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Abstract

In this paper, we explore how one can efficiently identify the emergence of “winning
tickets” using distributed training techniques, and use this observation to design
efficient pretraining algorithms. Our focus in this work is on convolutional neural
networks (CNNs), which are more complex than simple multi-layer perceptrons,
but simple enough to exposure our ideas. To identify good filters within winning
tickets, we propose a novel filter distance metric that well-represents the model
convergence, without the need to know the true winning ticket or fully training
the model. Our filter analysis behaves consistently with recent findings of neural
network learning dynamics. Motivated by such analysis, we present the LOttery
ticket through Filter-wise Training algorithm, dubbed as LOFT. LOFT is a model-
parallel pretraining algorithm that partitions convolutional layers in CNNs by filters
to train them independently on different distributed workers, leading to reduced
memory and communication costs during pretraining. Experiments show that
LOFT i) preserves and finds good lottery tickets, while ii) it achieves non-trivial
savings in computation and communication, and maintains comparable or even
better accuracy than other pretraining methods.

1 Introduction

The Lottery Ticket Hypothesis (LTH) [8] claims that neural networks (NNs) contain subnetworks
(“winning tickets”) that can match the dense network’s performance when fine-tuned in isolation.
Yet, identifying such subnetworks often requires proper pretraining of the dense network. How to
efficiently find such subnetworks remains a widely open question: since LTH relies on a pretraining
phase, it is a de facto criticism that finding such pretrained models could be a burdensome task,
especially when one focuses on large NNs.

This burden has been eased with efficient training methodologies, which are often intertwined
with pruning steps. Simply put, one has to answer two fundamental questions: “When to prune?”
and “How to pretrain such large models?”. Focusing on “When to prune?”, one can prune before
[23, 22, 35], after [21, 13, 7, 12, 24, 29, 11, 36, 41], and/or during pretraining [8, 33, 27, 2, 6, 30, 28].1
Works like SNIP [23, 22] and GraSP [35] aim to prune without pretraining, while suffering some
accuracy loss. Pruning after training often leads to favorable accuracy, with the expense of fully
training a large model. A compromise between the two approaches exist in early bird tickets [39],
where one could potentially avoid the full pretraining cost, but still identify “winning tickets”, by
performing a smaller number of training epochs and lowering the precision of computations. This
finding reveals the opportunity to design more efficient pretraining algorithms that target specifically
at identifying the winning tickets for larget models.

1LTH approaches, while they originally imply pruning after training, include pruning at various stages during
pretraining to find the sparse subnetworks.
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Focusing on “How to pretrain large models?”, modern large-scale neural networks come with
significant computational and memory costs. Researchers often turn to distributed training methods,
such as data parallel and model parallel [43, 1, 34, 3, 42, 9, 10, 4], to enable heavy pretraining towards
finding winning tickets, by using clusters of compute nodes. Yet, data parallelism needs to update
the whole model on each worker—which still results in a large memory and computational cost.
To handle such cases, researchers utilize model parallelism, such as Gpipe [17], to reduce the per
node computational burden. Traditional model parallelism enjoys similar convergence behaviour as
centralized training, but needs to synchronize at every training iteration to exchange intermediate
activations and gradient information between workers, thus often incurring high communication cost.

Our approach and contributions. In this work, we propose a new model-/data-parallel pretraining
method on the one-shot pruning setting that can efficiently reveal winning tickets for convolutional
neural networks (CNNs). In particular, we center on the following questions:

“What is a characteristic of a good pretrained CNN that contains the winning ticket? How will such
a criterion inform our design towards efficient pretraining?”

Prior works show that filter-wise pruning is more preferable compared with weight pruning for
CNNs [17, 16, 5, 37, 25]. Our approach operates by decomposing the full network into narrow
subnetworks via filter-wise partition during pretraining. These subnetworks, which are randomly
recreated intermittently during the pretraining process, are trained independently and their updates
are periodically aggregated into the global model. Because each subnetwork is much smaller than
the full model, our approach also enables scaling beyond the memory limit of a single GPU. Our
methodology allows the discovery of winning tickets with less memory and a lower communication
budget. The contributions of our work are summarized as follows:

• We propose a metric to quantify the distance between tickets in different stages of pretraining,
allowing us to characterize the convergence to winning tickets throughout the pretraining process.

• We identify that such convergence behavior suggests an alternative way of pretraining: we propose
a novel data-/model-parallel pretraining method through filter-wise partition of CNNs and iterative
training of such subnetworks.

• We theoretically show that our proposed method achieves CNN weight that is close to the weight
found by gradient descent in a simplified scenario.

• We empirically show that our method provides a better or comparable winning ticket, while being
memory and communication efficient.

