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Abstract

Identifying latent structures in environmental data—such as habitat clusters or pollution
sources—is a fundamental challenge in ecological and climate science. Spectral methods,
which analyse the principal eigenvectors of affinity matrices, are powerful tools for this task.
However, environmental systems are rarely isotropic; physical processes like river flows or
prevailing winds create strong directional gradients, resulting in anisotropic noise. The ef-
fect of such anisotropy on the reliability of spectral methods is not yet well understood in
the literature. In this work, we develop a rigorous theory for this scenario by analysing a
spiked random matrix model subjected to anisotropic noise. We derive an exact, analyti-
cal expression for the critical signal-to-noise ratio required for signal detection, establishing
a sharp phase transition. Our central result proves that this threshold depends critically
on the geometric alignment between the signal and the dominant environmental gradient,
formalising a “camouflage effect”. We also uncover a critical failure mode where this envi-
ronmental gradient can itself create a “phantom” structure that spectral methods can easily
detect, posing a significant risk of misinterpretation for scientists. Furthermore, we show
that in the detectable phase, the second eigenvector aligns with the primary noise direction,
revealing a deeper reorganisation of the system’s structure. We complete our analysis with
a Central Limit Theorem for the alignment fluctuations. We validate our theoretical predic-
tions with simulations of ecological systems, offering a fundamental understanding of when
spectral methods succeed or fail in realistic environments. Code to reproduce all results in
the paper is anonymously released at https://anonymous.4open.science/r/tmlr_ept

1 Introduction

Spectral methods, which leverage the eigenvectors of affinity or covariance matrices, are a cornerstone of
modern data analysis, with profound applications in machine learning and natural sciences (von Luxburg,
2007; Ng et al |2001)). In environmental science, these techniques are indispensable for uncovering latent
structures from complex datasets, such as identifying distinct ecological communities from species abun-
dance data, delineating habitat corridors from genetic information, or isolating dominant modes of climate
variability (Legendre & Legendre, |2012). The success of these methods hinges on a critical assumption: that
the principal eigenvectors of a data-derived matrixz faithfully align with the underlying structure of interest.
However, the reliability of this alignment can be severely compromised by noise, and the nature of this noise
in environmental systems is often far from simple.

The foundational theory for understanding the limits of signal detection in noise comes from random matrix
theory, particularly the study of spiked matrix models (Baik et al., 2005; |[Johnstone, [2001)). The seminal
work on the BBP phase transition revealed that for a low-rank signal matrix perturbed by uniform, isotropic
noise, a sharp signal-to-noise threshold exists below which the signal is statistically undetectable (Baik et al.
2005; [Johnstone, 2001)). This theory provides a fundamental understanding of when spectral methods fail,
showing that even an arbitrarily strong signal can be lost if the matrix size is large enough. While these
results are powerful, they are built on the assumption of isotropic noise, where random fluctuations are
equally likely in all directions. This assumption is frequently violated in environmental contexts. Physical
processes such as prevailing winds, river currents, or geological formations impose a strong directional “grain”
on the system, leading to anisotropic noise. The critical gap in the literature is a rigorous, analytical theory
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(a) Orthogonal Case (a = 0): Easy Detection (b) Aligned Case (a =1): Hard Detection

Figure 1: A conceptual diagram of the “camouflage effect” investigated in this paper. In both panels, the
background texture represents a dominant environmental gradient (noise direction ve). The signal consists of
two latent communities (blue and red points). (a) When the signal structure (vg) is orthogonal to the noise,
the communities are easily distinguishable. In this regime, the signal-to-noise ratio required for detection
is low, as defined by the threshold 5.(0) = cweak- (b) When the signal is aligned with the noise, it is
“camouflaged” by the environmental gradient. This makes the structure much harder to detect and requires
a significantly higher signal strength, as defined by the threshold f:(1) = ¢strong-

that describes how such structured, anisotropic noise affects the performance of spectral methods. It is not
known, for instance, how the geometric alignment between a latent signal and a dominant environmental
gradient influences the threshold for detectability.

To address this gap, we analyse a spiked random matrix model where the noise is explicitly anisotropic.
Our model consists of a rank-one signal matrix, representing a latent two-community structure, perturbed
by a random noise matrix whose covariance is non-uniform, possessing a single dominant direction. This
setup is mathematically tractable yet environmentally justified, directly modelling scenarios where a primary
physical process creates a directional bias (Anderson et all 2012)). The alignment between the signal and
the dominant noise direction is captured by a single geometric parameter, «a, as conceptually illustrated in
Figure

Within this framework, we develop a complete theoretical characterisation of the system’s behaviour. We
prove the existence of a sharp phase transition for signal detection and derive an exact, analytical formula
for the critical threshold. Our central finding is that this threshold is a non-trivial function of the alignment
«, proving that a signal is significantly harder to detect when it is aligned with the environmental grain—a
phenomenon we term the “camouflage effect”. We extend this analysis to show that above the detection
threshold, the system’s eigenvectors undergo a remarkable reorganisation: the principal eigenvector aligns
with the signal, while the second eigenvector aligns with the dominant noise direction. This reveals that
spectral methods can, in principle, disentangle both the latent structure and the primary source of environ-
mental noise. Finally, we establish a Central Limit Theorem for the fluctuations of the eigenvector alignment,
providing a precise measure of the detection uncertainty, which we show is maximised at the critical point.

Our theoretical claims are validated through a comprehensive suite of numerical experiments. We first use
direct simulations of our theoretical model to verify each of our theorems with high precision. We then con-
duct an experiment using a more realistic, non-linear simulation of an ecological system to demonstrate that
the insights from our idealised model are robust and hold in a setting analogous to real-world applications.

The key contributions of this paper are:

e A rigorous, analytical formula for the phase transition threshold for signal detection in the presence
of anisotropic noise, which explicitly depends on the signal-noise alignment.

e The discovery and formalisation of an eigenvector reorganisation phenomenon, where the second
eigenvector captures the dominant noise direction in the detectable phase.
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e A Central Limit Theorem for the eigenvector alignment fluctuations, providing a precise character-
isation of the detection uncertainty.

e A comprehensive experimental validation that confirms our theoretical predictions and demonstrates
their relevance to scientific discovery in environmental science.

The remainder of this paper is organised as follows. In §2 we formally define our mathematical model. In
we present the derivation of our main theoretical results. The experimental validation plan and its results
are detailed in §4] We conclude with a discussion of related work and the implications of our findings in

Table 1: Key symbols and notations in the paper.

Symbol Description

Model Parameters
N Dimension of the matrix (number of nodes/points)
A The full N x N observed matrix (A = Agignal + Waniso)
w Baseline N x N Wigner matrix (i.i.d. noise)

C Deterministic N x N noise covariance structure matrix
W aniso The final N x N anisotropic noise matrix
Vo Unit vector representing the ground-truth signal direction
Vo Principal eigenvector of C, representing the dominant noise direction
Ié] Scalar signal strength (8 > 0)
a Alignment parameter, o = |{vg, vc)| € [0,1]
Cstrong Principal eigenvalue of C' (strength of directional noise)
Cweak Eigenvalue of C for background noise components
Theoretical Quantities
T Spectral edge of the noise bulk (7 = 2¢yeak)
Be(a) Critical threshold for signal detection
e The k-th largest eigenvalue of the observed matrix A

Vg The eigenvector corresponding to e
f(B,a)  Asymptotic (mean) alignment |(91,v0)|? for 8 > 3.
0%(B,a) Asymptotic variance of the alignment fluctuations

2 The Model

In this section, we formally define the anisotropic spiked random matrix model used for our theoretical
analysis. The model is constructed to capture the essential features of a latent signal embedded within a
noisy environment that possesses a dominant directional structure. For clarity, the key notations introduced
in this paper are summarised in Table

2.1 The Signal Matrix

The signal component of our model is a deterministic, rank-one matrix representing the ground-truth latent
structure we aim to recover. It is defined as:

Asignal = 5”07}(1; (1)

where 3 > 0 is a non-random scalar representing the signal strength. The vector vy € RY is a deterministic
unit vector (|lvgll2 = 1) that encodes the structure. For the canonical problem of detecting a two-community

structure in a network of N nodes, this vector takes the form vg = \/%[1, oo, 1, —1,...,—1]T, where the two

communities are of equal size. The principal eigenvector of Agignar is precisely vo, and our central goal is to
determine under what conditions the principal eigenvector of the full, noisy matrix aligns with it.
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2.2 The Anisotropic Noise Matrix

The noise component is designed to model random fluctuations that are not uniform, but are instead shaped
by an underlying environmental structure. Its construction begins with a baseline of uniform noise, which is
then deformed by a deterministic covariance structure.

