
Deciphering Enemies in the Darkness through Modeling and Examination of
Knowledge in Reconnaissance Blind Chess
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Abstract
An important research topic about Theory of
Mind (ToM) is the ability to understand and rea-
son about how agents acquire and predict the be-
havioral and mental states of other agents in dy-
namic environments, especially those involving
a significant change in knowledge and informa-
tion. In this paper, we focus on the modeling and
examination of knowledge of other agents in im-
perfect information games. More specifically, we
delve into the nuances of the change of knowl-
edge in the Reconnaissance Blind Chess (RBC).
In each round, players are granted limited sensing
capacity of the board. Thus, the understanding
opponent’s knowledge and strategy plays a key
role in decision-making in each round. This pa-
per studies how an agent can model and utilize
an opponent’s knowledge in the RBC game. The
examination includes a detailed comparison of
information obtained through different actions in
the game. We design two sensing strategies for
obtaining information based on entropy and other
factors and compare how these strategies can im-
pact the outcome of the game. Finally, we discuss
how our research results could be generalized to
the understanding of opponents’ knowledge and
behavior in non-cooperative imperfect informa-
tion games.

1. Introduction
The capability of understanding and reasoning about how
agents acquire and predict the behavioral and mental states
of other agents remains a major challenge in A.I. More
uncertainty arises in a dynamic environment involving a
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significant change in knowledge and information. Theory
of Mind (ToM) refers to the ability to understand and reason
about the mental states, decisions, and emotions of other
agents. It has been studied from various perspectives, such
as cognitive science (Carlson et al., 2013) and social science
(Carruthers & Smith, 1996). ToM plays a crucial role in
the field of computer science. For instance, Aru et al. high-
light the importance of ToM in the development of deep
learning systems (Aru et al., 2023). The authors argue that
understanding ToM is essential for creating artificial agents
capable of effectively interacting with humans as well as
providing unique insights into the complexity of ToM that
are challenging to study in humans.

The information we can obtain to understand an agent’s
mental state can vary greatly depending on the context. In
some cases, we can gather this information through commu-
nication, observation of actions and their outcomes, and so
on. Some games can be adapted for the evaluation of mod-
els for the understanding of the decisions of both humans
and agents in games. Essentially, these games can serve
as platforms for designing and testing strategies for mod-
eling knowledge. Moreover, these games make it easy to
evaluate the performance of complex strategies and agents
designed in different approaches (e.g. Logic-based approach
v.s. neural-network-based approach). In this paper, we fo-
cus on Reconnaissance Blind Chess (RBC). a variant of
chess with imperfect information. In each round, players
are granted limited sensing capacity of the board. This in-
troduces uncertainty in terms of knowledge about the oppo-
nent’s pieces. RBC provides an ideal platform for exploring
and evaluating frameworks inspired by ToM. Understanding
an opponent’s knowledge is critical in RBC. A deep com-
prehension of what an opponent knows can inform not only
accurate predictions of their future moves but also intelligent
strategies that can capture the opponent’s pieces.

Despite that the RBC game has been studied, little work was
done for the measuring of the gain of information through
various actions and how this impacts the strategies. This
paper presents preliminary work on a comprehensive ex-
amination and modeling of an opponent’s knowledge in
RBC. More specifically, we study the following research
questions:
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RQ1: How much information about the opponent does the
agent obtain through different actions in the game?

RQ2: How do different sensing strategies impact the knowl-
edge of the opponent and the result of the game?

The paper is structured as follows: Section 2 introduces the
rules and winning conditions of RBC. Section 3 discusses
our detailed modeling and analysis of methods for obtaining
and updating game state knowledge. Section 4 explains
how we use our knowledge to compute sensing strategies.
Section 5 details the moving strategy, board evaluation, and
other implementation aspects. Section 6 presents the eval-
uation results. These research questions are important in
general for non-cooperative games with imperfect informa-
tion. Finally, we provide some discussion and future work
in Section 7.

