@ The Right Time Matters: Data Arrangement Affects Zero-Shot
Generalization in Instruction Tuning

Anonymous ACL submission

Abstract

Understanding alignment techniques begins
with comprehending zero-shot generalization
brought by instruction tuning, but little of the
mechanism has been understood. Existing
work has largely been confined to the task level,
without considering that tasks are artificially
defined and, to LLMs, merely consist of tokens
and representations. To bridge this gap, we in-
vestigate zero-shot generalization from the per-
spective of the data itself. We first demonstrate
that zero-shot generalization happens very early
during instruction tuning, with loss serving as
a stable indicator. Next, we investigate training
data arrangement through similarity and granu-
larity perspectives, confirming that the timing
of exposure to certain training examples may
greatly facilitate generalization on unseen tasks.
Finally, we propose a more grounded train-
ing data arrangement framework, Test-centric
Multi-turn Arrangement, and show its effec-
tiveness in promoting continual learning and
further loss reduction. For the first time, we
show that zero-shot generalization during in-
struction tuning is a form of similarity-based
generalization between training and test data at
the instance level.

1 Introduction

The extraordinariness of large language models
(LLMs) was originally brought by the zero-shot
generalization of instruction tuning (Brown et al.,
2020). Early studies have found that when diverse
prompts are added to the inputs of traditional natu-
ral language processing (NLP) tasks and fed into
the model for instruction tuning, the model can
generalize to tasks it has never encountered be-
fore (Chung et al., 2024; Longpre et al., 2023; Sanh
etal., 2021; Wang et al., 2022; Wei et al., 2021). To
date, instruction tuning (Chung et al., 2024; Sanh
etal., 2021; Wei et al., 2021) has become a crucial
phase in LLM training, often preceding methods
that incorporate preference data. In the meantime,

the concept of “task” is also becoming increasingly
blurred. Researchers are no longer constructing
instruction data in the ways traditional NLP tasks
dictate, but rather, they hope these tasks will be as
close to reality and as diverse as possible (Chiang
et al., 2023; Ding et al., 2023; Rajani et al., 2023;
Taori et al., 2023; Zhao et al., 2024b).

Although nearly all LLMs benefit from the zero-
shot generalization brought about by instruction
tuning, the in-depth and fine-grained research on
this phenomenon is still insufficient. Particularly,
there are few accurate and comprehensive conclu-
sions about when and in what form it occurs, and
how it would be influenced at an instance level.
Existing approaches (Song et al., 2019; Vu et al.,
2020; Zamir et al., 2018; Kim et al., 2023; Muen-
nighoff et al., 2023; Zhou et al., 2022; Lee et al.,
2024) assume that human-defined “tasks” and even
“categories” are sufficiently reasonable, but this is
often not the case, as gaps exist regarding how hu-
mans and LLMs perceive the instruction tuning
data. To this end, we strive to break free from the
task-level framework and explore “generalization™
from a more granular temporal perspective.

In this paper, we conduct a comprehensive inves-
tigation of the zero-shot generalization during in-
struction tuning and attempt to answer some critical
questions: In instruction tuning, i) when does zero-
shot generalization occur? ii) how can we more
accurately understand the role of data in zero-shot
generalization? ii1) how can we effectively improve
zero-shot generalization?

To answer the first research question, we at-
tempt to pinpoint the timing of zero-shot gener-
alization during instruction tuning. We find that
significant generalization occurs after training on
just 160 examples, demonstrating that instruction-
following capabilities can be unlocked with min-
imal data, similar to existing works (Chen et al.,
2023; Gudibande et al., 2023; Zhao et al., 2024a;
Zhou et al., 2024) but we provide a more granular
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Figure 1: Demonstrating how data arrangement affects
zero-shot generalization. Different shapes represent
distinct task types, while similar colors indicate seman-
tic similarities between data points. Top and Bottom
respectively represent traditional random data ordering
and task-based continue fine-tuning, showing gradual
loss reduction. But we (Middle) prioritize training on
data points that are similar (color) to the test set and
break free from task boundary (shape), thus enabling
more rapid loss reduction.

analysis. Our analysis shows that loss serves as
a more reliable indicator of zero-shot generaliza-
tion compared to traditional evaluation metrics like
ROUGE and Exact-Match. (Section 3)

For the second question, we track LLaMA-2-
7B’s loss on 255 unseen test tasks while instruction-
tuning on 1,600 training tasks. We find that simply
reordering training data produces diverse test loss
patterns—from sudden improvements to gradual
changes or fluctuations. This indicates that while
the model can achieve rapid generalization under
certain conditions, it may also show delayed gen-
eralization or fail to generalize depending on the
training data arrangement. More importantly, these
observations indicate that the timing of exposure
to certain training examples may greatly facilitate
generalization on unseen tasks, highlighting the
crucial role of data arrangement in effective in-
struction tuning.

To understand the role of data in this process, we
identify two perspectives: similarity and granular-
ity. From a similarity perspective, we discover that
the model’s generalization is not truly “zero-shot”,
as a high resemblance between the training and test
data distributions could significantly impact gener-
alization. Using combined cosine similarity mea-

sures, we find that test loss drops suddenly when
the model encounters training examples highly sim-
ilar to the test set, particularly when such exam-
ples appear early in training. From a granularity
perspective, the artificially defined “tasks” are not
suitable for measuring generalization. Instead, the
similarity measure at the instance level serves as
a better and more essential indicator. We reveal
through experiments that, by treating all data points
equally without the constraints of pre-defined tasks,
we can better improve zero-shot generalization. As
shown in Figure 1, encountering highly similar and
fine-grained training data earlier during instruction
tuning enables better generalization. (Section 4)

While the combined similarity measures we
adopt reveal the role of training data, they have
inherent limitations, as they treat the test set holisti-
cally, ignoring the role of individual test data points.
To address this, we propose the Test-centric Multi-
turn Arrangement (TMA) framework, which orga-
nizes training data in a test-centric way, even with-
out predefined tasks. Through the lens of TMA,
we reveal that accessing highly similar data during
instruction tuning promotes continual learning and
further loss reduction. (Section 5)

We summarize our contributions as follows:

* We show that zero-shot generalization occurs at
the very early stage during instruction tuning,
while loss serves as a more stable and fair metric
compared to traditional ones.

* We emphasize the critical role of timing in data
exposure as a key perspective to gain a deeper
understanding of zero-shot generalization, re-
vealing that encountering highly similar and fine-
grained training data earlier during instruction
tuning enables better generalization.

* We propose the Test-centric Multi-turn Arrange-
ment framework, and show that accessing high-
similarity data during instruction tuning can fa-
cilitate continual learning and further loss reduc-
tion.

2 Related Work

LLMs have been proven capable of zero-shot
generalization across a variety of downstream
tasks (Brown et al., 2020), and instruction tun-
ing has emerged as the most effective method to
achieve this (Chung et al., 2024; Sanh et al., 2021;
Wei et al., 2021). The zero-shot generalization phe-
nomenon resulting from instruction tuning is cru-
cial for building general LLMs. Multi-task datasets



designed for this purpose have continuously iter-
ated in quality, quantity, and diversity, and numer-
ous studies have explored how zero-shot general-
ization occurs during the instruction tuning process.
Sanh et al. (2021) constructed P3 using explicit
multitask learning, demonstrating that explicit task
prompt templates can promote zero-shot generaliza-
tion. Wang et al. (2022) created the Super Natural
Instructions V2 (NIV2) dataset, which comprises
over 1600 task types, and empirically showed that
more observed tasks, an adequate number of train-
ing instances, and larger models improve gener-
alization. Meta introduced OPT-IML (Iyer et al.,
2022), investigating the impacts of dataset scale
and diversity, different task sampling strategies,
and the presence of demonstrations on general-
ization. Subsequently, Longpre et al. (2023) pro-
posed the Flan Collection, which encompasses up
to 1836 tasks, and pointed out that scaling the num-
ber of tasks and model size, as well as incorporating
chain-of-thought data, can dramatically improve
performance on unseen tasks.