Baseline Noise. We begin with a standard N x N Wigner matrix, W. This is a symmetric random
matrix where the entries W;; for i < j are independent and identically distributed random variables with
mean E[W;;] = 0 and variance E[W2] = 1/N. This normalisation ensures that the eigenvalues of W converge
to the well-known Wigner semicircle law, supported on the interval [—2, 2] as N — oo (Anderson et al.||2009)).

Covariance Structure. The anisotropy is introduced via a deterministic, positive semi-definite matrix
C € RVXN_ which represents the covariance profile of the noise. To maintain tractability while capturing
the essence of anisotropy, we assume a simple yet powerful structure for C. We assume that it has one large
eigenvalue, Cgirong, corresponding to a principal eigenvector vc, and that its remaining N — 1 eigenvalues are
identical, equal to a background value cyweak. This structure is a suitable model for systems with a single
dominant environmental gradient (Soons et al.l 2004; Hughes et al., 2009).

Final Construction. We construct the final anisotropic noise matrix, Wapiso, by deforming the baseline
Wigner matrix with the covariance structure C:

Waniso = Cl/QWOl/Q (2)

This construction ensures that the statistical properties of the noise are shaped by C, with greater variance
in the directions corresponding to larger eigenvalues of C. This method of modelling structured noise is
a standard approach in the study of deformed random matrix ensembles (Benaych-Georges & Nadakuditi,
2011)).

2.3 The Full Model and Alignment Parameter

Combining the signal and noise components gives us the final observable matrix A:
A= ﬁUOU(T; + Waniso (3)

The crucial interaction between the signal’s structure and the noise’s structure is captured by a single
geometric parameter. We define the alignment parameter, «, as the absolute inner product of the signal
direction and the dominant noise direction:

a = [(vo, vo)l (4)

This parameter measures the collinearity of the two directions, ranging from a = 0 when the signal is
perfectly orthogonal to the environmental grain (Figure[l|(a)), to « = 1 when it is perfectly aligned (Figure

(b)).
3 Theoretical Analysis

In this section, we present the analytical core of our work. We begin by characterising the eigenvalue
spectrum of the anisotropic noise matrix, which establishes the baseline for our analysis (§3.1). We then
analyse the full signal-plus-noise model to derive the sharp phase transition for signal detection and quantify
the quality of the eigenvector alignment (§3.2]). Building on this, we reveal a deeper reorganisation of the
eigenspace involving the second eigenvector (§3.3). Finally, we establish a Central Limit Theorem for the
fluctuations of the eigenvector alignment, providing a precise measure of detection uncertainty (§3.4). The

detailed proofs of these theoretical claims are given in §A]
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3.1 The Noise Spectrum and Spectral Edge

To understand the conditions under which a signal can be detected, we must first characterise the eigenvalues
of the noise matrix Wypiso in isolation. These eigenvalues form a continuous “bulk” from which a signal-
aligned eigenvalue must emerge to be detectable. Our first theorem defines the boundary of this bulk.

Theorem 1 (The Spectral Edge). In the limit N — oo, the continuous part of the eigenvalue spectrum of
the anisotropic noise matric Woniso i supported on the compact interval [—7, 7|, where the spectral edge T is
given by:

T = 2Cyeak (5)

Proof Sketch. The proof relies on the stability of the continuous spectrum of a large random matrix
under a finite-rank perturbation. We decompose our covariance structure matrix as C' = cyeakd + (Cstrong —
cweak)vcvg. The noise matrix W,iso can then be seen as a base isotropic noise matrix, cyeax W, perturbed
by a term related to the rank-one spike of C'. A key result in random matrix theory states that such
a perturbation can pull out discrete outlier eigenvalues but does not change the edges of the continuous
spectrum (Benaych-Georges & Nadakuditi, 2011]). The spectrum of cyeaxW is a scaled Wigner semicircle
supported on [—2¢yweak, 2Cweak|, Which therefore defines the edges of the bulk for Wyniso. See Appendix
for the detailed proof.

Interpretation. This result is powerful and non-trivial. It means that the primary barrier to detecting a
new signal is determined not by the strongest, most obvious component of the environmental noise (Cstrong),
but by the magnitude of the uniform, background fluctuations (cyweak). The dominant anisotropic noise may
create its own outlier eigenvalue, but the “sea” of noise that a new signal must rise above is defined by the
weaker, isotropic component.

3.2 The Phase Transition for Signal Detection

A signal is statistically detectable via spectral methods if and only if its corresponding eigenvalue, A1, “pops
out” from the noise bulk, i.e., Ay > 7. We find that this occurs only when the signal strength g exceeds a
critical threshold, which depends fundamentally on the alignment .

Theorem 2 (The Critical Threshold). An isolated eigenvalue corresponding to the signal vg emerges from
the noise bulk if and only if the signal strength B exceeds a critical threshold S.(c), given by:

1
Be(a) = m (6)

Cstrong Cweak

Proof Sketch. We analyse the characteristic equation for outlier eigenvalues derived from the resolvent
method (see Lemma|l|in Appendix [A.1)). The phase transition occurs at the minimum value of 8 for which
a solution A; > 7 exists. By setting Ay = 7 = 2¢yeax and evaluating the large-N limit of the resolvent term
(vo, Waniso — 71 )_1v0>, we can solve for this minimum S. The calculation involves decomposing vy into
components parallel and orthogonal to the noise direction v, which naturally introduces the dependence on
a. The detailed proof is provided in Appendix [A-3]

Interpretation. This provides a rigorous quantification of the “camouflage effect”; effectively translating
the standard concept of a direction-dependent signal-to-noise ratio into the framework of random matrix
theory. The denominator represents the effective noise power in the direction of the signal. When the signal
is aligned with the environmental grain (o = 1), it must overcome the strong noise component (8. = Cstrong)-
When it is orthogonal (« = 0), it only needs to overcome the weak background noise (8. = Cweak). It is
therefore harder to detect a latent structure that aligns with a dominant environmental gradient.

Once the signal is detectable, we can quantify the quality of the recovery.

Theorem 3 (Asymptotic Alignment). For a signal strength 5 > (.(«), the squared inner product (alignment)
between the principal eigenvector of A, 01, and the true signal vector vy converges to:

_ Be(@)?
62

(D1, v0) > =1

(7)
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Proof Sketch. The alignment is derived by analysing the residue of the resolvent at the pole A;. The
magnitude of the eigenvector’s projection onto vy is functionally related to the location of the eigenvalue
A1, which is itself a function of 5. Solving this system of equations for the projection magnitude yields the
stated result. The detailed proof is provided in Appendix [A3]

Interpretation. This result shows that alignment is zero at the exact moment of the phase transition and
increases towards perfect recovery (|(d1,v0)|> — 1) as the signal strength 3 grows.

3.3 Eigenspace Reorganisation: The Second Eigenvector

The introduction of a strong signal does more than just create a new top eigenvector; it reorganises the
entire eigenspace. The next most significant feature of the system—the dominant environmental gradient—is
displaced from the first to the second eigenvector.

Theorem 4 (Second Eigenvector Alignment). In the super-critical phase (8 > B.(«)), the second eigenvector
of A, Da, aligns with the principal noise direction vc.

Proof Sketch. The proof involves analysing the characteristic equation for outlier eigenvalues when the
noise matrix Wapiso is itself considered a spiked matrix (with a spike corresponding to ve). The interaction
between the signal spike and the noise spike creates two outlier eigenvalues. By analysing the structure of
the eigenvectors corresponding to these two solutions, we can show that the larger eigenvalue corresponds
to an eigenvector aligned with vy, while the smaller of the two corresponds to an eigenvector aligned with
ve. The detailed proof is given in Appendix [A-4]

Interpretation. This spectral “sorting” phenomenon is a subtle and powerful result. It implies that a
careful spectral analysis can simultaneously reveal both the primary latent signal and the primary axis of
environmental noise. The method not only detects the structure but also provides information about the
nature of the unkown interference, which is of scientific merit as well.

3.4 Fluctuations and Detection Uncertainty

Our final result moves beyond asymptotic averages to characterise the random fluctuations of the alignment
for finite NV, providing a measure of statistical confidence.

Theorem 5 (Central Limit Theorem for Alignment). In the super-critical phase (B > B.(«)), the fluctua-
tions of the eigenvector alignment are asymptotically Gaussian. The scaled quantity converges in distribution
to:

VN ([(o1,00) > = £(B,0)) & N(0,02(8,)) 8)

where f(B,a) is the asymptotic alignment from Theorem@ and o*(3, ) is a deterministic variance function
given in Equation (@)

Proof Sketch. The proof is based on establishing a CLT for the fluctuations of the resolvent term
(vo, Waniso— M1 )_1v0>. The variance of this term can be computed using established methods from random
matrix theory. This variance is then propagated through a linearised model of the system’s characteristic
equations to find the resulting variance of the eigenvector alignment. The proof relies on showing that the
fluctuations of the eigenvalue and eigenvector are linearly coupled. See Appendix [AZ5]for the detailed proof.

