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Abstract: Learning diverse locomotion gaits for legged robots is important in1

order to efficiently and robustly move in different environments. Learning a spec-2

ified gait frequently requires a reward function that accurately describes the gait.3

Our objective is to develop a simple mechanism for specifying the gaits at a high4

level (e.g. alternate between moving front feet and back feet), without providing5

labor-intensive motion priors such as reference trajectories. In this work, we lever-6

age a recently developed framework called Reward Machine (RM) for high-level7

gait specification using Linear Temporal Logic (LTL) formulas over foot contacts.8

Our RM-based approach, called Reward Machine based Locomotion Learning9

(RMLL), facilitates the learning of specified locomotion gaits, while providing10

a mechanism to dynamically adjust gait frequency. This is accomplished with-11

out the use of motion priors. Experimental results in simulation indicates that12

leveraging RM in learning specified gaits is more sample-efficient than baselines13

which do not utilize RM. We also demonstrate these learned policies with a real14

quadruped robot.15

Trot Bound Pace

Walk Three-One Half-Bound

Figure 1: Snapshots of important poses of each of the six gaits learned with six different RMs.
Specifying and learning the gaits (except for Half-Bound) require defining no more than eight logical
rules. Red circles are around feet making contact with the ground.

1 Introduction16

Legged animals are capable of performing a variety of locomotion gaits, in order to move efficiently17

and robustly at different speeds and environments [1, 2]. The same can be said of legged robots,18

where different locomotion gaits have been shown to minimize energy consumption at different19

speeds and environments [3, 4, 5]. Still, leveraging the full diversity of possible locomotion gaits20

has not been thoroughly explored. As legged robots can better perform a larger variety of gaits, new21
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possibilities in traversability and customized behaviors become possible. Unfortunately, learning22

specific quadruped locomotion gaits is a challenging problem. To accomplish this, it is necessary to23

design a reward function which can express the desired behavior. Commonly used reward functions24

for quadruped locomotion encourage maximizing velocity command tracking, while minimizing25

energy consumption [6, 7]. While training over these types of reward functions oftentimes yields26

high quality locomotion policies, they do not specify any particular gait.27

In order to incentivize the agent to learn a specific gait, the reward function must be encoded with28

such gait-specific knowledge. It is possible to design a naive reward function which explicitly en-29

courages specific sequences of milestone foot contacts, which we refer to as poses. Unfortunately,30

this breaks the Markov property, because historical knowledge of previous poses within the gait31

is necessary to know which pose should be reached next in order to adhere to the specified gait.32

Quadruped locomotion controllers are commonly run at 50 Hz or more [8, 9], which generates a33

long history of states between each pose of a gait. Thus, naively satisfying the Markov property34

would require including all of these historical states in the state space, and would make the learning35

process more challenging as the policy would need to figure out which portion of this history is36

relevant.37

Some researchers have taken advantage of motion priors in order to encode gait-specific knowledge38

in a reward function. One popular method for encoding such knowledge in a reward function is to39

maximize the similarity between the robot’s motion and a reference trajectory [10, 11, 12]. While40

this approach has been successfully demonstrated on real robots, it requires significant manual effort41

to obtain reference trajectories, and constrains the robot’s motion to the given trajectory.42

In this paper, we alleviate the above mentioned problem of gait specification by leveraging Reward43

Machines (RMs) [13], which specify reward functions through deterministic finite automatons. The44

RM transition function is defined through LTL formulas over propositional symbols, which in our45

case specify foot contacts. Thus, changing the automaton state corresponds to reaching the next46

pose within the gait. The reward function is Markovian when considering the low-level state (robot47

sensor information), along with the current automaton state, because the automaton state encodes48

the relevant gait-level information needed to determine the next pose. This approach enables us to49

easily specify and learn diverse gaits via logical rules, without the use of motion priors.50

We refer to our approach as RM-based Locomotion Learning (RMLL), and train policies for six51

different gaits in simulation without the use of reference trajectories. Each policy is trained over a52

range of gait frequencies, which we can dynamically adjust during deployment. The reward function53

of each gait is easily defined through an automaton over desired foot contacts. We conduct an54

ablation study to evaluate the sample efficiency of RMLL in training the six different gaits, and55

deploy all gaits on a real Unitree A1 quadruped robot (see Figure 1). We compare RMLL to three56

baselines, each of which is designed to evaluate whether knowledge of the automaton state during57

training is actually beneficial in terms of sample efficiency. Results show that RMLL improves58

sample efficiency over its ablations for all gaits, which is more substantial for more complex gaits.59

