
Gradient Guidance for Diffusion Models:
An Optimization Perspective

Yingqing Guo ∗ Hui Yuan ∗ Yukang Yang Minshuo Chen Mengdi Wang

Princeton University

Abstract

Diffusion models have demonstrated empirical successes in various applications
and can be adapted to task-specific needs via guidance. This paper studies a form
of gradient guidance for adapting a pre-trained diffusion model towards optimizing
user-specified objectives. We establish a mathematical framework for guided
diffusion to systematically study its optimization theory and algorithmic design.
Our theoretical analysis spots a strong link between guided diffusion models and
optimization: gradient-guided diffusion models are essentially sampling solutions
to a regularized optimization problem, where the regularization is imposed by the
pre-training data. As for guidance design, directly bringing in the gradient of an
external objective function as guidance would jeopardize the structure in generated
samples. We investigate a modified form of gradient guidance based on a forward
prediction loss, which leverages the information in pre-trained score functions
and provably preserves the latent structure. We further consider an iteratively
fine-tuned version of gradient-guided diffusion where guidance and score network
are both updated with newly generated samples. This process mimics a first-order
optimization iteration in expectation, for which we proved Õ(1/K) convergence
rate to the global optimum when the objective function is concave. Our code is
released at https://github.com/yukang123/GGDMOptim.git.

1 Introduction
Diffusion models have emerged as a significant advancement in the field of generative artificial
intelligence, offering state-of-the-art performance in image generation [58, 56, 22]. These models
operate by gradually transforming a random noise into a structured output, utilizing the score function
learned from data. One of the key advantages of diffusion models is their flexibility which allows
controlled sample generation for task-specific interest, excelling diffusion models in a wide range of
applications, such as content creation, sequential decision making, protein engineering [38, 1, 29, 11].

Controlling the generation of large generative models stands at the forefront of AI. Guidance and
fine-tuning are two most prevalent approaches for controlling the generation of diffusion models.
Unlike fine-tuning which changes the weights of pre-trained models, guidance mechanism enables a
more directed and flexible control. Adding gradient-based guidance during inference was pioneered
by classifier guidance [60, 22], which involves training a time-dependent classifier. Diffusion
Posterior Sampling (DPS) [16] introduced a fully training-free form of gradient-based guidance,
which removes the dependence on time. This method has since been explored in numerous empirical
studies [17, 37, 43, 65, 57, 70, 4, 35]. However, despite these empirical successes, significant gaps

∗Equal contribution. Department of Electrical and Computer Engineering, Princeton University. Authors’
emails are: {yg6736, huiyuan, yy1325, minshuochen, mengdiw}@princeton.edu.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/yukang123/GGDMOptim.git

remain in the theoretical understanding and guarantees of gradient-based guidance in diffusion
models.

Problem and Challenges Suppose we have a pre-trained diffusion model that can generate new
samples faithfully, maintaining the latent structure of data. We study the problem of adapting this
diffusion model to generate new samples that optimize task-specific objectives, while maintaining
the learned structure in new samples. This problem has a strong connection to classic optimization,
guided diffusion offers new possibilities to optimize complex design variables such as images, videos,
proteins, and genomes [7, 66, 42] in a generative fashion. More comprehensive exposure to this
middle ground can be found in recent surveys [69, 12, 30].

Given the optimization nature of this problem, it’s critical to answer the following theoretical
questions from an optimization perspective: (i) Why doesn’t simply applying the gradient of the
objective function w.r.t. the noised sample work? (ii) How to add a guidance signal to improve the
target objective without compromising the sample quality? (iii) Can one guarantee the optimization
properties of new samples generated by guided diffusion? (iv) What are the limits of adaptability in
these guided models?

Noise

Pre-trained Diffusion
<latexit sha1_base64="OhVjuL2UuksxRGnetmEa4wL3BCw=">AAACCHicbVDLSsNAFL3xWeur6tLNYBFclUR8dFnQhcsK9gFtKJPJpB06mcSZiVBCfsAfcKt/4E7c+hf+gN/hpM3Cth64cDjnXu7heDFnStv2t7Wyura+sVnaKm/v7O7tVw4O2ypKJKEtEvFIdj2sKGeCtjTTnHZjSXHocdrxxje533miUrFIPOhJTN0QDwULGMHaSG4/xHpEME9vs8F4UKnaNXsKtEycglShQHNQ+en7EUlCKjThWKmeY8faTbHUjHCalfuJojEmYzykPUMFDqly02noDJ0axUdBJM0Ijabq34sUh0pNQs9s5iHVopeL/3m9RAd1N2UiTjQVZPYoSDjSEcobQD6TlGg+MQQTyUxWREZYYqJNT3NffJVHy8qmGGexhmXSPq85V7XL+4tqo15UVIJjOIEzcOAaGnAHTWgBgUd4gVd4s56td+vD+pytrljFzRHMwfr6BXxmmrU=</latexit>Dk

Guided Diffusion

Noise

Weighted Fine-tuning
via all past generated data

<latexit sha1_base64="y5+B4UdWOZ+PfrBSSs9ugb/X6ZI=">AAACJXicbVDLSsNAFJ3Ud31VXboZLIIglER8LUUXuqxgVWhKmUxu2qGTBzM3Ygn5BX/DH3Crf+BOBFfu/A4naRdqPTBw5tzHuRwvkUKjbX9Ylanpmdm5+YXq4tLyymptbf1ax6ni0OKxjNWtxzRIEUELBUq4TRSw0JNw4w3OivrNHSgt4ugKhwl0QtaLRCA4QyN1azu6m7nYB2Q53aUuwj2WSzMFfp6Vfx1k53nerdXthl2CThJnTOpkjGa39uX6MU9DiJBLpnXbsRPsZEyh4BLyqptqSBgfsB60DY1YCLqTleY53TaKT4NYmRchLdWfExkLtR6GnukMGfb131oh/ldrpxgcdzIRJSlCxEdGQSopxrSIh/pCAUc5NIRxJcytlPeZYhxNiL9cfF2clldNMM7fGCbJ9V7DOWwcXO7XT07HEc2TTbJFdohDjsgJuSBN0iKcPJAn8kxerEfr1Xqz3ketFWs8s0F+wfr8Bp3xpw0=</latexit>

s✓ + G

<latexit sha1_base64="HMa6LYaTUXy3E6aoJl84q96txDY=">AAACLXicbVDLSsNAFJ34rPUVdelmsAhuLIlIdVnUhcsK9gFNCJPJpB06mYSZiVBCfsPf8Afc6h+4EMSl/oaTNos+vDDD4Zx7ueceP2FUKsv6NFZW19Y3Nitb1e2d3b198+CwI+NUYNLGMYtFz0eSMMpJW1HFSC8RBEU+I11/dFvo3SciJI35oxonxI3QgNOQYqQ05ZmWEyE1xIhld7lnQQenif6CWMkSz8jZ6NzOPbNm1a1JwWVgl6AGymp55o8TxDiNCFeYISn7tpUoN0NCUcxIXnVSSRKER2hA+hpyFBHpZpPLcniqmQCGsdCPKzhhZycyFEk5jnzdWRiVi1pB/qf1UxVeuxnlSaoIx9NFYcqgimEREwyoIFixsQYIC6q9QjxEAmGlw5zbEsjCWl7VwdiLMSyDzkXdbtQbD5e15k0ZUQUcgxNwBmxwBZrgHrRAG2DwDF7BG3g3XowP48v4nrauGOXMEZgr4/cPq7yo5w==</latexit>D0 [· · · [Dk�1

Gradient-Guided Diffusion for Generative Optimization

<latexit sha1_base64="6pexyF+KX2Kl39GP0TBaRnShkjU=">AAACN3icbVDLSsNAFJ3UV42vqks3g63gxpIUfOCq6MZlBWuFpoTJ5LYOnUzCzEQpIf/ib/gDbnXryl1x6x84bSP4OjBwOOdc7p0TJJwp7TivVmlufmFxqbxsr6yurW9UNreuVZxKCm0a81jeBEQBZwLammkON4kEEgUcOsHwfOJ37kAqFosrPUqgF5GBYH1GiTaSXzn1AhgwkVEQGmRu1+59p4Y9z655d2Gs1Yzf+9nwwM1rtgci/Mr6lapTd6bAf4lbkCoq0PIrYy+MaRqZccqJUl3XSXQvI1IzyiG3vVRBQuiQDKBrqCARqF42/WOO94wS4n4szRMaT9XvExmJlBpFgUlGRN+q395E/M/rprp/0suYSFINgs4W9VOOdYwnheGQSaCajwwhVDJzK6a3RBJqOvi5JVST03LbFOP+ruEvuW7U3aP64WWj2jwrKiqjHbSL9pGLjlETXaAWaiOKHtATekYv1qP1Zo2t91m0ZBUz2+gHrI9PvamrMw==</latexit> w0
...