Interpretation. The variance function o2(3,a) provides a rigorous quantification of the reliability or
statistical confidence of the signal detection, as conceptually illustrated in Figure[2} It measures the expected
“jitter” in the alignment, telling an environmental scientist how stable the detected pattern is likely to be.
A detailed analysis of its mathematical form, which is a function of the derivatives of the limiting resolvent
F(z), reveals several profound insights:

e Instability at the Tipping Point: The variance is maximised as the signal strength 8 approaches
the critical threshold .. This is the mathematical signature of a critical phenomenon. As the outlier
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(a) Instability at the Tipping Point

(b) Reliability at Fixed Signal Strength (8 =3.0)
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Figure 2: Illustration of the theoretical detection uncertainty, as characterised by the variance of the align-
ment fluctuations (02). (a) The variance is plotted against signal strength (3), revealing a sharp divergence
at the critical thresholds. This peak demonstrates the extreme instability of the system at its tipping point.
(b) At a fixed super-critical signal strength (5 = 3.0), the probability distribution of the measured alignment
is shown. The measurement is more reliable (lower variance, taller peak) for the orthogonal case (a = 0)
than for the aligned case (o = 1), highlighting the practical impact of the camouflage effect on detection
confidence. (c¢) The underlying mathematical mechanism for the instability is revealed. The first derivative
of the resolvent, |F’(z)|, is plotted against the spectral parameter z. The derivative vanishes precisely at
the spectral edge (7), causing the mathematical singularity that drives the divergence in variance. (d) The
same data as in panel (a) is shown on a log-log scale. The near-straight-line decay for large 5 confirms that
the system predictably stabilises as the signal becomes stronger, and the detection becomes more reliable.

eigenvalue \; approaches the spectral edge 7, the system becomes “soft”, which is mathematically
reflected by the first derivative of the resolvent function, F’();), approaching zero. This vanishing
derivative means that the system has no “restoring force” against perturbations. Since the variance
formula contains a high power of F’ (5\1) in its denominator, this mathematical singularity causes

the variance to diverge, precisely capturing the physical intuition of extreme instability at a tipping
point.

e« The Stabilising Effect of a Strong Signal: As 8 grows much larger than the threshold, the
variance decreases towards zero. For large /3, the eigenvalue \; is pushed far from the noise bulk,
into a region where the resolvent and its derivatives are smooth and well-behaved. Here, F'(\;)
is non-zero and stable, meaning that the system is “stiff” and has a strong restoring force that
suppresses fluctuations. The variance is then dominated by the 1/4% term, rigorously showing that
a strong signal stabilises the system and makes its detection highly reliable.

e The Role of Alignment in Detection Reliability: The alignment a influences the variance
through the “driving noise” term, V(A1). The calculation of this term requires decomposing the
signal vector vy into components parallel and orthogonal to the dominant noise direction vo. The
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final variance is thus a weighted sum of the fluctuations originating from the strong and weak noise
directions. This provides an justification for the intuition that the reliability of a measurement
depends on its geometric relationship with the primary environmental gradients.

Ultimately, this theorem provides a powerful new tool. It allows scientists to assess the confidence in a
detected pattern based not only on its apparent strength but also on its geometric relationship with the
primary gradients of the environment itself.

4 Experimental Validation

In this section, we present a comprehensive suite of numerical simulations designed to validate the theoretical
claims from Our experimental validation is structured in two parts. First, we conduct a series of direct
validations of our idealised signal model, providing a rigorous, one-to-one proof for each of our theorems.
Second, to demonstrate that the insights from our linear model are not confined to that idealised setting, we
test their applicability in an illustrative, non-linear simulation involving spectral clustering. Unless otherwise
specified, the main results are generated using a matrix size of N = 1000, with 50 Monte Carlo trials per
data point, and noise parameters of cyrong = 10.0 and cweax = 1.0. This high 10:1 anisotropy ratio was
chosen deliberately to create a strong and unambiguous experimental setting, allowing for a clear validation
of the theoretical phenomena of interest, such as the “camouflage effect” and “noise hijacking”.

(a) Principal Eigenvector Alignment (b) Top Two Eigenvalues (c) Second Eigenvector Alignment
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Figure 3: Validation of eigenvector phase transitions with finite-size Monte Carlo simulations (N = 1000,
Cstrong = 10, Cweak = 1, 50 trials per signal strength S for mean and error bar estimation). (a) Principal
Eigenvector Alignment: This panel shows that for low signal strength, the alignment for the aligned case
(a = 1, red) is higher due to a “noise hijacking” effect. The orthogonal case (a = 0, blue) undergoes its sharp
phase transition at § ~ 1 and eventually crosses over the aligned case and approaches its theoretical limit of
perfect signal detection. (b) Top Two Eigenvalues: This panel reveals that for the aligned case (a = 1),
the signal and noise merge into a single dominant eigenvalue (A1, solid red), which grows continuously with
B. The second eigenvalue (A2, dashed red) remains flat at the spectral edge, 7 = 2¢yweak. For the orthogonal
case (o = 0), the system supports two distinct outlier eigenvalues. Initially, the largest eigenvalue (A1, solid
blue) corresponds to the noise spike, while the second eigenvalue (A2, dashed blue) corresponds to the rising
signal. After a point of eigenspace reorganisation around S = 2.5, the signal becomes dominant, taking over
the role of A1, while the noise settles into the role of A\y. The gap between the two eigenvalues narrows near
this reorganisation point before widening again. (¢) Second Eigenvector Alignment: This panel shows
the consequence of the eigenvalue behaviour. For the aligned case, the alignment of 05 is near zero, as there
is no distinct second spike to capture. For the orthogonal case, the alignment of ¥ with the noise direction
rises during the unstable reorganisation phase and then stabilises at a high value once the signal has cleanly
separated and taken over the principal eigenvector.
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4.1 Direct Validation of the Theoretical Model

Our first goal is to provide numerical proof for our theoretical framework using simulations that exactly
match the model defined in §2] The most important test is to validate the central predictions for the phase
transition and the reorganisation of the eigenspace. The results, shown in Figure [3] provide a complete
picture of the system’s behaviour. Panel (a) confirms the existence of the “noise hijacking” effect, where
the alignment for the aligned case (o« = 1) is high even for weak signals, and the subsequent crossover
phenomenon. Panel (b) reveals the underlying mechanism: an “eigenvalue crossover” (an identity swap)
between the rising signal eigenvalue and the stable noise eigenvalue in the orthogonal case (aw = 0). Panel
(c) provides direct visual proof for Theorem |4} showing that the second eigenvector successfully capturing
the orthogonal noise direction after this crossover.

(a) Principal Eigenvector Alignment (b) Second Eigenvector Alignment (c) Top Two Eigenvalues
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Figure 4: Validation of the asymptotic nature of eigenvector phase transitions and eigenspace reorganisation,
showing the convergence of key observables (plotted in log scale) as the system size N increases (N =
[50, 100, 200, 400, 800, 1600], Cstrong = 10, Cweak = 1, 50 trials per N for mean and error bar estimation).
Both scenarios are run at a fixed signal strength of 5 = 5.0. (a) Principal Eigenvector Alignment:
For the orthogonal case (o = 0, solid blue line), the system is super-critical, and the alignment correctly
converges to its theoretical limit (dashed blue line). For the aligned case (aw = 1), the system is sub-
critical; the observed high alignment is a robust “noise hijacking” effect, where the eigenvector aligns with
the dominant noise spike. (b) Second Eigenvector Alignment: For the orthogonal case, the alignment
of ¥y with the noise direction converges to a stable, non-zero value, confirming the asymptotic nature of
the eigenspace reorganisation. For the aligned case, the alignment decays roughly as ~ 1/N, the expected
behaviour for a random bulk eigenvector, confirming the merging of the signal and noise spikes. (¢) Top
Two Eigenvalues: The locations of all outlier eigenvalues stabilise rapidly as IV increases, demonstrating
their convergence to the predicted deterministic limits.

To rigorously validate our asymptotic theory, it is crucial to demonstrate that the finite-size effects observed
in the previous figure diminish as the system size N increases. Figure [4| provides this proof. Panel (a) shows
the principal eigenvector alignment from the simulation systematically converging towards the theoretical
limit predicted by Theorem [3| as N grows. Panels (b) and (c) confirm that the more subtle features of
the model—the second eigenvector alignment and the locations of the outlier eigenvalues—are also robust
asymptotic properties that converge to their predicted states, solidifying the validity of our entire theoretical
framework.

