation: We start with a multivariate
Gaussian distribution N (0,ΣX1X2Y). The pointwise dataset {x(j)1 , x

(j)
2 , y(j)}Nj=0 is sampled from

the joint Gaussian distribution. The "exact" truth of PID is obtained by calculating H1, H2, and
ΣY from ΣX1X2Y directly, then performing Thin-PID. To show the necessity of Flow-PID in non-
Gaussian cases, we transform x

(j)
1 , x(j)2 , and y(j) into non-Gaussian distributions using three nonlinear

29

2 4 8 16 32 64 12
8

25
6

51
2

10
24

0.25
0.5

1
2
4
8

16
32
64

128
256
512

1024

I(Y ; (X1, X2))

2 4 8 16 32 64 12
8

25
6

51
2

10
24

U1

2 4 8 16 32 64 12
8

25
6

51
2

10
24

U2

2 4 8 16 32 64 12
8

25
6

51
2

10
24

R

2 4 8 16 32 64 12
8

25
6

51
2

10
24

S
Stability of the Thin-PID over increasing dimensionality

Dimension of each of Y, X1 and X2: d = dY = dX1 = dX2

Pa
rti

al
 In

fo
rm

at
io

n
(b

its
)

Figure C.1: GPID results when the dimension d := dX1 = dX2 = dY increases. Different shadings
represent different values of gain in X1,1(α) in Case 1. The PID values of Thin-PID doubles every
time when d doubles.

2 4 8 16 32 64 12
8

25
6

51
2

10
24

10 15

10 13

10 11

10 9

I(Y ; (X1, X2))

2 4 8 16 32 64 12
8

25
6

51
2

10
24

U1

2 4 8 16 32 64 12
8

25
6

51
2

10
24

U2

2 4 8 16 32 64 12
8

25
6

51
2

10
24

R

2 4 8 16 32 64 12
8

25
6

51
2

10
24

S

Absolute error in the Thin-PID over increasing dimensionality

Dimension of each of Y, X1 and X2

Ab
s.

er
ro

r i
n

PI
D

va
lu

e
(b

its
)

Figure C.2: Absolute errors of Thin-PID from Case 3.

invertible transformations x̃1 = (x1)
3, x̃2 = 3

√
x2, and ỹ = 3

√
y. According to Theorem 4.1, the MI

of (X̃1, X̃2, Ỹ) remains the same as that of (X1, X2, Y), but they are no longer pairwise Gaussian
after the transformation.

Flow-PID learns the flow-based latent Gaussian encoder first, and then performs Thin-PID in the
learned Gaussian marginal distributions. For Tilde-PID, the PID values are computed by directly
estimating the covariance of non-Gaussian samples (x̃1, x̃2, ỹ). We did not include BATCH as a
baseline in this case because BATCH requires feature clustering that is not feasible with a continuous
target y. Therefore, BATCH cannot be generalized to regression or multitask scenarios where the
target value is continuous.

The results are shown in Table 2. Flow-PID aligns with the exact truth in the relative PID values,
whereas Tilde-PID fails with a distorted nature and degree of interactions.

Table C.1: Full results on non-Gaussian multi-dimensional examples.

Dim (2, 2, 2) (10, 5, 2) (30, 10, 2)
PID R U1 U2 S R U1 U2 S R U1 U2 S
Tilde-PID 0.18 0.29 0.76 0.02 0.84 0 1.19 0.16 1.09 0 0.88 0.19
Flow-PID 0.62 0.91 0.50 0.11 2.36 0.32 0.19 0.45 2.18 1.13 0 0.17
Truth 0.79 1.46 0.58 0.18 2.96 0.54 0.26 0.58 2.92 2.18 0 0.25

Dim (100, 60, 2) (256, 256, 2) (512, 512, 2)
PID R U1 U2 S R U1 U2 S R U1 U2 S
Tilde-PID 1.48 0 1.97 0.13 1.94 0 2.31 0.10 1.09 0 0.88 0.19
Flow-PID 4.34 0.36 0 0.25 3.79 0.15 0 0.36 0.48 0.98 0.47 0.11
Truth 5.71 1.01 0 0.57 7.85 0.14 0.05 0.90 0.81 1.45 0.58 0.19

30

Specialized interactions with discrete targets: We followed the settings of the synthetic generative
model in [27]. Let z1, z2, zc ∈ R50 be a fixed set of latent variables from N (0, σ2) with σ = 0.5.
z1, z2, zc represent latent concepts for the unique information of X1, the unique information of X2

and the common information, respectively. The concatenated variables [z1, zc] are transformed into
high-dimensional x1 ∈ R100 using a fixed weight matrix T1 ∈ R100×100 and also [z2, zc] to x2
through T2. The discrete label y is generated by a function of (z1, z2, zc). By assigning different
weights, the label y can depend on (1) only zc, which reflects pure redundancy, (2) only z1 or z2,
which reflects pure uniqueness in x1 or x2, (3) the concatenation of [z1, z2], which reflects pure
synergy. More specifically,

X1 = T1 · [z1, zc], (106)
X2 = T2 · [z2, zc], (107)

Y =

[
sigmoid

(∑n
i=0 f([z1, z2, zc])i

n

)
≥ 0.5

]
, (108)

where f is a fixed nonlinear transformation with dropout rate p = 0.1.