wk�1

(optional) update

<latexit sha1_base64="BoqCalhzOuziVXznzoDFT3GXjT4=">AAACGHicbVDLSsNAFJ3UV62vqstugkVwVZKCD1wVXOiygm2FtpTJ5KYdOnkwcyOWkIW/4Q+41T9wJ27d+QN+h9M0C9t6YODMuY9zOU4kuELL+jYKK6tr6xvFzdLW9s7uXnn/oK3CWDJosVCE8t6hCgQPoIUcBdxHEqjvCOg446tpvfMAUvEwuMNJBH2fDgPucUZRS4NypYfwiNmeRIKbJtlfecl1mg7KVatmZTCXiZ2TKsnRHJR/em7IYh8CZIIq1bWtCPsJlciZgLTUixVElI3pELqaBtQH1U8y89Q81opreqHUL0AzU/9OJNRXauI7utOnOFKLtan4X60bo3fRT3gQxQgBmxl5sTAxNKeJmC6XwFBMNKFMcn2ryUZUUoY6tzkXV01PS0s6GHsxhmXSrtfss9rpbb3auMwjKpIKOSInxCbnpEFuSJO0CCNP5IW8kjfj2Xg3PozPWWvByGcOyRyMr1+tIKHa</latexit>

G

<latexit sha1_base64="+a+XvKO9+e/Tk76tXPL9VPri6AY=">AAACIXicbVDJSgNBEO2Je9xGPXppjEJECDPidhQ9KHhRMEZIwtDTqUkaexa6a8QwzA/4G/6AV/0Db+JNvPsddpaDJj5o+vFeFVX1/EQKjY7zaRUmJqemZ2bnivMLi0vL9srqjY5TxaHKYxmrW59pkCKCKgqUcJsoYKEvoebfnfb82j0oLeLoGrsJNEPWjkQgOEMjefam9rIGdgAZLQ9+72I7pzu0gfCAOsjOcu/Cs0tOxemDjhN3SEpkiEvP/m60Yp6GECGXTOu66yTYzJhCwSXkxUaqIWH8jrWhbmjEQtDNrH9NTreM0qJBrMyLkPbV3x0ZC7Xuhr6pDBl29KjXE//z6ikGR81MREmKEPHBoCCVFGPai4a2hAKOsmsI40qYXSnvMMU4mgD/TGnp3mp50QTjjsYwTm52K+5BZf9qr3R8MoxolqyTDVImLjkkx+ScXJIq4eSRPJMX8mo9WW/Wu/UxKC1Yw5418gfW1w+f9KOx</latexit>

s✓(✓K) + GK
<latexit sha1_base64="AP2GAHoYKxMVT0aDSGkmNO0QvZU=">AAACA3icbVDLSsNAFJ34rPVVdelmsAiuSiJSXRbduKxgH9CGMpnctEMnD2ZuhBK69Afc6h+4E7d+iD/gdzhps7CtBwYO59zLPXO8RAqNtv1tra1vbG5tl3bKu3v7B4eVo+O2jlPFocVjGauuxzRIEUELBUroJgpY6EnoeOO73O88gdIijh5xkoAbsmEkAsEZGqmrB30cAbJBpWrX7BnoKnEKUiUFmoPKT9+PeRpChFwyrXuOnaCbMYWCS5iW+6mGhPExG0LP0IiFoN1slndKz43i0yBW5kVIZ+rfjYyFWk9Cz0yGDEd62cvF/7xeisGNm4koSREiPj8UpJJiTPPPU18o4CgnhjCuhMlK+YgpxtFUtHDF13m0adkU4yzXsEralzWnXqs/XFUbt0VFJXJKzsgFccg1aZB70iQtwokkL+SVvFnP1rv1YX3OR9esYueELMD6+gWPOJiW</latexit>s✓

Adapted Diffusion

Noise

<latexit sha1_base64="EZETYmX9nRyL1Nkln4gi+uYkcWE=">AAACCXicbVDLSsNAFJ3UV62vqks3g0VwVRKR6rLoxmUF+4A2hslk2g6dTMLMjVBCvsAfcKt/4E7c+hX+gN/hpM3Cth64cDjnXu7h+LHgGmz72yqtrW9sbpW3Kzu7e/sH1cOjjo4SRVmbRiJSPZ9oJrhkbeAgWC9WjIS+YF1/cpv73SemNI/kA0xj5oZkJPmQUwJGetReOoAxA+KlkyzzqjW7bs+AV4lTkBoq0PKqP4MgoknIJFBBtO47dgxuShRwKlhWGSSaxYROyIj1DZUkZNpNZ6kzfGaUAA8jZUYCnql/L1ISaj0NfbMZEhjrZS8X//P6CQyv3ZTLOAEm6fzRMBEYIpxXgAOuGAUxNYRQxU1WTMdEEQqmqIUvgc6jZRVTjLNcwyrpXNSdRr1xf1lr3hQVldEJOkXnyEFXqInuUAu1EUUKvaBX9GY9W+/Wh/U5Xy1Zxc0xWoD19Qvg5JuM</latexit>s✓k

Compute Gradient Guidance
<latexit sha1_base64="BoqCalhzOuziVXznzoDFT3GXjT4=">AAACGHicbVDLSsNAFJ3UV62vqstugkVwVZKCD1wVXOiygm2FtpTJ5KYdOnkwcyOWkIW/4Q+41T9wJ27d+QN+h9M0C9t6YODMuY9zOU4kuELL+jYKK6tr6xvFzdLW9s7uXnn/oK3CWDJosVCE8t6hCgQPoIUcBdxHEqjvCOg446tpvfMAUvEwuMNJBH2fDgPucUZRS4NypYfwiNmeRIKbJtlfecl1mg7KVatmZTCXiZ2TKsnRHJR/em7IYh8CZIIq1bWtCPsJlciZgLTUixVElI3pELqaBtQH1U8y89Q81opreqHUL0AzU/9OJNRXauI7utOnOFKLtan4X60bo3fRT3gQxQgBmxl5sTAxNKeJmC6XwFBMNKFMcn2ryUZUUoY6tzkXV01PS0s6GHsxhmXSrtfss9rpbb3auMwjKpIKOSInxCbnpEFuSJO0CCNP5IW8kjfj2Xg3PozPWWvByGcOyRyMr1+tIKHa</latexit>

G

Weights <latexit sha1_base64="qEXaESVr1fTBbnNbrKvEPvC+E8A=">AAACGHicbVDLSsNAFJ34rPVVddnNYBFclUSkuiyK4LKCfUAawmQybYdOHszcSEvMwt/wB9zqH7gTt+78Ab/DSduFbT0wcDjnXu6Z48WCKzDNb2NldW19Y7OwVdze2d3bLx0ctlSUSMqaNBKR7HhEMcFD1gQOgnViyUjgCdb2hte5335gUvEovIdxzJyA9EPe45SAltxSuTsgkHYDAgPPS2+yzB65Jn7EIxcct1Qxq+YEeJlYM1JBMzTc0k/Xj2gSsBCoIErZlhmDkxIJnAqWFbuJYjGhQ9JntqYhCZhy0sknMnyiFR/3IqlfCHii/t1ISaDUOPD0ZJ5WLXq5+J9nJ9C7dFIexgmwkE4P9RKBIcJ5I9jnklEQY00IlVxnxXRAJKGge5u74qs8WlbUxViLNSyT1lnVqlVrd+eV+tWsogIqo2N0iix0geroFjVQE1H0hF7QK3ozno1348P4nI6uGLOdIzQH4+sXngagnw==</latexit>

Ê[x0|xt]

<latexit sha1_base64="j/KiiU24Qs2OvaXioqDjIz7NBJQ=">AAACNHicbVDLSsNAFJ34tr6qLt0MFkEXlqSIuhRFcKlgVWhiuJlO28HJJMzciCXmU/wNf8CtfoDgTnTpNzipXfg6MHA4517umROlUhh03WdnZHRsfGJyaroyMzs3v1BdXDozSaYZb7JEJvoiAsOlULyJAiW/SDWHOJL8PLo6KP3za66NSNQp9lMexNBVoiMYoJXC6o6vIJIQ5jchFnS9Tzdp99LHJKV+DzD3Y8BeFOWHRdG6CV16S+1csHHZCKs1t+4OQP8Sb0hqZIjjsPrutxOWxVwhk2BMy3NTDHLQKJjkRcXPDE+BXUGXtyxVEHMT5IMPFnTNKm3aSbR9CulA/b6RQ2xMP47sZBnY/PZK8T+vlWFnN8iFSjPkin0d6mSSYkLLtmhbaM5Q9i0BpoXNSlkPNDC0nf640jZltKJii/F+1/CXnDXq3nZ9+2Srtrc/rGiKrJBVsk48skP2yBE5Jk3CyB15II/kybl3XpxX5+1rdMQZ7iyTH3A+PgFg86su</latexit>

rxt
(y � g>Ê[x0|xt])