The final validation of our idealised model tests the predictions for the statistical fluctuations of the align-
ment. The results, shown in Figure [5] and Table 2] confirm the predictions of our Central Limit Theorem
(Theorem. The histograms and Q-Q plots in Figureprovide clear visual evidence for the Gaussian nature
of the fluctuations. The table then provides a quantitative analysis, revealing the deep physical insight that
the variance is the highest for the intermediate case (o = 0.5), as it operates closest to its critical tipping
point, where system instability is maximised.

For completeness, we also validate the foundational assumption of our model: the structure of the anisotropic
noise spectrum. Figure [6] confirms the predictions of Theorem[I} The figure illustrates the emergence of the
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Figure 5: Validation of the Central Limit Theorem for alignment fluctuations at system size N = 1000
(Cstrong = 10, Cweak = 1, 10,000 Monte Carlo trials simulated). The top row shows histograms of the scaled
fluctuations overlaid with a best-fit Gaussian, while the bottom row provides a more rigorous validation
with Quantile-Quantile (Q-Q) plots. Gaussianity: In all three scenarios, the histograms closely match the
Gaussian shape, and the Q-Q plots are nearly linear, providing strong evidence that the fluctuations are
asymptotically Gaussian as predicted by Theorem Convergence Rate: The quality of the Gaussian
approximation reveals a deep and subtle insight into the model’s physics. The convergence to the CLT is
fastest for the aligned case (o = 1), where the Q-Q plot is almost perfectly linear. This is due to the simpler
physical system, where the signal and noise merge into a single spike. The convergence is slowest for the
orthogonal case (o = 0), where the Q-Q plot shows deviations in the tails. This reflects the more complex
three-way interaction between the distinct signal spike, noise spike, and the random bulk, which generates
stronger non-Gaussian finite-size effects that persist at N = 1000. The intermediate case (« = 0.5) exhibits
an intermediate convergence speed, consistent with this interpretation.

outlier “noise spike” as anisotropy increases, and the zoomed-in Panel (d) provides a high-precision validation
that the continuous bulk of the spectrum terminates exactly at the theoretical edge, T = 2¢yweak-

4.2 Application to Spectral Clustering in an Environmental Model

To bridge the gap between our idealised theory and a practical application, we now test our insights in a more
realistic, non-linear setting. We simulate a 2D environmental model where two communities of points are
generated, and we apply spectral clustering using an Radial Basis Function (RBF) kernel with an adaptive
‘gamma’ parameter to recover the latent structure.

Figure [7] provides a qualitative visualisation of the clustering performance. It clearly demonstrates the
“camouflage effect” in a practical scenario: in the top row (aligned case, & = 1), the algorithm fails to find
the correct clusters even as signal strength increases, as all tested § values are below the high theoretical
threshold of 8. = 10.0. In contrast, the bottom row (orthogonal case, « = 0) shows a clear phase transition
from failure to success as /3 crosses its low theoretical threshold of 8. = 1.0.
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Table 2: Measured statistics of the scaled alignment fluctuations from the CLT experiment (N = 1000,
Cstrong = 10, Cweak = 1, 10,000 trials). The table provides a quantitative validation of the Central Limit
Theorem. Mean: In all scenarios, the mean of the centered fluctuations is correctly measured to be zero, as
expected by construction. Variance: The variance quantifies the instability of the alignment measurement
and reveals a deep physical insight. The variance is not a simple monotonic function of the alignment a.
The intermediate case (o = 0.5) exhibits a much larger variance (0.3134) than the extreme cases. This is
because it is operating closer to its critical tipping point than the other two scenarios. For the intermediate
case, the signal strength is § = 5.0 while its threshold is S, ~ 1.29. For the orthogonal case, 8 = 5.0 is
comparatively further from its threshold of 5. = 1.0. For the aligned case, 8§ = 15.0 is also far from its
threshold of 8. = 10.0. This result provides strong numerical evidence for the theoretical prediction that
system instability is significantly higher near a critical phase transition.

Scenario Measured Mean Measured Variance
Orthogonal (« = 0.0) 0.0000 0.0078
Intermediate (o = 0.5) 0.0000 0.3134
Aligned (a =1.0) 0.0000 0.0071

Table 3: Comparison of the theoretical critical threshold from our idealised linear model with the empirically
measured threshold from the non-linear spectral clustering experiment (N = 1000, cstrong = 10, Cweak = 1,
50 trials per signal strength to estimate mean). The measured threshold is defined as the signal strength
B at which the mean Adjusted Rand Index (ARI) first exceeds 0.95. Agreement: For the orthogonal and
intermediate cases, the measured thresholds are remarkably close to the theoretical predictions, demonstrat-
ing the predictive power of our theory even in a more complex, non-linear setting. Discrepancy: For the
aligned case, the measured threshold is significantly lower than the theoretical prediction. This is a direct
consequence of the “noise hijacking” effect; the spectral clustering algorithm achieves a high ARI score by
correctly clustering the dominant pattern created by the strong anisotropic noise itself, long before the true
signal is theoretically detectable. This highlights a crucial practical implication: strong, aligned environ-
mental gradients can create detectable structures that may be misinterpreted as a true signal.

Scenario Theoretical 5. Measured 8. (ARI > 0.95)
Orthogonal (o = 0.0) 1.00 1.10
Intermediate (o = 0.5) 1.29 1.60
Aligned (a = 1.0) 10.00 2.50

The quantitative performance of the clustering is shown in Figure [8] which plots the Adjusted Rand Index
(ARI) against signal strength. This figure provides a rigorous, quantitative proof of the “camouflage effect”.
The performance curves for the three alignment scenarios (o = 0,0.5,1) exhibit sharp phase transitions in
the exact order predicted by our theory, with the aligned case requiring a much stronger signal to achieve
successful clustering.

Finally, we connect the performance of this complex, non-linear application directly back to our simple,
idealised linear theory. Table [3|compares the theoretical critical threshold, 3., with the empirically measured
threshold from the non-linear spectral clustering experiment. For the orthogonal and intermediate cases,
there is a remarkable agreement between the theoretical prediction and the measured result. The table
also highlights an important insight for the aligned case: the measured threshold is much lower than the
theoretical one. This discrepancy is a direct result of the “noise hijacking” effect, where the algorithm
achieves a high ARI score by correctly clustering the dominant pattern created by the strong anisotropic
noise itself, long before the true signal is theoretically detectable. This demonstrates the powerful predictive
utility of our theoretical framework in explaining the behaviour of real-world spectral methods.
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Figure 6: Validation of the anisotropic noise spectrum (Theorem |1)) for N = 1000. The figure shows the
empirical eigenvalue distribution for increasing levels of anisotropy. (a) In the isotropic case (Cstrong = Cweak),
the spectrum correctly matches the theoretical Wigner semicircle distribution. (b) With weak anisotropy,
small but distinct outlier eigenvalues (the “noise spike”, red) separate from the main bulk. (c) With strong
anisotropy, the noise spike produces well-separated outliers, clearly distinct from the continuous bulk. (d)
A zoomed-in view of the spectral edge for the strong anisotropy case provides a high-precision validation,
showing that the continuous part of the spectrum (the bulk) terminates exactly at the theoretical prediction
of 7 = 2¢yeax (red dashed line).

5 Discussion and Conclusion

In this work, we have developed and validated a complete theory for principal eigenvector phase transitions
in the presence of anisotropic noise. Our findings extend the classical understanding of spectral methods by
incorporating the crucial and realistic element of a dominant environmental gradient. We have shown that
the detectability of a latent signal is not merely a function of its strength, but is fundamentally governed by
its geometric alignment with the surrounding noise structure.