2. Reconnaissance Blind Chess
Reconnaissance Blind Chess (RBC) is a variant of tradi-
tional chess that adds an additional layer of complexity by
introducing uncertainty about the opponent’s knowledge of
board configuration. Unlike classic chess, where all pieces
are visible to both players, in RBC, players are blind to their
opponent’s pieces and must perform a ”sensing” step each
round to learn about a 3x3 region of the board. This infor-
mation is private, with the opponent remaining unaware of
the player’s sensing location.

When capturing a piece, players are only notified of the lo-
cation of the capture, not the type of piece that was captured.
This differs from classical chess where both the type and
position of the captured piece are revealed.

In the case of illegal moves, such as moving a pawn diago-
nally to an empty square, the move is deemed unsuccessful
and the player’s turn ends. If a player successfully moves a
sliding piece through an opponent’s piece, the opponent’s
piece is captured and the moved piece stops where the cap-
ture occurred.

The game also includes time constraints similar to traditional
chess. Each player begins with a 15-minute clock and gains
5 seconds after each turn. If 50 turns pass without a pawn
move or capture, the game is declared a draw. Players also
have the option to ”pass” a turn. The game is won either by
capturing the opponent’s king or if the opponent runs out of
time.

To provide a better understanding of RBC, we present an ex-
ample game that was played between StrangeFish2 (white)
and Trout (black)1. This game showcases key aspects of
RBC, including sensing, piece movement, and capturing the

1The replay of the game can be seen at
https://rbc.jhuapl.edu/games/628294

opponent’s king. Please refer to Figure ?? for illustrations
of these concepts.

Figure 1. Example of capturing. Black senses the 3x3 square on
e4, and subsequently moves c5→e4

Figure 2. Example of an interrupted move. Black senses, and then
tries to move the queen d8→d1. But as there is a bishop on d2, the
move stops there and the bishop is captured.

Figure 3. Example of an ending turn. White senses the location of
the enemy king and captures the king with the rook.

3. Knowledge Modelling
The main difference between RBC and classical chess lies
in the uncertainty of information within the game. A key
knowledge in RBC is the information that a player has
about its opponent. At each round, there are three distinct
moments when a player receives new information about the
game state: the sensing result, move result, and opponent
move result.

Following the receipt of these notifications, a player updates
its knowledge according to the new information. Specifi-
cally, we can track the knowledge of a player exhaustively
by listing all possible game states and expanding or reduc-
ing this list according to the new information. At each time,
in the game, the player maintains a set of possible states as
its knowledge. For a transition to the next round, we expand
each state and keep only those expanded states that align
with the opponent’s move results. The complete flow of
the notifications and corresponding actions can be seen in
Figure 4.

This comprehensive model enables a player to optimize
its actions based on a detailed understanding of the oppo-
nent’s potential knowledge and strategies, exemplifying the
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Figure 4. Management of possible states and their use for the deci-
sions of sensing and moving

application of Theory of Mind in game scenarios.

3.1. Knowledge modeling for sensing and moving

The sensing phase of the game is crucial for gaining knowl-
edge about the opponent’s game state. When an agent se-
lects a 3x3 region to sense, it is provided with information
about the true pieces in that region. This effectively narrows
down the possible game states that align with the agent’s
knowledge, as any states inconsistent with the sensed infor-
mation are removed from consideration (Figure 1).

The agent’s knowledge is also updated after a move is ex-
ecuted. The result of a move, including whether it was
successful, whether an enemy piece was captured, and the
square on which the capture occurred, is relayed to the agent.
However, the type of the captured piece is not revealed. If
a capture happens at a location different from the intended
destination, the agent’s piece stays at the capture square
(Figure 2). This new information allows further refinement
of the agent’s knowledge, as game states that conflict with
the move results are excluded. For example, if a piece was
captured, all game states that do not contain a piece on the
capture square are discarded. Similarly, if a sliding move
was successful, all squares with a piece between the original
and destination squares are purged from consideration.

Figure 5. Number of removed states after sensing, moving com-
pared against the number of remaining states. Omitted in this plot
are the states added by expanding, after the opponents turn.