In addition, a line of research focuses on un-
derstanding the relationships in task-pair trans-
fer (Song et al., 2019; Vu et al., 2020; Zamir et al.,
2018), suggesting that not all tasks contribute posi-
tively to zero-shot generalization; some tasks may
even result in negative transfer effects (Kim et al.,
2023; Muennighoff et al., 2023; Zhou et al., 2022).
However, a significant limitation of the aforemen-
tioned works is that, whether training on one task
and then evaluating on another (Kim et al., 2023;
Zhou et al., 2022), or simply calculating intermedi-
ate task (Vu et al., 2020) or instruction (Lee et al.,
2024) transfer scores, all these efforts to select the
most informative tasks to promote zero-shot gen-
eralization are confined within the “task” frame-
work. This approach is based on a premise: the
human-defined “tasks” and even “‘categories” are
sufficiently reasonable. This is precisely the issue
our study strives to address: breaking free from the
task-level framework to explore “generalization” at
a more fundamental level.

3 Positioning Zero-Shot Generalization

Early research shows that instruction tuning, which
applies to various NLP tasks formatted with instruc-
tions, can generalize to various unseen tasks. How-
ever, most studies (Chung et al., 2024; Iyer et al.,
2022; Longpre et al., 2023) focus on integrating
diverse tasks or instruction templates, using human-
generated or synthetic data, or exploring different

fine-tuning strategies, while few studies address
the timing of zero-shot generalization. To bridge
this gap, we first seek to identify when zero-shot
generalization actually occurs during instruc-
tion tuning, and then justify that loss serves as a
more stable and fair metric to measure zero-shot
generalization compared to traditional ones includ-
ing ROUGE series, Exact-Match, Reward Model
scores, etc. We begin by giving a formalization of
zero-shot generalization.

Formalization. In multi-task scenarios, zero-shot
generalization refers to the ability to perform ef-
fectively on unseen tasks (TyUnseen), While only
trained on a subset of tasks (Tseen). For each task
T € Tseen U TUnseen, there exists an instructional
description I, as well as several instances, where
each instance is composed of an input z7; and
an output y7 ;. We define a model M as capable
of generalization on unseen tasks if, after train-
ing on every task in Tseen, given an unseen task
T € Tunseen» and for any (x7;,y7,;), the model’s
output § = M (I, x7,;) and the label y7 ; achieve
a score surpassing a certain threshold, with regard
to the selected metrics, indicating successful gener-
alization on the task 7'.

3.1 Early Zero-Shot Generalization

The measurement of zero-shot generalization de-
pends on the selection of metrics. However, the im-
pact of various metrics on zero-shot generalization
is rarely studied. To this end, we first evaluate sev-
eral metrics to see if they are suitable for zero-shot
generalization and demonstrate that:

i} Takeaway 1: Zero-shot generalization oc-
curs during the very early stage of instruc-
tion tuning, despite the metrics chosen for
measurement.

Data and Settings. We utilize three multi-
task datasets, namely Natural Instructions V2
(NIV2) (Wang et al., 2022), Public Pool of Prompts
(P3) (Sanh et al., 2021), and Flan-mini (Ghosal
et al., 2023), for our analysis. For NIV2, we utilize
the default track and training-test split for instruc-
tion tuning and evaluation. For P3, we employ
training and test tasks consistent with the vanilla
TO model'. For Flan-mini, we randomly parti-
tion the training and test tasks. We choose pre-
trained LLaMA-2-7B (Touvron et al., 2023) as our
base model. For other details including dataset,

"https://huggingface.co/bigscience/Topp


https://huggingface.co/bigscience/T0pp

ROUGE/Exact-Match Score

Score
RM Score

ROUGE-1
10 ROUGE - L —~10

o Exact-Match _11

Reward Model Score

Test Loss Score

«

NIV2
P3
Flan-mini

I

NIV2
P3
Flan-mini

Loss Score
N W

-

0123456 78 9101112131415161718
Steps(x102?)

0123456 78 9101112131415161718
Steps(x102?)

0123456 7 8 9101112131415161718
Steps(x102?)

Figure 2: Average ROUGE-1, ROUGE-L, and Exact-Match scores (left), average RM scores (middle), and average
loss scores (right) of checkpoints fine-tuned on NIV2 (left, middle, right), P3 (middle, right), and Flan-mini (middle,

right), all evaluated on unseen tasks.

hyper-parameters, and prompt template, please re-
fer to Appendix A. All subsequent experiments are
based on this setup, where we adopt to save a se-
ries of full-parameter fine-tuning checkpoints and
evaluate each on the unseen test set to observe the
results regarding specified metrics.

Metrics. We experiment with multiple metrics, in-
cluding Exact-Match, ROUGE-1, ROUGE-L, and
RM score, to test their ability to reasonably reflect
zero-shot generalization. For P3 and Flan-mini ,
Exact-Match is commonly applied in previous stud-
ies due to its simplicity, while NIV2 additionally
incorporates ROUGE series as metrics. Besides, in
reinforcement learning scenarios, the reward model
(RM) often plays a vital role (Cui et al., 2023; Yuan
et al., 2024) and serves as a proxy for human pref-
erences. This makes the RM score also a plausible
metric to reflect zero-shot generalization. Empir-
ically, we use UltraRM-13B (Cui et al., 2023) as
the reward model when measuring RM score.

Results. We demonstrate that zero-shot generaliza-
tion occurs at a very early stage during instruction
tuning regardless of metric choice. As depicted
in the left plot of Figure 2, using ROUGE series
and Exact-Match as metrics, the scores rise from
approximately 15 to over 35 in merely 10 train-
ing steps, indicating significant generalization with
only 160 training samples in our setting. In the
middle plot, the RM score exhibits a similar trend,
stabilizing around 50 steps across all three datasets.

Despite the similar trend they present, it should
be noted that ROUGE-1, ROUGE-L, and Exact-
Match as metrics all entail the resulting curves
being seriously unstable, while the RM score for
NIV2 is significantly higher than those for the
other two datasets, indicating a certain bias induced
(more details discussed in Appendix A.5). This
leads us to seek a more reasonable metric as an
indicator to evaluate zero-shot generalization.

3.2 Loss as Generalization Indicator

Loss is commonly applied across model pre-
training and fine-tuning scenarios. For example,
the scaling law (Clark et al., 2022; Henighan et al.,
2020; Kaplan et al., 2020) entails predicting loss
based on model parameter count and dataset size,
while unsupervised learning uses loss to quantify
the difference between probability distribution. Re-
cent studies also show that models gain emergent
abilities when pre-training loss falls below critical
threshold (Du et al., 2024). All these measures sug-
gest loss to be a promising metric for evaluating
zero-shot generalization. Therefore, we compre-
hensively study and justify that:

{} Takeaway 2: Loss serves as a stable and
reasonable metric to measure zero-shot gen-
eralization due to its stability and fairness
across datasets.

Data and Settings. We use the same dataset
as in the previous experiment and generate out-
puts for sampled test data points using a series of
instruction-tuned checkpoints we derived. We then
calculate the average cross-entropy loss against the
corresponding labels within each step. Please refer
to Appendix A.4 for more details.