As shown in Table 3, we generate 10 synthetic datasets, including four specialized datasets
{DR,DU1 ,DU2 ,DS} with pure redundancy, uniqueness, or synergy. The rest are mixed datasets
with y generated from (z1, z2, zc) of different weights.

The ground-truth interactions are estimated by the test performance of multimodal models. The test
accuracy Pacc is converted to the MI between the inputs and the label using the bound:

I(X1, X2;Y) ≤ logPacc +H(Y). (109)

The information in each interaction is computed by dividing the total MI by the interactions involved
in the data generation process: if the total MI is 0.6 bits and the label depends on half of the common
information between modalities and half from the unique information in x1, then the ground truth
R = 0.3 and U1 = 0.3.

C.3 Compute configuration and code Availability.

All experiments with synthetic datasets are performed on a Linux machine, equipped with 48GB
RAM and NVIDIA GeForce RTX 4080.

The code used to reproduce results on synthetic datasets is included in a ZIP file as part of the
supplementary material.

BATCH and Flow-PID require the training of neural networks (NNs). Before training NNs, we
preprocess the feature by standardizing the features and randomly shuffling the mini-batches. BATCH
follows the same training recipe as in [27], and the NN architectures used in Flow-PID are given in
Table C.2.

Table C.2: The NN architectures for Flow-PID.

NN Architecture

GLOW ×1 : 4 (5) splits, 2 GLOW blocks between splits,
16 hidden channels in each block, leaky constant = 0.01

×1 : Orthogonal linear layer
×3 : RealNVP(AffineCouplingBlock(MLP(d/2, 64, d)), Permute-swap)

RealNVP ×6 : RealNVP(AffineCouplingBlock(MLP(d/2, 64, d)), Permute-swap)

D Experimental details for real-world datasets

We provide the experimental details of Section 6 and introduce the real-world datasets from Multi-
Bench [30]. For the BATCH baseline, we follow the same experimental settings and training recipes
in [27]. We release the data and code in an anonymous ZIP file attached with the supplementary
materials.

31

Table C.3: Training recipe.

Parameter Value

Optimizer Adam
Initial learning rate 1e-4
Scheduler CosineAnnealingLR
Weight decay 1e-4
Data augmentation Normalization
Batch size 128

D.1 Quantifying real-world datasets

MultiBench datasets: We use a collection of real-world multimodal datasets in MultiBench [30],
which spans 10 diverse modalities (images, video, audio, text, time-series), 15 prediction tasks (humor,
sentiment, emotions, mortality rate, ICD-9 codes, image-captions, human activities, digits, robot
pose, object pose, robot contact, and design interfaces), and 5 research areas (affective computing,
healthcare, multimedia, robotics, and HCI). These datasets are designed to test a combination of
feature learning and arbitrarily complex interactions under different multimodal fusion models in the
real world.

Table D.1: MultiBench datasets used for quantifying interactions between diverse modalities, tasks,
and research areas.

Datasets Modalities Size Prediction task Research areas
AV-MNIST [54] {image, audio} 60, 000 logits Multimedia
MOSEI [60] {text, video, audio} 22, 777 sentiment, emotions Affective Computing
UR-FUNNY [19] {text, video, audio} 16, 514 humor Affective Computing
MUSTARD [8] {text, video, audio} 690 sarcasm Affective Computing

Real-world datasets with task-driven and causally relevant interactions: we conducted 2 addi-
tional experiments with real-world data to demonstrate our method in additional application areas
and with unexplored modalities.

• TCGA-BRCA is a multimodal dataset created to help study the causes and progression
of breast cancer. We quantified the PID of predicting the breast cancer stage from protein
expression and microRNA expression. Flow-PID identified strong uniqueness for the
modality of microRNA expression as well as moderate amounts of redundancy and synergy.
These results are also in line with modern research, which suggests microRNA changes as
a direct result of cancer progression.

• VQA (Visual Question Answering) is a multimodal dataset consisting of 10,000 images with
corresponding yes/no questions and their answers. Under the paradigm of using the image
and question to predict the answer, one would naturally expect high synergy since the
image and question complement each other. Our method, Flow-PID, recovers exactly
this – we find synergy is the dominant interaction between the modalities.

The detailed experimental results are shown in Table D.2. Both of these experiments demonstrate
further applications and additional modalities to validate our method.