In certain instances, there can be overlapping information
obtained from the sensing and moving phases, such as when
the 3x3 region sensed overlaps with the trajectory of the
agent’s move. To study the first research question (RQ1), we
evaluated the knowledge obtained from different actions and
observations by measuring the number of moved states. We
compared the gain in information by examining the number
of states removed due to sensing and moving. As Figure 5
indicates, sensing can remove a significantly greater number
of states than moving2. This is because sensing provides
complete knowledge of nine squares (including the type and
location of pieces), while moving can provide at most partial
information about seven squares (either empty squares or
an unknown piece type). Thus, a key aspect of gaining
information in RBC hinges on a well-strategized sensing
approach.

3.2. Knowledge from opponent’s move

The information provided after an opponent’s move is lim-
ited to whether one of the agent’s own pieces was captured
and, if so, the square on which this occurred. Armed with
this information, we consider all new possible states, based
on all the moves the opponent could have executed in all
possible positions. However, in this paper, we do not adjust
our knowledge based on our best guess of the opponent’s
moving strategy, owing to its complexity.

4. Sensing Strategies
To address the second research question (RQ2), we explore
how different sensing strategies can impact the knowledge of
the opponent and the result of the game. In Reconnaissance

2To standardize the metrics, we utilized the naive entropy sens-
ing mechanism within the game evaluations. We replicated bot
movements from a corpus of 500 games, sourced from the publicly
accessible archives at https://rbc.jhuapl.edu/about. Subsequently,
we replaced the original sensing method with our naive entropy
sensing and made measurements throughout the games.
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Blind Chess, sensing strategies are used to uncover infor-
mation about the opponent’s board state. For this purpose,
we developed two entropy-based strategies: the Naive En-
tropy Sense and the Adapted Entropy Sense. Both strategies
leverage the concept of entropy, a measure of uncertainty or
randomness in data. In our scenario, entropy is computed
based on the potential piece configurations on the board.

4.1. Naive Entropy Sensing Strategy

Our first strategy, the Naive Entropy (NE) sensing strategy,
aims to minimize the entropy or uncertainty of the board
state. Given a set of potential board states, the strategy
calculates the entropy for each square on the board. This
calculation is based on the frequency of each potential piece
type (including an empty square) that could occupy a par-
ticular square across all possible boards. The entropy score
for each square is then computed using the formula:

E = −
∑

p(x) log2(p(x))

where p(x) represents the probability of a certain piece
being on the square. This probability is taken from the
ratio of the pieces on the squares from all possible game
states. The Naive Entropy Sense strategy then identifies the
3x3 region on the board with the highest aggregate entropy
and selects the center square of this region for the sense
action. This strategy effectively identifies the region with
the highest level of uncertainty and gathers information to
reduce this uncertainty.

4.2. Adapted Entropy Sensing Strategy

The Adapted Entropy (AE) sensing strategy builds upon
the Naive Entropy strategy by adding further considerations.
First, it includes a threat assessment element, where the
potential threat posed by a square is calculated based on the
pieces that could potentially attack it. The threat weight of
each square is calculated by adding up the weights of the
attacking pieces, where the weights correspond to traditional
chess piece values.

Additionally, the AE strategy introduces a penalty for sens-
ing squares that have already been sensed in previous turns.
This penalty, computed with a decay factor, discourages
the strategy from repeatedly sensing the same squares, thus
promoting exploration of the board.

The AE strategy calculates the total score for each 3x3
region as a combination of the entropy score, the threat
weight, and the sensed penalty. The region with the highest
total score is selected for the sense action. This strategy aims
to reduce the uncertainty of the board state while considering
potential threats and past sensing actions to make a more
informed decision.

5. Moving Strategy and Implementation
In the pursuit of determining optimal moves within the com-
plex landscape of Reconnaissance Blind Chess, we employ
the Sunfish engine (Ahle). This decision was prompted by
Sunfish’s advantageous lightweight architecture which, in
contrast to more powerful engines such as Stockfish, al-
lowed for greater flexibility in manipulating the source code
to accommodate our specific requirements. Notably, we
introduced modifications such as enabling the ability to
castle, traversing through checks, and altering the termina-
tion condition of the underlying minimax algorithm from a
checkmate state to the explicit capture of the king.