2

Pre-trained Diffusion

Gradient Query
<latexit sha1_base64="8RbS992UirR97//cna4GH7idu+Q=">AAAB/HicbVBLSgNBFHwTfzH+oi7dNAbBVZgRiS6DblwmYD6QDKGn503SpOdDd48QQryAW72BO3HrXbyA57AnmYVJLGgoqt7jVZeXCK60bX9bhY3Nre2d4m5pb//g8Kh8fNJWcSoZtlgsYtn1qELBI2xprgV2E4k09AR2vPF95neeUCoeR496kqAb0mHEA86oNlJzOChX7Ko9B1knTk4qkKMxKP/0/ZilIUaaCapUz7ET7U6p1JwJnJX6qcKEsjEdYs/QiIao3Ok86IxcGMUnQSzNizSZq383pjRUahJ6ZjKkeqRWvUz8z+ulOrh1pzxKUo0RWxwKUkF0TLJfE59LZFpMDKFMcpOVsBGVlGnTzdIVX2XRZiVTjLNawzppX1WdWrXWvK7U7/KKinAG53AJDtxAHR6gAS1ggPACr/BmPVvv1of1uRgtWPnOKSzB+voF8EOVcw==</latexit>g

<latexit sha1_base64="D0sht2uGXguHU9h/RBQWcv/7Mqg=">AAAC0HicdVFLb9NAEF6bVwmvAEcuKyKkokAUV1UpB6RKHOBYUNNEio21Xo/jVdcP7Y5Lo9UKceXvceIP8DtYO0FKExhptd98M6P5ZiappdA4Hv/y/Bs3b92+s3e3d+/+g4eP+o+fnOuqURwmvJKVmiVMgxQlTFCghFmtgBWJhGly8b6NTy9BaVGVZ7isISrYohSZ4AwdFfd/hgXDXBUmtXQW4xcTSsiQKVV9te86PA8zxbgJrDnYTRnqOMQckHXc/nb4FT17jaESixxfDkOEK+wUGwWpNZ2vM/PB/q/4b6ld/RHdEIvDDSes3IztCszUxhj3B+PRuDO6C4I1GJC1ncb932Fa8aaAErlkWs+DcY2RYQoFl2B7YaOhZvyCLWDuYMkK0JHpRrH0hWNSmlXKvRJpx25WGFZovSwSl9kK1tuxlvxXbN5gdhwZUdYNQslXjbJGUqxoe0maCgUc5dIBxpVwWinPmbsVuntf65LqVprtucUE22vYBecHo+BodPTpcHByuF7RHnlGnpN9EpA35IR8JKdkQrj31ou93BP+Z//K/+Z/X6X63rrmKblm/o8/nPDnwA==</latexit>

dX t =


1

2
X t + s✓ (X t , T � t) + G (X t , t)

�
dt + dW t

Figure 1: Gradient-guided diffusion model for generative optimization, with or without adaptive fine-
tuning. A pre-trained diffusion model is guided with an additional gradient signal from an external objectives
function towards generating near-optimal solutions.

Scope and Contribution. In this paper, we investigate guided diffusion from an optimization
perspective. To answer the four questions above, we propose an algorithmic framework, see Figure 1
for an illustration. Our main contributions are summarized as follows:
• Study structure-preserving guidance. We study the design of guidance under structural data
distribution belonging to a latent low-dimensional subspace (Assumption 1). We diagnose the failure
of naive gradient guidance and study the theoretical aspects of guidance based on forward prediction
loss (Definition 1), which provably preserves any low-dimensional subspace structure (Theorem 1).
• Establish a mathematical framework of guided diffusion. We build a mathematical framework
for guided diffusion, which facilitates algorithm analysis and theory establishment. We propose and
analyze an iterative guided diffusion using gradient queries on new samples (Algorithm 1; Figure
1 with fine-tuning block off). We give the first convergence theory showing generated samples
converge to a regularized optimal solution w.r.t the objective (Theorem 4) with linear score class (12).
The regularization is imposed by the pre-trained diffusion model, revealing a fundamental limit of
adapting pre-trained diffusion models with guidance.
• Provide rate-matching optimization theory. Furthermore, we propose an adaptive gradient-
guided diffusion, where both pre-trained score network and guidance are iteratively updated using
self-generated samples (Algorithm 2; Figure 1 with the fine-tuning block turned on). We show in
expectation its iteration converges to a global optima within the latent subspace, at a rate of Õ(1/K)
(Theorems 3, K is # of iterations), matching the classical convergence in convex optimization.
• Provide experimental justification. Simulation and image experiments are provided in Section 7
to support theoretical findings on latent structure-preserving and optimization convergence.

2 Related Works
To summarize the related work, we first give an overview of empirical studies relevant to our objective.
We then discuss the theory of diffusion models, to which our main contribution is focused. Other

2

related topics, such as direct latent optimization in diffusion models and a detailed review of sampling
and statistical theory of diffusion models, are deferred to Appendix A.

Classifier Guidance and Training-free Guidance. [22] introduced classifier-based guidance,
steering pre-trained diffusion models towards a particular class during inference. This method
offers flexibility by avoiding task-specific fine-tuning, but still requires training a time-dependent
classifier. Training-free guidance methods [16, 57, 70, 4, 32, 50, 28] eliminate the need for a time-
dependent classifier, using only off-the-shelf loss guidance during inference. [16, 57, 32, 28] is a
line of works solving inverse problems on image and [70, 50] aims for guided/conditional image
generation. Though not originally developed for solving optimization problems, [16, 70] both propose
a similar guidance to ours: taking gradient on the predicted clean data x0 with respect to corrupted xt.
Differently, our paper presents the first rigorous theoretical analysis of this gradient-based guidance
approach. Furthermore, we propose an algorithm that iteratively applies the guidance as a module to
the local linearization of the optimization objective, demonstrating provable convergence guarantees.

Fine-tuning of Diffusion Models. Several methods for fine-tuning diffusion models to optimize
downstream reward functions include RL-based fine-tuning [7, 26] and direct backpropagation to
rewards [18, 52, 68, 63]. However, these approaches often suffer from high computational costs
and catastrophic forgetting in pre-trained models. Our guidance method is training-free and applied
during the inference phase, eliminating the need to fine-tune diffusion models.

Theory of Diffusion Models. Current theory works primarily focus on unconditional diffusion
models. Several studies demonstrate that the distributions generated by diffusion models closely
approximate the true data distribution, provided the score function is accurately estimated [20, 2, 8,
39, 13, 40, 15, 14, 6]. For conditional diffusion models, [71, 27] establish sample complexity bounds
for learning generic conditional distributions. Our novel analysis establishes a connection between
the sampling process in gradient-based guided diffusion and a proximal gradient step, providing
convergence guarantees.

3 Preliminaries: Diffusion Models and Guidance
Score-based diffusion models capture the distribution of pre-training data by learning a sequence of
transformations to generate new samples from noise [60]. A diffusion model comprises a forward
and a backward process, for which we give a review as follows.

Forward Process. The forward process progressively adds noise to data, and then the sample
trajectories are used to train the score function. The forward process initializes with X0 ∈ RD, a
random variable drawn from the pre-training data D. It introduces noise via an Ornstein-Uhlenbeck
process, i.e.,

dXt = −1

2
q(t)Xt dt+

√
q(t) dWt for q(t) > 0, (1)

where (Wt)t≥0 is Wiener process, and q(t) is non-decreasing. Xt represents the noise-corrupted data
distribution at time t. The conditional distribution Xt|X0 = x0 is Gaussian, i.e., N (α(t)x0, h(t)ID)

with α(t) = exp(−
∫ t

0
1
2q(s)ds) and h(t) = 1−α2(t). In practice, the forward process will terminate

at a large time T so that the marginal distribution of XT is close to N (0, ID).

Backward Process. If reversing the time of the forward process, we can reconstruct the original
distribution of the data from pure noise. With (W t)t≥0 being another independent Wiener process,
the backward SDE below [3] reverses the time in the forward SDE (1),

dX←t =


1
2
X←t +∇ log pT−t(X

←
t)︸ ︷︷ ︸

score


dt+ dW t. (2)

Here pt(·) denotes the marginal density of Xt in the forward process. In the forward SDE (2), the
score function ∇ log pt(·) plays a crucial role, but it has to be estimated from data.