Results. Zero-shot generalization similarly occurs
at an early stage of instruction tuning with loss as
the metric. As shown in the right plot of Figure 2,
all three datasets reach their lowest points in terms
of loss within less than 50 steps, which strengthens
the conclusion that generalization occurs early.

Moreover, compared to the left and middle plots
in Figure 2, it is noteworthy that loss as an indicator
is more stable and fair across different datasets,
entailing it as a more reasonable metric for the
measurement. We also provide a case study of
loss curves with regard to different unseen tasks, as
detailed in Appendix A.6.



4 Data Arrangement Effects on
Zero-Shot Generalization

Acknowledging the importance of metrics in mea-
suring the positioning of zero-shot generalization,
we next seek to investigate why generalization
occurs at an early stage and what role training
data plays during this phase. Our initial focus
lies in the analysis of how various simple training
data arrangements affect zero-shot generalization
in a fine-grained manner. Then, we investigate the
facilitation of zero-shot generalization from both
data similarity and granularity perspectives.

4.1 Pilot Study

The model receives only a limited amount of data
at the early stage of instruction tuning. Therefore,
despite the scarcity, these data ought to play a sig-
nificant role in facilitating generalization. Guided
by this intuition, we conduct a pilot study to ex-
plore the impact of exposure to different training
data arrangements from a temporal perspective.
Data and Settings. We apply 1600 Flan-mini train-
ing tasks to get a series of instruction-tuned check-
points and evaluate them on various unseen test
tasks in Flan-mini. As shown in Figure 4, we exam-
ine the following three training data arrangements:

* Round Robin: We select one data point from
each task to form a data batch, ensuring that
training tasks are evenly distributed.

* Cluster: We arrange all data from each task to-
gether, resulting in task-level clusters throughout
the entire training dataset.

* Random: We randomly shuffle all training data
as a baseline for comparison.

Results. Training data arrangements lead to dis-
tinct loss curve patterns. As shown in Figure 3, ran-
dom and round-robin scheduling produce similar
patterns, with round-robin being an extreme form
of shuffling. In contrast, cluster scheduling shows
significant differences, including sudden drops in
average loss at specific steps during instruction
tuning. This demonstrates that leveraging a small
subset of data can induce substantial loss reduc-
tion, and the same test task may exhibit varying
generalization behaviors under different data ar-
rangements.

4.2 Through Data Similarity and Granularity

We have observed that training data arrangements
could lead to significant changes in the loss curve
and that the timing of presence for certain data may
greatly facilitate generalization on unseen tasks.

With these findings, we naturally ask what is the
best arrangement of training data, and how to ar-
range these “certain data” that improve early gener-
alization. In the following subsections, we seek to
address these questions through two perspectives:
similarity and granularity.

4.2.1 Effect of High-Similarity Data

Previous research (Dai et al., 2019; Yauney et al.,
2023) has consistently demonstrated that the per-
formance of downstream tasks improves when the
similarity between the pre-training data and the
downstream task data increases. This finding aligns
with our intuitive understanding that data points
with higher similarity can better facilitate general-
ization. Based on these insights, we propose and
subsequently validate that:

{? Takeaway 3: Encountering data with high
similarity early during instruction tuning will
greatly improve zero-shot generalization.

Selection of Similarity Measures. To validate our
hypothesis, we first define what similarity measures
to apply. Based on our setting and previous works,
we investigate two main categories of similarity
measures:

* N-gram similarity: We respectively measure
the similarity distance by calculating the KL di-
vergence between the bigram word distributions
of the training set data and test set data.

* Embedding similarity: We utilize all-MiniLM-
L6-v2 ! from Sentence Transformer (Reimers
and Gurevych, 2019) to compute embeddings
for each training and test data and then calculate
the Cosine and Euclidean similarity distances,
as detailed in Appendix B.3. Next, we refer
to four classical distance calculation methods 2,
namely “max” (maximal distance), “min” (min-
imal distance), “avg” (unweighted average dis-
tance), and “centroid” (centroid distance), to
represent the distance from the training set data

to test set data.
We analyze a series of instruction-tuned check-

points on Flan-mini and calculate the similarity
measure score between the training data seen by
the k** checkpoint and all the test data. This entails
in total nine similarity calculation methods ({N-
gram} + {Cosine, Euclidean} x {max, min, avg,

1https://huggingface.co/sentence—transformers/
all-MinilM-L6-v2

2https://en.wikipedia.org/wiki/Hierarchical_
clustering
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Figure 3: Sudden decrease in the average loss under cluster scheduling for the three tasks at steps 400, 450, and 150
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Figure 4: An overview of Round Robin, Random and
Cluster data arrangements. Definitions of colors and
shapes are consistent with those in Figure 1.

centroid}). We simply use a linear combination of
average (an overall perspective) and minimum (a
local perspective) cosine similarities between train-
ing and test data as the similarity measure. Please
refer to Appendix B.3 for calculation details. The
investigation between different similarity measures
is detailed in Appendix B.4.

Data and Settings. We utilize the Flan-mini
dataset and randomly sample up to 20 instances
for each training task. Each test task consists of
at most five test data points to form a test set. For
each training data point x;, we calculate the simi-
larity measure score between x; and the whole test
set Drest. We arrange the training data based on
this score. Specifically, we examine three training
arrangements: Nearest First Training (NFT), Far-
thest First Training (FFT), and Random Training
(RT), as shown in Figure 5. This setup allows us
to differentiate between the nearest and farthest
data points in terms of the temporal dimension of
instruction tuning. We perform instruction tuning
on the three training data arrangements, resulting
in a series of fine-grained checkpoints. And then
calculate the average loss for each checkpoint on
the test set containing various test tasks.

Results. The earlier the model encounters data
with high similarity to the test set, the more bene-
ficial it is for zero-shot generalization. As shown
in the left plot of Figure 6, we can observe that the
NFT setting exhibits a rapid and low loss reduc-
tion, while the FFT setting shows relatively poorer
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Figure 5: An overview of NFT and FFT data arrange-
ments. Definitions of colors and shapes are consistent
with those in Figure 1.

zero-shot generalization compared to the baseline
RT setting.

4.2.2 Effect of Fine-Grained Data

Traditional methods to improve zero-shot general-
ization are mostly confined to the task level, focus-
ing on task-pair transfer. However, the so-called
“tasks” or “categories” are artificially defined and,
from the perspective of LLMs, they are merely a
collection of tokens or representations. Therefore,
different “tasks” or “categories” may still appear
relatively similar to LLMs, while instances from
the same task may exhibit profound differences.
Thus, we propose and validate that:

{} Takeaway 4: Treating all data points
equally in finer granularity without the con-
cept of “task” as constraints better improves
zero-shot generalization.

Data and Settings. We use the Flan-mini dataset
and randomly sample up to 20 instances for each
training task. We employ two approaches to ar-
range the training data: i) coarse-grained setting,
where all instances under each training task are
clustered. We define the embedding of a task as the
average embedding of all instances under that task
and arrange the clusters based on NFT, as shown in
Figure 1. ii) fine-grained setting, where all data in-
stances are directly arranged basen on NFT instead
of being clustered first.
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Figure 6: Left: The impact of the three similarity set-
tings (NFT, FFT, and RT) on averaged test loss. Right:
The impact of different granularity settings on averaged
test loss.

Results. Compared to the coarse-grained setting,
the fine-grained setting is more beneficial for im-
proving zero-shot generalization. As shown in the
right plot of Figure 6, the loss curve for the fine-
grained setting decreases more quickly and effec-
tively, indicating that removing task framework
constraints can further improve generalization.