Table D.2: Additional experimental results of Flow-PID on real datasets with task-driven interactions.

Dataset dim-X1 dim-X2 R U1 U2 S
Expected

interactions
VQA2.0 768 1000 0.22 0.26 0.0 0.76 S
TCGA 487 1881 0.41 0.0 1.07 0.34 U2

Information-preserving feature extractor: For datasets with available modality features (images,
text), we use the end-to-end PID estimator (Flow-PID, BATCH). For other modalities (audio, time-
series), we first use pretrained encoders to extract features. To preserve the MI of the extracted

32

features, we add a contrastive loss to the encoder Enc(X) using MINE [4]:

V(θ) = 1

N

N∑
j=1

Tθ

(
Enc(x(j)), y(j)

)
− log

 1

N

N∑
j=1

eTθ(Enc(x(k)),ȳ(j))

 . (110)

D.2 Model selection

Setup: Given a new dataset D, we are interested in whether PID estimators are beneficial in
recommending the most appropriate model without training all models from scratch. We hypothesize
that the model with the best performance will likely perform well on the dataset most analogous to
it, given the similarity in the interactions. Therefore, we select the most similar pre-trained dataset
D∗ from a set of base data sets D′ (the 10 synthetic data sets presented in Table 3) by measuring the
difference in the normalized PID values:

D∗ = argmin
D′

s(D,D′) = argmin
D′

∑
I∈{R,U1,U2,S}

|ID − ID′ |. (111)

The quality of the model selection is evaluated by the percentage of the performance of the selected
model with respect to the performance of the truly best-performing model on D:

% Performance(f, f∗) = Acc(f)/Acc(f∗). (112)

Choices of multimodal models: We implement 10 multimodal fusion models in 5 synthetic datasets
and 5 MultiBench datasets.

1. ADDITIVE: Suitable unimodal models are first applied to each modality before aggregating
the outputs using an additive average: y = 1/2(f1(x1) + f2(x2)) [20].

2. AGREE: Add another regularizer as prediction agreement (+λ(f1(x1)− f2(x2))
2 [10]).

3. ALIGN: Add feature alignment (+λsim(x1,x2) like contrastive learning [41]).
4. ELEM: Element-wise interactions for static interactions (i.e., without trainable interaction

parameters): y = f(x1 ⊙ x2) [1, 23].
5. TENSOR: Outer-product interactions (i.e., higher-order tensors): y = f

(
x1x

⊤
2

)
[14, 59, 21,

29, 33].
6. MI: Dynamic interactions with learnable weights include multiplicative interactions W:
y = f(x1Wx2) [24].

7. MULT:Dynamic interactions with learnable weights through cross-modal self-attention,
which is used in multimodal transformers: y = f(softmax(x1x

⊤
2)x1) [51, 49, 57].

8. LOWER: Lower-order terms in higher-order interactions to capture unique information [33,
59].

9. REC: Reconstruction objectives to encourage maximization of unique information (i.e.,
adding an objective Lrec = ∥g1(zmm)− x1∥2+∥g2(zmm)− x2∥2 where g1, g2 are auxiliary
decoders mapping zmm to each raw input modality [45, 50, 56].

10. EF (early fusion): Concatenating data at the earliest input level, essentially treating it as a
single modality, and defining a suitable prediction model y = f([x1,x2]) [31].

Architectures of multimodal models in different datasets: To make a fair comparison between
BATCH and Flow-PID, we adopt the same architecture of feature encoder, modality fusion, and
training hyperparameters in [27]. For datasets with available modality features, we use data with
standard pre-processing as the input of multimodal models. For other datasets without available
modality features (UR-FUNNY, MUStARD, MOSEI), we first use pretrained encoders to extract
features, which are also provided along with those datasets. The NN architectures and training
hyperparameters are provided below.

33

Table D.3: NN architectures for multi-modal fusion models. The input dimension is decided by
extracting d-dimensional features from the data. For datasets with available modality features, feature
dim d is identical to the data dim. For other datasets without available modality features, we first use
pretrained encoders to obtain features with output dim d.

Component Model Parameter Value

Encoder
Identity / /

Linear Feature dim [d, d]
Hidden dim 512

Decoder Linear Feature dim [d, d]
Hidden dim 512

Fusion

Concat / /
Elem Output dim 512MI [24]

LOWER [33] Output dim 512
rank 32

MULT [49] Embed dim 512
Num heads 8

Classification head

Identity / /

2-Layer MLP
Hidden size 512
Activation LeakyReLU(0.2)
Dropout 0.1

Training

Loss Cross Entropy
EF & ADDITIVE & ELEM & TENSOR Batch size 128
MI & MULT & LOWER Num epochs 100

Optimizer/Learning rate Adam/0.0001

AGREE & ALIGN

Loss Cross Entropy
+ Agree/Align Weight

Batch size 128
Num epochs 100

Optimizer/Learning rate Adam/0.0001
Cross Entropy Weight 2.0
Agree/Align Weight 1.0

REC [50]

Loss Cross Entropy
+ Reconstruction (MSE)

Batch size 128
Num epochs 100
Optimizer Adam

Learning rate 0.0001
Recon Loss Modality Weight [1, 1]

Cross Entropy Weight 2.0

Intermediate Modules MLP [512, 256, 256]
MLP [512, 256, 256]

34

Table D.4: Table of hyperparameters for affective computing datasets.

