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Abstract

We present a slot-wise, object-based transition model that decomposes a scene
into objects, aligns them (with respect to a slot-wise object memory) to maintain a
consistent order across time, and predicts how those objects evolve over successive
frames. The model is trained end-to-end without supervision using transition losses
at the level of the object-structured representation rather than pixels. Thanks to
the introduction of our novel alignment module, the model deals properly with
two issues that are not handled satisfactorily by other transition models, namely
object persistence and object identity. We show that the combination of an object-
level loss and correct object alignment over time enables the model to outperform
a state-of-the-art baseline, and allows it to deal well with object occlusion and
re-appearance in partially observable environments.

1 Introduction

In spite of their well-documented ability to learn complex tasks, today’s deep reinforcement learning
agents are still far from matching humans at out-of-distribution generalisation or few-shot transfer
[6, 21, 23]. Two architectural features commonly proposed to remedy this are (1) transition models
that enable the agent to internally explore paths through state space that it has never experienced
[29, 25, 12], and (2) compositionally structured representations that enable the agent to represent
meaningful states that it has never encountered [7]. These two features are not exclusive; transition
models that operate on compositionally structured representations are a potent combination, and these
are the subject of the present paper. Specifically, our focus is on transition models that operate at the
level of objects, which are the most obvious candidates for the structural elements of representations
likely to be useful for artificial agents inhabiting 3D worlds such as our own [28].

While there has been progress in object-based transition models [34, 32, 35, 20], current models do
not deal satisfactorily with object persistence (the concept that objects typically continue to exist
when they are no longer perceptible [24]) or with object identity (the concept that a token object at
one time-step is the same token object at a later time-step [1]). As we show, transition models that
neglect object persistence tend to perform badly in complex, partially observable environments, while
models that neglect object identity are unable to integrate information about a single object (and its
interactions) over time in a way that generalises to future time-steps. By proposing and incorporating
a novel module for aligning objects across time using a slot-based memory, our model handles both
these concepts, and exhibits better performance as a result.
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Figure 1: Comparing our model to baselines. Each model was trained with four input steps and to
unroll for six steps, here we unroll for 15 steps. Our model, OAT, performs significantly better than
OT (our model without the AlignNet) and current state-of-the-art model, OP3 [32]. See Figure 17 in
the Appendix for additional OP3 roll-outs.

Figure 2: Encoding steps. The scene decomposition

and representation module extracts K object represen-
tations, zt 2 <K⇥F , from images, xt 2 <W⇥H⇥3.
These are aligned using the alignment module to obtain
z
a

t
2 <M⇥F . Aligned objects are fed to the slot-wise

transition model with the action, at, and hidden state,
ht(= h

a

t
) 2 <M⇥H , to predict the object representa-

tions at the next time-step, zd
t
2 <M⇥F , as well as the

updated memory, mt+1 2 <M⇥F . We also depict the
transition model loss, lTransition model, computed between
z
d

t
and z

a

t
(shown as LOSS in the figure).

An important feature of our transition
model is that it makes predictions and
computes losses in a representation space
that is divided into objects. This contrasts
with existing models that make predictions
in an unstructured representation space
[13, 12]. Making predictions and com-
puting losses in an object-structured rep-
resentation space facilitates learning, not
only because the representation space is
lower dimensional than pixel space, but
also because the model can exploit the fact
that dynamics tend to apply to objects as
a whole, which simplifies learning. How-
ever, to compute prediction losses directly
over distinct object representations (rather
than first mapping predictions back to pix-
els [34, 32]), the objects in a predicted rep-
resentation must be matched with those in
the target representation, which again re-
quires a proper treatment of object persis-
tence and identity. The result is a model
that can roll-out accurate predictions for
significantly more steps than seen during
training, outperforming state-of-the-art for
comparable models.

To achieve this, our model, Objects-Align-
Transition (OAT), combines (1) a scene

decomposition and representation module,
MONet [2], that transforms a raw image
into a slot-wise object-based representation,
(2) an novel alignment module which, with
the aid of a slot-wise memory, ensures that
each object is represented in the same slot
across time, even if it has temporarily disap-
peared from view, and (3) a novel slot-wise
transition model that operates on the object
representations to predict future states. All
three components are differentiable, and the whole model is trained end-to-end without supervision.
We evaluate the model on two sequential image datasets. The first is collected from a pre-trained
agent moving in a simulated 3D environment, where we show that our model outperforms the current
state-of-the-art object-based transition model (OP3 [32]). The second dataset is collected from a real
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robot arm interacting with various physical objects, where we demonstrate accurate roll-outs over
significantly longer periods than used in training. An ablation study shows that the model’s success
depends on the combination of correct object alignment across time and the use of a transition loss
over object-level representations instead of over pixels.

