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Abstract

Understanding alignment techniques begins001
with comprehending zero-shot generalization002
brought by instruction tuning, but little of the003
mechanism has been understood. Existing004
work has largely been confined to the task level,005
without considering that tasks are artificially006
defined and, to LLMs, merely consist of tokens007
and representations. To bridge this gap, we in-008
vestigate zero-shot generalization from the per-009
spective of the data itself. We first demonstrate010
that zero-shot generalization happens very early011
during instruction tuning, with loss serving as012
a stable indicator. Next, we investigate training013
data arrangement through similarity and granu-014
larity perspectives, confirming that the timing015
of exposure to certain training examples may016
greatly facilitate generalization on unseen tasks.017
Finally, we propose a more grounded train-018
ing data arrangement framework, Test-centric019
Multi-turn Arrangement, and show its effec-020
tiveness in promoting continual learning and021
further loss reduction. For the first time, we022
show that zero-shot generalization during in-023
struction tuning is a form of similarity-based024
generalization between training and test data at025
the instance level.026

1 Introduction027

The extraordinariness of large language models028

(LLMs) was originally brought by the zero-shot029

generalization of instruction tuning (Brown et al.,030

2020). Early studies have found that when diverse031

prompts are added to the inputs of traditional natu-032

ral language processing (NLP) tasks and fed into033

the model for instruction tuning, the model can034

generalize to tasks it has never encountered be-035

fore (Chung et al., 2024; Longpre et al., 2023; Sanh036

et al., 2021; Wang et al., 2022; Wei et al., 2021). To037

date, instruction tuning (Chung et al., 2024; Sanh038

et al., 2021; Wei et al., 2021) has become a crucial039

phase in LLM training, often preceding methods040

that incorporate preference data. In the meantime,041

the concept of “task” is also becoming increasingly 042

blurred. Researchers are no longer constructing 043

instruction data in the ways traditional NLP tasks 044

dictate, but rather, they hope these tasks will be as 045

close to reality and as diverse as possible (Chiang 046

et al., 2023; Ding et al., 2023; Rajani et al., 2023; 047

Taori et al., 2023; Zhao et al., 2024b). 048

Although nearly all LLMs benefit from the zero- 049

shot generalization brought about by instruction 050

tuning, the in-depth and fine-grained research on 051

this phenomenon is still insufficient. Particularly, 052

there are few accurate and comprehensive conclu- 053

sions about when and in what form it occurs, and 054

how it would be influenced at an instance level. 055

Existing approaches (Song et al., 2019; Vu et al., 056

2020; Zamir et al., 2018; Kim et al., 2023; Muen- 057

nighoff et al., 2023; Zhou et al., 2022; Lee et al., 058

2024) assume that human-defined “tasks” and even 059

“categories” are sufficiently reasonable, but this is 060

often not the case, as gaps exist regarding how hu- 061

mans and LLMs perceive the instruction tuning 062

data. To this end, we strive to break free from the 063

task-level framework and explore “generalization” 064

from a more granular temporal perspective. 065

In this paper, we conduct a comprehensive inves- 066

tigation of the zero-shot generalization during in- 067

struction tuning and attempt to answer some critical 068

questions: In instruction tuning, i) when does zero- 069

shot generalization occur? ii) how can we more 070

accurately understand the role of data in zero-shot 071

generalization? iii) how can we effectively improve 072

zero-shot generalization? 073

To answer the first research question, we at- 074

tempt to pinpoint the timing of zero-shot gener- 075

alization during instruction tuning. We find that 076

significant generalization occurs after training on 077

just 160 examples, demonstrating that instruction- 078

following capabilities can be unlocked with min- 079

imal data, similar to existing works (Chen et al., 080

2023; Gudibande et al., 2023; Zhao et al., 2024a; 081

Zhou et al., 2024) but we provide a more granular 082
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Figure 1: Demonstrating how data arrangement affects
zero-shot generalization. Different shapes represent
distinct task types, while similar colors indicate seman-
tic similarities between data points. Top and Bottom
respectively represent traditional random data ordering
and task-based continue fine-tuning, showing gradual
loss reduction. But we (Middle) prioritize training on
data points that are similar (color) to the test set and
break free from task boundary (shape), thus enabling
more rapid loss reduction.

analysis. Our analysis shows that loss serves as083

a more reliable indicator of zero-shot generaliza-084

tion compared to traditional evaluation metrics like085

ROUGE and Exact-Match. (Section 3)086

For the second question, we track LLaMA-2-087

7B’s loss on 255 unseen test tasks while instruction-088

tuning on 1,600 training tasks. We find that simply089

reordering training data produces diverse test loss090

patterns—from sudden improvements to gradual091

changes or fluctuations. This indicates that while092

the model can achieve rapid generalization under093

certain conditions, it may also show delayed gen-094

eralization or fail to generalize depending on the095

training data arrangement. More importantly, these096

observations indicate that the timing of exposure097

to certain training examples may greatly facilitate098

generalization on unseen tasks, highlighting the099

crucial role of data arrangement in effective in-100

struction tuning.101

To understand the role of data in this process, we102

identify two perspectives: similarity and granular-103

ity. From a similarity perspective, we discover that104

the model’s generalization is not truly “zero-shot”,105

as a high resemblance between the training and test106

data distributions could significantly impact gener-107

alization. Using combined cosine similarity mea-108

sures, we find that test loss drops suddenly when 109

the model encounters training examples highly sim- 110

ilar to the test set, particularly when such exam- 111

ples appear early in training. From a granularity 112

perspective, the artificially defined “tasks” are not 113

suitable for measuring generalization. Instead, the 114

similarity measure at the instance level serves as 115

a better and more essential indicator. We reveal 116

through experiments that, by treating all data points 117

equally without the constraints of pre-defined tasks, 118

we can better improve zero-shot generalization. As 119

shown in Figure 1, encountering highly similar and 120

fine-grained training data earlier during instruction 121

tuning enables better generalization. (Section 4) 122

While the combined similarity measures we 123

adopt reveal the role of training data, they have 124

inherent limitations, as they treat the test set holisti- 125

cally, ignoring the role of individual test data points. 126

To address this, we propose the Test-centric Multi- 127

turn Arrangement (TMA) framework, which orga- 128

nizes training data in a test-centric way, even with- 129

out predefined tasks. Through the lens of TMA, 130

we reveal that accessing highly similar data during 131

instruction tuning promotes continual learning and 132

further loss reduction. (Section 5) 133

We summarize our contributions as follows: 134

• We show that zero-shot generalization occurs at 135

the very early stage during instruction tuning, 136

while loss serves as a more stable and fair metric 137

compared to traditional ones. 138

• We emphasize the critical role of timing in data 139

exposure as a key perspective to gain a deeper 140

understanding of zero-shot generalization, re- 141

vealing that encountering highly similar and fine- 142

grained training data earlier during instruction 143

tuning enables better generalization. 144

• We propose the Test-centric Multi-turn Arrange- 145

ment framework, and show that accessing high- 146

similarity data during instruction tuning can fa- 147

cilitate continual learning and further loss reduc- 148

tion. 149

2 Related Work 150

LLMs have been proven capable of zero-shot 151

generalization across a variety of downstream 152

tasks (Brown et al., 2020), and instruction tun- 153

ing has emerged as the most effective method to 154

achieve this (Chung et al., 2024; Sanh et al., 2021; 155

Wei et al., 2021). The zero-shot generalization phe- 156

nomenon resulting from instruction tuning is cru- 157

cial for building general LLMs. Multi-task datasets 158
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designed for this purpose have continuously iter-159