Score Matching. To learn the unknown score function ∇ log pt(·), we train a score network sθ(x, t)
using samples from forward process. Let D denote the data for training. Then the score network is

3

learned by minimizing the following loss:

mins∈S

∫ T

0

Ex0∈DExt|x0

[
∥∇xt log ϕt(xt|x0)− s(xt, t)∥2

]
dt, (3)

where S is a given function class, ED denotes the empirical expectation over training data D and
Ext|x0

denotes condition expectation over the forward process, ϕt(xt|x0) is the Gaussian transition
kernel, i.e., (2πh(t))−D/2 exp(−∥xt − α(t)x0∥2/ (2h(t))).

Generation and Guided Generation. Given a pre-trained score function sθ, one generates samples
by the backward process (2) with the true score replaced by sθ. Further, one can add additional
guidance to steer its output distribution towards specific properties, as formulated in Module 1.

Module 1 Guided_BackwardSample(sθ, G)
1: Input: Score sθ , guidance G default to be zero for unguided generation.
2: Hyper-parameter: T .
3: Initialized at X←t ∼ N (0, I), simulate the following SDE till time T :

dX←t =

[
1

2
X←t + sθ (X

←
t , T − t) + G (X←t , T − t)

]
dt+ dW t.

4: Output: Sample X←T .

A common goal of guided generation (Module 1) is to generate X with a desired property Y = y
from the distribution P (X|Y = y). To this end, it essentially needs to learn the conditional score
function ∇xt

log pt(xt | y). The Bayes rule gives
∇xt log pt(xt | y) = ∇ log pt(xt)︸ ︷︷ ︸

est. by sθ(xt,t)

+∇xt log pt(y | xt)︸ ︷︷ ︸
to be est. by guidance

. (4)

When a pre-trained score network sθ(xt, t) ≈ ∇ log pt(xt), what remains is to estimate ∇xt
log pt(y |

xt) and add it as the guidance term G to the backward process in Module 1.

Classifier and Classifier-Free Guidance. Classifier guidance [60, 22] samples from P (X|Y = y)
when Y is a discrete label. This method estimates ∇xt log pt(y | xt) by training auxiliary classifiers,
denoted as p̂(y | xt, t), and then computing the gradient of the classifier logits as the guidance, i.e.,
G(xt, t) = ∇xt

log p̂(y | xt, t). Alternatively, classifier-free guidance [33] jointly trains a conditional
and an unconditional diffusion model, combining their score estimates to generate samples.

Notations. For a random variable X , Px represents its distribution, and p(x) denotes its density. For
X , Y jointly distributed, P (X | Y = y) denotes the conditional distribution, and p(x | y) its density.
The conditional expectation is denoted as E[x | y]. Let D be the pre-training data, and let ED be
the empirical expectation over D. The empirical mean and covariance matrix are µ̄ := Ex∈D[x] and
Σ̄ := Ex∈D[(x− µ̄)(x− µ̄)⊤]. For a matrix A, Span(A) denotes the subspace spanned by its column
vectors, and for a square matrix A, A−1 denotes its inverse or Moore–Penrose inverse. For any
differentiable function f : Rn → Rm, ∇f ∈ Rm×n denotes Jacobian matrix, i.e., (∇f)ij =

∂fi(x)
∂xj

.

4 A Primer on Gradient Guidance
Let us start with stating the problem we want to study: suppose given a pre-trained diffusion
model where the score network sθ(xt, t) provides a good approximation to the true score function
∇ log p(xt), the goal is to generate novel samples with desired properties that can be measured by a
user-specified differentiable function f . We will refer to f as a reward or objective function later on.
To achieve this goal, from Section 3, we know that guided generation with diffusion model is a good
candidate, which deploys the following guided backward process (Module 1):

dX←t =

[
1

2
X←t + sθ(X

←
t , T − t)+G(X←t , t)

]
dt+ dW t.

Here the guidance term G is what we focus on and wish to design. Specifically, we want to construct
this guidance term G based on the gradient ∇f of a general objective f . This is motivated by the

4

gradient methodology in optimization, a natural, intuitive way for adding guidance is to steer the
generated samples towards the steepest ascent direction of f [16, 4, 18].

4.1 Structural Data Distribution with Subspace
When incorporating property optimization in the generation process, it’s crucial to consider intrinsic
low-dimensional structures of real-world data, such as local regularities, global symmetries, and
repetitive patterns [62, 55, 51]. Blindly improving f at the cost of losing these structures degrades
sample quality dramatically. This quality degradation, also known as “reward over-optimization”, is
a common challenge for adapting diffusion models towards an external reward [71, 63].

To study the design of guidance that mitigates the risk of over-optimization, we focus on data that
admits a low-dimensional latent subspace, formulated in the following assumption.
Assumption 1 (Subspace Data). Data X ∈ RD can be represented as X = AU , where A ∈ RD×d

is an unknown matrix with orthonormal columns, and the latent variable U ∈ Rd follows some
distribution Pu with a density pu. Here d ≪ D. The empirical covariance of U is assumed full rank.

In the rest of this section, we investigate the principles for designing a guidance based on the gradient
of f that ensures (i) improving the value of f , and at the same time, (ii) being adhere to the subspace
structure, i.e. generated samples being close to the subspace spanned by A.

4.2 Naive Gradient Does’t Work as Guidance
A tempting simple choice of the guidance G is by taking the steepest ascent direction ∇f , which we
refer to as naive gradient guidance i.e.,

G(X←t , t) ∝ ∇f(X←t). (5)

However, the naive gradient guidance (5) would jeopardize the latent structure of data, which is
demonstrated by the following proposition:
Proposition 1 (Failure of Naive Guidance). For naive guidance G(X←t , t) = b(t)∇f(X←t), suppose
b(t) > b0 > 0 for t > t0. For data in subspace under Assumption 1 and reward f(x) = g⊤x,
g⊥Span(A) with h(t) = 1− exp(−

√
t), then the off-subspace component of the generated sample

is consistently large:
E[X←T,⊥] = Cg, C > exp (−5/2)b0.

The intuition provided by Proposition 1 is, while the pre-trained score network effectively steers the
distribution toward the latent subspace [10], the gradient vector ∇f may point outside the subspace,
causing the generated output to deviate from it (Figure 2). This is why naive gradient guidance fails.
[63] also observed this, explaining that ∇f is not computed for t = T i.e., it is not aligned with the
clean data space.

<latexit sha1_base64="bcQ/eNp79YODvDvdj6LzPoTKPj0=">AAAB/HicbVBLSgNBFHwTfzH+oi7dNAbBVZgRiS6DblwmYD6QDKGnp5M06fnQ/UYIQ7yAW72BO3HrXbyA57AnmYVJLGgoqt7jVZcXS6HRtr+twsbm1vZOcbe0t39weFQ+PmnrKFGMt1gkI9X1qOZShLyFAiXvxorTwJO8403uM7/zxJUWUfiI05i7AR2FYigYRSM1cVCu2FV7DrJOnJxUIEdjUP7p+xFLAh4ik1TrnmPH6KZUoWCSz0r9RPOYsgkd8Z6hIQ24dtN50Bm5MIpPhpEyL0QyV/9upDTQehp4ZjKgONarXib+5/USHN66qQjjBHnIFoeGiSQYkezXxBeKM5RTQyhTwmQlbEwVZWi6Wbri6yzarGSKcVZrWCftq6pTq9aa15X6XV5REc7gHC7BgRuowwM0oAUMOLzAK7xZz9a79WF9LkYLVr5zCkuwvn4BBQqVgA==</latexit>

t

Pre-trained

Random
Noise

Large
Reward
Region

Gradient Direction

Subspace

Naive Gradient
Guidance

Off Subspace

Figure 2: Directly adding the gradient of the objective function to the backward process sabotages the
subspace structure. Left: Directly adding gradients that point out of the data subspace causes samples to leave
the subspace. Right: Numerical experiments show that naive gradients lead to substantially larger off-subspace
error compared to our gradient guidance Gloss(Definition 1); see Section 7 for experiment details.

4.3 Motivating Latent Subspace Preserving Guidance from Conditional Score Function
Failure of the naive gradient in maintaining data structure motivates us to seek alternatives. To get
some inspiration, we start with the most elementary Gaussian probabilistic model and linear f . Later
we will drop this assumption and consider general data distributions and general f .
Assumption 2 (Gaussian Linear model). Let data follow a Gaussian distribution, i.e., X ∼ N (µ,Σ),
and let f(x) = g⊤x be a linear function for some g ∈ RD. Let Y = f(X) + ϵ with independent,
identically distributed noise ϵ ∼ N (0, σ2) for some σ > 0.