5 Test-centric Multi-turn Arrangement

In earlier experiments, we show that training data
arrangement based on combined similarity mea-
sures affects zero-shot generalization. However,
conventional similarity measures have limitations:
i) Cosine-Avg fails to capture variance within the
test set, as it remains unchanged whether the test set
is highly clustered or uniformly spread. ii) Cosine-
Min offers a limited perspective, focusing solely on
the nearest test point while ignoring the overall test
distribution.

Therefore, we seek an approach that can better
distinguish and arrange the training data for ana-
lyzing zero-shot generalization. To this end, we
present the Test-centric Multi-turn Arrangement
(TMA) framework.

Algorithm 1 Test-centric Multi-turn Arrangement

Require: Training set Dy, and test set Dy

Ensure: Sub-training sets Dfrain for each turn %

1: 1+ 0

2: while Dyin 7’é 0 do

3: 141+ 1

4 DErain — @

5: for all x € Dy do

6: Find the nearest data point y € Diain
to x based on cosine similarity

7 Dtlrain = thrain U {y}

8: end for

9: Dtrain — Dtrain \ Dtirain
10: end while
11: return Qyin = {DL. , D>

train? ~train’ *

.., Dk 1

train

Formalization. We formalize the TMA framework

in Algorithm 1. In this manner, we progressively
construct the training set by selecting subsets that
are decreasingly similar to the test data. These
sub-training sets can then be arranged in either
a Nearest-First Training (NFT) or Farthest-First
Training (FFT) manner for further experiments.
This arrangement of the training data ensures that
the embedding of each test data point is equally
considered, thus taking into account all their char-
acteristics. A more detailed investigation of our
arrangement method is provided in Appendix C.3.

5.1 TMA Improves Zero-Shot Generalization

Through the TMA analytical framework, we ob-
serve that:

{} Takeaway 5: Test-centric Multi-turn Ar-
rangement benefits generalization indepen-
dently of task boundaries

Data and Settings. We employ two types of
datasets: i) datasets with task splits, such as Flan-
mini (Ghosal et al., 2023), and ii) datasets without
task splits, such as ShareGPT (Wang et al., 2023)
and NoRobots (Rajani et al., 2023). Flan-mini con-
sists of task-specific splits, while ShareGPT and
NoRobots are general dialogue datasets. We ar-
range the training data by applying Algorithm 1
and examine the same three training arrangements,
namely NFT, FFT, and RT, which are consis-
tent with the experimental setup in Section 4.2.1.
Specifically, NFT under this setting refers to the
sequential training data order as returned by Algo-
rithm 1, and FFT refers to its reverse. For detailed
configurations, please refer to Appendix C.2.
Results. Using our proposed TMA to arrange train-
ing data from nearest to farthest improves zero-shot
generalization. As illustrated in Figure 7, whether
with the task split in Flan-mini (left) or without
the task split in ShareGPT (middle) and NoRobots
(right), the loss curve under the NFT setting de-
creases more rapidly while reaching a lower point,
whereas the FFT setting results in the poorest per-
formance. This validates the effectiveness of our
arrangement method TMA.

5.2 Ablation Study

To further investigate the impact of timing when
the model encounters the highest or lowest sim-
ilarity training data on zero-shot generalization,
we conduct an ablation study and show that:
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ﬁ? Takeaway 6: The timing of exposure to
high-similarity data is crucial for zero-shot
generalization. Accessing high-similarity
data during instruction tuning facilitates con-
tinual learning and enhances loss reduction.

Data and Settings. For Flan-mini, we randomly
select 225 tasks as the test set and use all data from
the remaining tasks as the training set. We apply
TMA to the entire training set, comprising over
1 million instances. Training data from different
turns, denoted as D! . (i € [1,N], where N is
the total number of turns), are organized under five
strategies, with M representing the desired number
of samples:

* NFT (Nearest First Training): Data is sequen-
tially selected from ¢ = 1 to ¢ = N until reach-
ing M /2 samples (Diini ), then from i = N to
i = 1 for another M /2 samples (Dyin2). The
two subsets are merged, maintaining nearest-to-
farthest ordering.

* FFT (Farthest First Training): Similar to NFT,
but the merged data is ordered from farthest to
nearest.

¢ RT (Random Training): As a baseline, we ran-
domly shuffle all training data.

¢ MAX: Data is sequentially selected from ¢ = IV
to ¢ = 1 until M samples are accumulated.

e MIN: Data is sequentially selected from 7 = 1
to ¢ = N until M samples are accumulated.

Results. Early exposure to similar training data
aids generalization while accessing high-similarity
data during instruction tuning facilitates continual
learning and further loss reduction. From Figure 8,
we observe:

. and : Loss curves exhibit similar pat-
terns, indicating that early exposure to training
data resembling the test set benefits generaliza-
tion the most.

. and : Loss curves diverge midway
(around 950 steps), as FFT encounters high-
similarity training data, reducing loss further.
This highlights the advantage of high-similarity
data during instruction tuning.

. : Positioned between NFT and FFT, RT
serves as a baseline, demonstrating intermediate
performance.

6 Conclusion

Our research sheds light on the mechanism under-
lying zero-shot generalization during instruction
tuning, moving beyond the conventional task-level
analysis to a more data-centric and fine-grained
perspective. By demonstrating that zero-shot gen-
eralization occurs early during instruction tuning
and is significantly influenced by data similarity
and granularity, we provide a new understanding of
how instruction tuning brings up zero-shot general-
ization. The Test-centric Multi-turn Arrangement
framework further illustrates the importance of ac-
cessing high-similarity data early in the training
process to facilitate continual learning and loss re-
duction. For future work, we suggest exploring
the quantitative relationship between similarity dis-
tance and loss. Specifically, investigating whether
similarity distance can predict a model’s general-
ization performance on new data could further help
the optimization of instruction tuning. We hope
our findings will pave the way for developing more
aligned and robust LLMs.



Limitations

Although our research has made significant
progress by discovering that zero-shot generaliza-
tion occurs in the early stage of instruction tuning
and proposing various similarity distance measures
to explore their impact on zero-shot generaliza-
tion, we acknowledge that our study is far from
perfect. Firstly, conducting a single experiment
can be costly due to storage space requirements
and computational resource limitations, so we only
conducted limited explorations on LLaMA-2-7B
with a few runs, which may introduce biases in
our conclusions. Secondly, the similarity distance
measures we proposed may not have a strong the-
oretical foundation and can only serve as supple-
ments to existing measures. Lastly, we chose loss
as the metric for zero-shot generalization instead
of traditional task-level evaluations often seen in
benchmarks with objective metrics. This is because
we believe that traditional task-level generalization
has certain limitations, as different tasks or cate-
gories may still appear relatively similar to LLMs,
while instances from the same task may exhibit
profound differences. However, this viewpoint still
requires further validation. We hope future works
can address these limitations.

Broader Impacts

Our work is dedicated to understanding the mech-
anisms of zero-shot generalization during instruc-
tion tuning and proposing several methods to en-
hance zero-shot generalization. This contributes to
improving the generalization ability of generative
models on unseen tasks. However, it is important to
note that these techniques could potentially be uti-
lized for enhancing generalization on harmful tasks
as well. Therefore, ethical considerations and re-
sponsible deployment of such methods are crucial
to ensure their appropriate and beneficial use. Pos-
sible mitigation strategies should be conducted, for
example, clear policies should be implemented to
govern their responsible use while engaging stake-
holders to gather diverse perspectives.
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Appendix
A Details for Section 3

A.1 Data and Setting

We utilized three datasets: Super Natural Instruc-
tions V2 (Wang et al., 2022), Public Pool of
Prompts (Sanh et al., 2021) and Flan-mini (Ghosal
et al., 2023). Here, we provide a detailed overview
of each dataset.