Our strategy for managing the inherent uncertainty in RBC
involved the selection of n optimal and suboptimal board
states, as evaluated by Sunfish’s scoring algorithm. This
algorithm incorporates a synthesis of centipawn values and
piece-square-tables to quantitatively assess board states.

In scenarios where the estimated knowledge of the opponent
is considered, a retrospective analysis for each of the n
board states is performed. This process involves a replay
from the initial board state to the current one, simulating
the opponent’s potential moves based on our known actions.
A reasonable hypothesis is that a rational opponent will
strive to minimize the overall entropy and pick an according
sense. Subsequently, we average the scores of all possible
board states from the opponent’s perspective and integrate
these into a composite ranking that encapsulates both our
evaluation and the opponent’s potential assessment.

The computed scores for each board state are then utilized
to allocate computational resources for the search of the
optimal move within a given board state. Board states with
higher scores are apportioned more search time, implying
their potential significance in determining the optimal move.
We record all the candidate moves, along with their corre-
sponding Sunfish scores, from each board state. The move
with the highest cumulative score across all board states is
chosen as our final move. This approach harmonizes our
understanding of the game state with the potential under-
standing of our opponent, yielding a move that is robust to
the inherent uncertainties of RBC.

6. Evaluation
We evaluate and compare two sensing strategies in this sec-
tion. Figure 6 illustrates the comparison of the number of
states eliminated in the game due to sensing. The NE strat-
egy, which assumes that all legal moves are selected with
equal probability, is designed to eliminate as many states as
possible. However, in practice, it is observed that the AE
strategy demonstrates a superior performance, eliminating
a greater number of states in most turns. This observa-
tion shows that the strategy of observation is more than a
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simple mathematical computation of optimal solution but
influenced by the game dynamics.

Figure 6. Number of States Eliminated Post-Sensing Using Various
Strategies

SunFish NE SunFish AE

Basic +ToM Basic +ToM

MinMax 20 / 20 20 / 20 20 / 20 20 / 20
Trout 14 / 20 17 / 20 16 / 20 18 / 20
StrangeFish 4 / 20 4 / 20 6 / 20 8 / 20

Table 1. Performance comparison of our agent against various op-
ponent agents with or without Theory of Mind (ToM) by estimating
opponents’ knowledge.

Table 1 is the result of a summary games that were played
against different agents under varied settings. For each
combination, we execute 20 games. MinMax refers to a
straightforward MinMax algorithm that selects the most
preferred move for the highest-ranked boards. The Trout
bot, which employs the Stockfish engine on a real-time es-
timation of the actual board state, serves as a standard bot
for comparison. StrangeFish, currently the top bot on the
official RBC leaderboard, was also included in the com-
parison. The evaluation was performed using both sensing
strategies, with and without the supplementary estimation
of opponents’ knowledge.

The result shows that the AE strategy performs better than
the NE strategy in general. This is consistent with our
findings above. We also noticed that taking supplementary
estimation of opponents’ knowledge into account can im-
prove the performance. The best performance comes from
the bot using the SunFish engine with ToM. It is comparable
with best existing bot, the StrangeFish. This shows how a
deep understanding of knowledge in the game can guide the
design of strategy that may result in better performance.

It is important to note that, as a work in progress, the results
of our agent are presented without time constraints when

estimating the opponents’ knowledge. This means that we
manually pause the game’s timer for this specific calculation.
With the current complexity of this estimation, the time
required for its execution exceeds what would be feasible in
a real game scenario. The optimization of our code remains
a work in progress.

7. Discussion
Reconnaissance Blind Chess (RBC) poses a unique set of
challenges due to the element of uncertainty inherent in
the game. Unlike classical chess where the state of the
board is fully observable, RBC adds an additional layer of
complexity as players have only partial information about
the board. In response to these challenges, we have explored
various sensing and moving strategies designed to manage
uncertainty and optimize decision-making.