ated in quality, quantity, and diversity, and numer-160

ous studies have explored how zero-shot general-161

ization occurs during the instruction tuning process.162

Sanh et al. (2021) constructed P3 using explicit163

multitask learning, demonstrating that explicit task164

prompt templates can promote zero-shot generaliza-165

tion. Wang et al. (2022) created the Super Natural166

Instructions V2 (NIV2) dataset, which comprises167

over 1600 task types, and empirically showed that168

more observed tasks, an adequate number of train-169

ing instances, and larger models improve gener-170

alization. Meta introduced OPT-IML (Iyer et al.,171

2022), investigating the impacts of dataset scale172

and diversity, different task sampling strategies,173

and the presence of demonstrations on general-174

ization. Subsequently, Longpre et al. (2023) pro-175

posed the Flan Collection, which encompasses up176

to 1836 tasks, and pointed out that scaling the num-177

ber of tasks and model size, as well as incorporating178

chain-of-thought data, can dramatically improve179

performance on unseen tasks.180

In addition, a line of research focuses on un-181

derstanding the relationships in task-pair trans-182

fer (Song et al., 2019; Vu et al., 2020; Zamir et al.,183

2018), suggesting that not all tasks contribute posi-184

tively to zero-shot generalization; some tasks may185

even result in negative transfer effects (Kim et al.,186

2023; Muennighoff et al., 2023; Zhou et al., 2022).187

However, a significant limitation of the aforemen-188

tioned works is that, whether training on one task189

and then evaluating on another (Kim et al., 2023;190

Zhou et al., 2022), or simply calculating intermedi-191

ate task (Vu et al., 2020) or instruction (Lee et al.,192

2024) transfer scores, all these efforts to select the193

most informative tasks to promote zero-shot gen-194

eralization are confined within the “task” frame-195

work. This approach is based on a premise: the196

human-defined “tasks” and even “categories” are197

sufficiently reasonable. This is precisely the issue198

our study strives to address: breaking free from the199

task-level framework to explore “generalization” at200

a more fundamental level.201

3 Positioning Zero-Shot Generalization202

Early research shows that instruction tuning, which203

applies to various NLP tasks formatted with instruc-204

tions, can generalize to various unseen tasks. How-205

ever, most studies (Chung et al., 2024; Iyer et al.,206

2022; Longpre et al., 2023) focus on integrating207

diverse tasks or instruction templates, using human-208

generated or synthetic data, or exploring different209

fine-tuning strategies, while few studies address 210

the timing of zero-shot generalization. To bridge 211

this gap, we first seek to identify when zero-shot 212

generalization actually occurs during instruc- 213

tion tuning, and then justify that loss serves as a 214

more stable and fair metric to measure zero-shot 215

generalization compared to traditional ones includ- 216

ing ROUGE series, Exact-Match, Reward Model 217

scores, etc. We begin by giving a formalization of 218

zero-shot generalization. 219

Formalization. In multi-task scenarios, zero-shot 220

generalization refers to the ability to perform ef- 221

fectively on unseen tasks (TUnseen), while only 222

trained on a subset of tasks (TSeen). For each task 223

T ∈ TSeen ∪ TUnseen, there exists an instructional 224

description IT , as well as several instances, where 225

each instance is composed of an input xT,i and 226

an output yT,i. We define a model M as capable 227

of generalization on unseen tasks if, after train- 228

ing on every task in TSeen, given an unseen task 229

T ∈ TUnseen, and for any (xT,i, yT,i), the model’s 230

output ŷ = M(IT , xT,i) and the label yT,i achieve 231

a score surpassing a certain threshold, with regard 232

to the selected metrics, indicating successful gener- 233

alization on the task T . 234

3.1 Early Zero-Shot Generalization 235

The measurement of zero-shot generalization de- 236

pends on the selection of metrics. However, the im- 237

pact of various metrics on zero-shot generalization 238

is rarely studied. To this end, we first evaluate sev- 239

eral metrics to see if they are suitable for zero-shot 240

generalization and demonstrate that: 241

Takeaway 1: Zero-shot generalization oc-
curs during the very early stage of instruc-
tion tuning, despite the metrics chosen for
measurement.

Data and Settings. We utilize three multi- 242

task datasets, namely Natural Instructions V2 243

(NIV2) (Wang et al., 2022), Public Pool of Prompts 244

(P3) (Sanh et al., 2021), and Flan-mini (Ghosal 245

et al., 2023), for our analysis. For NIV2, we utilize 246

the default track and training-test split for instruc- 247

tion tuning and evaluation. For P3, we employ 248

training and test tasks consistent with the vanilla 249

T0 model1. For Flan-mini, we randomly parti- 250

tion the training and test tasks. We choose pre- 251

trained LLaMA-2-7B (Touvron et al., 2023) as our 252

base model. For other details including dataset, 253

1https://huggingface.co/bigscience/T0pp
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Figure 2: Average ROUGE-1, ROUGE-L, and Exact-Match scores (left), average RM scores (middle), and average
loss scores (right) of checkpoints fine-tuned on NIV2 (left, middle, right), P3 (middle, right), and Flan-mini (middle,
right), all evaluated on unseen tasks.

hyper-parameters, and prompt template, please re-254

fer to Appendix A. All subsequent experiments are255

based on this setup, where we adopt to save a se-256

ries of full-parameter fine-tuning checkpoints and257

evaluate each on the unseen test set to observe the258

results regarding specified metrics.259

Metrics. We experiment with multiple metrics, in-260

cluding Exact-Match, ROUGE-1, ROUGE-L, and261

RM score, to test their ability to reasonably reflect262

zero-shot generalization. For P3 and Flan-mini ,263

Exact-Match is commonly applied in previous stud-264

ies due to its simplicity, while NIV2 additionally265

incorporates ROUGE series as metrics. Besides, in266

reinforcement learning scenarios, the reward model267

(RM) often plays a vital role (Cui et al., 2023; Yuan268

et al., 2024) and serves as a proxy for human pref-269

erences. This makes the RM score also a plausible270

metric to reflect zero-shot generalization. Empir-271

ically, we use UltraRM-13B (Cui et al., 2023) as272

the reward model when measuring RM score.273

Results. We demonstrate that zero-shot generaliza-274

tion occurs at a very early stage during instruction275

tuning regardless of metric choice. As depicted276

in the left plot of Figure 2, using ROUGE series277

and Exact-Match as metrics, the scores rise from278

approximately 15 to over 35 in merely 10 train-279

ing steps, indicating significant generalization with280

only 160 training samples in our setting. In the281

middle plot, the RM score exhibits a similar trend,282

stabilizing around 50 steps across all three datasets.283

Despite the similar trend they present, it should284

be noted that ROUGE-1, ROUGE-L, and Exact-285

Match as metrics all entail the resulting curves286

being seriously unstable, while the RM score for287

NIV2 is significantly higher than those for the288

other two datasets, indicating a certain bias induced289

(more details discussed in Appendix A.5). This290

leads us to seek a more reasonable metric as an291

indicator to evaluate zero-shot generalization.292

3.2 Loss as Generalization Indicator 293

Loss is commonly applied across model pre- 294

training and fine-tuning scenarios. For example, 295

the scaling law (Clark et al., 2022; Henighan et al., 296

2020; Kaplan et al., 2020) entails predicting loss 297

based on model parameter count and dataset size, 298

while unsupervised learning uses loss to quantify 299

the difference between probability distribution. Re- 300

cent studies also show that models gain emergent 301

abilities when pre-training loss falls below critical 302

threshold (Du et al., 2024). All these measures sug- 303

gest loss to be a promising metric for evaluating 304

zero-shot generalization. Therefore, we compre- 305

hensively study and justify that: 306

Takeaway 2: Loss serves as a stable and
reasonable metric to measure zero-shot gen-
eralization due to its stability and fairness
across datasets.

Data and Settings. We use the same dataset 307

as in the previous experiment and generate out- 308

puts for sampled test data points using a series of 309

instruction-tuned checkpoints we derived. We then 310

calculate the average cross-entropy loss against the 311

corresponding labels within each step. Please refer 312

to Appendix A.4 for more details. 313

Results. Zero-shot generalization similarly occurs 314

at an early stage of instruction tuning with loss as 315

the metric. As shown in the right plot of Figure 2, 316

all three datasets reach their lowest points in terms 317

of loss within less than 50 steps, which strengthens 318

the conclusion that generalization occurs early. 319

Moreover, compared to the left and middle plots 320

in Figure 2, it is noteworthy that loss as an indicator 321

is more stable and fair across different datasets, 322

entailing it as a more reasonable metric for the 323

measurement. We also provide a case study of 324

loss curves with regard to different unseen tasks, as 325

detailed in Appendix A.6. 326
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4 Data Arrangement Effects on327