5

By the Bayes’ rule, the conditional score ∇xt log pt(xt | y) takes the form of a sum given by
∇xt

log pt(xt | y) = ∇ log pt(xt)︸ ︷︷ ︸
est. by sθ(xt,t)

+∇xt
log pt(y | xt)︸ ︷︷ ︸

to be est. by guidance

. (recall (4))

Under the Gaussian assumption, we derive the following closed-form formula of the guidance term
log pt(y | xt) that we want to estimate. The proof is provided in Appendix D.4.

Lemma 1 (Conditional Score gives a Gradient-like Guidance). Under Assumption 2, we have

∇xt log pt(y | xt) = −
(
2σ2

y(xt)
)−1 · ∇xt

(
y − g⊤E[x0 | xt]

)2
, (6)

where E[x0|xt] denotes the conditional expectation of x0 given xt in the forward process (1), and
σ2
y(xt) is the variance of the conditional distribution Y | Xt = xt.

The form of conditional score shown in Lemma 1 motivates our proposed gradient guidance:

Definition 1 (Gradient Guidance of Look-Ahead Loss). Given a gradient vector g, define the gradient
guidance of look-ahead loss as

Gloss(xt, t) := −β(t) · ∇xt

(
y − g⊤E[x0|xt]

)2
, (7)

where β(t) > 0, y ∈ R are tuning parameters, and E[x0|xt] is the conditional expectation of x0

given xt in the forward process (1), i.e., dXt = − 1
2q(t)Xt dt+

√
q(t) dWt.

The formula in (7) generalizes the intuition of a conditional score for any data distribution and
objective function. It scales with the residual term y − g⊤E[x0 | xt], tuning the strength of guidance.
Here, E[x0 | xt] represents the expected clean data x0 given xt in the forward process, which
coincides with the expected sample in the backward view. This residual measures the look-ahead
gap between the expected reward of generated samples and the target value. The look-ahead loss
(y − g⊤E[x0|xt])

2 resembles the proximal term commonly used in first-order proximal optimization
methods.

Remark. The gradient guidance (7) aligns with the groundtruth conditional score in (6) under the
assumptions of Gaussian data and linear reward (Assumption 2). This theoretical motivation, rooted
in a fundamental framework, distinguishes our work from the empirical practice, such as DPS [16]
and universal guidance [4].

A key advantage of Gloss is that it enables preserving the subspace structure, for any data distribution
under Assumption 1. This is formalized in the following theorem, the full proof in Appendix D.5.

Theorem 1 (Faithfulness of Gloss to the Low-Dimensional Subspace of Data). Under Assumption 1,
it holds for any data distribution and g ∈ RD that

Gloss(xt, t) ∈ Span(A). (8)

Proof Sketch. We have
∇xt

(
y − g⊤E[x0 | xt]

)2 ∝ ∇xtE[x0 | xt]
⊤g.

We will show that the Jacobian ∇xtE[x0|xt] maps any vector g ∈ RD to Span(A). To see this,
we utilize the score decomposition result in Appendix D.1 and plug it into the equality E[x0|xt] =
α−1(t) (xt + h(t)∇ log pt(xt)) (Tweedie’s formula [24]), we have

E[x0 | xt] = α−1(t)
(
xt + h(t)

[
Am(A⊤xt)− h−1(t)xt

])
= h(t)/α(t) ·Am(A⊤xt), (9)

here m(u) = ∇ log pLDt (u)+h−1(t)u, pLDt (u) latent density (Appendix D.1). We see ∇xtE[x0|xt]
⊤

maps any vector to Span(A) because m(·) takes A⊤xt as input in the expression of E[x0|xt]. ■

We highlight that the faithfulness of Gloss holds for arbitrary data distribution supported on the
latent subspace. It takes advantage of the score function’s decomposition (19), having the effect of
automatically adapting g onto the latent low-dimensional subspace of data.

Remark. We provide a rigorous guarantee for manifold preservation of gradient guidance, a
property previously discussed by [16, 17, 32]. However, while [16, 17] claim manifold preservation,
they do not present a formal mathematical proof. [32] relies heavily on pre-trained autoencoders for
manifold projections, which are often unavailable in practical scenarios.

6

4.4 Estimation and Implementation of Gloss
In this section, we discuss the estimation and computation of Gloss based on a pre-trained score
function sθ in practice. Gloss involves the unknown quantity E[x0|xt]. One can construct estimate
E[x0|xt] by considering the Tweedie’s formula [24]: ∇ log pt(xt) = −h−1(t)E

[
xt − α(t)x0

∣∣xt

]
,

which gives rise to
Ê[x0|xt] := α−1(t) (xt + h(t)sθ(xt, t)) , (10)

and we refer to it as the look-ahead estimator. The estimator (10) is widely adopted in practice
[56, 4]. Here α(t) and h(t) are the noise scheduling used in the forward process (1).

Thus, we have obtained an implementable version of the gradient guidance Gloss, given by

Gloss(xt, t) = −β(t) · ∇xt

[
y − g⊤

(
α−1(t) (xt + h(t)sθ(xt, t))

)]2
, (11)

……
Square Loss

<latexit sha1_base64="MCfCyllmUav/6OdNRyRNfCVSfv8=">AAAB/3icbVDLSsNAFJ34rPVVdelmsAh1UxLxtSy6cVnBPqANZTKZNEMnkzBzI5TQhT/gVv/Anbj1U/wBv8NJm4VtPTBwOOde7pnjJYJrsO1va2V1bX1js7RV3t7Z3duvHBy2dZwqylo0FrHqekQzwSVrAQfBuoliJPIE63iju9zvPDGleSwfYZwwNyJDyQNOCeRSWIOzQaVq1+0p8DJxClJFBZqDyk/fj2kaMQlUEK17jp2AmxEFnAo2KfdTzRJCR2TIeoZKEjHtZtOsE3xqFB8HsTJPAp6qfzcyEmk9jjwzGREI9aKXi/95vRSCGzfjMkmBSTo7FKQCQ4zzj2OfK0ZBjA0hVHGTFdOQKELB1DN3xdd5tEnZFOMs1rBM2ud156p++XBRbdwWFZXQMTpBNeSga9RA96iJWoiiEL2gV/RmPVvv1of1ORtdsYqdIzQH6+sXnImWVg==</latexit>

h(t)
<latexit sha1_base64="Ogxow3Zrphfic4L4LQYhmBz4QaU=">AAACCXicbVDLSsNAFJ3UV62vqks3g0WoC0sivpZFNy4r2Ae0aZlMJu3QyYOZG6GEfIE/4Fb/wJ249Sv8Ab/DSZuFbT1w4XDOvdzDcSLBFZjmt1FYWV1b3yhulra2d3b3yvsHLRXGkrImDUUoOw5RTPCANYGDYJ1IMuI7grWd8V3mt5+YVDwMHmESMdsnw4B7nBLQUr9HRDQi/eTMSqtwOihXzJo5BV4mVk4qKEdjUP7puSGNfRYAFUSprmVGYCdEAqeCpaVerFhE6JgMWVfTgPhM2ck0dYpPtOJiL5R6AsBT9e9FQnylJr6jN30CI7XoZeJ/XjcG78ZOeBDFwAI6e+TFAkOIswqwyyWjICaaECq5zorpiEhCQRc198VVWbS0pIuxFmtYJq3zmnVVu3y4qNRv84qK6Agdoyqy0DWqo3vUQE1EkUQv6BW9Gc/Gu/FhfM5WC0Z+c4jmYHz9Agzbmmg=</latexit>

↵�1(t)
<latexit sha1_base64="MXp+DKiSlYDt69Es0RllC16jzLc=">AAAB/nicbVDLSsNAFL3xWeur6tJNsAiuSiK+lkU3LivaB7ShTCaTduhkEmZuxFIK/oBb/QN34tZf8Qf8DidtFrb1wMDhnHu5Z46fCK7Rcb6tpeWV1bX1wkZxc2t7Z7e0t9/Qcaooq9NYxKrlE80El6yOHAVrJYqRyBes6Q9uMr/5yJTmsXzAYcK8iPQkDzklaKT7py52S2Wn4kxgLxI3J2XIUeuWfjpBTNOISaSCaN12nQS9EVHIqWDjYifVLCF0QHqsbagkEdPeaBJ1bB8bJbDDWJkn0Z6ofzdGJNJ6GPlmMiLY1/NeJv7ntVMMr7wRl0mKTNLpoTAVNsZ29m874IpRFENDCFXcZLVpnyhC0bQzcyXQWbRx0RTjztewSBqnFfeicn53Vq5e5xUV4BCO4ARcuIQq3EIN6kChBy/wCm/Ws/VufVif09ElK985gBlYX7+msJZq</latexit>xt