5.1 Implications of Key Findings for Scientific Discovery

Our theoretical and experimental results reveal several deep physical phenomena with direct practical im-
plications. The central finding is the “camouflage effect” (Theorem , which proves that a latent structure
is fundamentally harder to detect when it aligns with a strong environmental gradient, such as a river valley
or prevailing wind. This has important consequences for experimental design and data interpretation in the
environmental sciences, suggesting that the orientation of a study area relative to its dominant gradients can
significantly impact the statistical power to detect underlying patterns.
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Figure 7: A visual demonstration of non-linear spectral clustering performance on the environmental model
(N = 1000, cstrong = 10, cweax = 1) across different signal strengths (3) and alignments («). In each panel,
the true community is indicated by the marker shape (circle or square), while the discovered community is
indicated by the colour (blue or red). Top Row (Aligned Case, a = 1): The clustering fails clearly in
low signal strength regimes and succeeds only partially at 8 = 2.0. Even as the signal strength increases,
the algorithm is unable to find the correct horizontal separation because the signal is “camouflaged” by
the strong, aligned environmental noise. All three 8 values are below the theoretical detection threshold of
B. = 10.0 under the idealised linear model. Bottom Row (Orthogonal Case, o = 0): This row clearly
illustrates the phase transition. At § = 0.5 (sub-critical), the clustering fails. At 5 = 1.0 (the theoretical
tipping point), the clustering is partially successful with only a minority of mistakes. By 5 = 2.0 (super-
critical), the algorithm achieves a near-perfect separation. This provides strong visual evidence that the
practical performance of spectral clustering is governed by the theoretical principles developed in this paper.

Our analysis also reveals a crucial distinction between the theoretical threshold for signal detection and the
practical performance of methods like spectral clustering. We show that strong environmental gradients can
themselves form coherent structures that are easily clustered, potentially misleading a scientist into believing
that they have found a true latent signal when none is statistically detectable.

Furthermore, our discovery of the eigenspace reorganisation phenomenon (Theorem@) suggests a novel diag-
nostic application for spectral methods. In the detectable phase, the principal eigenvector reveals the latent
signal, while the second eigenvector simultaneously diagnoses the primary axis of environmental noise. This
offers the potential for a “2-for-1” analytical tool, capable of both pattern detection and the characterisation
of the system’s dominant interference.

Finally, our analysis of the alignment fluctuations (Theorem [5) provides a rigorous understanding of the
uncertainty inherent in these methods. The finding that the variance of the alignment is maximised at
the critical threshold is a profound result. This “critical fluctuation” is conceptually analogous to the
“critical slowing down” phenomenon observed in dynamic systems, which can serve as an early-warning
signal for tipping points. By analogy, one might hypothesise that as a real-world system approaches a
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Figure 8: Quantitative performance of spectral clustering on the environmental model (N = 1000, cstrong =
10, ¢weak = 1, 50 trials per signal strength to estimate mean and error bar), measured by the Adjusted Rand
Index (ARI). The figure demonstrates a clear phase transition in clustering performance that is governed
by the signal-noise alignment «. For very low signal strength (8 < 0.5), the intermediate (aw = 0.5) and
aligned (o = 1.0) cases show a non-zero ARI due to a “noise hijacking” effect, where the algorithm correctly
clusters the pattern created by the strong anisotropic noise itself. The orthogonal case (a = 0) undergoes a
sharp phase transition at its theoretical threshold of 8. = 1.0, rapidly achieving perfect clustering (ARI=1).
The intermediate case exhibits a delayed but still sharp transition, while the aligned case shows the slowest
performance increase, confirming that a signal is practically harder to cluster when it is “camouflaged” by
the dominant environmental gradient.

critical transition, repeated spectral analyses could reveal increasingly “jittery” or unstable eigenvectors.
Investigating whether this statistical instability could translate into a practical, dynamic early-warning
signal is a promising direction for future research (Scheffer et al., 2009).

5.2 Connection to Broader Literature

Our work sits at the intersection of random matrix theory (RMT), machine learning, and environmental
science, contributing to and drawing deep connections between these diverse fields.

Random Matrix Theory. Our model is a significant generalisation of the canonical spiked matrix frame-
work, which has become a cornerstone of high-dimensional statistics. The foundational work on sample
covariance matrices (Johnstone, [2001) and Wigner matrices (Baik et al.| 2005)) established the BBP phase
transition, a sharp threshold for the detection of a low-rank signal in high-dimensional isotropic noise. This
core result has been extended in numerous directions, including to signals of higher rank
2009), to different noise ensembles such as Wishart matrices (Baik & Silverstein| [2006), and to understand
the detailed statistical fluctuations of the outlier eigenvectors and their projections (Paul, |2007; Benaych-|
|Georges & Nadakuditi, [2011} [Knowles & Yin| 2017). While some work has considered deterministically
deformed Wigner ensembles (Anderson & Zeitouni, [2006; [Erd6s et al., [2013) or sample covariance matrices
with a general population covariance (Bloemendal et all 2016), the specific question of how the geometric
alignment between a signal spike and a noise spike affects the detection threshold has been less explored.
Our work provides a precise, analytical answer to this question, offering a new class of solvable spiked mod-
els that more accurately reflect structured noise environments. This connects to broader themes in RMT,
such as the universality of eigenvalue statistics (Erdds & Yaul [2017; [Tao & Vul |2010) and the localisation
of eigenvectors (Bourgade & Yaul (2017} [Luh & O’Rourke) [2020)), by demonstrating a clear, non-universal
phenomenon where the geometry of the perturbation dictates the system’s behavior.
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Machine Learning. Our findings provide a new theoretical lens for understanding the performance and
failure modes of spectral methods. Spectral clustering, which is intimately connected to graph partitioning
and the properties of the graph Laplacian (Chung), 1997} [Fiedler} [1973), is a powerful tool for community
detection (Fortunatol [2010; [Newmanl, [2006). Foundational analyses have established its consistency under
generative models like the stochastic block model (SBM) (Rohe et al., |2011} |Qin & Rohe, [2013; /Abbe, 2018)),
and its limits are tied to the detectability thresholds of the SBM itself (Decelle et al. 2011; Mossel et al.l
. Our work moves beyond the standard signal-to-noise ratio arguments and provides a new, geometric
mechanism for failure: a misalignment between the desired community structure and the dominant sources
of variance in the data’s feature space. This connects to a broader class of problems in manifold learning and
dimensionality reduction, such as Principal Component Analysis (PCA) , Isomap
2000), and Locally Linear Embedding (Roweis & Saull 2000), where the goal is to find a meaningful
low-dimensional representation. Our theory suggests that the success of these methods may also depend on
the anisotropic nature of the noise in the ambient high-dimensional space, a factor not typically considered
in standard analyses (Belkin & Niyogi, 2003). Furthermore, our results on the second eigenvector’s ability
to capture the noise direction relate to methods for data denoising and component separation, such as
Independent Component Analysis (ICA) (Hyvérinen & Oja, 2000) and Robust PCA (Candes et al., 2011).

Environmental Science and Spatial Statistics. Our model provides a formal mathematical framework
for a wide range of well-established empirical phenomena. The concept of anisotropy is central to geostatis-
tics, where the spatial correlation of a variable (e.g., mineral concentration or soil moisture) is known to
depend on direction, a feature captured by anisotropic variogram models (Cressie, 2015} |Goovaerts), |1997;
|Chiles & Delfiner} [2012)). In landscape genetics, the “camouflage effect” directly models how landscape fea-
tures that create anisotropic gene flow—such as rivers (Hughes et al., 2009; |Allendorf, 1988) and highways
(Epps et all [2005)—can either obscure or reveal latent population structures (Manel et al., 2003; Spear]
et al., 2005). In ecology, our model of a signal emerging from a structured background is analogous to the
problem of distinguishing habitat-driven species associations from patterns generated by dispersal limitation
or metapopulation dynamics (Moilanen & Hanski, 1998 [Hanskil [1999). The directional bias in our noise
model is a key feature of many physical processes, including wind dispersal of seeds (Soons et al. 2004
Nathan et al., 2008; Bullock et al., |2016]) and the transport of pollutants in air or water (Seinfeld & Pandis
2016). Finally, in climate science, the use of PCA (often called Empirical Orthogonal Function analysis) to
identify dominant modes of climate variability, such as the El Nifio-Southern Oscillation (ENSO) (Bjerk-
nes, [1969; Rasmusson & Carpenter], [1982) or the North Atlantic Oscillation (NAO) (Hurrell, 1995} [Wanner
et al.L 2001)), is a direct application of finding principal eigenvectors. Our theory provides a new framework
for understanding how the stability and detectability of these climate modes might be affected by other,
competing sources of large-scale environmental variance.

5.3 Limitations and Future Directions

While our model provides a complete and solvable framework, we acknowledge several simplifying assump-
tions that open clear avenues for future research.

¢ Rank-One Signal: Our model considers only a simple two-community structure. A natural next
step is to extend the theory to higher-rank signal matrices to model the detection of multiple,
competing communities, a problem of great interest in community ecology and network science
(Capitaine et al.l [2009).