2 Our Model: Objects-Align-Transition

Our model, Objects-Align-Transition (OAT), combines a scene decomposition and representation
module, in this case MONet, with our slot-wise transition module, via our alignment module, which
ensures that each slot in the transition model receives objects corresponding to the same token object
(or identity) across time. The whole model is trained end-to-end. We now provide details of each of
these modules (see Figure 2).

2.1 Scene Decomposition and Representation Module

The input to OAT is a sequence of RGB images, x 2 [0, 1]T⇥W⇥H⇥3, with T time-steps, width,
W , and height, H . We leave out the batch dimensions for simplicity. Each image in the sequence,
xt, is passed through a scene decomposition and representation module1, in this case MONet, to
obtain a slot-wise object representation, [zt,k]1:K , occupying K slots, where zt,k 2 <F is an object
representation vector with F features.

MONet consists of an attention module (a U-net [27]) — which predicts object segmentation masks,
µt,k 2 [0, 1]T⇥W⇥H⇥1, for each slot — and a slot-wise VAE. The encoder of the slot-wise VAE is fed
the predicted object segmentation masks and the input image, xt, and outputs object representations,
zt 2 <K⇥F . The decoder reconstructs the masks, µ̃k,t, and each object’s pixels, x̃t,k. MONet’s
computations can be summarised by the following equations: µk,t = Attention_Network(xt), zk,t =
MONet_encoder(xt, µk,t) and µ̃k,t, x̃t,k = MONet_decoder(zk).

It may be tempting to feed the slot-wise object representations, [zt,k]k=1:K , at time, t, directly to
a slot-wise transition model. However, MONet’s representations [2] are not stable across time,
meaning that a specific object may appear in different slots at different times [35] (see Figure 3). This
leads to two major problems when training slot-wise transition models on slot-wise object-based
representations. Firstly, it is difficult to compute losses between predicted and target object slots.
Computing a slot-wise object-level loss requires us to know how the previous object representations
(and thus the predicted object representations) correspond with the target object representations.
Secondly, if object representations do not occupy consistent slots it makes it harder to integrate
information about a single object (and its interactions with other objects) across time [35], and makes
it harder to predict the reappearance of that object (as show in Section 4.2). To address the issue of
slot stability we introduce Memory AlignNet, an alignment module.

2.2 Alignment Module

Our alignment module, Memory AlignNet, must play two key roles. The first is to align objects
across time, enabling us to compute slot-wise object-level losses for training. The second is to learn a
slot-wise memory that encodes the history of each slot across time, allowing our transition model to
operate effectively in partially observable environments by keeping track of objects as they go in and
out of view. This is especially important for embodied agents that take actions in 3D environments,
where the agent’s looking around frequently causes objects to move in and out of its field-of-view.

We propose Memory AlignNet, which takes a slot-wise memory, mt 2 <M⇥F , with M � K

slots and the (stacked) output of the scene decomposition and representation module, zt 2 <K⇥F ,
returning the aligned object representations, za

t
2 <M⇥F . To perform alignment, the Memory

AlignNet predicts an adjacency matrix, At 2 <M⇥K , that aligns objects, zt, with the memory, mt.
This adjacency matrix allows us to compute a soft alignment za,soft = Atzt or a hard alignment,
z
a , z

a,hard = Hungarian(At)zt. We will refer to z
a,hard

t
as za

t
throughout the rest of the paper.

Hungarian(·) denotes the application of the Hungarian algorithm, a non-differentiable algorithm
which computes a permutation matrix given an adjacency matrix. The soft version of the alignment is

1We tried some variants where zt depended on zt�1. However these did not yield significantly beneficial
results.
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used to train the Memory AlignNet while the hard version of the alignment is passed to the slot-wise
transition model, which has the same number of slots, M , as the memory. Further details can be
found in Section A.2 of the Appendix.