2 Identifying Winning Tickets Early in the Training Process

The CNN model [14, 19, 31] is composed of convolutional layers, batch norm layers [18], pooling
layers, and a final linear classifier layer. Our goal is to retrieve a structured winning ticket, through
partitioning and pruning the filters in the convolutional layers. Let pi denote the number of input
channels for the i-th convolutional layer. Correspondingly, the output channel of the i-th layer is
the same as the input channel of the (i + 1)-th layer, which is pi+1. Let hi,wi be the height and
width of the input feature maps, respectively. Then, the i-th convolutional layer transforms the input
feature map xi ∈ Rpi×hi×wi into the output feature map xi+1 ∈ Rpi+1×hi+1×wi+1 by performing
2D convolutions on the input feature map with pi+1 filters of size 3 × 3, where the j-th filter is
denoted as Fi,j ∈ Rpi×3×3. Thus the total filter weight for the i-th layer is Fi ∈ Rpi+1×pi×3×3.
Formally, prunning 1/k of the filters in the i-th layer is equivalent to discarding pi+1/k filters. Thus the
resulted total pruned filter weight is in Rpi+1 · (k − 1)/k×pi×3×3 and the output feature map xi+1 is in
Rpi+1 · (k − 1)/k×hi+1×wi+1 .

2.1 Evaluate the distance of two pretrained models
Borrowing techniques from search system rankings [20], we propose a filter distance metric, based on
a position-weighted version of Spearman’s footrule [32]. In particular, consider the filters at epochs
X and Y on the i-th layer, namely F (X)

i ,F (Y )
i . We calculate the ℓ2-norm of F (X)

i,j ,F (Y )
i,j for each

filter index j ∈ [pi+1] and sort them by magnitude. We denote the two sorted list with length pi+1 as
R(X) and R(Y ), with each containing the ℓ2-norm of the filters,

∥∥∥F (X)
i,j

∥∥∥
2

and
∥∥∥F (Y )

i,j

∥∥∥
2
.
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We represent the change in ranking from R(X) to R(Y ) as σ. Namely, if x ∈ R(X) is the i-th element
in R(X), then, the ranking of x in R(Y ) is denoted as σ(i). The original Spearman’s footrule defines
the displacement of element i as |i− σ(i)|, leading to the total displacement of all elements as:

F (σ) =
∑
i

|i− σ(i)|.

Given weights wi’s for the elements, the weighted displacement for element i becomes wi ·∣∣∣∑j<i wj −
∑

σ(j)<σ(i) wj

∣∣∣, leading to the total weighted displacement as follows: 2

Fw(σ) =
∑
i

wi · (|
∑
j<i

wj −
∑

σ(j)<σ(i)

wj |).

To put emphasis on the correct ranking of the top elements, we set the position weight for the i-th
ranking element as 1/i. To further simplify calculations, we approximate

∑n
i=1

1
i ≈ ln(n)− ln(1)

where ln(·) is the natural logarithm. The above lead to the following definition for our filter distance:

Ffilter(σ) =
∑
i

1
i · |ln(i)− ln(σ(i))| .

For the case where the two lists of pruned filters do not contain the same elements, we can naturally
define the distance when the i-th element is not in the other list to be | ln(l + 1) − ln(i)|; l is the
length of the pruned filter list. This filter distance metric is fundamentally different from the mask
distance proposed in [38]. We compare against these early-pruning methods in the experiments.

2.2 Rethinking the Property of Winning Tickets

Through empirical analysis, we observe that training the CNN weights until loss converges is not
necessary for the discovery of winning tickets. However, many existing pretraining algorithms do not
exclude heavy training over the whole CNN model. These facts demand a new pretraining algorithm,
targeting specifically at efficiently finding winning tickets.

We propose sampling and training different sets of tickets during different stages of the pretraining. In
this way, the algorithm is expected to “touch” upon the potential winning tickets at certain iterations.
We conjecture (this is empirically shown in our experiments) that important filters in such winning
tickets can be preserved and further recovered at the end of pretraining using our approach. These
observations led us to the definition of the LOFT algorithm.

3 LOFT: Finding Lottery Tickets Through Filter-wise Training

Algorithm 1 LOFT Algorithm

1: Parameter: T synchronization iterations in pretraining,
S workers, ℓ local iterations, W CNN weights,

2: h(W )← randomly initialized CNN.
3: for t = 0, . . . , T − 1 do
4: {hs(Ws)}Ss=1 = filterPartition(h(W ), S)
5: Distribute each hs(Ws) to a different worker.
6: for s = 1, . . . , S do
7: Train hs(Ws) for ℓ iterations using local SGD.
8: end for
9: h(W ) = aggregate

(
{hs(Ws)}Ss=1

)
.

10: end for

We treat “sampling and training sets
of tickets” as a filter-wise decompo-
sition of a given CNN, where each
ticket is a subnetwork with a sub-
set of filters. The LOFT algorithm
that implements our ideas is shown
in Algorithm 1. Each block within a
CNN typically consists of two iden-
tical convolutional layers, convi and
convi+1. Our methodology operates
by partitioning the filters of these lay-
ers, Fi and Fi+1, to different sub-
networks –see filterPartition()
step in Algorithm 1– in a structured,
disjoint manner. These subnetworks

are trained independently –see local SGD steps in Algorithm 1– before aggregating their updates into
the global model by directly placing the filters back to their original place—see aggreegate() step
in Algorithm 1. The full CNN is never trained directly.