Zero-Shot Generalization328

Acknowledging the importance of metrics in mea-329

suring the positioning of zero-shot generalization,330

we next seek to investigate why generalization331

occurs at an early stage and what role training332

data plays during this phase. Our initial focus333

lies in the analysis of how various simple training334

data arrangements affect zero-shot generalization335

in a fine-grained manner. Then, we investigate the336

facilitation of zero-shot generalization from both337

data similarity and granularity perspectives.338

4.1 Pilot Study339

The model receives only a limited amount of data340

at the early stage of instruction tuning. Therefore,341

despite the scarcity, these data ought to play a sig-342

nificant role in facilitating generalization. Guided343

by this intuition, we conduct a pilot study to ex-344

plore the impact of exposure to different training345

data arrangements from a temporal perspective.346

Data and Settings. We apply 1600 Flan-mini train-347

ing tasks to get a series of instruction-tuned check-348

points and evaluate them on various unseen test349

tasks in Flan-mini. As shown in Figure 4, we exam-350

ine the following three training data arrangements:351

• Round Robin: We select one data point from352

each task to form a data batch, ensuring that353

training tasks are evenly distributed.354

• Cluster: We arrange all data from each task to-355

gether, resulting in task-level clusters throughout356

the entire training dataset.357

• Random: We randomly shuffle all training data358

as a baseline for comparison.359
Results. Training data arrangements lead to dis-360

tinct loss curve patterns. As shown in Figure 3, ran-361

dom and round-robin scheduling produce similar362

patterns, with round-robin being an extreme form363

of shuffling. In contrast, cluster scheduling shows364

significant differences, including sudden drops in365

average loss at specific steps during instruction366

tuning. This demonstrates that leveraging a small367

subset of data can induce substantial loss reduc-368

tion, and the same test task may exhibit varying369

generalization behaviors under different data ar-370

rangements.371

4.2 Through Data Similarity and Granularity372

We have observed that training data arrangements373

could lead to significant changes in the loss curve374

and that the timing of presence for certain data may375

greatly facilitate generalization on unseen tasks.376

With these findings, we naturally ask what is the 377

best arrangement of training data, and how to ar- 378

range these “certain data” that improve early gener- 379

alization. In the following subsections, we seek to 380

address these questions through two perspectives: 381

similarity and granularity. 382

4.2.1 Effect of High-Similarity Data 383

Previous research (Dai et al., 2019; Yauney et al., 384

2023) has consistently demonstrated that the per- 385

formance of downstream tasks improves when the 386

similarity between the pre-training data and the 387

downstream task data increases. This finding aligns 388

with our intuitive understanding that data points 389

with higher similarity can better facilitate general- 390

ization. Based on these insights, we propose and 391

subsequently validate that: 392

Takeaway 3: Encountering data with high
similarity early during instruction tuning will
greatly improve zero-shot generalization.

Selection of Similarity Measures. To validate our 393

hypothesis, we first define what similarity measures 394

to apply. Based on our setting and previous works, 395

we investigate two main categories of similarity 396

measures: 397

• N-gram similarity: We respectively measure 398

the similarity distance by calculating the KL di- 399

vergence between the bigram word distributions 400

of the training set data and test set data. 401

• Embedding similarity: We utilize all-MiniLM- 402

L6-v2 1 from Sentence Transformer (Reimers 403

and Gurevych, 2019) to compute embeddings 404

for each training and test data and then calculate 405

the Cosine and Euclidean similarity distances, 406

as detailed in Appendix B.3. Next, we refer 407

to four classical distance calculation methods 2, 408

namely “max” (maximal distance), “min” (min- 409

imal distance), “avg” (unweighted average dis- 410

tance), and “centroid” (centroid distance), to 411

represent the distance from the training set data 412

to test set data. 413
We analyze a series of instruction-tuned check- 414

points on Flan-mini and calculate the similarity 415

measure score between the training data seen by 416

the kth checkpoint and all the test data. This entails 417

in total nine similarity calculation methods ({N- 418

gram} + {Cosine, Euclidean} × {max, min, avg, 419

1https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2

2https://en.wikipedia.org/wiki/Hierarchical_
clustering
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Figure 3: Sudden decrease in the average loss under cluster scheduling for the three tasks at steps 400, 450, and 150
respectively.

Cluster

Random

Batch 1 Batch 2 Batch 3

Round Robin

Training Steps

Task 1 Task 2 Task 3

Figure 4: An overview of Round Robin, Random and
Cluster data arrangements. Definitions of colors and
shapes are consistent with those in Figure 1.

centroid}). We simply use a linear combination of420

average (an overall perspective) and minimum (a421

local perspective) cosine similarities between train-422

ing and test data as the similarity measure. Please423

refer to Appendix B.3 for calculation details. The424

investigation between different similarity measures425

is detailed in Appendix B.4.426

Data and Settings. We utilize the Flan-mini427

dataset and randomly sample up to 20 instances428

for each training task. Each test task consists of429

at most five test data points to form a test set. For430

each training data point xi, we calculate the simi-431

larity measure score between xi and the whole test432

set DTest. We arrange the training data based on433

this score. Specifically, we examine three training434

arrangements: Nearest First Training (NFT), Far-435

thest First Training (FFT), and Random Training436

(RT), as shown in Figure 5. This setup allows us437

to differentiate between the nearest and farthest438

data points in terms of the temporal dimension of439

instruction tuning. We perform instruction tuning440

on the three training data arrangements, resulting441

in a series of fine-grained checkpoints. And then442

calculate the average loss for each checkpoint on443

the test set containing various test tasks.444

Results. The earlier the model encounters data445

with high similarity to the test set, the more bene-446

ficial it is for zero-shot generalization. As shown447

in the left plot of Figure 6, we can observe that the448

NFT setting exhibits a rapid and low loss reduc-449

tion, while the FFT setting shows relatively poorer450

Test Set Data

Train Set Data

Farthest First 
Training

(FFT)

Nearest First 
Training
(NFT)

Training Steps

Less Similar

w/ Test set

More Similar

w/ Test set

More Similar

w/ Test set
Less Similar

w/ Test set

Figure 5: An overview of NFT and FFT data arrange-
ments. Definitions of colors and shapes are consistent
with those in Figure 1.

zero-shot generalization compared to the baseline 451

RT setting. 452

4.2.2 Effect of Fine-Grained Data 453

Traditional methods to improve zero-shot general- 454

ization are mostly confined to the task level, focus- 455

ing on task-pair transfer. However, the so-called 456

“tasks” or “categories” are artificially defined and, 457

from the perspective of LLMs, they are merely a 458

collection of tokens or representations. Therefore, 459

different “tasks” or “categories” may still appear 460

relatively similar to LLMs, while instances from 461

the same task may exhibit profound differences. 462

Thus, we propose and validate that: 463

Takeaway 4: Treating all data points
equally in finer granularity without the con-
cept of “task” as constraints better improves
zero-shot generalization.

Data and Settings. We use the Flan-mini dataset 464

and randomly sample up to 20 instances for each 465

training task. We employ two approaches to ar- 466

range the training data: i) coarse-grained setting, 467

where all instances under each training task are 468

clustered. We define the embedding of a task as the 469

average embedding of all instances under that task 470

and arrange the clusters based on NFT, as shown in 471

Figure 1. ii) fine-grained setting, where all data in- 472

stances are directly arranged basen on NFT instead 473

of being clustered first. 474
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Figure 6: Left: The impact of the three similarity set-
tings (NFT, FFT, and RT) on averaged test loss. Right:
The impact of different granularity settings on averaged
test loss.

Results. Compared to the coarse-grained setting,475

the fine-grained setting is more beneficial for im-476

proving zero-shot generalization. As shown in the477

right plot of Figure 6, the loss curve for the fine-478

grained setting decreases more quickly and effec-479

tively, indicating that removing task framework480

constraints can further improve generalization.481

5 Test-centric Multi-turn Arrangement482

In earlier experiments, we show that training data483

arrangement based on combined similarity mea-484

sures affects zero-shot generalization. However,485

conventional similarity measures have limitations:486

i) Cosine-Avg fails to capture variance within the487

test set, as it remains unchanged whether the test set488

is highly clustered or uniformly spread. ii) Cosine-489

Min offers a limited perspective, focusing solely on490

the nearest test point while ignoring the overall test491

distribution.492

Therefore, we seek an approach that can better493

distinguish and arrange the training data for ana-494

lyzing zero-shot generalization. To this end, we495

present the Test-centric Multi-turn Arrangement496

(TMA) framework.497

Algorithm 1 Test-centric Multi-turn Arrangement

Require: Training set Dtrain and test set Dtest
Ensure: Sub-training sets Di

train for each turn i
1: i← 0
2: while Dtrain ̸= ∅ do
3: i← i+ 1
4: Di

train ← ∅
5: for all x ∈ Dtest do
6: Find the nearest data point y ∈ Dtrain

to x based on cosine similarity
7: Di

train ← Di
train ∪ {y}

8: end for
9: Dtrain ← Dtrain \ Di

train
10: end while
11: return Qtrain = {D1

train,D2
train, . . . ,Dk

train}

Formalization. We formalize the TMA framework498

in Algorithm 1. In this manner, we progressively 499

construct the training set by selecting subsets that 500

are decreasingly similar to the test data. These 501

sub-training sets can then be arranged in either 502

a Nearest-First Training (NFT) or Farthest-First 503

Training (FFT) manner for further experiments. 504

This arrangement of the training data ensures that 505

the embedding of each test data point is equally 506

considered, thus taking into account all their char- 507

acteristics. A more detailed investigation of our 508

arrangement method is provided in Appendix C.3. 509

5.1 TMA Improves Zero-Shot Generalization 510

Through the TMA analytical framework, we ob- 511

serve that: 512

Takeaway 5: Test-centric Multi-turn Ar-
rangement benefits generalization indepen-
dently of task boundaries