Component Model Parameter Value

Encoder
Identity / /

GRU Input size [5, 20, 35, 74, 300, 704]
Hidden dim [32, 64, 128, 512, 1024]

Decoder GRU Input size [5, 20, 35, 74, 300, 704]
Hidden dim [32, 64, 128, 512, 1024]

Fusion

Concat / /
Elem Output dim [400, 512]MI [24]
Tensor Fusion [59] Output dim 512

MULT [49] Embed dim 40
Num heads 8

Classification head

Identity / /

2-Layer MLP
Hidden size 512
Activation LeakyReLU(0.2)
Dropout 0.1

Training

Loss L1 Loss
EF & ADDITIVE & ELEM & TENSOR Batch size 32
MI & MULT & LOWER Num epochs 40

Optimizer/Learning rate Adam/0.0001

AGREE & ALIGN

Loss L1 Loss
+ Agree/Align Weight

Batch size 32
Num epochs 30

Optimizer/Learning rate Adam/0.0001
Agree/Align Weight 0.1

REC [50]

Loss L1 Loss
+ Reconstruction (MSE)

Batch size 128
Num epochs 50
Optimizer Adam

Learning rate 0.001
Recon Loss Modality Weight [1, 1]

Intermediate Modules MLP [600, 300, 300]
MLP [600, 300, 300]

Table D.5: Table of hyperparameters for AV-MNIST encoders.

Component Model Parameter Value

Image Encoder LeNet-3

Filter Sizes [5, 3, 3, 3]

Num Filters [6, 12, 24, 48]

Filter Strides / Filter Paddings [1, 1, 1, 1] /[2, 1, 1, 1]
Max Pooling [2, 2, 2, 2]

Image Decoder DeLeNet-3
Filter Sizes [4, 4, 4, 8]

Num Filters [24, 12, 6, 3]

Filter Strides / Filter Paddings [2, 2, 2, 4]/[1, 1, 1, 1]

Audio Encoder LeNet-5

Filter Sizes [5, 3, 3, 3, 3, 3]

Num Filters [6, 12, 24, 48, 96, 192]

Filter Strides / Filter Paddings [1, 1, 1, 1, 1, 1]/[2, 1, 1, 1, 1, 1]
Max Pooling [2, 2, 2, 2, 2, 2]

Audio Decoder DeLeNet-5
Filter Sizes [4, 4, 4, 4, 4, 8]

Num Filters [96, 48, 24, 12, 6, 3]

Filter Strides / Filter Paddings [2, 2, 2, 2, 2, 4]/[1, 1, 1, 1, 1, 1]

35

Table D.6: Table of hyperparameters for ENRICO dataset in the HCI domain.

Model Parameter Value
Unimodal Hidden dim 16

MI-Matrix [24] Hidden dim 32
Input dims 16, 16

MI Hidden dim 32
Input dims 16, 16

Lower [33]
Hidden dim 32
Input dims 16, 16

Rank 20

Training

Loss Class-weighted Cross Entropy
Batch size 32
Activation ReLU
Dropout 0.2

Optimizer Adam
Learning Rate 10−5

Num epochs 30

36

	Introduction
	Background and related work
	Partial information decomposition
	Normalizing flows
	Related work

	A new Gaussian PID theory and algorithm
	Optimality of joint Gaussian solution
	Thin-PID: a new algorithm for GPID

	Learning a latent Gaussian encoder via normalizing flows
	Gaussian marginal loss

	Synthetic PID validation
	Validating Thin-PID on canonical Gaussian examples
	Flow-PID on non-Gaussian examples

	Real-world applications of PID
	Conclusion
	The Gaussian PID theory and algorithm
	Proof of Lemma 3.2
	Proof of Theorem 3.3
	Proof of Proposition 3.4
	Computational complexity

	Latent Gaussian encoders and normalizing flows
	Proof of Theorem 4.1
	Proof of Corollary 4.2
	Proof of Corollary 4.3
	Proof of Proposition 4.4

	Experimental details for synthetic datasets
	Canonical Gaussian examples
	Synthetic non-Gaussian examples
	Compute configuration and code Availability.

	Experimental details for real-world datasets
	Quantifying real-world datasets
	Model selection