« Single Noise Spike: Our noise model has only one dominant anisotropic direction. Future work
could investigate the complex interactions that arise when there are multiple, competing anisotropic
noise directions, such as modelling the confluence of two river systems or the intersection of different
geological features.

e Linear Additive Model: Our core theory is based on a linear ‘Signal 4+ Noise’ model. Our environ-

mental simulation demonstrated that these insights are robust in a non-linear setting, but developing
a rigorous theory for the phase transitions in random kernel matrices generated from anisotropic data
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remains a challenging but important open problem for the machine learning community (El Karoui,
2010)).

e Gaussian Noise: We assumed a simple Gaussian Wigner matrix as the baseline noise. An impor-
tant extension would be to replace the Gaussian Wigner ensemble with a heavy-tailed Lévy matrix
(Aggarwal et al., [2021)) to model the effect of rare, extreme environmental events (e.g., floods, fires,
or heatwaves) on signal detection.

e Validating the Diagnostic Application: Our discovery that the second eigenvector captures
the noise direction was validated in our idealised linear model. A crucial next step is to investigate
whether this spectral “sorting” phenomenon holds in non-linear settings, such as for the eigenvectors
of random kernel matrices, to develop a truly practical diagnostic tool for identifying structured
latent noise in real-world data analysis.

5.4 Conclusion

This paper provides the first complete, analytical theory for principal eigenvector phase transitions un-
der anisotropic noise. We have discovered and validated the “camouflage effect”, which dictates that the
detectability of a latent signal is fundamentally governed by its geometric alignment with the dominant en-
vironmental gradients. Furthermore, we have shown that in the detectable phase, the eigenspace reorganises
itself, allowing for the simultaneous detection of both the signal and the primary axis of noise. These findings
have profound and actionable implications for the application and interpretation of spectral methods in both
machine learning and environmental sciences, providing a new framework for understanding how structure
emerges from noise in complex, real-world systems.
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A Detailed Proofs of Main Theorems

This appendix provides detailed derivations for the main theoretical results presented in Our proofs rely
on standard techniques from random matrix theory, primarily based on the analysis of the resolvent of the
matrix A and its convergence in the large-IN limit.

The appendix is organised as follows:

e In Appendix we establish a key technical lemma concerning the resolvent of the matrix A that
are used throughout the subsequent proofs.

o In Appendix[A-2] we provide the detailed proof for Theorem [T} which characterises the spectral edge
of the anisotropic noise matrix.

o In Appendix[A:3] we present the proofs for Theorem 2 and Theorem [3] deriving the phase transition
threshold and the asymptotic eigenvector alignment.

 In Appendix[A74] we prove Theorem @ which describes the alignment of the second eigenvector with
the dominant noise direction.

o Finally, in Appendix [A75] we outline the derivation for Theorem [5] establishing the Central Limit
Theorem for the alignment fluctuations.

A.1 Proof of Lemma[dl

The foundation of our analysis is the relationship between the eigenvalues of the full matrix A and the
properties of the noise matrix Winiso. This relationship is established by analysing the resolvent of A.
The following lemma provides the exact, non-asymptotic characteristic equation for any outlier eigenvalues
created by the signal spike.

Lemma 1 (The Outlier Eigenvalue Equation). Let A = Bugvd + Waniso- An outlier eigenvalue \ of A that
is not an eigenvalue of Waniso must satisfy the equation:

1 = B{vo, (A — Wani50)7100> 9)

Proof. The proof is a direct application of the Sherman-Morrison formula, which gives an explicit expression
for the inverse of a matrix after a rank-one update (Golub & Van Loan) [2013]).

Let M be an invertible matrix and let u, v be column vectors. The Sherman-Morrison formula states:

M yT Mt

/A R
M+w')" =M Sy

(10)

19



Under review as submission to TMLR

provided that the denominator 1 + v* M ~1u # 0.

We wish to analyse the resolvent of our matrix A, which is defined as G(z) = (A — 2I)~! for a complex
number z. The eigenvalues of A are the points z in the complex plane where this inverse does not exist, i.e.,
where the resolvent has poles.

We can write A — zI as a rank-one update to the matrix (Waniso — 21):
A — 2T = (Waniso — 2I) + Buovd (11)

Let us identify the terms for the Sherman-Morrison formula:

o M= Waniso —zI

o U = /B’UO

e V=1
The Sherman-Morrison formula requires M to be invertible. Since the Lemma’s premise is that A is not an
eigenvalue of Wpiso, the matrix M = Wypiso — Al is indeed invertible, and the formula can be applied. We

define the resolvent of the noise matrix as Ghoise(2) = (Waniso — 2I) ™%, Applying the formula, we get the
resolvent of the full matrix A:

Gnoise (Z) (BUO)UgGHOiSG (Z)

G(2) = (A—2I)"" = Groise(2) — 12
(Z) ( : ) (z) 1+ 'Uanoise(Z)(ﬁ'UO) ( )
Simplifying the denominator gives:
. T .
G(Z) _ Gnoise(z) _ ﬂGnmse(Z)’UO’UO Gnmse(z) (13)

1+ B<'UO7 Gnoise(z)vo>

The poles of G(z) that are not already poles of Gpoise(2) can only occur where the denominator of the second
term is zero. An outlier eigenvalue A of A that is not an eigenvalue of the noise matrix Wypniso must therefore
satisfy:

1+ B<U07 Gnoise()\)v0> =0 (14)
Substituting the definition of the noise resolvent, Gpoise(A) = (Waniso — M) ™1, we get:
1 + B<UO; (Waniso - )\I>_1U0> =0 (15)
Rearranging this equation gives:
1= _ﬂ<007 (Waniso - )\I)71UO> (16)

To match the conventional form in the Lemma’s statement, we use the identity —(B)~! = (=B)~!. Applying
this, we absorb the negative sign into the inverse to yield the final result:

1= B<Uo, (>‘I - Waniso)711}0> (17)

This completes the proof. O

A.2 Proof of Theorem Il

This section provides the detailed proof for Theorem [I} which establishes the location of the spectral edge
for the anisotropic noise matrix Wpiso-

Theorem 6 (The Spectral Edge (Restated)). In the limit N — oo, the continuous part of the eigenvalue
spectrum of the anisotropic noise matriz Wapniso s supported on the compact interval [—7, 7], where the
spectral edge T is given by:

T = 2Cyeak (18)

Proof. The proof relies on the fundamental principle from random matrix theory that the continuous part
of the spectrum of a large random matrix is stable under finite-rank perturbations.
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Step 1: Decompose the Covariance Structure. We begin by decomposing the deterministic covariance
structure matrix C into a simple isotropic bulk and a finite-rank perturbation. Given our model specification
for C' (one eigenvalue cgrong With eigenvector ve, and N — 1 eigenvalues of cyeak), We can write its spectral
decomposition as:

C= CweakI + (Cstrong - cweak)vcvg (19)

Here, cweak! represents the isotropic “bulk” component, and the second term, (Cstrong — cweak)vcvg, is a
rank-one matrix representing the single anisotropic “spike”.

Step 2: Decompose the Noise Matrix into Bulk and Perturbation. Our goal is to show that Wpiso
can be written as an isotropic bulk term plus a finite-rank perturbation. To find the square root of C, we
apply the square root function to its eigenvalues. Given the spectral decomposition in the previous step, the
eigenvalues of C' are cgrong (With eigenvector ve) and cyeak (for all vectors orthogonal to ve). Applying the
square root function to these eigenvalues gives /Cstrong and \/Cweak. We can therefore construct C'/? using
the same eigenvectors:

01/2 = \/Cweak-[ + (\/Cstrong - \/Cweak)vcvg (20)

This is the form used in the subsequent expansion of Wapiso.

Let us define the constant d = ,/Cstrong — 1/Cweak for brevity. Now we expand the definition of Wipiso:
Waniso = 01/2W01/2 (21)

= (V/Cwear! + dvcvg)W(\/cweakI + dvcvg) (22)
= (\/ CweakI)W(\/ CweakI) + (\/ cweakI)W(dUCUg)

+ (dvcvg)W(\/cweakI) + (dvcv(T;)W(dvcvg) (23)
= Cweak W + d«/cweak(chvg + vcng) + d2vc(ngvc)vg (24)

Perturbation Matrix P

We have now decomposed Wpiso into an isotropic bulk term, Whuk = cweak W, and a perturbation matrix
P. We must show that P has finite rank. The rank of a sum of matrices is less than or equal to the sum of
their ranks. Let’s analyse the rank of each term in P:

o rank(Wocol) < rank(vevl) = 1.
o rank(vcviW) < rank(vevl) = 1.

o The term vZWuc is a scalar (a random variable). Therefore, the matrix v (vEWoe)vk is a scalar
multiple of the rank-one matrix vovg, so its rank is 1.

Since P is a sum of matrices of rank 1, its rank is finite and does not grow with V.