Data and Settings. We employ two types of 513

datasets: i) datasets with task splits, such as Flan- 514

mini (Ghosal et al., 2023), and ii) datasets without 515

task splits, such as ShareGPT (Wang et al., 2023) 516

and NoRobots (Rajani et al., 2023). Flan-mini con- 517

sists of task-specific splits, while ShareGPT and 518

NoRobots are general dialogue datasets. We ar- 519

range the training data by applying Algorithm 1 520

and examine the same three training arrangements, 521

namely NFT, FFT, and RT, which are consis- 522

tent with the experimental setup in Section 4.2.1. 523

Specifically, NFT under this setting refers to the 524

sequential training data order as returned by Algo- 525

rithm 1, and FFT refers to its reverse. For detailed 526

configurations, please refer to Appendix C.2. 527

Results. Using our proposed TMA to arrange train- 528

ing data from nearest to farthest improves zero-shot 529

generalization. As illustrated in Figure 7, whether 530

with the task split in Flan-mini (left) or without 531

the task split in ShareGPT (middle) and NoRobots 532

(right), the loss curve under the NFT setting de- 533

creases more rapidly while reaching a lower point, 534

whereas the FFT setting results in the poorest per- 535

formance. This validates the effectiveness of our 536

arrangement method TMA. 537

5.2 Ablation Study 538

To further investigate the impact of timing when 539

the model encounters the highest or lowest sim- 540

ilarity training data on zero-shot generalization, 541

we conduct an ablation study and show that: 542

543
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Figure 7: Averaged test loss of three similarity settings (NFT, FFT, and RT) under Test-centric Multi-turn Arrange-
ment on Flan-mini (left), ShareGPT (middle), and NoRobots (right).

Figure 8: Averaged test loss on five similarity settings
under TMA on Flan-mini.

Takeaway 6: The timing of exposure to
high-similarity data is crucial for zero-shot
generalization. Accessing high-similarity
data during instruction tuning facilitates con-
tinual learning and enhances loss reduction.

Data and Settings. For Flan-mini, we randomly544

select 225 tasks as the test set and use all data from545

the remaining tasks as the training set. We apply546

TMA to the entire training set, comprising over547

1 million instances. Training data from different548

turns, denoted as Di
train (i ∈ [1, N ], where N is549

the total number of turns), are organized under five550

strategies, with M representing the desired number551

of samples:552

• NFT (Nearest First Training): Data is sequen-553

tially selected from i = 1 to i = N until reach-554

ing M/2 samples (Dtrain1), then from i = N to555

i = 1 for another M/2 samples (Dtrain2). The556

two subsets are merged, maintaining nearest-to-557

farthest ordering.558

• FFT (Farthest First Training): Similar to NFT,559

but the merged data is ordered from farthest to560

nearest.561

• RT (Random Training): As a baseline, we ran-562

domly shuffle all training data.563

• MAX: Data is sequentially selected from i = N564

to i = 1 until M samples are accumulated.565

• MIN: Data is sequentially selected from i = 1566

to i = N until M samples are accumulated.567

Results. Early exposure to similar training data 568

aids generalization while accessing high-similarity 569

data during instruction tuning facilitates continual 570

learning and further loss reduction. From Figure 8, 571

we observe: 572

• NFT and MIN: Loss curves exhibit similar pat- 573

terns, indicating that early exposure to training 574

data resembling the test set benefits generaliza- 575

tion the most. 576

• FFT and MAX: Loss curves diverge midway 577

(around 950 steps), as FFT encounters high- 578

similarity training data, reducing loss further. 579

This highlights the advantage of high-similarity 580

data during instruction tuning. 581

• RT: Positioned between NFT and FFT, RT 582

serves as a baseline, demonstrating intermediate 583

performance. 584

6 Conclusion 585

Our research sheds light on the mechanism under- 586

lying zero-shot generalization during instruction 587

tuning, moving beyond the conventional task-level 588

analysis to a more data-centric and fine-grained 589

perspective. By demonstrating that zero-shot gen- 590

eralization occurs early during instruction tuning 591

and is significantly influenced by data similarity 592

and granularity, we provide a new understanding of 593

how instruction tuning brings up zero-shot general- 594

ization. The Test-centric Multi-turn Arrangement 595

framework further illustrates the importance of ac- 596

cessing high-similarity data early in the training 597

process to facilitate continual learning and loss re- 598

duction. For future work, we suggest exploring 599

the quantitative relationship between similarity dis- 600

tance and loss. Specifically, investigating whether 601

similarity distance can predict a model’s general- 602

ization performance on new data could further help 603

the optimization of instruction tuning. We hope 604

our findings will pave the way for developing more 605

aligned and robust LLMs. 606
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Limitations607

Although our research has made significant608

progress by discovering that zero-shot generaliza-609

tion occurs in the early stage of instruction tuning610

and proposing various similarity distance measures611

to explore their impact on zero-shot generaliza-612

tion, we acknowledge that our study is far from613

perfect. Firstly, conducting a single experiment614

can be costly due to storage space requirements615

and computational resource limitations, so we only616

conducted limited explorations on LLaMA-2-7B617

with a few runs, which may introduce biases in618

our conclusions. Secondly, the similarity distance619

measures we proposed may not have a strong the-620

oretical foundation and can only serve as supple-621

ments to existing measures. Lastly, we chose loss622

as the metric for zero-shot generalization instead623

of traditional task-level evaluations often seen in624

benchmarks with objective metrics. This is because625

we believe that traditional task-level generalization626

has certain limitations, as different tasks or cate-627

gories may still appear relatively similar to LLMs,628

while instances from the same task may exhibit629

profound differences. However, this viewpoint still630

requires further validation. We hope future works631

can address these limitations.632

Broader Impacts633

Our work is dedicated to understanding the mech-634

anisms of zero-shot generalization during instruc-635

tion tuning and proposing several methods to en-636

hance zero-shot generalization. This contributes to637

improving the generalization ability of generative638

models on unseen tasks. However, it is important to639

note that these techniques could potentially be uti-640

lized for enhancing generalization on harmful tasks641

as well. Therefore, ethical considerations and re-642

sponsible deployment of such methods are crucial643

to ensure their appropriate and beneficial use. Pos-644

sible mitigation strategies should be conducted, for645

example, clear policies should be implemented to646

govern their responsible use while engaging stake-647

holders to gather diverse perspectives.648
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Appendix875

A Details for Section 3876

A.1 Data and Setting877

We utilized three datasets: Super Natural Instruc-878

tions V2 (Wang et al., 2022), Public Pool of879

Prompts (Sanh et al., 2021) and Flan-mini (Ghosal880

et al., 2023). Here, we provide a detailed overview881

of each dataset.882

NIV2. Super Natural Instructions V2 (NIV2) is a883

large collection of tasks and their natural language884

definitions/instructions, with 746 tasks comprising885

a total of 74,317 instances in train split. In the886

NIV2 dataset, each task is characterized by its task887

name, task definition, positive examples, negative888

examples, and explanations, accompanied by sev-889

eral task instances comprising input and output.890

We adopt the default configuration in NIV2 reposi-891

tory 1, as illustrated in Table 1.892

P3. Public Pool of Prompts (P3) is a collection893

of prompted English datasets covering a diverse894

set of NLP tasks. It is organized into a three-level895

hierarchy of category, task, and prompt template.896

For each task, instances are organized into a group897

of data according to several prompt templates. We898

refer to such binary pairs of (task, prompt) as a899

base-class dataset. We utilize the same base-class900

datasets for training and evaluation as we did for901

training and evaluating vanilla T0 2. In the end,902

we filter out 284 training base-class datasets and903

123 evaluation base-class datasets. Due to the vast904

amount of the P3 dataset and preliminary exper-905

iments indicating early zero-shot generalization,906

for each training base-class dataset, we randomly907

select up to 100 instances, resulting in a total of908

28,372 training instances.909

Flan-mini. The flan-mini dataset is a carefully910

selected subset maintaining a high level of task di-911

versity while reducing the overall FLAN collection912

size, encompassing not only the Flan2021 Collec-913

tion and P3 data but also various ChatGPT datasets,914

including Alpaca, Code Alpaca, and ShareGPT,915

significantly increasing the diversity of tasks in the916

flan-mini dataset. In total, there are 1825 tasks,917

with 1600 tasks allocated for training and 225 un-918

seen tasks for evaluation. Due to the vast amount919

1https://github.com/yizhongw/Tk-Instruct/blob/
main/scripts/train_tk_instruct.sh

2https://huggingface.co/bigscience/T0pp

of training data and preliminary experiments indi- 920

cating early zero-shot generalization, we randomly 921

select up to 20 instances for each training task, re- 922

sulting in a total of 28,751 training instances. 923

A.2 Training Template and Examples 924

Concatenating the various fields from the data, ex- 925

amples of complete training data appear as follows: 926

927

NIV2 example 928

<s>User: Definition: In this task , you 929
will be shown a sentence , and you should 930
determine whether it is overruling or 931