NIV2. Super Natural Instructions V2 (NIV2) is a
large collection of tasks and their natural language
definitions/instructions, with 746 tasks comprising
a total of 74,317 instances in train split. In the
NIV2 dataset, each task is characterized by its task
name, task definition, positive examples, negative
examples, and explanations, accompanied by sev-
eral task instances comprising input and output.
We adopt the default configuration in NIV2 reposi-
tory !, as illustrated in Table 1.

P3. Public Pool of Prompts (P3) is a collection
of prompted English datasets covering a diverse
set of NLP tasks. It is organized into a three-level
hierarchy of category, task, and prompt template.
For each task, instances are organized into a group
of data according to several prompt templates. We
refer to such binary pairs of (task, prompt) as a
base-class dataset. We utilize the same base-class
datasets for training and evaluation as we did for
training and evaluating vanilla TO 2. In the end,
we filter out 284 training base-class datasets and
123 evaluation base-class datasets. Due to the vast
amount of the P3 dataset and preliminary exper-
iments indicating early zero-shot generalization,
for each training base-class dataset, we randomly
select up to 100 instances, resulting in a total of
28,372 training instances.

Flan-mini. The flan-mini dataset is a carefully
selected subset maintaining a high level of task di-
versity while reducing the overall FLAN collection
size, encompassing not only the Flan2021 Collec-
tion and P3 data but also various ChatGPT datasets,
including Alpaca, Code Alpaca, and ShareGPT,
significantly increasing the diversity of tasks in the
flan-mini dataset. In total, there are 1825 tasks,
with 1600 tasks allocated for training and 225 un-
seen tasks for evaluation. Due to the vast amount

"https://github.com/yizhongw/Tk-Instruct/blob/
main/scripts/train_tk_instruct.sh
2https://huggingface.co/bigscience/Topp
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of training data and preliminary experiments indi-
cating early zero-shot generalization, we randomly
select up to 20 instances for each training task, re-
sulting in a total of 28,751 training instances.

A.2 Training Template and Examples

Concatenating the various fields from the data, ex-
amples of complete training data appear as follows:

NIV2 example

<s>User: Definition: In this task, you
will be shown a sentence, and you should
determine whether it is overruling or
non-overruling. In law, an overruling
sentence is a statement that nullifies a
previous case decision as a precedent
by a constitutionally valid statute or a
decision by the same or higher ranking
court which establishes a different rule
on the point of law involved. classify
your answers into overruling or non-
overruling.
Positive Example 1 -
Input: 876 f.3d at 1306.
Output: non-overruling.
Positive Example 2 -
Input: we disapprove cooper and craven
to the extent that they may be read to
conflict.
Output: overruling.
Now complete the following example -
Input: the court's discussion fails to
adequately account for the origin of the
specific intent element that both
section 2(a) and 2(b) contain.
OQutput:

Assistant: non-overruling.</s>

P3 example

<s>User: I took part in a little mini
production of this when I was a bout 8
at school and my mum bought the video
for me. I've loved it ever since!! When
I was younger, it was the songs and
spectacular dance sequences that I
enjoyed but since I've watched it when I
got older, I appreciate more the
fantastic acting and character portrayal
Oliver Reed and Ron Moody were

brilliant. I can't imagine anyone else
playing Bill Sykes or Fagin. Shani
Wallis' Nancy if the best character for
me. She put up with so much for those
boys, I think she's such a strong
character and her final scene when...
Well, you know... Always makes me cry!
Best musical in my opinion of all time.
It's lasted all this time, it will live
on for many more years to come! 11/10!!
How does the reviewer feel about the
movie?

Assistant: They loved it</s>


https://github.com/yizhongw/Tk-Instruct/blob/main/scripts/train_tk_instruct.sh
https://github.com/yizhongw/Tk-Instruct/blob/main/scripts/train_tk_instruct.sh
https://huggingface.co/bigscience/T0pp

# Instances
Per Eval Task

# Instances

Per Task Name

Add Task Add Task # Pos/Neg
Definition Examples

Add Tk
Explanation Instruct

100 100 False

True

2/0 False False

Table 1: The hyper-parameters applied in NIV2 configuration.

Flan-mini example

<s>User: Do these sentences have the
same meaning?
" The bank requires growth from
elsewhere in the economy and needs the
economy to rebalance , " he said in an
interview with the Press Association
news agency
The Bank of England " requires growth
from elsewhere in the economy and needs
the economy to rebalance , " he told the
Press Association news agency

Available options:

(1). no;
(2). yes;
Assistant: (2).</s>

A.3 Hyper-Parameter Details

For instruction tuning, we present some key hyper-
parameters related to instruction tuning in Ta-
ble 2. Additionally, we utilize the model-center
framework (modelcenter, 2023) to conduct full-
parameter instruction tuning of LLaMA-2-7B on
two 80GB A800s for 8 hours and dynamically ad-
just the loss scale based on the changing training
loss to prevent underflow. All of our instruction
tuning experiments utilize these hyper-parameters
consistently.

For generation, we present some key hyper-
parameters during the generation in Table 3. We
still employ the model-center framework to con-
duct the generation of LLaMA-2-7B on one 80GB
A800. All of our generations utilize the aforemen-
tioned hyper-parameters consistently.

A.4 Evaluation Details

Instruction-tuned model as a generalist. Ini-
tially, we evaluate the model’s generalization abil-
ity at a holistic level, termed as a generalist. To
achieve this, we randomly select 120 samples from
all testing data, including a series of unseen tasks.
These samples are evaluated against a series of fine-
grained checkpoints saved during the instruction
tuning stage. The average scores for Loss, ROUGE-
1, ROUGE-L, RM Score, and Exact-Match across
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all samples are calculated. We present the calcula-
tion details and formulas of each metric above.

* Loss: We use cross entropy to calculate the error
between labels and predictions. Because the po-
sition with a value of -100 in labels is a padding
position, we ignore the prediction at this position
during calculation.

* ROUGE-1: ROUGE-1 measures the compre-
hensiveness of the generated summary by calcu-
lating the overlap between words in the gener-
ated summary and words in the reference sum-
mary. Let n,, be the number of overlapping uni-
grams and n, be the total number of unigrams
in the reference summary. Then:

ROUGE-1 = —2

s

* ROUGE-L: ROUGE-L is based on the idea of

Longest Common Subsequence (LCS) and we

use rouge-score library ! for implementation. By

measuring the length m of the reference sum-

mary X and the length n of the generated sum-

mary Y, the ROUGE-L score is calculated as
follows:

)]

LCS(X,Y)

Rlcs = (2)
m
LOS(X, Y
P, = HSEY) 3)
n
1 2 RicsPres
Ecs = ( +ﬁ ) : : (4)

Rlcs + /82]:)103

» Exact-Match: First of all, we normalize the an-
swers by removing extra spaces, removing punc-
tuation, and converting all characters to lower-
case. Then, for each question-answer pair, if
the characters of the model’s prediction exactly
match the characters of the true answer, EM = 1,
otherwise EM = 0. This is a strict all-or-nothing
metric; being off by a single character results in
a score of 0.

|

1https://github.com/google—research/
google-research/tree/master/rouge

1

0 otherwise

if prediction = reference
&)


https://github.com/google-research/google-research/tree/master/rouge
https://github.com/google-research/google-research/tree/master/rouge

Max
Length

BS

Model Epochs

Per Device

LR
Scheduler

Save

Steps Optimizer

LLaMA-2-7B 1024 1 8

1le-06 10 Cosine AdamOffload

Table 2: The hyper-parameters applied during the instruction tuning. LR denotes the learning rate and BS denotes

the batch size.