The hard-aligned objects may also be used to update the memory using a recurrent slot-wise model.
For simplicity we use our transition model, T✓(·), to predict deltas for both the object representations,
z
a

t
, and the memory, mt. We will detail this in the next section.

2.3 Slot-Wise Transition Module

The transition model operates in both an encoding and an unrolling phase. During the encoding phase
the transition model is fed aligned, observed object representations, za

t
, and actions, at, to predict

aligned object representations at the next time-step, zd
t+1 2 <M⇥F . During the unroll phase, the

transition model is fed the predictions, zd
t

, and actions, at, from the current time-step to predict the
object representations, zd

t+1, at the next time-step.

More concretely in the encoding steps, our transition model, T✓(·), takes aligned object representa-
tions, za

t
, and a hidden state, ha

t
2 <M⇥H , and predicts deltas for both the object representations, za

t
,

and memory, mt. The output of our transition model is given by [�a

t
,�m

t
], ha

t+1 = T✓(zat , at, ha

t
).

The memory and the object representations are then updated as follows: mt+1 = mt + �m

t
and

z
d

t+1 = z
a

t
+ �a

t
. In the unroll steps, next step predictions are given by z

d

t+1 = z
d

t
+ �d

t
where

[�d

t
,�m

t
], ha

t+1 = T✓(zdt , at, ha

t
). By using the transition model to predict deltas, zd

t
is aligned by

default and does not need to be re-aligned when unrolling the model.

A key feature of our transition model is that weights are shared across object slots and can be
instantiated in many different ways. One simple option is to use a SlotLSTM; an LSTM applied
independently to each slot, sharing weights between slots. An alternative, novel instantiation which
we found to work well is to first apply a transformer [33, 31] and then the SlotLSTM (see Figure 10
and Section A.3). This allows the model to capture interactions with other objects (via the transformer)
and integrate that information over time (via the SlotLSTM). Further details are in Section A.2 of the
Appendix.

2.4 Training

When training OAT, we jointly learn the parameters of the scene decomposition and representation
module, the alignment module and the transition module. Each module has its own losses that
contribute to downstream gradients and updates. For example, both the transition model and the
alignment module losses can influence the scene decomposition and representation module’s updates.
Let us define the losses for each module.

Scene decomposition and representation module losses (MONet). We train MONet using stan-
dard MONet losses, lMONet, see Equation 3 in [2]. The first term in the MONet loss is a scene
reconstruction term. This is a spatial mixture loss parameterised by �bg and �fg, which are the
standard deviation used for each slot’s component likelihood (for the first slot and remaining slots,
respectively) that go into the mixture loss. The remaining terms are regularisation terms that 1) induce
a latent information bottleneck needed for good representation learning (scaled by �, the latent KL
loss weight), and 2) ensure that predicted and target masks are similar (scaled by �, the mask KL loss
weight). MONet losses are computed only in the encoding phase and are not used in the unroll phase.
Additionally, MONet loss gradients do not affect the transition module or the alignment module
weights.

Alignment module losses (Memory AlignNet). The Memory AlignNet is trained on a recon-
struction loss between the softly aligned object representations, z

a,soft

t
, and the output of the

transition model, zd
t

, for the corresponding time-step. There are also regularisation losses includ-
ing an entropy loss, H(·), on the adjacency matrix, At, which encourages values towards zero
and one; and a loss that penalises columns that sum to more that one, avoiding the case where
multiple objects are assigned to the same memory slot. The AlignNet loss, lAlignNet is defined as
lAlignNet =

P
T

t=1 ||zdt � z
a,soft

t
||22 +  H(At) +

P
M

j=1 max(0, (
P

K

k=1 At,k,j � 1)), where T is the
total number of encoding and unroll steps. We use  = 0.01 for all experiments presented in this
paper.
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Slot-wise transition module losses. The slot-wise transition model is trained with a reconstruction
loss between the outputs of the transition model, zd

t
, and the aligned observations for the same

time-step, z
a

t
. The slot-wise transition model loss, lTransition model is defined as lTransition model =P

T

t=1 ||zdt � z
a

t
||22. Importantly, we compute a loss directly between object representations without

the need for decoding them to obtain pixels.

OAT is trained end-to-end to minimise lMONet + lAlignNet + ⇣lTransition model, using ⇣ = 10 for all
experiments presented in this paper.