Our exploration of sensing strategies centered on entropy-
based approaches, specifically the Naive Entropy and
Adapted Entropy strategies. These strategies aim to re-
duce uncertainty by selecting senses that provide maximum
information. We found that the Adapted Entropy strategy,
which incorporates consideration of potential threats and en-
courages exploration of the board, outperformed the Naive
Entropy strategy. This observation suggests that information
acquisition in RBC extends beyond mere sensory data and
includes strategic elements such as understanding the oppo-
nent’s potential moves. Furthermore, it could be intriguing
to consider moving actions as another avenue for gaining
information, instead of purely focusing on direct sensory
inputs.

Complementing our sensing strategies, we also employed a
moving strategy based on the Sunfish engine, which was fur-
ther enriched by integrating our estimation of the opponent’s
knowledge. The decision to utilize a lightweight engine like
Sunfish was motivated by the need for customization and
flexibility to handle the unique characteristics of RBC. By
leveraging both our understanding of the game state and
potential assessment of our opponent’s knowledge, we man-
aged to construct a decision-making process that is more
robust and tailored to the idiosyncrasies of RBC.

Despite these advancements, we acknowledge certain limi-
tations and potential areas for improvement in our current
approach. For instance, while considering the opponent’s
estimated knowledge has proven beneficial, it imposes com-
putational demands that may affect real-time gameplay effi-
ciency. In addition, our moving strategy could potentially
be improved by incorporating more sophisticated threat as-
sessment and defensive considerations.

The challenges posed by RBC align with the broader is-
sues encountered in planning in partially observable en-
vironments. As such, we believe that strategies used in
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this domain, such as the Monte Carlo Tree Search for par-
tially observable environments (POMCP) (Silver & Veness,
2010), the PEGASUS method (Ng, 2000), or the PFT-
DPW algorithm (Sunberg & Kochenderfer, 2018), could
be beneficially integrated into our approach. These algo-
rithms, designed to manage uncertainty in complex envi-
ronments, could enhance our decision-making process and
consequently improve game performance.

While our focus so far has been on adapting and optimiz-
ing strategies within the framework of RBC, we recognize
the potential to extend our approach to other contexts. For
instance, logic-based approaches like Dynamic Epistemic
Logic (DEL) (Van Ditmarsch et al., 2007) and Probabilistic
Dynamic Epistemic Logic (PDEL) (Kooi, 2003) could be
utilized to infer new knowledge in other imperfect infor-
mation games. However, such an approach would need to
address challenges related to the scale of the game.

Furthermore, we believe our approach could inspire the de-
sign of strategies in other settings where agents compete
or cooperate with limited information. This includes other
planning tasks, Q&A games, or scenarios where the ac-
quisition of opponent knowledge is crucial. We are also
interested in exploring the potential of machine learning
algorithms, such as deep reinforcement learning, to learn
optimal sensing policies and adapt to opponent behavior
over time.

Exploring the behavioral patterns of our opponent presents
another exciting avenue for enhancing our estimation of the
true board state. Similar to classical chess where players
can often be categorized into distinct types (Kaehler, 2022),
it would be interesting to investigate if artificial intelligence
opponents in RBC exhibit specific styles of play. If such
categorizations can be discerned, it would allow for more
refined estimations of the opponent’s strategy, ultimately
improving our decision-making process and performance in
the game.

In conclusion, our study underscores the importance of ro-
bust sensing and moving strategies in managing uncertainty
in RBC. Our entropy-based sensing strategies and Sunfish-
based moving strategy, inspired by Theory of Mind(ToM),
provide a strong foundation upon which future work can
build. We encourage further exploration of advanced algo-
rithms and techniques, such as probabilistic reasoning and
machine learning, to address the limitations of our current
approach and deepen our understanding of game dynamics
in RBC and other similar environments. We anticipate that
these research directions will yield exciting advancements
in the field, and we look forward to seeing how they develop
in the coming years.
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