2 Related Work60

In this section, we discuss prior work on RMs, and legged locomotion via Reinforcement Learning61

(RL). We then focus on existing methods of gait specification and learning for legged locomotion,62

with and without motion priors.63

Reward Machine Since the introduction of Reward Machines (RMs) [14], there have been vari-64

ous new research directions such as learning the RM structure [15, 16, 17], RM for partially observ-65

able environments [18], probabilistic RMs [19], RM for lifelong RL [20], and RM for multi-agent66

settings [21] to name a few. While these works primarily focused on RM algorithmic improvements67

and theoretical analysis, their applications did not go beyond toy domains. RMs have also been68

used for simulated robotic arm pick-and-place tasks, which learn RM structures from demonstra-69

tions [22]. However, their approach was not implemented or evaluated in real-world robotic con-70
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tinuous control problems with high-dimensional action spaces. We use RM for robot locomotion71

learning in this work.72

RL-based Locomotion Learning There are numerous works on applications of RL for robot73

locomotion [23, 7, 24, 25, 26, 27, 8, 11, 28, 29, 9, 30]. Approaches of this type often lead to robust74

locomotion gaits, some of which can transfer to real robots. However, these approaches generally75

focus on learning robust locomotion policies, and do not support the specification of particular gaits.76

Exceptions that support RL-based locomotion learning of specific gaits are described next.77

Diverse Locomotion Gaits Various works have demonstrated diverse locomotion gaits for78

quadruped robots. MPC based approaches have demonstrated such gait diversity [31], however79

these methods require accurate dynamics models, and significant manual tuning. Different gaits can80

naturally emerge through minimizing energy [3], or selected from a high-level policy which selects81

foot contact configurations or contact schedules [4, 5]. While this enables gait transitions for ef-82

ficient locomotion in different environments, it does not provide the ability to learn any arbitrary83

gait or gait frequency specified beforehand. Other works provide such ability to specify quadruped84

locomotion gaits. Some methods do this through motion priors such as trajectory generators [32]85

or motion references [10]. Obtaining these priors require extensive human (and sometimes even86

animal) effort, and restricts the robot to following the specified trajectory with little variation. While87

motion references can be generated, it requires highly tuned foot trajectory polynomials and phase88

generation functions [33]. Our approach does not require such motion priors and can easily specify89

different gaits via a few logical rules. Our policies also have freedom to explore variations of the90

specified gait on its own and is not restricted by a predefined trajectory.91

Learning without Motion Priors In work more similar to ours, a single quadruped locomotion92

policy which can perform various gaits is trained and demonstrated without the use of motion pri-93

ors [34]. While useful to adapt to different environments, this approach can only learn simple two-94

beat gaits, and is unable to learn any arbitrary gait specified from desired foot contact sequences.95

Another work similar to ours enabled learning diverse gaits for a bipedal robot without requiring96

motion priors [35]. These gaits were trained over a reward function which specifies swing and97

stance phases and timings per leg. To ensure a Markovian reward, they added cycle time offsets and98

phase ratio vectors per each leg to the state. By comparison, RMLL (ours) does not need explicit99

leg-specific timing information. Instead, RMLL leverages an abstract representation of the current100

pose within the gait (i.e., the RM state) to facilitate the learning of diverse gaits.101

3 RM-based Locomotion Learning102

We present our RM-based reinforcement learning approach for learning quadruped locomotion poli-103

cies below. Figure 2 presents an overview of how we use RMs to specify a diverse set of quadruped104

locomotion gaits and facilitate efficient policy learning.105

3.1 Reward Machines: Concepts and Terminologies106

Reward Machines are typically used in settings where we have a set of “milestone” sub-goals to107

achieve in order to complete some larger task. Reward functions which do not encode these subgoals108

are oftentimes too sparse, while reward functions which explicitly reward sub-goal completion can109

be non-Markovian. An RM allows for specification of these sub-goals through an automaton, which110

can be leveraged to construct an MDP. Thus, through an RM, the reward function can give positive111

feedback for completing sub-goals, while also defining an MDP with a Markovian reward function.112

Formally, an RM is defined as the tuple (U, u0, F, δu, δr) [14], where U is the set of automaton113

states, u0 is the start state, F is the set of accepting states, δu : U × 2P → U ∪ F is the automaton114

transition function, while δr : U × 2P → [S × A × S → R] is the reward function associated115

with each automaton transition. This RM definition assumes the existence of set P, which contains116

propositional symbols that refer to high-level events from the environment that the agent can detect.117
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Figure 2: Overview of RM-based Locomotion Learning (RMLL). We consider propositional state-
ments specifying foot contacts. We then construct an automaton via LTL formulas over propositional
statements for each locomotion gait (left side). To train gait-specific locomotion policies, we use
observations which contain information from the RM, proprioception, velocity and gait frequency
commands, and variables from a state estimator (right side).