Gradient

Compute
<latexit sha1_base64="qEXaESVr1fTBbnNbrKvEPvC+E8A=">AAACGHicbVDLSsNAFJ34rPVVddnNYBFclUSkuiyK4LKCfUAawmQybYdOHszcSEvMwt/wB9zqH7gTt+78Ab/DSduFbT0wcDjnXu6Z48WCKzDNb2NldW19Y7OwVdze2d3bLx0ctlSUSMqaNBKR7HhEMcFD1gQOgnViyUjgCdb2hte5335gUvEovIdxzJyA9EPe45SAltxSuTsgkHYDAgPPS2+yzB65Jn7EIxcct1Qxq+YEeJlYM1JBMzTc0k/Xj2gSsBCoIErZlhmDkxIJnAqWFbuJYjGhQ9JntqYhCZhy0sknMnyiFR/3IqlfCHii/t1ISaDUOPD0ZJ5WLXq5+J9nJ9C7dFIexgmwkE4P9RKBIcJ5I9jnklEQY00IlVxnxXRAJKGge5u74qs8WlbUxViLNSyT1lnVqlVrd+eV+tWsogIqo2N0iix0geroFjVQE1H0hF7QK3ozno1348P4nI6uGLOdIzQH4+sXngagnw==</latexit>

Ê[x0|xt]

Gradient w.r.t <latexit sha1_base64="MXp+DKiSlYDt69Es0RllC16jzLc=">AAAB/nicbVDLSsNAFL3xWeur6tJNsAiuSiK+lkU3LivaB7ShTCaTduhkEmZuxFIK/oBb/QN34tZf8Qf8DidtFrb1wMDhnHu5Z46fCK7Rcb6tpeWV1bX1wkZxc2t7Z7e0t9/Qcaooq9NYxKrlE80El6yOHAVrJYqRyBes6Q9uMr/5yJTmsXzAYcK8iPQkDzklaKT7py52S2Wn4kxgLxI3J2XIUeuWfjpBTNOISaSCaN12nQS9EVHIqWDjYifVLCF0QHqsbagkEdPeaBJ1bB8bJbDDWJkn0Z6ofzdGJNJ6GPlmMiLY1/NeJv7ntVMMr7wRl0mKTNLpoTAVNsZ29m874IpRFENDCFXcZLVpnyhC0bQzcyXQWbRx0RTjztewSBqnFfeicn53Vq5e5xUV4BCO4ARcuIQq3EIN6kChBy/wCm/Ws/VufVif09ElK985gBlYX7+msJZq</latexit>xt

+

<latexit sha1_base64="JjNjoyy08E2STahQ+0GXQtFmlqw=">AAACDnicbVDLSsNAFJ34rPWV6tJNsAgVpCTia1l047KCfUAbwmQyaYdOHszcqCXkH/wBt/oH7sStv+AP+B1O2ixs64ELh3Pu5R6OG3MmwTS/taXlldW19dJGeXNre2dXr+y1ZZQIQlsk4pHoulhSzkLaAgacdmNBceBy2nFHN7nfeaBCsii8h3FM7QAPQuYzgkFJjl6RTtqHIQWc1Z4cOIFjR6+adXMCY5FYBamiAk1H/+l7EUkCGgLhWMqeZcZgp1gAI5xm5X4iaYzJCA9oT9EQB1Ta6SR6ZhwpxTP8SKgJwZiofy9SHEg5Dly1GWAYynkvF//zegn4V3bKwjgBGpLpIz/hBkRG3oPhMUEJ8LEimAimshpkiAUmoNqa+eLJPFpWVsVY8zUskvZp3bqon9+dVRvXRUUldIAOUQ1Z6BI10C1qohYi6BG9oFf0pj1r79qH9jldXdKKm300A+3rF54PnFQ=</latexit>

s✓(xt, t)
<latexit sha1_base64="8RbS992UirR97//cna4GH7idu+Q=">AAAB/HicbVBLSgNBFHwTfzH+oi7dNAbBVZgRiS6DblwmYD6QDKGn503SpOdDd48QQryAW72BO3HrXbyA57AnmYVJLGgoqt7jVZeXCK60bX9bhY3Nre2d4m5pb//g8Kh8fNJWcSoZtlgsYtn1qELBI2xprgV2E4k09AR2vPF95neeUCoeR496kqAb0mHEA86oNlJzOChX7Ko9B1knTk4qkKMxKP/0/ZilIUaaCapUz7ET7U6p1JwJnJX6qcKEsjEdYs/QiIao3Ok86IxcGMUnQSzNizSZq383pjRUahJ6ZjKkeqRWvUz8z+ulOrh1pzxKUo0RWxwKUkF0TLJfE59LZFpMDKFMcpOVsBGVlGnTzdIVX2XRZiVTjLNawzppX1WdWrXWvK7U7/KKinAG53AJDtxAHR6gAS1ggPACr/BmPVvv1of1uRgtWPnOKSzB+voF8EOVcw==</latexit>g

<latexit sha1_base64="O0NxyODe2aaQyeBYzgsnxedhThE=">AAACJ3icbVDLSsNAFJ3UV62vqEs3g0VQwZKIr2VRBJcKVgtNDJPptB06eTBzI4aYf/A3/AG3+gfuRJdu/A4ntQtbPTBwOOde7pnjx4IrsKwPozQxOTU9U56tzM0vLC6ZyytXKkokZQ0aiUg2faKY4CFrAAfBmrFkJPAFu/b7J4V/fcuk4lF4CWnM3IB0Q97hlICWPHN7M8U7uHvjQBRjp0cgcwICPd/PTvO8dedZ+B7feeBu3ex6ZtWqWQPgv8Qekioa4twzv5x2RJOAhUAFUaplWzG4GZHAqWB5xUkUiwntky5raRqSgCk3G/wpxxtaaeNOJPULAQ/U3xsZCZRKA19PFoHVuFeI/3mtBDpHbsbDOAEW0p9DnURgiHBREG5zySiIVBNCJddZMe0RSSjoGkeutFURLa/oYuzxGv6Sq92afVDbv9ir1o+HFZXRGlpHm8hGh6iOztA5aiCKHtATekYvxqPxarwZ7z+jJWO4s4pGYHx+A16DpY8=</latexit>

(y � g>Ê[x0|xt])
2

Figure 3: Computing Gloss.

With a slight abuse of notation, we use Gloss to refer to this im-
plementable formula (11) in the remainder of this paper. Here,
y is a target reward value from conditional score analysis under
a Gaussian model and is treated as a tuning parameter in prac-
tice. The gradient guidance (11) is lightweight to implement.
Given a pre-trained score function sθ in the form of a neural
network, computing (11) involves calculating the squared loss(
y − g⊤Ê[x0|xt]

)2
via a forward pass of sθ and a backward pass

using the auto-gradient feature of deep-leaning frameworks such
as PyTorch and TensorFlow. See Figure 3 for illustration.

5 Gradient-Guided Diffusion Model as Regularized Optimizer
In this section, we study if gradient guidance steers pre-trained diffusion models to generate near-
optimal samples. Our results show that: 1) Iterative gradient guidance improves the objective values;
2) The pre-trained diffusion model acts as a regularizer from an optimization perspective.

5.1 Gradient-Guided Generation with A Pre-trained Score
Assuming access to a pre-trained score network sθ and the gradient of the objective function f , we
present Algorithm 1 to adapt the diffusion model and iteratively update the gradient guidance (11).
See Figure 1 for illustration.

Alg. 1 takes any pre-trained score function sθ as input. Each iteration evaluates ∇f(·) at samples
from the previous iteration (Line 5(i)), computes the gradient guidance Gloss with the new gradient
(Line 5(ii)), and generates new samples using the updated guidance (Module 1). The algorithm
outputs an adapted diffusion model specified by (sθ, GK).

Algorithm 1 Gradient-Guided Diffusion for Generative Optimization
1: Input: Pre-trained score network sθ(·, ·), differentiable objective function f .
2: Tuning Parameter: Strength parameters β(t), {yk}K−1

k=0 , number of iterations K, batch sizes {Bk}.
3: Initialization: G0 = NULL.
4: for k = 0, . . . ,K − 1 do
5: Generate: Sample zk,i ∼ Guided_BackwardSample(sθ, Gk) using Module 1, for i ∈ [Bk].
6: Compute Guidance:

(i) Compute the sample mean z̄k := (1/Bk)
∑Bk

i=1 zk,i.
(ii) Query gradient gk = ∇f(z̄k).
(iii) Update gradient guidance Gk+1(·, ·) = Gloss(·, ·) via (7), using sθ , gradient vector gk, and parameters
yk and β(t).

7: end for
8: Output: (sθ, GK).