non -overruling. In law , an overruling 932
sentence is a statement that nullifies a 933
previous case decision as a precedent 934

by a constitutionally valid statute or a 935
decision by the same or higher ranking 936

court which establishes a different rule 937
on the point of law involved. classify 938

your answers into overruling or non - 939
overruling. 940

941
Positive Example 1 - 942

Input: 876 f.3d at 1306. 943
Output: non -overruling. 944

945
Positive Example 2 - 946

Input: we disapprove cooper and craven 947
to the extent that they may be read to 948
conflict. 949
Output: overruling. 950

951
Now complete the following example - 952
Input: the court 's discussion fails to 953
adequately account for the origin of the 954
specific intent element that both 955

section 2(a) and 2(b) contain. 956
Output: 957
Assistant: non -overruling .</s> 958

959

P3 example 960

<s>User: I took part in a little mini 961
production of this when I was a bout 8 962
at school and my mum bought the video 963
for me. I've loved it ever since!! When 964
I was younger , it was the songs and 965
spectacular dance sequences that I 966
enjoyed but since I've watched it when I 967
got older , I appreciate more the 968

fantastic acting and character portrayal 969
. Oliver Reed and Ron Moody were 970
brilliant. I can 't imagine anyone else 971
playing Bill Sykes or Fagin. Shani 972
Wallis ' Nancy if the best character for 973
me. She put up with so much for those 974
boys , I think she 's such a strong 975
character and her final scene when ... 976
Well , you know ... Always makes me cry! 977
Best musical in my opinion of all time. 978
It 's lasted all this time , it will live 979
on for many more years to come! 11/10!! 980
How does the reviewer feel about the 981
movie? 982
Assistant: They loved it </s> 983
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# Instances
Per Task

# Instances
Per Eval Task

Add Task
Name

Add Task
Definition

# Pos/Neg
Examples

Add
Explanation

Tk
Instruct

100 100 False True 2/0 False False

Table 1: The hyper-parameters applied in NIV2 configuration.

984

Flan-mini example985

<s>User: Do these sentences have the986
same meaning?987
" The bank requires growth from988
elsewhere in the economy and needs the989
economy to rebalance , " he said in an990
interview with the Press Association991
news agency .992
The Bank of England " requires growth993
from elsewhere in the economy and needs994
the economy to rebalance , " he told the995
Press Association news agency .996

997
Available options:998
(1). no;999
(2). yes;1000

Assistant: (2).</s>1001

A.3 Hyper-Parameter Details1002

For instruction tuning, we present some key hyper-1003

parameters related to instruction tuning in Ta-1004

ble 2. Additionally, we utilize the model-center1005

framework (modelcenter, 2023) to conduct full-1006

parameter instruction tuning of LLaMA-2-7B on1007

two 80GB A800s for 8 hours and dynamically ad-1008

just the loss scale based on the changing training1009

loss to prevent underflow. All of our instruction1010

tuning experiments utilize these hyper-parameters1011

consistently.1012

For generation, we present some key hyper-1013

parameters during the generation in Table 3. We1014

still employ the model-center framework to con-1015

duct the generation of LLaMA-2-7B on one 80GB1016

A800. All of our generations utilize the aforemen-1017

tioned hyper-parameters consistently.1018

A.4 Evaluation Details1019

Instruction-tuned model as a generalist. Ini-1020

tially, we evaluate the model’s generalization abil-1021

ity at a holistic level, termed as a generalist. To1022

achieve this, we randomly select 120 samples from1023

all testing data, including a series of unseen tasks.1024

These samples are evaluated against a series of fine-1025

grained checkpoints saved during the instruction1026

tuning stage. The average scores for Loss, ROUGE-1027

1, ROUGE-L, RM Score, and Exact-Match across1028

all samples are calculated. We present the calcula- 1029

tion details and formulas of each metric above. 1030

• Loss: We use cross entropy to calculate the error 1031

between labels and predictions. Because the po- 1032

sition with a value of -100 in labels is a padding 1033

position, we ignore the prediction at this position 1034

during calculation. 1035

• ROUGE-1: ROUGE-1 measures the compre- 1036

hensiveness of the generated summary by calcu- 1037

lating the overlap between words in the gener- 1038

ated summary and words in the reference sum- 1039

mary. Let no be the number of overlapping uni- 1040

grams and nr be the total number of unigrams 1041

in the reference summary. Then: 1042

ROUGE-1 =
no

nr
(1) 1043

• ROUGE-L: ROUGE-L is based on the idea of 1044

Longest Common Subsequence (LCS) and we 1045

use rouge-score library 1 for implementation. By 1046

measuring the length m of the reference sum- 1047

mary X and the length n of the generated sum- 1048

mary Y , the ROUGE-L score is calculated as 1049

follows: 1050

Rlcs =
LCS(X,Y )

m
(2) 1051

1052

Plcs =
LCS(X,Y )

n
(3) 1053

1054

Flcs =

(
1 + β2

)
RlcsPlcs

Rlcs + β2Plcs
(4) 1055

• Exact-Match: First of all, we normalize the an- 1056

swers by removing extra spaces, removing punc- 1057

tuation, and converting all characters to lower- 1058

case. Then, for each question-answer pair, if 1059

the characters of the model’s prediction exactly 1060

match the characters of the true answer, EM = 1, 1061

otherwise EM = 0. This is a strict all-or-nothing 1062

metric; being off by a single character results in 1063

a score of 0. 1064

EM =

{
1 if prediction = reference
0 otherwise

(5) 1065

1https://github.com/google-research/
google-research/tree/master/rouge
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Model Max
Length Epochs BS

Per Device LR Save
Steps

LR
Scheduler Optimizer

LLaMA-2-7B 1024 1 8 1e-06 10 Cosine AdamOffload

Table 2: The hyper-parameters applied during the instruction tuning. LR denotes the learning rate and BS denotes
the batch size.

Model Max Gen Length Repetition
Penalty Batch Size Top-p Temperature

LLaMA-2-7B 128 1.2 8 0.9 0.9

Table 3: The hyper-parameters applied during the generation.