For each environment step the agent takes, the agent evaluates which automaton state transition to118

take via δu, and receives reward via δr.119

Reward machines are defined alongside state space S, which describe the low-level observations120

the agent receives after each step in the environment. In order to construct an MDP from the non-121

Markovian reward defined by the RM, the agent considers its own observations from S, along with122

its current RM state from U . Training over state space S×U no longer violates the Markov property,123

because knowledge of the current RM state indicates which sub-goal was previously completed. The124

inclusion of this subsection is simply for the completeness of this paper. More details are available125

in the RM article [13].126

3.2 RM for Quadruped Locomotion127

We use RMs to specify the sequence of foot contacts expected of the gait. In our domain, we128

consider P = {PFL, PFR, PBL, PBR}, where p ∈ P is a Boolean variable. These indicate whether129

the front-left (FL), front-right (FR), back-left (BL), and back-right (BR) feet are making contact with130

the ground. Automaton states in U correspond to different poses in the gait, where u0 corresponds to131

the last pose. Meanwhile, δu changes the automaton state when the next pose in the gait is reached.132

We define δr as:133

δr(ut, a) =

{
Rwalk(s) ∗ b δu(ut, a) ̸= ut

Rwalk(s) otherwise

where Rwalk encourages maximizing velocity command tracking while minimizing energy con-134

sumption [29], and is fully defined in Table 1. Reward function δr encourages taking RM transitions135

which correspond to the specified gait, because Rwalk is scaled by bonus b when such transitions136

occur. We leave F empty for all gaits, as quadruped locomotion is an infinite-horizon task.137

We define our state space S = (u, ϕ, q, q̇, at−1, cx, cω, cf , v̂, f̂), where u is the current RM state,138

ϕ is the number of time steps which occurred since the previous RM state changed, q and q̇ are139

the 12 joint angles and joint velocities respectively, at−1 is the previous action, cx and cω are base140
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Term Description Definition Scale
Linear Velocity x exp(−∥cx − vx∥2/0.25) 1.0dt
Linear Velocity z vz

2 −2.0dt
Angular Velocity x, y ∥ωx,y∥2 −0.05dt

Angular Velocity z exp(−(cω − ωz)
2/0.25) 0.5dt

Joint Torques ∥τ∥2 −0.0002dt
Joint Accelerations ∥(q̇last − q̇)/dt∥2 −2.5e− 7dt

Feet Air Time
∑4

f=1(tair,f − 0.5) 1.0dt

Action Rate ∥alast − a∥2 −0.01dt

Table 1: All terms of Rwalk. v refers to base velocity, c refers to commanded linear and angular
base velocity, ω refers to base angular velocity, τ refers to joint torques, q̇ refers to joint velocities,
tair refers to each foots air time, a refers to an action, and dt refers to the simulation time step.

linear and angular velocity commands respectively, cf is the gait frequency command, and v̂, f̂ is141

estimated base velocity and foot heights. The RM state is encoded as a one-hot vector, making the142

dimensions of S ∈ [49, 52] based on the number of RM states defining the gait.143

Gait Frequency: Aside from gait specification, we also leverage RMs to specify gait frequency.144

Our definition of δr naturally encourages high frequency gaits, because maximizing the number of145

pose transitions maximizes total accumulated reward. Thus, we introduce gait frequency command146

cf , which denotes the minimum number of environment steps which must be taken until the agent is147

allowed to transition to a new RM state. When the agent maximizes the number of RM transitions148

it takes, while being restricted by cf , then the commanded gait frequency is followed. Adding149

cf on its own would cause the reward function to be non-Markovian, because the agent needs to150

remember how many environment steps have occurred since the RM state last changed. Thus, we151

also add timing variable ϕ to our observations, which keeps track of how many environment steps152

have occurred since the RM state has changed last. At every environment time step, we compare ϕ153

with cf , and do not allow an RM transition to take place if ϕ < cf . Adding cf and ϕ enable gait154

frequency to be dynamically adjusted during policy deployment, and is demonstrated on hardware155

in our supplementary video.156

Illustrative Gait: We now discuss specifying a well known quadruped locomotion gait [36], Trot,157

via RM. Figure 3 shows the RM associated with this gait. In this Trot automaton, we want to158

synchronize lifting the FL leg with the BR leg, and the FR leg with the BL leg. LTL formula159