5.2 Gradient-Guided Diffusion Converges to Regularized Optima in Latent Space
We analyze the convergence of Alg. 1 and show that in final iterations, generated samples center
around a regularized solution of the optimization objective f within the subspace Span(A). Our
theorems allow the pre-training data to have arbitrary distribution.

Assumption 3 (Concave smooth objective). The objective f : RD → R is concave and L-smooth
w.r.t. the (semi-)norm ∥·∥Σ̄−1 , i.e., ∥∇f(x1)−∇f(x2)∥Σ̄ ≤ L ∥x1 − x2∥Σ̄−1 for any x1, x2.

7

While Alg. 1 works with any pre-trained score network, we study its optimization properties focusing
on the class of linear score functions given by

S =
{
s(x, t) = Ctx+ bt : Ct ∈ RD×D, bt ∈ RD

}
. (12)

Remark on the linear parametrization of score network (12): Analyzing the output distribution
of guided diffusion is challenging because the additional guidance term destroys the dynamics
of reverse SDE. A linear score is a natural and reasonable choice for characterizing the output
distribution, as it was also adopted by [44].

With a linear score function (12), pre-training a diffusion model is equivalent to using a Gaussian
model to estimate and sample from the estimated distribution. Thus, the guidance Gloss is also linear
in xt, and the final output follows a Gaussian distribution; see (25) in Appendix E. We focus on the
mean, µK , of the generated distribution from the backward sampling of (sθ, GK) (as T → ∞), and
establish its optimization guarantee.
Theorem 2 (Convergence to Regularized Maxima in Latent Subspace in Mean). Let Assumptions 1
and 3 hold. Suppose we use the score function class (12) for pre-training and computing guidance.
Then Alg.1 gives an adapted diffusion model that generates new samples that belong to Span(A).
Further, for any λ > L, there exists β(t), {yk} and batch size Bk, such that with high probability
1− δ, the mean of the output distribution µK converges to be near x∗A,λ, and it holds

f
(
x∗A,λ

)
− f(µK) = λ

(
L

λ

)K

O
(
d log

(
K

δ

))
,

where x∗A,λ is an optimal solution of the regularized objective:

x∗A,λ = argmax
x∈Span(A)

{
f(x)− λ

2
∥x− µ̄∥2Σ̄−1

}
. (13)

where µ̄, Σ̄ are empirical mean and covariance of pre-training data D.

Remarks. (1) The regularization term
λ

2
∥x− µ̄∥2Σ̄−1 (23) centers the data’s mean µ̄ and is stronger

in directions where the original data has low variance. Thus, the pre-trained score acts as a "prior" in
the guided generation, favoring samples near the pre-training data, even with guidance.
(2) The regularization term cannot be arbitrarily small, as our theorem requires λ ≥ L. Thus,
only adding gradient guidance cannot achieve the global maxima. If the goal is global optima, the
pre-trained score must be updated and refined with new data, as explored in Section 6.
(3) The convergence rate is linear in the latent dimension d, rather than data dimension D. Since
Gloss is faithful to the latent subspace (Theorem 2), the generated samples and optimization iterates
of Alg. 1 remain within Span(A). This leverage of the latent structure results in faster convergence.

6 Gradient-Guided Diffusion with Adaptive Fine-Tuning for Global
Optimization

In the previous section, we have seen that adding guidance to a pre-trained diffusion model can’t
improve the objective function unlimitedly due to the pre-trained score function acting as a regularizer.
We consider adaptively fine-tuning pre-trained diffusion models to attain global optima. Empirically,
fine-tuning diffusion models using self-generated samples has been explored by [7, 18].

6.1 Adaptive Fine-Tuning Algorithm with Gradient Guidance
We propose an adaptive version of the gradient-guided diffusion, where both the guidance and the
score are iteratively updated using self-generated samples. The full algorithm is given in Algorithm 2.

We introduce a weighting scheme to fine-tune the score network using a mixture of pre-training data
and newly generated samples. In Round k, let D1, . . . ,Dk be sample batches generated from the
previous rounds. Let {wk,i}ki=0 be a set of weights. Conceptually, at Round k, we update the model
by minimizing the weighted score matching loss:

min
s∈S

∫ T

0

k∑

i=0

wk,iEx0∈DiExt|x0

[
∥∇xt log ϕt(xt|x0)− s(xt, t)∥22

]
dt, (14)

where D0 := D is the pre-training data. For illustration, please see also Figure 1, and the practical
implementation of Alg. 2 is in Appendix F.

8

Algorithm 2 Gradient-Guided Diffusion with Adaptive Fine-tuning
1: Input: Pre-trained score sθ(·, ·), differentiable objective function f .
2: Tuning Parameter: strength parameter β(t), {yk}K−1

k=0 , weights {{wk,i}ki=0}K−1
k=0 , number of iterations

K, batch sizes {Bk}.
3: Initialize: sθ0 = sθ , G0 = NULL.
4: for k = 0, · · · ,K − 1 do
5: Generate: Sample a batch Dk = {zk,i}Bk

i=1 from Guided_BackwardSample(sθk , Gk) (Module 1).
6: Compute Guidance:

(i) Compute sample mean z̄k = (1/Bk)
∑Bk

i=1 zk,i, and query gradient gk = ∇f(z̄k).
(ii) Update sθk to sθk+1 by minimizing the re-weighted objective (14).
(iii) Compute Gk+1(·, ·) = Gloss(·, ·) in (7), using sθk+1 and gk, with parameter yk, β(t).

7: end for
8: Output: (sθK , GK).

6.2 Guided Generation Finds Unregularized Global Optima
Finally, we analyze the optimization properties for gradient-guided diffusion model with iterative
finetuning. We establish that the process of Algorithm 2 yields a final output distribution whose mean,
denoted by µK , converges to the global optimum of f .

For simplicity of analysis, we study the following function class

S ′ =
{
s(x, t) = Ĉtx+ bt : bt ∈ RD

}
, (15)

where Ĉt is set to stay the same in pre-trained scores, with only bt updated during iterative fine-tuning.

Theorem 3 (Convergence to Unregularized Maxima in Latent Subspace in Mean). Let Assumptions
1 and 3 hold, and assume there exists M > 0 such that

∥∥∥x∗A,λ

∥∥∥ < M for all λ ≥ 0. Suppose we use
the score function class (12) for pre-training sθ and the class (15) for finetuning it. Then Algorithm 2
gives an adapted diffusion model that generates new samples belonging to Span(A). Further, there
exists {β(t)}, {yk} , {Bk} and {wk,i}, such that with probability 1− δ,

f∗A − f(µK) = O
(
dL2 logK

K
· log

(
K

δ

))
, (16)

where f∗A = max{f(x)|x ∈ Span(A)}.

Theorem 3 illustrates that fine-tuning a diffusion model with self-generated data can reach global
optima while preserving the latent subspace structure. The convergence rate matches standard convex
optimization in terms of gradient evaluations, K. Compared to standard gradient solvers, guided
diffusion models leverage pre-training data to solve optimization problems in a low-dimensional
space, preserving desired structures and enabling more efficient exploration and faster convergence.

7 Experiments
7.1 Simulation
We conduct numerical simulations of Algorithms 1 and 2, following the subspace setup described in
Assumption 1. Specifically, we set d = 16, D = 64, The latent variable u is drawn from N (0, Id)
and used to construct x = Au, where A is a randomly generated orthonormal matrix. We define
the objective function f(x) = 10− (θ⊤x− 3)2. To approximate the score function, we employ a
version of the U-Net [54] with 14.8M trainable parameters. More details including how to set up θ
are provided in Appendix F.1.

Figure 4: Comparison between two types of
gradient guidance G and Gloss (left: Alg. 1; right:
Alg. 2). The off/on support ratio of the generated
samples is defined as roff = ∥x⊥∥

∥x∥∥
.

Preserving Subspace Structure. We first demon-
strate that Gloss preserves the subspace struc-
ture learned from the pre-trained model. For
comparison, we also tested the naive guidance
G(xt, t) := β(t)

(
y − g⊤E[x0|xt]

)
g (more details

in Appendix F.1.). Figure 4 (left) shows that Gloss
performs much better than the naive gradient G in
preserving the linear subspace. Figure 4 (right)

9

demonstrates that off-support errors increase with adaptive score fine-tuning (Alg. 2) due to distribu-
tion shift, with G resulting in more severe errors than Gloss.

Convergence Results. Figure 5 (a) and (b) show that Alg. 1 converges to a sub-optimal objective
value, leaving a gap to the maximal value. This aligns with our theory that the pre-trained model acts
as a regularizer in addition to the objective function. Figure 5 (c) shows that Alg 2 converges to the
maximal value of the objective function. As illustrated by Figure 5 (d), samples from Alg. 1 mostly
stay close to the pre-training data distribution (dotted contour area), whereas samples from Alg. 2
move outside the contour as the diffusion model is fine-tuned with self-generated data.