• RM score: Let S represent the sentence to be1066

evaluated, f is the reward model function, which1067

takes as input the sentence S and model param-1068

eters θ. We use UltraRM-13B as the reward1069

model. Formally, the RM score assigned to sen-1070

tence S is defined as:1071

R(S) = f(S, θ) (6)1072

Instruction-tuned model as a specialist. In or-1073

der to facilitate more granular research on task-1074

level scenarios, i.e., exploring the model’s general-1075

ization ability on specific unseen tasks, termed as1076

a specialist, we take NIV2 and flan-mini datasets1077

as examples. For each unseen task, we randomly1078

select up to five testing instances. As shown in1079

Table 4, for evaluation as a specialist, the flan-mini1080

test set comprises a total of 1,121 instances, cover-1081

ing all 225 unseen tasks. Additionally, the NIV21082

test set contains a total of 595 instances, covering1083

all 119 unseen tasks.1084

Subsequently, we allow a series of fine-grained1085

checkpoints to generate answers on these 1,1211086

testing instances and compute the loss. We define1087

the generalization metric on a specific unseen task1088

as the average loss of up to five testing instances for1089

that task, to verify whether the model specializes1090

in it.1091

A.5 Discussion for Metrics1092

In previous experiments, we have discovered that1093

zero-shot generalization might occur early in the1094

instruction tuning process based on the ROUGE1095

series, Exact-Match, and RM score. However,1096

these metrics may not be suitable for measuring1097

generalization effectively. First, for the ROUGE1098

series, ROUGE-1 refers to the overlap of uni-1099

grams, and ROUGE-L is based on the longest1100

common subsequence. Both metrics are limited1101

to surface-level matching, primarily relying on lex- 1102

ical overlap between model outputs and labels, to 1103

the extent that capturing semantic similarity or a 1104

deeper understanding of the content conveyed in 1105

the sentences becomes challenging (Ganesan, 2018; 1106

Grusky, 2023). Outputs and labels with different 1107

wordings but similar meanings may receive low 1108

ROUGE scores. 1109

While the reliability of ROUGE series scores is 1110

questionable, metrics like Exact-Match are nonlin- 1111

ear, and previous research (Schaeffer et al., 2024) 1112

has shown that nonlinear metrics are prone to ob- 1113

serving emergent abilities. Although emergence 1114

is a model-wise phenomenon, if we adopt such 1115

nonlinear metrics step-wise, i.e., along the training 1116

timeline, we might also observe step-wise “emer- 1117

gence” so-called generalization phenomena. This 1118

might lead to misjudgments regarding the timing 1119

of zero-shot generalization. Therefore, we need to 1120

address this issue. 1121

Acknowledging that the Reward Model (RM) is 1122

trained on preference data, it is inevitable that there 1123

will be a certain loss of ability when generalizing to 1124

out-of-distribution (OOD) datasets (Singhal et al., 1125

2024). Consequently, scoring on different datasets 1126

may not be precise. As shown in Figure 2, RM 1127

scores for NIV2 are notably higher than those for 1128

the other two datasets, indicating a bias. Further, 1129

we compare the reward distribution with respect 1130

to the correctness of the model response respec- 1131

tively on the three datasets. The large overlap under 1132

both curves in Figure 9 indicates that RM could 1133

not well distinguish between responses of lower or 1134

higher quality. This further highlights the inappro- 1135

priateness of using RM score to reflect zero-shot 1136

generalization. 1137
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NIV2 P3 Flan-mini

Train General
Eval

Speical
Eval Train General

Eval
Speical

Eval Train General
Eval

Speical
Eval

# Tasks 746 — 119 284 — 123 1600 — 225
# Instances 74317 120 595 28372 120 — 28751 120 1121

Table 4: Detailed statistics for train and test splits of NIV2, P3, and flan-mini in our experiments. General Eval
denotes the evaluation as a generalist. Special Eval denotes the evaluation as a specialist.

Figure 9: The reward distribution regarding the answer’s correctness on NIV2 (left), Flan-mini (middle), and P3
(right). The area under both curves in each figure has large overlaps, indicating the reward cannot well distinguish
the quality of answers.

Figure 10: Two main loss trends on the flan-mini and NIV2 test sets. These trends are characterized by a rapid
decrease followed by stability and a sharp decline followed by a gradual decrease, respectively. Each type of loss
trend is exemplified by selecting five tasks for display.

A.6 Case Study1138

Continuing our investigation, we further delve into1139

the fine-grained analysis of the generalization ca-1140

pability on individual unseen tasks.1141

Settings Taking NIV2 and Flan-mini as exam-1142

ples, we curate a maximum of five test data points1143

for each unseen task, consolidating them into a sin- 1144

gle test set. Similarly, we generate outputs using a 1145

series of fine-grained instruction-tuned checkpoints 1146

and compute the cross-entropy loss against the la- 1147

bels and average on a per-task level. For detailed 1148

evaluation settings, please refer to Appendix A.4. 1149
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Results. From the perspective of individual un-1150

seen tasks, zero-shot generalization also occurs1151

in the early stage of instruction tuning. However,1152

different tasks exhibit distinct trends in terms of1153

zero-shot generalization. We identified two primary1154

trends: rapid decrease followed by stability and1155

sharp decline followed by a gradual decrease, as1156

shown in Figure 10. This finding further suggests1157

that the majority of unseen tasks are generalized in1158

the early stage of instruction tuning.1159

B Details for Section 41160

B.1 Different Training Distributions1161

In Section 4, we take the Flan-mini dataset as an1162

example. For each training task, we select a maxi-1163

mum of 20 data points, and for each testing task, we1164

select a maximum of 5 data points. We employed1165

various training data distributions on Flan-mini.1166

Here, we provide detailed explanations of the data1167

arrangements and training specifics.1168

• Round-robin: In the round-robin setting, with1169

a total batch size of 16, we save checkpoints1170

every 10 steps during instruction tuning. Hence,1171

there is a difference of 160 training data points1172

between adjacent checkpoints. Considering the1173

Flan-mini dataset, where we have divided 16001174

training tasks, it takes 1600 data points to tra-1175

verse all training tasks. Therefore, for every 101176

checkpoints (every 100 steps), the model com-1177

pletes one pass over all training tasks.1178

• Cluster: In the cluster setting, similarly, there1179

is a difference of 160 training data points be-1180

tween adjacent checkpoints. However, for each1181

training task, we curate a maximum of 20 data1182

points. Consequently, between adjacent check-1183

points, the model encounters almost exactly 81184

tasks.1185

• RT (Random Training): As a baseline, we ran-1186

domly shuffle all training data.1187

• NFT (Nearest First Training): Given a cer-1188

tain similarity distance measure, we compute1189

the similarity distance from each training data1190

point to the test set based on this measure, and1191

then arrange the training data points from near-1192

est to farthest.1193

• FFT (Farthest First Training): Given a certain1194

similarity distance measure, we calculate the1195

similarity distance from each training data point1196

to the test set based on this measure, and then1197

arrange the training data points from farthest to 1198

nearest. 1199

B.2 Effect of Test Data Distributions 1200

Upon discovering that controlling the arrangement 1201

of training data leads to entirely different loss 1202

curves for unseen tasks, we next aim to explore 1203

the impact of test data distribution on the results. 1204

As the order of test data does not impact the val- 1205

uation results, we sample test data by employing 1206

different seeds to obtain varying test data subsets 1207

from the same task. Subsequently, we generate 1208

and calculate average loss across a series of fine- 1209

grained instruction-tuned checkpoints. 1210

Under different seeds, which represent different 1211

subsets of test data for the same task, we observed 1212

that the loss curves exhibit distinct patterns: 1213

• The descent in loss transitions from being grad- 1214

ual to rapid (Figure 11). 1215

• The sudden decrease observed in cluster schedul- 1216

ing disappears (Figure 12). 1217

• The fluctuation in loss becomes more stable (Fig- 1218

ure 13). 1219

• The lowest point of loss shows a significant de- 1220

crease (Figure 14). 1221

B.3 Similarity Measure Details 1222

B.3.1 Embedding-based Similarity Measure 1223

We utilize all-MiniLM-L6-v2 1 as our embedding 1224

model, which maps sentences to a 384-dimensional 1225

dense vector space. When generating the embed- 1226

ding vector of a particular piece of data, we simply 1227

format the instruction and answer of this data into 1228

a template like “{instruction} {answer}”, and then 1229

put this whole string into the embedding model 1230

to generate the corresponding embedding. After 1231

obtaining the embedding of each data, we compute 1232

the similarity distance between a training and a test 1233

data in the following two ways: 1234

• Cosine similarity distance: Cosine similarity 1235

determines the similarity by computing the co- 1236

sine of the angle between the two embeddings, 1237

yielding a value between -1 and 1. A value closer 1238

to 1 indicates higher similarity, while a value 1239

closer to -1 indicates lower similarity. When 1240

calculating, we add a negative sign to the co- 1241

sine similarity to indicate the distance. Thus, a 1242

larger value indicates a greater distance between 1243

1https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2
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Figure 11: The descent in loss transitions from being gradual (seed = 2) to rapid (seed = 0/1).
(task1264_ted_translation_pl_pt)

Figure 12: The sudden decrease (seed = 0/2) observed in cluster scheduling disappears (seed = 1).
(task900_freebase_qa_category_classification)

Figure 13: The fluctuation (seed = 1/2) in loss becomes more stable (seed = 0). (task050_multirc_answerability)