Step 3: Invoke the Stability Theorem. The core of the argument relies on the stability of the limiting
spectral distribution of a Wigner matrix under finite-rank perturbations. Let ps denote the empirical
spectral distribution (ESD) of an N x N matrix M, defined as the probability measure ppr = % Zfil Ox (M)
where \;(M) are the eigenvalues of M.

A foundational result in random matrix theory states that if Wiy is a sequence of Wigner matrices and Py is
a sequence of symmetric matrices with rank & fixed (i.e., independent of N), then the ESD of the perturbed
matrix, pw,+py, converges weakly in probability to the same limit as the ESD of the unperturbed matrix,
uw, (Baik et all |2005; Benaych-Georges & Nadakuditi, 2011)). That is, if pw, — wse where pg. is the
Wigner semicircle distribution, then it also holds that:

HWy + Py - Hsc (25)

This convergence implies that the support of the limiting measures is identical. While the perturbation Py
may cause a finite number of eigenvalues to separate from the main spectrum (i.e., “pop out” from the bulk),
it does not alter the continuous part of the limiting distribution or the location of its edges.
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Step 4: Characterise the Bulk Spectrum. Based on the stability principle, the continuous spectrum
of Waniso must be identical to the spectrum of its unperturbed component, Wik = cweaxW. The spectrum
of a standard Wigner matrix W is known to converge to the Wigner semicircle law, which is supported on the
interval [—2,2]. By linearity, scaling the matrix by a constant cyeax simply scales its eigenvalues. Therefore,
the spectrum of Wi,k is supported on the interval:

[_QCweak; 2cweak] (26)

Step 5: Conclusion. Since the continuous spectral support of Wyniso is identical to that of Wy, its
edges must be at +2cyear- We therefore conclude that the spectral edge is T = 2¢yeak- This completes the
proof. O

A.3 Proofs of Theorem 2] and Theorem 3]

This section provides the detailed proofs for Theorem [2| which establishes the phase transition threshold,
and Theorem [3] which quantifies the eigenvector alignment in the super-critical phase.

Theorem 7 (The Critical Threshold (Restated)). An isolated eigenvalue corresponding to the signal vg
emerges from the noise bulk if and only if the signal strength [ exceeds a critical threshold B.(«), given by:

Be(a) = ﬁ (27)

Cstrong Cweak

Theorem 8 (Asymptotic Alignment (Restated)). For a signal strength 8 > B.(«), the squared inner product
(alignment) between the principal eigenvector of A, 01, and the true signal vector vy converges to:

. BC(a)z
32

(D1, v0)> =1

(28)

Proof. The proofs for both theorems rely on analysing the characteristic equation from Lemma [I] in the
large-N limit.

Step 1: The Limiting Characteristic Equation. We start with the exact equation for an outlier
eigenvalue Ai:

1= B<U07 (Waniso - AII)_I’UO> (29)
In the large-N limit, the random quadratic form on the right-hand side converges in probability to a deter-
ministic quantity. It is a standard result for deformed random matrix ensembles that for any deterministic

unit vector w,
J\}im (tty Waniso — 2I) " tu) = (u, (C — 25(2)) " u) (30)
— 00

where ¥(z) is a matrix related to the Stieltjes transform of the limiting noise distribution (Benaych-Georges
& Nadakuditi, 2011]).

The phase transition occurs at the minimum value of 5 for which an eigenvalue emerges from the noise bulk.
This corresponds to the exact moment the outlier eigenvalue \; is equal to the spectral edge, 7. At this
critical signal strength, (., the characteristic equation from Lemma [I] becomes:

1= 8. lim (vg, (TI — Waniso) o) (31)
N—oo

A key, non-trivial result from the theory of spiked random matrices (Benaych-Georges & Nadakuditi, |2011;
Paull, [2007) is that the limiting resolvent, when evaluated at the spectral edge, relates to the inverse of the
noise covariance matrix as follows:

lim <UO7 (TI - Waniso)_lvo> = <’U07 C_lv(]> (32)

N—o00

Substituting this into the equation for the critical point gives:
1= Be(vo, C~ o) (33)

Solving for S, yields the formula for the critical threshold. The task thus reduces to calculating the quadratic
form on the right-hand side.
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Step 2: Calculating the Inverse of the Covariance Structure C. The matrix C' is a rank-one
perturbation of a scaled identity matrix: C = cweak! + (Cstrong — cweak)vcvg. We can find its inverse using
the Sherman-Morrison formula. Let M = cyeak!, % = (Cstrong — Cweak )Vc, and v = veo. The inverse is:

(CweakI) -1 (Cstrong - Cweak)vag (CweakI) -1

C—l = (Cy I -1 _ 34
( cak ) 1+ ’Ug(cwcak-[)il (Cstrong - chak)vc ( )
Cstrong — Cweak T
1 e e ekt
— I _ weak (35)

Cweak 1 + Cstrong — Cweak

(vesve)

Cweak

Since v¢ is a unit vector, (vo,ve) = 1. The denominator simplifies to 1 4 Strens ] = Sstrons - Qupstitutin
p C k C k g
this back, we get: ’

X 1 CStx-mcxg—iweak UCUg
- J— wea.
e (36)
weak Cwonk
1 Cst » — Cweak
= I — o WOk, vk (37)
Cweak CweakCstrong

Step 3: Calculating the Quadratic Form and Proving Theorem Now we compute the quadratic
form (vy, C~1wg):

1 —
<'UO, 0711}0> _ <'U07 ( 7— Cstrong — Cweak UC”EV) UO> (38)
Cweak CweakCstrong
- 1 Cstrong — Cweak T
= (vg,vg) — ———=——— (0, VCVHV0) (39)
Cweak CweakCstrong
1 S —
_ - Cstrong Cweak (<’U0, UC>)2 (40)
Cweak CweakCstrong
Using the definitions |Jvg]| = 1 and « = |(vg, v¢)|, we have (vg, v9) = 1 and ({vg, vc))? = o>
1 , — .
<U0, C_1UO> — _ cstrong Cweak aQ (41)
Cweak CweakCstrong
_ Cstrong — (Cstrong - vaeak)a2 (42)
CweakCstrong

2 2 2 2
o Cstrong(1 — ) + Cweakt o l-—«a + (&7

CweakCst rong Cweak Cst, rong

Since 8. = ((vo, C~tvg)) L, we have proven Theorem
Step 4: Proving Theorem The asymptotic alignment ¢ = |{1,v)|? can be derived from the resolvent.
A standard result from perturbation theory states that the alignment is given by the residue of the resolvent

at the outlier eigenvalue A;:
1

_ 44

q BQ F, (Al) ( )

where F’()\1) is the derivative of the limiting resolvent function F(z) = limy_so0 (vo, (M1 — Waniso) ™ *v0)
evaluated at A;. The full calculation of F’()\1) is technical, but it is a known function of the signal strength
and the critical threshold §.(«), which encapsulates the properties of the noise. For the BBP phase transition

in deformed Wigner ensembles, the established result from the literature is:
1

BPF' (M) = 1 Be(@? (45)
:@2
Substituting this directly into the equation for the alignment ¢ gives the statement of Theorem [3}
. Be(a)?
(01, 00)* =1 — 52 (46)
This completes the proof. O
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A.4 Proof of Theorem [4

This section provides the detailed proof for Theorem [ which describes the reorganisation of the eigenspace
in the super-critical phase.

Theorem 9 (Second Eigenvector Alignment (Restated)). In the super-critical phase (8 > B.(«)), the second
eigenvector of A, s, aligns with the principal noise direction vc.

Proof. The proof relies on analysing the interaction between the signal spike (Bvovd ) and the inherent spike
in the anisotropic noise matrix (Waniso) that corresponds to its dominant eigenvector, vo. We analyse the
characteristic equation for the outlier eigenvalues of the full matrix A.

Step 1: The Resolvent of the Anisotropic Noise. The noise matrix W, is itself a spiked model—a
rank-one perturbation of an isotropic Wigner matrix. As such, for csrong > Cweak, it has an outlier eigenvalue,
which we denote ¢, that lies outside the bulk spectrum [—7,7]. The corresponding eigenvector of Wapiso is
aligned with ve. For a value of z outside the bulk spectrum, the resolvent of the noise matrix, Gpoise(2) =
(Waniso — 2I)71, can be accurately approximated by its pole expansion. Since the outlier eigenvalue A¢ is
separated from the continuous bulk, its contribution is the dominant term in this expansion. We can thus
write:

Ucvg
)\C —Z
where Gpuik(z) represents the smaller contribution from the continuous part of the spectrum. The operator
norm of Gpuk(z) is smaller than the term involving the pole, especially for z close to A¢.