PFL ∧ ¬PFR ∧ ¬PBL ∧ PBR evaluates to true when only the FR and BL feet are in the air simulta-160

neously, while ¬PFL ∧ PFR ∧ PBL ∧ ¬PBR evaluates to true when only the FL and BR feet are in161

the air simultaneously. The two RM states correspond to which combination of feet were previously162

in the air. If the agent is in state q1, then PFL ∧ ¬PFR ∧ ¬PBL ∧ PBR must have been evaluated163

as true at some point earlier. Note that when the agent does not achieve the desired pose, then the164

agent takes a self-loop to remain in the current RM state.1165

Remark It is an intuitive idea of training a gait-specific locomotion policy via RM, because along166

with low-level sensor information, the policy also has access to the current RM state, which is167

an abstract representation of the historical foot contacts relevant to the current pose in the gait.168

Rather than attempting to learn this from a long history of states, the RM state explicitly encodes the169

previously reached gait pose. Thus, the policy can learn different gaits in a sample-efficient manner,170

because at each time step it can reference the RM state to indicate which pose within the gait to171

reach next.172

4 Experiments173

We train six different locomotion gaits via RMLL in simulation, and perform an ablation study to174

evaluate whether knowledge of the RM state improves sample efficiency when compared to ablations175

which do not access the RM state during training. We demonstrate all learned gaits on a Unitree A1176

robot.177

1We provide the RMs for all other gaits we trained in Appendix A.
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start

Figure 3: Reward Machine for Trot gait, where we want to synchronize lifting the FL leg with the
BR leg, and the FR leg with the BL leg. Trot is one of the six gaits considered in this work.

4.1 Training Details178

State, Action, Reward We estimate base velocity v̂ and foot heights f̂ concurrently with the179

policy, via supervised learning [37]. Note that during training we only consider a foot in the air180

if it is higher than 0.03 meters. Actions include the target joint positions of each joint. These are181

input to a PD controller which computes the joint torques. The PD controller has a proportional gain182

Kp = 20 and derivative gain Kd = 0.5. The policy is queried at 50 Hz, and control signals are sent183

at 200 Hz. We set bonus b = 1000 in δr for all gaits.184

Figure 4: Isaac Gym
simulation environment.

Environment Details We use the Isaac Gym [38] physics simulator185

and build upon a legged locomotion environment [29] to train our poli-186

cies. We use a terrain called random uniform terrain, which is seen187

in Figure 4. The robot traverses more challenging versions of this terrain188

based on a curriculum which increases terrain difficulty after the robot189

learns to traverse flatter versions of the terrain. Each episode lasts for190

20 seconds, and ends early if the robot makes contact with the ground191

with anything other than a foot, if joint angle limits are exceeded, or if192

the base height goes below 0.25 meters. After each training episode, we193

sample a new velocity and gait frequency command for the robot to track.194

To facilitate sim-to-real transfer, we perform domain randomization over195

surface frictions, add external pushes, and add noise to observations [29].196

Additional details and code are available in the Appendix.197

Model Training We train our policy via PPO [39], with actor and critic architectures as 3-layer198

multi-layer perceptrons (MLPs) with hidden layers of size 256. Each policy is trained for 100199

million time steps, where parameters are updated every 100,000 time steps. Data is collected from200

4096 agents running simultaneously.201

4.2 Ablation Study202

We run an ablation study to determine whether knowledge of the RM state actually improves sample203

efficiency. We design the following baselines which we compare RMLL against:204

1. No-RM: Remove the RM state from the state space, keeping everything else the same.205

2. No-RM-Foot-Contacts: Remove the RM state from the state space, and add foot contacts.206

3. No-RM-History: Remove the RM state from the state space, and add foot contacts. Ex-207

pand the state space to include states from the past 12 time steps.208

Comparing against No-RM indicates whether the RM state is useful at all. Comparing against209

No-RM-Foot-Contacts indicates whether RM state is only useful because it contains information210

about foot contacts. Comparing against No-RM-History indicates whether the information provided211
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Figure 5: Reward curves for all gaits. RMLL more efficiently accumulates reward for each gait.

by the RM state can be easily learned when given sufficient history. Note that we do not compare to212

existing works which demonstrate diverse locomotion gaits, because we consider a different setting213

under different assumptions. We claim RMLL facilitates the learning of a larger diversity of gaits214

with less manual effort required, not that the final gaits are necessarily better than existing ones.215

We experiment over six different locomotion gaits: Trot, Pace, Bound, Walk, Three-One, and216