3 Related Work

Our work addresses the challenging topic of learning object-based transition models in 3D partially
observable environments without supervision. We identify two phenomena that are not dealt with
adequately in current object-based transition models, namely object persistence and identity. As a
consequence, current models are not able to perform well in partially observable environments,
and are often trained without semantically meaningful losses.

Firstly, we acknowledge previous work on temporally extended scene decomposition and representa-
tion models [35, 14] (typically used for video representation learning), object-based transition models
[20, 17] and action conditional object-based transition models such as OP3 [32] and C-SWM [19].
We consider Veerapaneni et al.’s OP3 [32] to be the current state-of-the-art object-based transition
model since C-SWM requires privileged information about exactly which object an action was applied
to, while OP3 (like our model) simply requires the action taken by the agent. OP3 alternates between
refinement steps and dynamics (or prediction) steps. One drawback of OP3 is that its refinement
steps require access to the observation, which means refinement cannot be applied when rolling out
the model to unobserved time-steps. For this reason Veerapaneni et al. [32] only demonstrate unrolls
for a limited number of steps.

3.1 Current Models are not Designed for Partially Observable Environments

The world that we operate in, and which we intend our agents to operate in, is partially observable. A
severe limitation of existing object-based transition models [32, 19] and temporally extended object
scene decomposition and representation models [35, 11, 30, 14] is their inability to cope with partially
observable environments. A promising approach proposed by He et al. [14] uses an external memory
for object tracking (but does not use a transition model). Their mechanism is different to that of our
proposed alignment module, AlignNet, which we use to perform slot alignment in OAT. He et al.
[14] train their model, TBA, for reconstruction while AlignNet incorporates dynamics and is trained
using prediction, meaning that AlignNet can resolve ambiguities using dynamics2, while TBA cannot.
Additionally, TBA can only cope with static backgrounds and so it is not applicable here. Goyal et
al. [8] also develop a general a model with a notion of object persistence. However they only show
results in 2D environments.

3.2 Current Models are not Trained Using Semantically Meaningful Losses

Another problem with current approaches to learning object-based transition models is how they are
trained. In most scenes, the background accounts for most of the pixels while the objects account for
only a small fraction of them. So while it may be tempting to train transition and video-representation
models using a pixel-level loss [34, 35, 32, 20, 17, 14], we show that it is preferable to compute
losses directly between predicted and target objects (see Section 4.2 and Figure 1). Furthermore,
pixel-level losses require the object representations to be decoded into an image [34, 35, 32], which
is often computationally expensive.

An alternative way to find object-level losses is to compute a minimum assignment loss [4], employing
the Hungarian algorithm, between predicted and target object representations. However, doing so can
be problematic because you need to first compute a similarity matrix on which to apply the Hungarian
algorithm. We show in Section 4.2 that computing a loss using the Hungarian algorithm (using L2

2For example, when two visually similar objects collide with one another, the AlignNet can use dynamics to
resolve which object is which after the collision.
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Figure 3: Outputs of our scene decomposition and representation (MONet) module across time.
MONet predicts K = 10 latent object representation vectors {zt,i}i=1,...,K at each time-step. Here
we visualise those vectors, in columns C1 to C10, using MONet’s decoder. Notice that objects switch
slots across time. This makes it difficult to (a) compute losses between predictions and targets and (b)
integrate information about an object across time.

loss between all object pairs as the similarity matrix) leads to poor generalisation in transition models
when performing longer unrolls than those seen during training.

Furthermore, at the start of training, comparing predictions with targets to compute a loss may not
be meaningful, since predictions will start off as essentially random. In our approach, we align the
inputs with the targets, and condition the slot-wise prediction on the slot-wise history. This reinforces
slot stability and allows us to accurately predict changes, �a

t
, in each object representation.

Interestingly, Lowe et al. [22] use Deep Sets [36] to encode predicted and target object sets and use
a contrastive loss between encodings. Their approach has only been demonstrated for very simple
datasets. Kipf et al. (C-SWM) [19] do compute losses in their representation space. However, they
avoid the object correspondence problem because they extract representations spatially, keeping the
spatial ordering and using data where object movement was limited. Their approach is unlikely to
scale well to partially observable environments with significant movement of objects across the field
of view, especially when being trained to predict multiple steps into the future.