Repetition .
Model Max Gen Length Penalty Batch Size  Top-p  Temperature
LLaMA-2-7B 128 1.2 8 0.9 0.9

Table 3: The hyper-parameters applied during the generation.

* RM score: Let S represent the sentence to be
evaluated, f is the reward model function, which
takes as input the sentence .S and model param-
eters 8. We use UltraRM-13B as the reward
model. Formally, the RM score assigned to sen-
tence .S is defined as:

R(S) = f(5,0) (6)

Instruction-tuned model as a specialist. In or-
der to facilitate more granular research on task-
level scenarios, i.e., exploring the model’s general-
ization ability on specific unseen tasks, termed as
a specialist, we take NIV2 and flan-mini datasets
as examples. For each unseen task, we randomly
select up to five testing instances. As shown in
Table 4, for evaluation as a specialist, the flan-mini
test set comprises a total of 1,121 instances, cover-
ing all 225 unseen tasks. Additionally, the NIV2
test set contains a total of 595 instances, covering
all 119 unseen tasks.

Subsequently, we allow a series of fine-grained
checkpoints to generate answers on these 1,121
testing instances and compute the loss. We define
the generalization metric on a specific unseen task
as the average loss of up to five testing instances for
that task, to verify whether the model specializes
in it.

A.5 Discussion for Metrics

In previous experiments, we have discovered that
zero-shot generalization might occur early in the
instruction tuning process based on the ROUGE
series, Exact-Match, and RM score. However,
these metrics may not be suitable for measuring
generalization effectively. First, for the ROUGE
series, ROUGE-1 refers to the overlap of uni-
grams, and ROUGE-L is based on the longest
common subsequence. Both metrics are limited
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to surface-level matching, primarily relying on lex-
ical overlap between model outputs and labels, to
the extent that capturing semantic similarity or a
deeper understanding of the content conveyed in
the sentences becomes challenging (Ganesan, 2018;
Grusky, 2023). Outputs and labels with different
wordings but similar meanings may receive low
ROUGE scores.

While the reliability of ROUGE series scores is
questionable, metrics like Exact-Match are nonlin-
ear, and previous research (Schaeffer et al., 2024)
has shown that nonlinear metrics are prone to ob-
serving emergent abilities. Although emergence
is a model-wise phenomenon, if we adopt such
nonlinear metrics step-wise, i.e., along the training
timeline, we might also observe step-wise “emer-
gence” so-called generalization phenomena. This
might lead to misjudgments regarding the timing
of zero-shot generalization. Therefore, we need to
address this issue.

Acknowledging that the Reward Model (RM) is
trained on preference data, it is inevitable that there
will be a certain loss of ability when generalizing to
out-of-distribution (OOD) datasets (Singhal et al.,
2024). Consequently, scoring on different datasets
may not be precise. As shown in Figure 2, RM
scores for NIV2 are notably higher than those for
the other two datasets, indicating a bias. Further,
we compare the reward distribution with respect
to the correctness of the model response respec-
tively on the three datasets. The large overlap under
both curves in Figure 9 indicates that RM could
not well distinguish between responses of lower or
higher quality. This further highlights the inappro-
priateness of using RM score to reflect zero-shot
generalization.



NIV2 P3 Flan-mini
. General Speical General Speical . General Speical
Train “pial Eval @™ Bual Eval " Eyal  Eval
# Tasks 746 — 119 284 — 123 1600 — 225
# Instances 74317 120 595 28372 120 — 28751 120 1121

Table 4: Detailed statistics for train and test splits of NIV2, P3, and flan-mini in our experiments. General Eval
denotes the evaluation as a generalist. Special Eval denotes the evaluation as a specialist.
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Figure 9: The reward distribution regarding the answer’s correctness on NIV2 (left), Flan-mini (middle), and P3
(right). The area under both curves in each figure has large overlaps, indicating the reward cannot well distinguish

the quality of answers.
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Figure 10: Two main loss trends on the flan-mini and NIV2 test sets. These trends are characterized by a rapid
decrease followed by stability and a sharp decline followed by a gradual decrease, respectively. Each type of loss

trend is exemplified by selecting five tasks for display.

A.6 Case Study

Continuing our investigation, we further delve into
the fine-grained analysis of the generalization ca-
pability on individual unseen tasks.

Settings Taking NIV2 and Flan-mini as exam-
ples, we curate a maximum of five test data points
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for each unseen task, consolidating them into a sin-
gle test set. Similarly, we generate outputs using a
series of fine-grained instruction-tuned checkpoints
and compute the cross-entropy loss against the la-
bels and average on a per-task level. For detailed
evaluation settings, please refer to Appendix A.4.



Results. From the perspective of individual un-
seen tasks, zero-shot generalization also occurs
in the early stage of instruction tuning. However,
different tasks exhibit distinct trends in terms of
zero-shot generalization. We identified two primary
trends: rapid decrease followed by stability and
sharp decline followed by a gradual decrease, as
shown in Figure 10. This finding further suggests
that the majority of unseen tasks are generalized in
the early stage of instruction tuning.

B Details for Section 4

B.1 Different Training Distributions

In Section 4, we take the Flan-mini dataset as an
example. For each training task, we select a maxi-
mum of 20 data points, and for each testing task, we
select a maximum of 5 data points. We employed
various training data distributions on Flan-mini.
Here, we provide detailed explanations of the data
arrangements and training specifics.

* Round-robin: In the round-robin setting, with
a total batch size of 16, we save checkpoints
every 10 steps during instruction tuning. Hence,
there is a difference of 160 training data points
between adjacent checkpoints. Considering the
Flan-mini dataset, where we have divided 1600
training tasks, it takes 1600 data points to tra-
verse all training tasks. Therefore, for every 10
checkpoints (every 100 steps), the model com-
pletes one pass over all training tasks.

Cluster: In the cluster setting, similarly, there
is a difference of 160 training data points be-
tween adjacent checkpoints. However, for each
training task, we curate a maximum of 20 data
points. Consequently, between adjacent check-
points, the model encounters almost exactly 8
tasks.

RT (Random Training): As a baseline, we ran-
domly shuffle all training data.

NFT (Nearest First Training): Given a cer-
tain similarity distance measure, we compute
the similarity distance from each training data
point to the test set based on this measure, and
then arrange the training data points from near-
est to farthest.

FFT (Farthest First Training): Given a certain
similarity distance measure, we calculate the
similarity distance from each training data point
to the test set based on this measure, and then
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arrange the training data points from farthest to
nearest.

B.2 Effect of Test Data Distributions

Upon discovering that controlling the arrangement
of training data leads to entirely different loss
curves for unseen tasks, we next aim to explore
the impact of test data distribution on the results.
As the order of test data does not impact the val-
uation results, we sample test data by employing
different seeds to obtain varying test data subsets
from the same task. Subsequently, we generate
and calculate average loss across a series of fine-
grained instruction-tuned checkpoints.

Under different seeds, which represent different
subsets of test data for the same task, we observed
that the loss curves exhibit distinct patterns:

* The descent in loss transitions from being grad-

ual to rapid (Figure 11).

e The sudden decrease observed in cluster schedul-
ing disappears (Figure 12).

* The fluctuation in loss becomes more stable (Fig-
ure 13).

* The lowest point of loss shows a significant de-
crease (Figure 14).