Half-Bound. See Appendix A for the RMs defining each gait. For each approach (ablation or not),217

we trained over five different random seeds per gait. For each training run, we save the policy after218

every 5 million steps. We then deploy each of those saved policies for 100 episodes, and average219

the accumulated reward over the five runs per approach. We report the resulting reward curves in220

Figure 5, where the shaded region indicates the standard deviation of the total accumulated reward221

across the five training runs.222

The results indicate that knowledge of the RM state improves sample efficiency for all gaits when223

compared with the ablations. We believe this is the case, because the RM state can efficiently inform224

the policy of gait-relevant historical foot contacts, whereas the ablations either do not have access to225

historical foot contacts, or must learn the relevant contacts from history. The results also show that226

No-RM-History does not perform better than the other ablations without history, indicating that227

it is challenging to learn gait-relevant information directly from 12 time steps of historical states.228

We also notice that No-RM performs similarly to No-RM-Foot-Contacts, which indicates No-RM229

learns to implicitly estimate foot contacts from the state. Finally, we notice a large performance gap230

between RMLL and all other ablations. We believe this is the case due to the additional complexity231

of this gait, which can be seen in Appendix A.232

4.3 Qualitative Results233

Foot Contacts In simulation, we deploy each gait with a linear velocity command of 0.75234

meters/second (0.5 meters/second for Walk), while initializing cf to its maximum training value,235

updating cf to its minimum after 50 time steps, and again updating cf to its maximum after 100236

time steps. We record the foot contacts of each gait in Figure 6, which shows that each of our gaits237

follows the expected foot contact sequence and gait frequencies. For example, green and orange238

bars in Trot are synchronized, indicating BR/FL feet are coordinated. Also note the length of the239

bars decrease in the middle of the trial, corresponding to when cf was decreased.240

Hardware Demonstration We run our learned policies on a Unitree A1 robot, without any ad-241

ditional fine-tuning. Each trial is on a concrete walkway, where we increase and decrease gait242
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Figure 6: Foot contact plots for each gait. We report foot contacts from simulated trials running each
gait, and display colored horizontal bars to indicate when the specified foot makes contact. We add
vertical bars specifying RM transitions for the first cycle of unique poses for each gait. Note that in
each trial, gait frequency starts low, increases in the middle, and decreases toward the end.

frequency throughout the trial. We find that RMLL policies from all gaits successfully transfer to243

hardware, and the intended foot contact sequence and gait frequency is realized. A video capturing244

each of these trials is included in Supplementary Materials.245

5 Discussion246

Limitations and Future Work While our approach can be used to easily specify and learn cus-247

tomized locomotion gaits, we have not studied how to optimally leverage these different gaits to ef-248

ficiently traverse various terrains, nor have we studied how to smoothly transition between gaits. In249

future work, researchers can train a hierarchical policy which selects desired gaits, gait frequencies,250

and velocity commands at a high level, which can be used as input to a wide variety of pre-trained251

gaits, in order to traverse different environments more efficiently.252

Conclusion We leverage reward machines to specify different quadruped locomotion gaits via253

simple logical rules. We efficiently train locomotion policies in simulation which learn these speci-254

fied gaits over a range of gait frequencies, without the use of motion priors. We demonstrate these255

policies on hardware, and find that our robot can perform a variety of different gaits, while dynami-256

cally adjusting gait frequency.257
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A Reward Machines for Other Gaits360

In this section, we present the reward machines for the five gaits not already shown: Bound, Pace,361

Walk, Three-One, and Half-Bound.362

start

Figure 7: Bound gait synchronizes front feet and back feet

start

Figure 8: Pace gait synchronizes left feet and right feet

start

Figure 9: Walk gait lifts one foot at a time
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start

Figure 10: Three-One gait alternates three feet with one of the front feet.

start

Figure 11: Half-Bound gait alternates the front feet with one of the back feet. State qr discourages
extraneous contacts with the wrong back foot, by setting all current and future reward to 0 when
reached.
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B Gait Specific Training Details363

Gaits Trot, Bound, Pace, Three-One, and Half-Bound sample linear and angular velocity com-364

mands from [-1, 1] meters per second, and a gait frequency command from [6, 12] time steps.365

Meanwhile, Walk samples from [-0.5, 0.5] meters per second and [5, 10] respectively. This is be-366

cause quadruped animals naturally use Walk gait for slower locomotion speeds.367

All gaits except Three-One follow the gait frequency command cf for all RM transitions that cause368

a state change. We reduce the amount of time the robot must stand on one leg for Three-One gait,369

by halving cf for transition q1 → q2 and q3 → q0.370

Half-Bound is trained for an additional 50 million time steps than the other gaits, which we find371

necessary due to the complexity of this gait.372
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