OP3 [32] and other models [35] attempt to induce a weak, implicit object alignment by conditioning
predicted object representations on those from the previous time-step. This does not guarantee
alignment (or slots with consistent identity) over time, especially in partially observable environments.
Moreover, in contrast to OAT, they do not use their implicit alignment for computing losses.

Finally, we note that while there are existing models that learn to predict future states, given actions,
directly from pixels [13, 12], we have focused primarily on related work that predicts the future states
of objects, because we are particularly interested in developing models that may support future work
towards object-based agents.

4 Experiments and Results

In this section we (1) demonstrate OAT’s performance in the 3D Playroom environment [15, 16]
and compare to the current state-of-the-art object-based transition model, OP3 [32] (Section 4.1), (2)
investigate the benefit of alignment and object-level losses when training transition models (Section
4.2), and (3) apply OAT in a real world robotics environment and show it accurately predicts both the
motion of the robotic arm and its physical interaction with objects (Section 4.3).

4.1 Objects-Align-Transition Results in Playroom

We train and test our model, OAT, on data collected by an agent taking actions in a Playroom
environment [15, 16]. Each procedurally generated room in the dataset contains between 10 and
45 objects from 34 different classes in 10 different colours and three different sizes. A dataset of
observation-action trajectories, (xt, at)t=0,1,...,20, is generated by an agent taking actions according
to a learned policy in a procedurally generated room. We collect 100, 000 trajectories with a 7:2:1
train:validation:test split. The top row of Figure 5 shows an example trajectory.

We train OAT with four encoding steps (i.e. the model sees four observations for the first four
time-steps) and six unrolling steps. MONet outputs K object representations, {zt,i}i=1,...,K . We

6



Figure 4: Aligned inputs (first 4 time-steps) and targets (last 6 time-steps). Our alignment module
outputs object representation vectors which we visualise here using MONet’s entity decoder. Most
of the objects are now in consistent slots across time, making it easier to compute losses directly
between object representations using a simple L2 loss. Notice that while MONet outputs 10 slots, the
AlignNet has 12 slots. Additional time-steps shown in Figure 11 in the Appendix.

use K = 10 objects, with F = 32 features, and a memory with M = 12 slots. Figure 3 visualises
the MONet outputs for the first three time steps. Our model achieves good segmentation (see the
Adjusted Rand Index, ARI, in Table 1 for segmentation metrics). Importantly, notice that the slots
are not stable across time. For example, the purple object in slot C7 at t = 0 switches slots at t = 2.
Similarly the yellow object in slot C5 at t = 0 switches to slot C2 at t = 1 and slot C4 at t = 2.

The object representations, zt 2 <[K⇥F ], output by MONet are fed to the alignment module. The
outputs of the alignment module, za

t
2 <[M⇥F ], are visualised in Figure 4. The outputs of the

alignment module are object representations, and Figure 4 is a visualisation of these representations
using MONet’s decoder. Our alignment module successfully keeps objects in consistent slots across
time.

The output of the alignment module is used to generate both inputs and targets for training the
transition model. The transition model predicts latents, zd

t
2 <[M⇥F ]. In Figure 5 we visualise

roll-outs from our model using MONet’s decoder; the reconstructed scene visualisations are generated
as the mask-weighted sum of the each slot’s pixels,

P
k
µ̃k,tx̃t,k. While the model is trained to unroll

for six steps, here we unroll for 15 steps. The transition model only sees the first four frames. In
the top example, we see that the model is able to predict the appearance of the avatar well, and in
general we notice that the model, given the agent’s actions, is able to predict the position of objects
well and without the representations degrading. (For comparison to baselines see Figure 1.) In some
of the examples, the targets appear to have more objects than those seen in the unroll. This is because
the model has only seen the first four frames and has not seen those other objects in the room, and
therefore does not have enough information to predict where unseen objects will appear.

Figure 5: Unrolling OAT for more time-steps than seen during training. The slot-wise transition
model makes predictions in latent space (one latent per object), which we visualise using MONet’s
decoder. The slot-wise transition model was trained with 4 inputs steps and to unroll for 6 steps.
Here the model takes the first 4 steps as input and is unrolling for 15. On the top row at t = 16, it is
impressive that the model is able predict the appearance of the avatar’s base (the red circle with the
yellow stripe) when looking down. (For a per-object visualisation see Figure 13 in the Appendix.)
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To conclude these experiments, we compare our model to the current state-of-the-art object-based
transition model, OP3 [32], and to our ablated model, OT, without the alignment module in Table 1
and Figure 1. Qualitatively, from Figure 1 we see that OAT significantly outperforms both baselines.
Unrolls using OT, trained without alignment, lead to objects merging towards a grey cloud in the
middle of the frame. Unrolls from OP3 lead to objects fading into the background (we explore the
cause of each of these pathologies in the next Section 4.2). Results were consistent for each model
across multiple runs.