B.3 Similarity Measure Details

B.3.1 Embedding-based Similarity Measure

We utilize all-MiniLM-L6-v2 ! as our embedding
model, which maps sentences to a 384-dimensional
dense vector space. When generating the embed-
ding vector of a particular piece of data, we simply
format the instruction and answer of this data into
a template like “{instruction} {answer}”, and then
put this whole string into the embedding model
to generate the corresponding embedding. After
obtaining the embedding of each data, we compute
the similarity distance between a training and a test
data in the following two ways:

* Cosine similarity distance: Cosine similarity
determines the similarity by computing the co-
sine of the angle between the two embeddings,
yielding a value between -1 and 1. A value closer
to 1 indicates higher similarity, while a value
closer to -1 indicates lower similarity. When
calculating, we add a negative sign to the co-
sine similarity to indicate the distance. Thus, a
larger value indicates a greater distance between

1https://huggingface.co/sentence—transformers/
all-MinilM-L6-v2
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Figure 14: The lowest point of loss shows a significant decrease (from seed = 1 to seed = 0/2).

(task511_reddit_tifu_long_text_summarization)

two embeddings. Suppose A and B are two
embeddings, “-” denotes the dot product of the
embedding vectors, and ||A || and | B|| represent
the L2 norms of the embeddings. We calculate
the cosine similarity distance as follows:

—-A-B
do(A,B) =

= — 7
NEE] @

¢ Euclidean similarity distance: This method
calculates the straight-line distance between two

17

points in space. A higher distance value indi-
cates a farther distance between the two em-
beddings. The Euclidean distance between two
points A, B € R” is computed using the for-
mula:

Assuming that we have Ny, training data and



NZL, test data (for an unseen task T'), we calcu-
late a similarity distance matrix D with shape
(Nicain, NiL, ), where each entry d;; represents the
cosine or Euclidean similarity distance between
the " training data and the ;%" test data. For the
k' saved checkpoints, it has seen 160 x k training
data, so the Similarity Distance S Dy, between its
seen training data and whole test data is calculated

using:

SDy, = Op(D[: 160 x k|[:]) ©
Op € [ min, max, avg, centroid |

B.3.2 N-gram Based Similarity Measure

During calculation, we still format the instruction
and answer of each piece of data in the dataset into
a template like “{instruction} {answer}”. We then
iterate each word in this whole to generate a list
of n-gram tuples, where n represents the length of
consecutive words:

N(S, ’I’L) = {(wl, e ,wiJrn,l) |
: (10)
i<m-—n+1}

Then the n-gram tuples of all the data in the
dataset are counted, and the frequencies are con-
verted to probabilities to obtain the n-gram distribu-
tions of the dataset. Finally, we use KL divergence
to represent the similarity distance between two
datasets:

¢ KL divergence similarity distance: KL di-
vergence is a measure used to quantify the dif-
ference between two probability distributions.

When its value is larger, it indicates that the two

distributions are less similar. Let p and g rep-

resent the probability distributions of training
dataset A and test dataset B, where € denotes the
smoothing parameter to avoid division by zero.

p; and ¢; represent the probability of the i*" n

gram. We compute KL divergence as follows:

> (In

So the Similarity Distance SDy, between its seen
training data and whole test data is calculated us-

ing:

bi
qi + €

dKL(pvq’ 6) = sz IOg <

p= N (Dtraina N train)
q= N(Dtesta Ntest)
SDk = dKL(pa q, E)

12)
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B.4 Exploring Appropriate Similarity
Measures

Setting. We analyze a series of checkpoints saved
during instruction tuning on Flan-mini, based on
the three settings described in Section 4.1. We
calculate similarity distances between the training
data seen by each checkpoint and each unseen task,
as depicted in Figure 15. Furthermore, in the clus-
ter setting, we explore the relationship between
a significant decrease in the lowest loss observed
with different seeds and the similarity measures.
Specifically, suppose there are IV instruction-tuned
checkpoints and D is the similarity distance ma-
trix, for k' checkpoint in the cluster setting, we
compute the Scaled Cosine-Avg and Cosine-Min
similarity distances as follows:

C-Min;, = MIN(D[: 160 x ][:])
C-Avg, = AVG(D]: 160 x k][:])
S C-Miny,
SN C-Avg,

Results. We found a strong correlation between
the trends of similarity calculated using minimal
measure and the trends of loss. In the leftmost plot
of Figure 15, we observe sudden drops in both the
cluster setting (red) and the similarity distances
calculated using the minimal measure around step
450 and step 1150. Interestingly, the magnitude of
these drops in similarity distances and loss appears
coincidental. Furthermore, in Figure 16, we notice
that for seed = 0 (left), the Cosine-Min (red) de-
creases to around -0.58 at approximately 50 steps.
In contrast, for seed = 1 (middle) and seed = 2
(right), the Cosine-Min (red) drops below -0.5 at
around 700 steps and 1,000 steps, respectively. Ad-
ditionally, the lowest loss for seed = 0 (left) is
significantly lower and exhibits a more stable de-
crease over time compared to the other two seeds.

Additionally, after carefully examining all 225
unseen tasks, among the nine similarity distance
metrics, we observed that the i) fluctuation patterns
are almost identical when using Euclidean and co-
sine distances, as well as when using centroid and
average distances; ii) the sudden decrease observed
in the loss curve in the preceding subsections seems
to coincide with sharp drops when using the mini-
mum distance calculation; iii) the KL divergence
does not exhibit a clear pattern of change in re-
lation to the loss, which may be due to the fact
that KL divergence calculates differences based on

(13)
SC-Avg;, = C-Avg,, -
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Figure 15: The trends of loss (left) and nine similarity distance measures (right), taking task851 as an example with
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Figure 16: The loss and the similarity distances (scaled cosine average and cosine minimum) between the seen
training set and the test set. Since the similarity distances calculated using the minimum (min) metric have a much
larger range compared to the average (avg) metric, we consider scaling the average similarity to the same magnitude
as the minimum similarity, denoted by “Scaled Cosine-Avg”. This will allow for better comparison and analysis

between the two metrics.

n-gram distributions, without taking into account
semantic information; iv) the “max” metric focuses
on the least similar data encountered during the
instruction tuning process.

For the model during instruction tuning, Cosine-
Avg reflects the average distance from the seen
training set to the test set, providing an overall
perspective on the impact of seen samples on the
test set. On the other hand, Cosine-Min reflects the
impact of the closest sample in the seen training
set to the test set, providing a local perspective
on the influence of seen samples on the test set.
Therefore, in the following experiments, we will
consider using the Cosine Average (Cosine-Avg)
and Cosine Minimum (Cosine-Min) embedding
metrics for similarity calculation.

B.5 Proof of Optimal Substructure Property

Property of Similarity Measures. Intuitively,
we could compute the similarity distance between
each training data point and the entire test set, and
then reorder the training data based on this simi-
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larity distance. In this way, the model encounters
the most similar training data point to the test set
first during instruction tuning. We demonstrate that
this approach exhibits the characteristics of optimal
substructure:

Theorem B.1 Optimal Substructure of Cosine-
Avg and Cosine-Min: Let | be a function for cal-
culating dataset-level similarity distance (Cosine-
Avg and Cosine-Min), taking two sets A and B
as inputs and outputs a real number. Given a
training set Dyqin and a test set Dis, assume
Dt]:’ain is obtained by reordering Dy based on
the function f in ascending order of similarity dis-
tance to Dyeg. For any ith and jth training data
x; and xj (1 < j)in Dt’;m-n, naturally, we have
f{xi}, Diest) < f({z}}, Diest). We also have
that,

[ i], Diest) < (D]

train

f(D]

train

[: j]aDtest) (14)

The characteristic of optimal substructure en-
sures that the effect of training set arrangement



according to Cosine-Avg or Cosine-Min can accu-
mulate over time as more data point is presented to
the model.