Figure 14: The lowest point of loss shows a significant decrease (from seed = 1 to seed = 0/2).
(task511_reddit_tifu_long_text_summarization)

two embeddings. Suppose A and B are two1244

embeddings, “·” denotes the dot product of the1245

embedding vectors, and ∥A∥ and ∥B∥ represent1246

the L2 norms of the embeddings. We calculate1247

the cosine similarity distance as follows:1248

dC(A,B) =
−A ·B
∥A∥ · ∥B∥

(7)1249

• Euclidean similarity distance: This method1250

calculates the straight-line distance between two1251

points in space. A higher distance value indi- 1252

cates a farther distance between the two em- 1253

beddings. The Euclidean distance between two 1254

points A,B ∈ Rn is computed using the for- 1255

mula: 1256

dE(A,B) =

√√√√ n∑
i=1

(Ai −Bi)2 (8) 1257

Assuming that we have Ntrain training data and 1258
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NT
test test data (for an unseen task T ), we calcu-1259

late a similarity distance matrix D with shape1260

(Ntrain, N
T
test), where each entry dij represents the1261

cosine or Euclidean similarity distance between1262

the ith training data and the jth test data. For the1263

kth saved checkpoints, it has seen 160× k training1264

data, so the Similarity Distance SDk between its1265

seen training data and whole test data is calculated1266

using:1267

SDk = Op(D[: 160× k][:])

Op ∈ [ min,max, avg, centroid ]
(9)1268

B.3.2 N-gram Based Similarity Measure1269

During calculation, we still format the instruction1270

and answer of each piece of data in the dataset into1271

a template like “{instruction} {answer}”. We then1272

iterate each word in this whole to generate a list1273

of n-gram tuples, where n represents the length of1274

consecutive words:1275

N(S, n) = {(wi, . . . , wi+n−1) |
i ≤ m− n+ 1}

(10)1276

Then the n-gram tuples of all the data in the1277

dataset are counted, and the frequencies are con-1278

verted to probabilities to obtain the n-gram distribu-1279

tions of the dataset. Finally, we use KL divergence1280

to represent the similarity distance between two1281

datasets:1282

• KL divergence similarity distance: KL di-1283

vergence is a measure used to quantify the dif-1284

ference between two probability distributions.1285

When its value is larger, it indicates that the two1286

distributions are less similar. Let p and q rep-1287

resent the probability distributions of training1288

dataset A and test dataset B, where ϵ denotes the1289

smoothing parameter to avoid division by zero.1290

pi and qi represent the probability of the ith n-1291

gram. We compute KL divergence as follows:1292

dKL(p, q, ϵ) =
∑
i

pi log

(
pi

qi + ϵ

)
(11)1293

So the Similarity Distance SDk between its seen1294

training data and whole test data is calculated us-1295

ing:1296

p = N(Dtrain, Ntrain)

q = N(Dtest, Ntest)

SDk = dKL(p, q, ϵ)

(12)1297

B.4 Exploring Appropriate Similarity 1298

Measures 1299

Setting. We analyze a series of checkpoints saved 1300

during instruction tuning on Flan-mini, based on 1301

the three settings described in Section 4.1. We 1302

calculate similarity distances between the training 1303

data seen by each checkpoint and each unseen task, 1304

as depicted in Figure 15. Furthermore, in the clus- 1305

ter setting, we explore the relationship between 1306

a significant decrease in the lowest loss observed 1307

with different seeds and the similarity measures. 1308

Specifically, suppose there are N instruction-tuned 1309

checkpoints and D is the similarity distance ma- 1310

trix, for kth checkpoint in the cluster setting, we 1311

compute the Scaled Cosine-Avg and Cosine-Min 1312

similarity distances as follows: 1313

C-Mink = MIN(D[: 160× k][:])

C-Avgk = AVG(D[: 160× k][:])

SC-Avgk = C-Avgk ·
∑N

k=1 C-Mink∑N
k=1 C-Avgk

(13) 1314

Results. We found a strong correlation between 1315

the trends of similarity calculated using minimal 1316

measure and the trends of loss. In the leftmost plot 1317

of Figure 15, we observe sudden drops in both the 1318

cluster setting (red) and the similarity distances 1319

calculated using the minimal measure around step 1320

450 and step 1150. Interestingly, the magnitude of 1321

these drops in similarity distances and loss appears 1322

coincidental. Furthermore, in Figure 16, we notice 1323

that for seed = 0 (left), the Cosine-Min (red) de- 1324

creases to around -0.58 at approximately 50 steps. 1325

In contrast, for seed = 1 (middle) and seed = 2 1326

(right), the Cosine-Min (red) drops below -0.5 at 1327

around 700 steps and 1,000 steps, respectively. Ad- 1328

ditionally, the lowest loss for seed = 0 (left) is 1329

significantly lower and exhibits a more stable de- 1330

crease over time compared to the other two seeds. 1331

Additionally, after carefully examining all 225 1332

unseen tasks, among the nine similarity distance 1333

metrics, we observed that the i) fluctuation patterns 1334

are almost identical when using Euclidean and co- 1335

sine distances, as well as when using centroid and 1336

average distances; ii) the sudden decrease observed 1337

in the loss curve in the preceding subsections seems 1338

to coincide with sharp drops when using the mini- 1339

mum distance calculation; iii) the KL divergence 1340

does not exhibit a clear pattern of change in re- 1341

lation to the loss, which may be due to the fact 1342

that KL divergence calculates differences based on 1343
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Figure 15: The trends of loss (left) and nine similarity distance measures (right), taking task851 as an example with
seed = 0.

Figure 16: The loss and the similarity distances (scaled cosine average and cosine minimum) between the seen
training set and the test set. Since the similarity distances calculated using the minimum (min) metric have a much
larger range compared to the average (avg) metric, we consider scaling the average similarity to the same magnitude
as the minimum similarity, denoted by “Scaled Cosine-Avg”. This will allow for better comparison and analysis
between the two metrics.

n-gram distributions, without taking into account1344

semantic information; iv) the “max” metric focuses1345

on the least similar data encountered during the1346

instruction tuning process.1347

For the model during instruction tuning, Cosine-1348

Avg reflects the average distance from the seen1349

training set to the test set, providing an overall1350

perspective on the impact of seen samples on the1351

test set. On the other hand, Cosine-Min reflects the1352

impact of the closest sample in the seen training1353

set to the test set, providing a local perspective1354

on the influence of seen samples on the test set.1355

Therefore, in the following experiments, we will1356

consider using the Cosine Average (Cosine-Avg)1357

and Cosine Minimum (Cosine-Min) embedding1358

metrics for similarity calculation.1359

B.5 Proof of Optimal Substructure Property1360

Property of Similarity Measures. Intuitively,1361

we could compute the similarity distance between1362

each training data point and the entire test set, and1363

then reorder the training data based on this simi-1364

larity distance. In this way, the model encounters 1365

the most similar training data point to the test set 1366

first during instruction tuning. We demonstrate that 1367

this approach exhibits the characteristics of optimal 1368

substructure: 1369

Theorem B.1 Optimal Substructure of Cosine- 1370

Avg and Cosine-Min: Let f be a function for cal- 1371

culating dataset-level similarity distance (Cosine- 1372

Avg and Cosine-Min), taking two sets A and B 1373

as inputs and outputs a real number. Given a 1374

training set Dtrain and a test set Dtest, assume 1375

Df
train is obtained by reordering Dtrain based on 1376

the function f in ascending order of similarity dis- 1377

tance to Dtest. For any ith and jth training data 1378

xi and xj (i < j) in Df
train, naturally, we have 1379

f({xi},Dtest) ≤ f({xj},Dtest). We also have 1380

that, 1381

f(Df
train[: i],Dtest) ≤ f(Df

train[: j],Dtest) (14) 1382

The characteristic of optimal substructure en- 1383

sures that the effect of training set arrangement 1384
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according to Cosine-Avg or Cosine-Min can accu-1385

mulate over time as more data point is presented to1386

the model.1387

Proof of Theorem B.1. Let f be a function1388

for calculating dataset-level similarity distance1389

(Cosine-Avg and Cosine-Min), taking two sets1390

A and B as inputs and outputting a real number.1391

Suppose the reordered training dataset Df
train fol-1392

lows the sequence from the front to the end: {x1,1393

x2, · · · , xi, xi+1, · · · , xj , xj+1, · · · }, we consider1394

the unary function g(i) = f({xi},Dtest), where1395

i ∈ [1, 2, 3, · · · ]. Due to the reordering, the func-1396

tion g(i) is monotonically non-decreasing. We1397

have that:1398

f(Df
train[: i],Dtest) ≤ f(Df

train[: j],Dtest) (15)1399

Firstly, for Cosine-Avg, suppose the length of1400

Dtest is Ntest we have1401

f(Df
train[: i],Dtest) =

1

iNtest

i∑
p=1

Ntest∑
q=1

cos(xp, yq),

xp ∈ Df
train, yq ∈ Dtest

(16)1402

By applying the g(i) function:1403

f(Df
train[: i],Dtest) =

1

i

i∑
p=1

g(p) (17)1404

Similarly:1405

f(Df
train[: j],Dtest) =

1

j

j∑
p=1

g(p) (18)1406

We denote the difference ∆ji = f(Df
train[:1407

j],Dtest)− f(Df
train[: i],Dtest) satisfies that:1408

∆ji =
1

j

j∑
p=1

g(p)− 1

i

i∑
p=1

g(p)