Gnoise(z) ~ + G(bulk(Z) (47)

Step 2: The Full Characteristic Equation. We now substitute this resolvent expansion into the
characteristic equation from Lemma [T}

1= B<UO; Gnoise()\)v0> (48)
”Uc”Ug
= B { vo, o T Gruik(N) ) vo (49)
o —
_ <U07 UC>2
=8 =+ o, Gou(A)vo) (50)
c
Using the definition o = |[{vg, v¢)|, this becomes:
1 a?
S Y B 1
5= e o T (51)

where Fhuk(A) = (vo, Gbhuk(A)vo). This equation implicitly defines the locations of the outlier eigenvalues
of the full matrix A.

Step 3: Analysis of the Solutions. The function on the right-hand side has a pole at A = A¢o. Let
us analyse the right-hand side of this equation as a function of A. Let us call it H(\). The function
H(\) is continuous and monotonically increasing on each of the intervals (1, A\¢) and (A¢, 00). Because the
function’s range covers (limy_,,+ H()\),00) on the first interval and (—oo,0) on the second, the Intermediate
Value Theorem guarantees that for any sufficiently small and positive value of 1/8, there must be exactly
two solutions, A1 and 5\2, outside the bulk spectrum. One solution, ;\1, will be larger than the original noise
outlier A\¢, while the other, 5\2, will lie between the bulk edge 7 and A¢. These correspond to the two largest
eigenvalues of A.

Step 4: The Structure of the Eigenvectors. A standard identity in matrix perturbation theory gives
the structure of the new eigenvector 0. It is derived by rearranging the eigenvalue equation A?y, = N
and shows that ¥ must be proportional to the action of the original resolvent on the perturbation vector
(Benaych-Georges & Nadakuditi, |2011; [Anderson et al., [2009):

~

g o< Gnoise(Ak)UO (52)
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We can now analyse the structure of the two outlier eigenvectors by substituting our expansion for Gyeise:

O ¢ M + Goue(Ar)vo (53)
c— Ak

This shows that the new eigenvectors are a linear combination of the noise direction v and a vector related
to the bulk resolvent acting on the signal vg.

Step 5: The Spectral Sorting Phenomenon. The two outlier eigenvectors, 97 and 95, must be orthog-
onal. We also know from Theorem [3| that as the signal strength 8 grows, the principal eigenvector ©; aligns
with the signal direction vy.

lim |<1A)1,U0>|2 =1 = 07 = v (54)
B—o0

The two “special” directions in the model are the signal, vy, and the dominant noise direction, vo. For
large 3, the two outlier eigenvectors ©; and 92 must span the same subspace as these two vectors. Since
v1 aligns with v, its orthogonal partner s must align with the remaining special direction available in the
subspace. Specifically, 72 aligns with the component of v that is orthogonal to vy. This demonstrates
the “sorting” phenomenon: the signal spike creates a new largest eigenvalue whose eigenvector aligns with
the signal direction, while the original noise spike is effectively displaced to the second eigenvector, whose
eigenvector aligns with the dominant noise direction (or more formally, its component in the orthogonal
subspace of vg). This completes the proof. O

A.5 Proof of Theorem

This section provides a detailed proof for Theorem [5, which establishes the Central Limit Theorem (CLT)
for the fluctuations of the eigenvector alignment around its asymptotic mean.

Theorem 10 (Central Limit Theorem for Alignment (Restated)). In the super-critical phase (B > f.()),
the fluctuations of the eigenvector alignment are asymptotically Gaussian. The scaled quantity converges in
distribution to:

N d
VN ([(81,00)|* = £(B, ) = N(0,0%(8, ) (55)
where f(B, «) is the asymptotic alignment from Theorem@ and 02 (B, ) is a deterministic variance function.
Proof. The proof is based on a standard strategy for deriving CLTs for eigenvector statistics in random matrix

theory. It involves linearising the system’s characteristic equations to understand how the fundamental
randomness of the noise matrix W propagates to the observable quantities of interest.

Step 1: Linearisation of the System. The proof begins by analysing the fluctuations of the outlier
eigenvalue \; and the quadratic form from Lemma [lf around their deterministic, large-N limits. Let A\
be the limiting value of the eigenvalue and let F(2) = limy_ o0 (v, (Waniso — 2I) "*vo). The characteristic
equation for the mean is 1 = BF(\y).

For a finite NV, we can write the random variables as a mean plus a fluctuation term:
o« A=A +0N
o (0, Waniso — M I)"tvg) = F(A1) + 6 Fiotal
A first-order Taylor expansion of the characteristic equation 1 = B3(vg, (Waniso — A1) ~tvg) yields:
1~ B (F(A) + F'(M)0A + 0Fiota) (56)

Since 1 = BF();), this simplifies to a linear relationship between the fluctuations:

_ 6Ftotal
F'(A)

5F/(5‘1)5)\1 + B0Fiotal ® 0 = 6A = (57)

This establishes that the fluctuation of the eigenvalue is proportional to the fluctuation of the resolvent term.
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Step 2: Linking Eigenvector and Eigenvector Fluctuations. There is a fundamental relationship in
matrix perturbation theory connecting the alignment of an eigenvector to the resolvent. For a spiked model,
the asymptotic alignment g = |(d1,v0)|? is given by:
1
_ 58

1= EEO (58)
Let ¢ = f(B, ) be the limiting alignment. The fluctuation dg = ¢ — ¢ can be found by a first-order Taylor
expansion of the above formula with respect to the random variable Aq:

d 1
W (ﬂ?F'(Al)) N )
. F”(S\l) -
T TEEor 0

This explicitly defines the deterministic constant of proportionality K (53, «).

Step 3: Asymptotic Distribution of the Resolvent Fluctuation. The final and most technical step
is to characterise the distribution of the driving random term, § Fiota. It is a major result in random matrix
theory that for this class of models, the fluctuations of such quadratic forms of the resolvent converge to a
Gaussian distribution. Specifically, assuming the entries of the baseline Wigner matrix W are Gaussian (a
common and standard assumption for these proofs), one can prove a CLT for the quantity:

VN ((vg, Groise(2)v0) — E[(v0, Gnoise(2)v0)]) 4, N(0,V(z)) (61)

The variance V(z) is a known, explicit function. For Gaussian entries, it is given by the limiting value of
%Tr(Gnoise(z)CGnoise(z)*C). This can be calculated using the decomposition of vy into components parallel
and orthogonal to v, which introduces the dependence on the alignment «. This result is established in
detail in papers such as |Benaych-Georges & Nadakuditi| (2011) and related works on the fluctuations of
spiked models.

Step 4: Assembling the Final Result. We can now assemble the final variance by propagating the
variance from Step 3 through the linear relationships established in the previous steps.

#*(8.0) = lim N -Var(dg) (62
= lim N Var <WF;&)))2 ~5>\1> (63)
- <52(P;/(&)))2>2'N1§;N'VMW1) (64)
- (ﬂ?f;&)))? ) - (Ff(lm ) e Ve o) (©5)
SEET "

This provides a direct, albeit complex, method for computing the final variance 0%(3, &) from the derivatives
of the limiting resolvent function F'(z) and the known variance V(z) of the driving noise term. This rigorous
path demonstrates that the fluctuations of the alignment are asymptotically Gaussian and provides the
formal procedure for computing their variance. This completes the proof. O

Interpretation. The complex formula for the variance, 0(3, ), can be understood intuitively by thinking
of it as the product of two terms: the inherent randomness of the system and the system’s sensitivity to that
randomness. The final variance quantifies the “jitter” in the measured alignment, and its formula reveals
precisely what makes the system more or less stable.
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« The Driving Noise (V(\;)): This term represents the fundamental source of randomness. Tt
is the variance of the resolvent term, which acts as the “driving noise” for the entire system. Its
magnitude depends on the alignment a because the signal vector vy experiences different statistical
properties of the noise depending on whether it is oriented along the strong (¢syrong) Or weak (Cweak)
environmental directions.

o The System’s Sensitivity (The F’ and F"” terms): The rest of the formula, particularly the high
power of F’()\;) in the denominator, acts as a “sensitivity amplifier”. The term F’()\;) measures
how “stiff” or stable the system is at its operating point. Near the phase transition, the system
becomes very “soft” and F”’ (5\1) approaches zero. This causes the sensitivity to blow up, leading to
the massive variance and instability characteristic of a tipping point.

o The Stabilising Effect of the Signal (The 1/3* term): The signal strength 3 appears with a
large power in the denominator. This shows that a strong signal has a powerful stabilising effect. It
makes the system much “stiffer” and dramatically reduces its sensitivity to the underlying random
fluctuations, causing the variance to decrease rapidly as the signal becomes stronger.
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