Proof of Theorem B.1. Let f be a function
for calculating dataset-level similarity distance
(Cosine-Avg and Cosine-Min), taking two sets
A and B as inputs and outputting a real number.
Suppose the reordered training dataset Dt{ain fol-
lows the sequence from the front to the end: {1,
X2,y Tiy Titls -5 Tj, Tjgl, - }, We consider
the unary function g(i) = f({zi}, Diest), Where
i €[1,2,3,---]. Due to the reordering, the func-
tion g(7) is monotonically non-decreasing. We
have that:

f(DtJ:ain[: Z]’ Dtest) < f(DLfrain[: ]]7 Dtest) (15)

Firstly, for Cosine-Avg, suppose the length of
Diest 1 Niest We have

] 1 i Nlest
f(Di];ain{: i], Diest) = N, Z Z cos(Tp, Yq),
1iVtest T —
p=1g=1
Tp S Dt]:ain’ Yq € Dtest
(16)
By applying the ¢(7) function:
1
f(Dpal: . D) = = > _9p) (A7)
p=1
Similarly:
1 J
f(Planli 31 D) = = D 90)  (19)
p=1

We denote the difference Aj; = f(D]. [:
Jl; Drest) — f(Dt{ain[: i], Diest) satisfies that:

Aji = ;Zg(p) - % > 9(p)
p=1 p=1

i _19() =it 9(p)

]
i 90) — (=) Y 9()
1j
> i(j —1)g(i) Z—J (j —1)ig(7)

=0
19)

Similarly for Cosine-Min:

g(p) — min g(p)

Aji = min
1<p<i

1<p<y (20)

> min =0

> min, (p) — min g(p)

1<p<i

The uses of > in the expressions are due to the
monotonically non-decreasing property of the g(4)
function. Thus, the original expression is proved.

C Details for Section 5
C.1 Data

We utilized three datasets: Flan-mini (Ghosal et al.,
2023), ShareGPT (GPT4) (Wang et al., 2023) and
NoRobots (Rajani et al., 2023). Here, we pro-
vide a detailed overview of ShareGPT (GPT4) and
NoRobots.

ShareGPT ShareGPT contains cleaned and fil-
tered 6k expert conversations generated by GPT-4
used to train OpenChat (Wang et al., 2023). We
use the version from openchat .

NoRobots NoRobots is a high-quality English
dataset of 10K instructions and demonstrations
created by skilled human annotators rather than
GPTs. It was modeled after the instruction dataset
described in OpenATI’s InstructGPT paper (Ouyang
et al., 2022) and is comprised mostly of single-turn
instructions.

Concatenating the various fields from the data,
examples of complete training data appear as fol-
lows:

ShareGPT example

<s>User: I want you
engineer. Your goal
the best possible\n prompt for my needs.
The prompt will be used by you, ChatGPT
You will follow the\n following
process:\n\n1. Your first response will
be to ask me what the prompt should be
about. I will provide my\n answer, but
we will need to improve it through
continual iterations by going through
the\n next steps.\n\n2. Based on my
input, you will generate 2 sections. a)
Revised prompt (provide your\n rewritten
prompt. it should be clear, concise,
and easily undersJ]god by you), b)
Questions\n(ask any relevant questions
pertaining to what additional
information is needed from me to\n
improve the prompt).\n\n3. We will
continue this iterative process with me

to become my Prompt
is to help me craft

1https://huggingface.co/datasets/openchat/
openchat_sharegpt4_dataset
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providing additional information to you\
n and you updating the prompt in the
Revised prompt section until I say we
are done.

Assistant: What would you like the
prompt to be about?</s>

NoRobots example

<s>User:
?
Assistant: The fastest-flying bird is
the Peregrine Falcon. When diving, it
has been measured at speeds over 186
miles per hour.</s>

What is the fastest flying bird

C.2 Experimental Setup

Flan-mini. We randomly selected several tasks
as the testing set, while using all the data from the
remaining tasks as the training set. Based on the
findings in Section 3, which demonstrated that zero-
shot generalization occurs early during instruction
tuning, we decided to sample around 30,000 data
points, maintaining a similar scale to our previous
experiments to conserve resources.

ShareGPT & NoRobots. We randomly select
200 data points as the testing set, while using all
the remaining data points as the training set.

Settings. For the three datasets mentioned above,
we arrange the training set based on the Test-centric
Multi-turn Arrangement. Assuming that we select
each turn of training data from the nearest to the
farthest, denoted as D! . (i € [1, N]), where N
represents the total number of rounds. Similar to
the experiments in Section 4, we have also config-
ured the following three settings, while ensuring
that the only difference between these three settings
is the arrangement of the same dataset:

* NFT (Nearest First Training): We sequentially

organize the data for Dfmin from: =1toi = N.

* FFT (Farthest First Training): We sequen-
tially organize the data for Dfrain fromi = N to
i =1.

¢ RT (Random Training): As a baseline, we ran-
domly shuffle all training data.

C.3 A Deeper Understanding of Test-centric
Multi-turn Arrangement

In the main text, we introduce the Test-centric
Multi-turn Arrangement method, inspired by
transportation theory. In transportation theory, we
consider the calculation of the minimum cost re-
quired to transform a probability distribution P(x)

of a random variable X into another probability
distribution Q(y) of a random variable Y. This
minimum cost is defined as the Optimal Transport
Divergence, as follows:

OT(P||Q) = inf

(21)
YET(PQ)

E(x,y)~7 [C(:B, y)]

where I'(P, ) denotes the set of all joint dis-
tributions y(x, y) whose marginals are P(x) and
Q(y), respectively, and c(z, y) represents the cost
function measuring the "distance" between x and
y. A commonly used definition for ¢(z,y) is the
Euclidean distance between two points, which can
also be understood as the square of the L2 norm.
This leads to the definition of the 2-Wasserstein
Distance:

w2<P,Q>:( inf E@,y)wux—yuﬂ)z

YET(PQ)
(22)

More generally, the k-Wasserstein Distance is
defined as follows:

Wi(P,Q) = ( inf

k
it Egllo i)
(23)

This definition uses the k-th power of the L2
norm as the cost function, providing a generalized
measure of the "transportation cost" between prob-
ability distributions.

In our article, we highlight the significant impact
of the similarity between training data and test data
on zero-shot generalization. Therefore, a natural
question arises: how can we arrange the training
data using a better similarity distance measure to
achieve better zero-shot generalization? Based on
Optimal Transport Divergence, we can formalize
our problem as follows:

n m
Minimize Z Z Yijc(xi, yj)

(24)
i=1 j=1
subject to the constraints:
- 1
Z%-j:P(xi):;, V’i:1,...,n
rl (25)

- 1
S = Q) = —, Vi=1,...,m
i=1 m



where +;; is the transport plan that minimizes
the overall transportation cost between the distri-
butions of the training data P(z) and the test data
Q(y). The cost function ¢(x,y) typically repre-
sents the Euclidean distance (L2 norm) between
points = and y.

The above method treats the distributions P(x)
and Q(y) of training and test data as uniform, but
this assumption fails when n (training data) and
m (test data) are significantly different, causing
each training data point to have much less impact
compared to each test data point. Hence, we con-
sider treating training and test data equally, with
the constraint that the I" matrix contains only 0
or 1 elements. To bridge this gap, we propose
the heuristic Test-centric Multi-turn Arrangement
method in Algorithm 1 to address the imbalance
between training and test data in zero-shot general-
ization.

This method ensures that each training data point
is selected in exactly one round. For the k-th round
of selected training data Dt]jain, for each x; in D@ain,
there exists a test data point y; such that c(z;, y;)
is the k-th smallest element in the j-th column of
the Cost Matrix C with each entry c(z;, y;).

By ensuring this, we achieve a balanced selec-
tion of training data points that are optimally dis-
tributed according to their similarity to the test data,
facilitating more effective zero-shot generalization.
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