Our methodology of choosing tickets/subnetworks avoids partitioning layers that are known to
be most sensitive to pruning, such as strided convolutional blocks [26]. Parameters that are not

2Using other norm calculation like ℓ2-norm will not affect the overall characteristic of filter distance in
analysis.
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partitioned are shared among subnetworks, so their values must be averaged when the updates of
tickets/subnetworks are aggregated into the global model.

Compared with common distributed protocols, our pretraining methodology i) reduces the communi-
cation costs, since we only communicate the tickets/subnetworks; and ii) reduces the computational
and memory costs on each worker, since we only locally train the sampled tickets/subnetworks that
are smaller than the global model. From a different pespective, our approach allows pretraining
networks beyond the capacity of a single-GPU: The global model could be a factor of O(S) wider
than each subnetwork, allowing the global model size to be extended far beyond the capacity of single
GPU. The ability to train such “ultra-wide" models is quite promising for pruning purposes.

After pretraining with LOFT, we perform standard pruning on the whole network to recover the
winning ticket, and use standard training techniques over this winning ticket until the end of training.

Theoretical result. We perform theoretical analysis on a one-hidden-layer CNN, and show that the
trajectory of the neural network weight in LOFT stays near to the trajectory of gradient descent.
Theorem 1. Let f(·, ·) be a one-hidden-layer CNN with the second layer weight fixed. Assume
the number of hidden neurons satisfies m = Ω((n4K2/λ4

0δ
2) ·max{n, d}) and the step size satisfies

η = O
(
λ0

n2

)
: Then, under mild assumptions, with probability at least 1−O (δ) we have:

E[MT ]

[∥∥∥WT − ŴT

∥∥∥2

F

]
+ η

T−1∑
t=0

E[MT ]

[∥∥∥f (X,Wt)− f
(
X,Ŵt

)∥∥∥2

2

]
≤ O

(
n2

√
d

λ2
0κm

1
4
√
δ
+ 2η2Tθ2(1−ξ)λ0

S

)
.

Remarks. Intuitively, this theorem states that the sum of the expected weight difference in the T -th
iteration (i.e., E[MT ][∥WT − ŴT ∥2F ]) and the aggregation of the step-wise difference of the neural
network output between LOFT and gradient descent (i.e.,

∑T−1
t=0 E[MT ]∥f (X,Wt)− f

(
X,Ŵt

)
∥22)

is bounded and controlled by the quantity on the right-hand side. I.e., both the weights found by
LOFT as well as the output of LOFT are close to the ones found by regular training. Notice that
increasing the number of filters m and the number of subnetworks S will drive the bound of the
summation to zero.

SETTING NO-PRUNE METHODS
PRUNING RATIO COMM COST IMPROV.80% 50% 30%

RESNET34
CIFAR-100 75.93

GPIPE-2 75.51 76.00 131.88G
LOFT-2 76.11 77.07 104.78G 1.26×
GPIPE-4 75.51 76.00 461.60G
LOFT-4 75.05 76.51 144.66G 3.19×

PRERESNET-18
IMAGENET

70.71

GPIPE-2 66.71 69.14 70.29 20954.24G
LOFT-2 65.41 69.12 69.64 791.09G 21.60×
GPIPE-4 66.71 69.14 70.29 52385.59G
LOFT-4 65.60 68.93 69.77 1284.84G 40.77×

Table 1: Left: Fine-tuned accuracy for different pretraining methods at different pruning ratios.
NO-PRUNE corresponds to full CNN training without pruning. Right: Total communication costs
(COMM) of model parallel baseline (GPipe) [17] and LOFT during pretraining. Number after method
name represents the number of parallel worker used.

4 Experiments
We show that LOFT can preserve the winning tickets and non-trivially reduce costs during pretraining.
We illustrate that LOFT does not recover the winning tickets by chance: LOFT converges to winning
tickets faster and provide better tickets for all pretraining length.

Experimental Setup. For each setting, we consider a workflow where we pre-train for 20 epochs
and then fine-tune for 90 epochs. We consider 3 networks: PreActResNet-18, PreActResNet-34 [15],
and WideResNet-34 [40] to characterize our performance on models of different sizes and structures.
We test these settings on the CIFAR-100, and ImageNet.

Table 1 shows the performance comparison for LOFT and Gpipe under various settings. While
LOFT inherits the memory efficiency from model-parallel training methods, it further reduces the
communication cost from 1.26× up to 40.77×, as shown in Table 1. This is achieved by i) changing
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the way of decomposing the network such that each worker can host an independent subnetwork and
train locally without communication, which greatly reduces the communication frequency; and ii)
each worker only exchange the weight of the subnetwork after each round of local training instead of
transmitting activation maps and gradients.
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