To quantitatively compare models we consider three metrics: Encoding ARI, Unroll Pixel Error
and Unroll ARI. The Encoding ARI (Adjusted Rand Index, [18, 26]) measures the accuracy of the
object segmentation masks learned by the scene decomposition model. The Unroll Pixel Error and
Unroll ARI evaluate the quality of the transition model’s unrolls. To compute each of these we
decode the latents, zd

t
, predicted by unrolling the transition model, to produce images, xd

t
, and masks,

µ
d

k,t
. The Unroll Pixel Error is the mean-squared-error between the ground truth images and x

d

t
for

the unroll steps only. The Unroll ARI is the accuracy of the decoded masks, µd

k,t
, compared with

the ground-truth masks. For both ARI scores we exclude background pixels from the score since
accurate decomposition of the objects is the main concern here. The Unroll ARI is a more meaningful
evaluation of the unrolls than the Unroll Pixel Error since it is not affected by the background which
often accounts for most of the pixels. Note that we only use ground-truth masks for evaluation
purposes.

The results in Table 1 further demonstrate the crucial role that alignment (AlignNet) plays when
performing unrolls. Without alignment the Unroll ARI is significantly lower because we are not able
to compute a semantically meaningful object-level loss for training. Additionally, we see that our
model significantly outperforms OP3 on all metrics (see Figure 1). In light of the results in Table 1,
in the next section we will more concretely look at the role of alignment and the object-level loss
(between object representations) when training transition models.

Encoding ARI Unroll Pixel Error Unroll ARI
OAT (ours) 0.62 0.0121 0.42

OT (ours, no AlignNet) 0.59 0.0143 0.12
OP3 0.32 0.0132 0.33

Table 1: Comparing our model OAT to baselines. We trained three OAT and OT models (three
seeds each), and report the ARI score, Unroll Pixel Error and Unroll ARI score for the model with
the best Unroll ARI score. Results for OP3 were obtained similarly, except that ten models were
trained (ten seeds), since more variance was observed in the OP3 results (see Appendix D for details).

4.2 What Matters in Object-Centric Transition Models?

In this section we demonstrate the need for both (1) alignment, which ensures that each slot in
the transition model receives the same object consistently across time, and (2) object-level loss,
computed between predicted and target object representations, rather than a pixel-level loss. We also
compare different transition model cores and find a transformer followed by a slot-wise LSTM to be
best.

In this section (Section 4.2) only, we use a MONet model that is trained using ground-truth masks
instead of learning its own masks. We do this here to directly analyse the benefits of aligned
object representations and object-level losses for the transition model without other confounds.
Using ground-truth masks allows us to know each object’s true identity across time and to directly
measure the role of alignment in transition models without confounding errors from AlignNet or
MONet’s segmentation quality. We use a pre-trained MONet (with fixed weights) to compute object
representations to keep the model similar to the full end-to-end model described in the rest of the
paper.

We train slot-wise transition models under four different conditions: feeding aligned or unaligned
object representations (and target) object representations to the transition model4, and training the

4For the unaligned inputs, we shuffle the order of the ground-truth masks 2 <[K,W,H,3] that are fed to
MONet along the K axis. For aligned inputs, we ensure that each slot contains a consistent object across time.
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Figure 6: Comparing slot-wise transition models trained with aligned vs. unaligned input
latents and pixel-level vs. object-level loss. These models were trained with 8 inputs steps and 12
unroll steps. Here they are being unrolled for 40 time-steps3 The output of the transition model is a
slot-wise object-based representation for each time-step. Here, we visualise the object representation
vectors using MONet’s decoder. Only models trained with aligned inputs were able to predict the
reappearance of the chair at t = 30. Only the model trained with aligned inputs and object-level
loss is able to predict the appearance of the avatars "base". In models trained with pixel-level loss
predictions becomes very blurred.