=
i
∑j

p=1 g(p)− j
∑i

p=1 g(p)

ij

=
i
∑j

p=i+1 g(p)− (j − i)
∑i

p=1 g(p)

ij

≥ i(j − i)g(i)− (j − i)ig(i)

ij

= 0
(19)1409

Similarly for Cosine-Min: 1410

∆ji = min
1≤p≤j

g(p)− min
1≤p≤i

g(p)

≥ min
1≤p≤i

g(p)− min
1≤p≤i

g(p) = 0
(20) 1411

The uses of ≥ in the expressions are due to the 1412

monotonically non-decreasing property of the g(i) 1413

function. Thus, the original expression is proved. 1414

C Details for Section 5 1415

C.1 Data 1416

We utilized three datasets: Flan-mini (Ghosal et al., 1417

2023), ShareGPT (GPT4) (Wang et al., 2023) and 1418

NoRobots (Rajani et al., 2023). Here, we pro- 1419

vide a detailed overview of ShareGPT (GPT4) and 1420

NoRobots. 1421

ShareGPT ShareGPT contains cleaned and fil- 1422

tered 6k expert conversations generated by GPT-4 1423

used to train OpenChat (Wang et al., 2023). We 1424

use the version from openchat 1. 1425

NoRobots NoRobots is a high-quality English 1426

dataset of 10K instructions and demonstrations 1427

created by skilled human annotators rather than 1428

GPTs. It was modeled after the instruction dataset 1429

described in OpenAI’s InstructGPT paper (Ouyang 1430

et al., 2022) and is comprised mostly of single-turn 1431

instructions. 1432

Concatenating the various fields from the data, 1433

examples of complete training data appear as fol- 1434

lows: 1435

1436

ShareGPT example 1437

<s>User: I want you to become my Prompt 1438
engineer. Your goal is to help me craft 1439
the best possible\n prompt for my needs. 1440
The prompt will be used by you , ChatGPT 1441

. You will follow the\n following 1442
process :\n\n1. Your first response will 1443
be to ask me what the prompt should be 1444
about. I will provide my\n answer , but 1445
we will need to improve it through 1446
continual iterations by going through 1447
the\n next steps.\n\n2. Based on my 1448
input , you will generate 2 sections. a) 1449
Revised prompt (provide your\n rewritten 1450
prompt. it should be clear , concise , 1451

and easily unders]god by you), b) 1452
Questions\n(ask any relevant questions 1453
pertaining to what additional 1454
information is needed from me to\n 1455
improve the prompt).\n\n3. We will 1456
continue this iterative process with me 1457

1https://huggingface.co/datasets/openchat/
openchat_sharegpt4_dataset
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providing additional information to you\1458
n and you updating the prompt in the1459
Revised prompt section until I say we1460
are done.1461
Assistant: What would you like the1462
prompt to be about?</s>1463

1464

NoRobots example1465

<s>User: What is the fastest flying bird1466
?1467
Assistant: The fastest -flying bird is1468
the Peregrine Falcon. When diving , it1469
has been measured at speeds over 1861470
miles per hour.</s>1471

C.2 Experimental Setup1472

Flan-mini. We randomly selected several tasks1473

as the testing set, while using all the data from the1474

remaining tasks as the training set. Based on the1475

findings in Section 3, which demonstrated that zero-1476

shot generalization occurs early during instruction1477

tuning, we decided to sample around 30,000 data1478

points, maintaining a similar scale to our previous1479

experiments to conserve resources.1480

ShareGPT & NoRobots. We randomly select1481

200 data points as the testing set, while using all1482

the remaining data points as the training set.1483

Settings. For the three datasets mentioned above,1484

we arrange the training set based on the Test-centric1485

Multi-turn Arrangement. Assuming that we select1486

each turn of training data from the nearest to the1487

farthest, denoted as Di
train(i ∈ [1, N ]), where N1488

represents the total number of rounds. Similar to1489

the experiments in Section 4, we have also config-1490

ured the following three settings, while ensuring1491

that the only difference between these three settings1492

is the arrangement of the same dataset:1493

• NFT (Nearest First Training): We sequentially1494

organize the data for Di
train from i = 1 to i = N .1495

• FFT (Farthest First Training): We sequen-1496

tially organize the data for Di
train from i = N to1497

i = 1.1498

• RT (Random Training): As a baseline, we ran-1499

domly shuffle all training data.1500

C.3 A Deeper Understanding of Test-centric1501

Multi-turn Arrangement1502

In the main text, we introduce the Test-centric1503

Multi-turn Arrangement method, inspired by1504

transportation theory. In transportation theory, we1505

consider the calculation of the minimum cost re-1506

quired to transform a probability distribution P (x)1507

of a random variable X into another probability 1508

distribution Q(y) of a random variable Y . This 1509

minimum cost is defined as the Optimal Transport 1510

Divergence, as follows: 1511

OT(P ||Q) = inf
γ∈Γ(P,Q)

E(x,y)∼γ [c(x, y)] (21) 1512

where Γ(P,Q) denotes the set of all joint dis- 1513

tributions γ(x, y) whose marginals are P (x) and 1514

Q(y), respectively, and c(x, y) represents the cost 1515

function measuring the "distance" between x and 1516

y. A commonly used definition for c(x, y) is the 1517

Euclidean distance between two points, which can 1518

also be understood as the square of the L2 norm. 1519

This leads to the definition of the 2-Wasserstein 1520

Distance: 1521

W2(P,Q) =

(
inf

γ∈Γ(P,Q)
E(x,y)∼γ [∥x− y∥2]

) 1
2

(22) 1522

More generally, the k-Wasserstein Distance is 1523

defined as follows: 1524

Wk(P,Q) =

(
inf

γ∈Γ(P,Q)
E(x,y)∼γ [∥x− y∥k]

) 1
k

(23) 1525

This definition uses the k-th power of the L2 1526

norm as the cost function, providing a generalized 1527

measure of the "transportation cost" between prob- 1528

ability distributions. 1529

In our article, we highlight the significant impact 1530

of the similarity between training data and test data 1531

on zero-shot generalization. Therefore, a natural 1532

question arises: how can we arrange the training 1533

data using a better similarity distance measure to 1534

achieve better zero-shot generalization? Based on 1535

Optimal Transport Divergence, we can formalize 1536

our problem as follows: 1537

Minimize
n∑

i=1

m∑
j=1

γijc(xi, yj) (24) 1538

subject to the constraints: 1539

m∑
j=1

γij = P (xi) =
1

n
, ∀i = 1, . . . , n

n∑
i=1

γij = Q(yj) =
1

m
, ∀j = 1, . . . ,m

(25) 1540
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where γij is the transport plan that minimizes1541

the overall transportation cost between the distri-1542

butions of the training data P (x) and the test data1543

Q(y). The cost function c(x, y) typically repre-1544

sents the Euclidean distance (L2 norm) between1545

points x and y.1546

The above method treats the distributions P (x)1547

and Q(y) of training and test data as uniform, but1548

this assumption fails when n (training data) and1549

m (test data) are significantly different, causing1550

each training data point to have much less impact1551

compared to each test data point. Hence, we con-1552

sider treating training and test data equally, with1553

the constraint that the Γ matrix contains only 01554

or 1 elements. To bridge this gap, we propose1555

the heuristic Test-centric Multi-turn Arrangement1556

method in Algorithm 1 to address the imbalance1557

between training and test data in zero-shot general-1558

ization.1559

This method ensures that each training data point1560

is selected in exactly one round. For the k-th round1561

of selected training data Dk
train, for each xi in Dk

train,1562

there exists a test data point yj such that c(xi, yj)1563

is the k-th smallest element in the j-th column of1564

the Cost Matrix C with each entry c(xi, yj).1565

By ensuring this, we achieve a balanced selec-1566

tion of training data points that are optimally dis-1567

tributed according to their similarity to the test data,1568

facilitating more effective zero-shot generalization.1569
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