Reporting object-level error for models trained using:
Object-level loss Pixel-level loss

Aligned inputs 0.0929 ± 0.00469 14.4± 18.4
Unaligned inputs � 20.3± 0.757 � 3312± 4050

Table 2: The role of alignment and object-level loss when training transition models. This table
reports the mean±std latent error between predicted and ground truth latents (for 5 seeds). For models
trained using unaligned input latents we compute the object-level loss using the Hungarian algorithm
which is a lower bound on the actual value. Models trained with pixel-level loss can become very
unstable resulting in high variance between runs. Individual seeds are shown in Figure 9.

model with a pixel-level or object-level loss. Results in Table 2 clearly demonstrate the benefits
of (1) using aligned object representations for training transition models and (2) training transition
models with an object-level loss. These results are critical for the future development of object-based
transition models and, in particular, demonstrate the need for alignment. Note that for the experiments
using the unaligned inputs we computed the object-level loss using the Hungarian algorithm which is
a lower bound estimate of the true object-level loss (since the minimum assignment in L2 may not be
the correct assignment).

Figure 6 compares models trained under the four conditions listed above. We see that models trained
using aligned inputs (and targets) are able to predict the re-appearance of objects while those without
aligned latents are not (Figure 6, t = 30). We also see that models trained with an object-level loss
and without alignment deteriorate quickly. Additionally, for models trained with a pixel-level loss we
notice a “ghosting” effect where objects fade into the background across time, similar to the effects
seen in the OP3 results (Figure 17). Pixel-level loss leads to this “ghosting” effect because most
pixels in the observation are background pixels and so the background pixels dominate the loss.

We found these results to be consistent across multiple runs (see Figure 9 in the Appendix) and
different choices for slot-wise transition model architectures. For the results shown in this section we
used a transformer with a slot-wise LSTM. Figure 10, in the Appendix, compares object and pixel
errors for different transition module cores. Training with object-level loss and aligned inputs, the
transformer with slot-wise LSTM worked best.
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Figure 7: Unrolling for many more steps than seen during training. OAT is trained to take four
input steps and to unroll for six time-steps. Here we demonstrate the model unrolling for 100
time-steps. Impressively, we see that the model learns both to predict the behaviour of the robot arm
accurately, as well as how the arm interacts with the objects. We also see that the model is able to
unroll for significantly more steps than seen during training. Note that our model makes predictions
in latent space; here we are visualising those latents using MONet’s decoder. Additional results in
Figure 15 in the Appendix.

4.3 Application to Robotics

Here we demonstrate the application of OAT to a real world dataset [3] of robot trajectories. These
trajectories involve a robot arm interacting with three objects of varying shapes and colours. The
dataset is particularly challenging because our model must learn to predict not just the motion of
the robot arm, given the arm actions, but also how the arm interacts with objects requiring some
understanding of intuitive physics.

We train OAT with four input steps and to unroll for six steps. Our model achieves excellent
segmentation results, shown in Figure 14 of the Appendix. Figure 7 shows impressive results
obtained when unrolling the OAT model for significantly more steps than seen during training. What
is more, in the third sample from the top, we see that the model correctly predicts the reappearance of
the red object after it had been fully occluded at t = 3 for 51 time-steps, reappearing fully at t = 54
in both the prediction and the target frame. Our model is able to accurately predict the reappearance
of objects, even after long-term occlusion, because it explicitly captures the history of each object,
endowing the model with a notion of object persistence.

5 Conclusion

We presented Objects-Align-Transition (OAT), an object-centric transition model that combines a
scene decomposition and object representation module (MONet) with a slot-wise transition module,
via an alignment module. The alignment module plays two key roles. Firstly, it ensures that the
slot-wise transition model receives slot-consistent object representations across time. Secondly, it
allows us to compute an object-level loss rather than a pixel-level loss which is commonly used when
training transition models.

In an ablation study, we demonstrated the essential role that alignment and object-level losses play
when training transition models. Additionally, we significantly outperform existing state-of-the-art
object-centric transition models in a 3D partially observable environment, and we applied our model
to a real-world robotics dataset, predicting many steps further into the future than seen during training.

There is room to improve our model in further work, for example by making stochastic predictions
about the future, and by better modelling the uncertainty about the objects in the environment.
Meanwhile, our work paves the way for future object-centric agent research, for example, enabling
agents to plan over future trajectories in object representation space.
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