(a) Alg. 1: θ = Aβ∗ (b) Alg. 1: ∥θ⊥∥∥θ∥∥
= 9 (c) Convergence of Alg. 2 (d) Visualizing sample gener-

attion
Figure 5: Convergence of Algorithms 1 and 2. (a) and (b) are under different θ for the objective function. (d)
visualizes the distribution of the generated samples of Alg. 2 (red) and Alg. 1 (blue) across the iterations.

7.2 Image Generation
We validate our theory in the image domain for Algorithm 1. We employ the StableDiffusion v1.5
model [53] as the pre-trained model. For the reward model, we follow the approach outlined by [71]
to construct a synthetic model. This model is based on a ResNet-18 [31] architecture pre-trained on
ImageNet [21], with the final prediction layer replaced by a randomly initialized linear layer that
produces scalar outputs. For more experiment details, refer to Appendix F.2.

Figure 6: Reward increase and effect on images across iterations. Left: Reward increases and converges
across iterations. Larger guidance strength y (smaller regularizer strength) results in higher convergent reward
value. Right: Images become more abstract, shifting from realistic to virtual backgrounds as reward increases.

Results. By Algorithm 1, the reward increases and converges. Figure 6 (left) shows the reward
changes with optimization iterations. The hyperparameter y tunes the strength of guidance and is
inversely related to the strength of the regularizer (theoretical implications in Appendix E). A larger
guidance strength (smaller regularizer strength) leads to a higher convergent reward value. Figure
6 (right) illustrates the changes in generated images across iterations. As the reward increases, the
images become increasingly abstract, shifting from photo-realistic with detailed backgrounds to more
virtual, stylized ones.

8 Conclusion
In this paper, we focus on gradient guidance for adapting or fine-tuning pre-trained diffusion models
from an optimization perspective. We investigate the look-ahead loss based gradient guidance and two
variants of diffusion-based generative optimization algorithms utilizing it. We provide guarantees for
adapting/fine-tuning diffusion models to maximize any target concave differentiable reward function.
Our analysis extends to linear subspace data, where our gradient guidance and adaptive algorithms
preserve and leverage the latent subspace, achieving faster convergence to near-optimal solutions.

10

Acknowledgments
Mengdi Wang acknowledges the support by NSF IIS-2107304, NSF CPS-2312093, ONR 1006977
and Genmab.

References
[1] Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit

Agrawal. Is conditional generative modeling all you need for decision-making? arXiv preprint
arXiv:2211.15657, 2022.

[2] Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A
unifying framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

[3] Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes and their
Applications, 12(3):313–326, 1982.

[4] Arpit Bansal, Hong-Min Chu, Avi Schwarzschild, Soumyadip Sengupta, Micah Goldblum,
Jonas Geiping, and Tom Goldstein. Universal guidance for diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 843–852, 2023.

[5] Heli Ben-Hamu, Omri Puny, Itai Gat, Brian Karrer, Uriel Singer, and Yaron Lipman. D-flow:
Differentiating through flows for controlled generation. arXiv preprint arXiv:2402.14017, 2024.

[6] Joe Benton, Valentin De Bortoli, Arnaud Doucet, and George Deligiannidis. Linear convergence
bounds for diffusion models via stochastic localization. arXiv preprint arXiv:2308.03686, 2023.

[7] Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
models with reinforcement learning. arXiv preprint arXiv:2305.13301, 2023.

[8] Adam Block, Youssef Mroueh, and Alexander Rakhlin. Generative modeling with denoising
auto-encoders and langevin sampling. arXiv preprint arXiv:2002.00107, 2020.

[9] Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and
Trends® in Machine Learning, 8(3-4):231–357, 2015.

[10] Minshuo Chen, Kaixuan Huang, Tuo Zhao, and Mengdi Wang. Score approximation, estima-
tion and distribution recovery of diffusion models on low-dimensional data. arXiv preprint
arXiv:2302.07194, 2023.

[11] Minshuo Chen, Song Mei, Jianqing Fan, and Mengdi Wang. Opportunities and challenges of
diffusion models for generative ai. National Science Review, page nwae348, 2024.

[12] Minshuo Chen, Song Mei, Jianqing Fan, and Mengdi Wang. An overview of diffusion
models: Applications, guided generation, statistical rates and optimization. arXiv preprint
arXiv:2404.07771, 2024.

[13] Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R Zhang. Sampling is as
easy as learning the score: theory for diffusion models with minimal data assumptions. arXiv
preprint arXiv:2209.11215, 2022.

[14] Sitan Chen, Sinho Chewi, Holden Lee, Yuanzhi Li, Jianfeng Lu, and Adil Salim. The probability
flow ode is provably fast. arXiv preprint arXiv:2305.11798, 2023.

[15] Sitan Chen, Giannis Daras, and Alex Dimakis. Restoration-degradation beyond linear diffusions:
A non-asymptotic analysis for ddim-type samplers. In International Conference on Machine
Learning, pages 4462–4484. PMLR, 2023.

[16] Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye. Diffu-
sion posterior sampling for general noisy inverse problems. arXiv preprint arXiv:2209.14687,
2022.

11

[17] Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and Jong Chul Ye. Improving diffusion models
for inverse problems using manifold constraints. Advances in Neural Information Processing
Systems, 35:25683–25696, 2022.

[18] Kevin Clark, Paul Vicol, Kevin Swersky, and David J Fleet. Directly fine-tuning diffusion
models on differentiable rewards. arXiv preprint arXiv:2309.17400, 2023.

[19] Valentin De Bortoli. Convergence of denoising diffusion models under the manifold hypothesis.
arXiv preprint arXiv:2208.05314, 2022.

[20] Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger
bridge with applications to score-based generative modeling. Advances in Neural Information
Processing Systems, 34:17695–17709, 2021.

[21] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[22] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.
Advances in neural information processing systems, 34:8780–8794, 2021.

[23] Zehao Dou, Minshuo Chen, Mengdi Wang, and Zhuoran Yang. Theory of consistency diffusion
models: Distribution estimation meets fast sampling. In Forty-first International Conference on
Machine Learning.

[24] Bradley Efron. Tweedie’s formula and selection bias. Journal of the American Statistical
Association, 106(496):1602–1614, 2011.

[25] Ahmed El Alaoui, Andrea Montanari, and Mark Sellke. Sampling from mean-field gibbs
measures via diffusion processes. arXiv preprint arXiv:2310.08912, 2023.

[26] Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement learning for
fine-tuning text-to-image diffusion models. arXiv preprint arXiv:2305.16381, 2023.

[27] Hengyu Fu, Zhuoran Yang, Mengdi Wang, and Minshuo Chen. Unveil conditional diffusion
models with classifier-free guidance: A sharp statistical theory. arXiv preprint arXiv:2403.11968,
2024.

[28] Tomer Garber and Tom Tirer. Image restoration by denoising diffusion models with iteratively
preconditioned guidance. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 25245–25254, 2024.

[29] Nate Gruver, Samuel Stanton, Nathan C Frey, Tim GJ Rudner, Isidro Hotzel, Julien Lafrance-
Vanasse, Arvind Rajpal, Kyunghyun Cho, and Andrew Gordon Wilson. Protein design with
guided discrete diffusion. arXiv preprint arXiv:2305.20009, 2023.

[30] Zhiye Guo, Jian Liu, Yanli Wang, Mengrui Chen, Duolin Wang, Dong Xu, and Jianlin Cheng.
Diffusion models in bioinformatics: A new wave of deep learning revolution in action. arXiv
preprint arXiv:2302.10907, 2023.

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[32] Yutong He, Naoki Murata, Chieh-Hsin Lai, Yuhta Takida, Toshimitsu Uesaka, Dongjun Kim,
Wei-Hsiang Liao, Yuki Mitsufuji, J Zico Kolter, Ruslan Salakhutdinov, et al. Manifold preserv-
ing guided diffusion. arXiv preprint arXiv:2311.16424, 2023.

[33] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

12

[34] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[35] Kaixuan Huang, Yukang Yang, Kaidi Fu, Yanyi Chu, Le Cong, and Mengdi Wang. Latent
diffusion models for controllable rna sequence generation. arXiv preprint arXiv:2409.09828,
2024.

[36] Korrawe Karunratanakul, Konpat Preechakul, Emre Aksan, Thabo Beeler, Supasorn Suwa-
janakorn, and Siyu Tang. Optimizing diffusion noise can serve as universal motion priors. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
1334–1345, 2024.

[37] Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration
models. Advances in Neural Information Processing Systems, 35:23593–23606, 2022.

[38] Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
diffusion model for audio synthesis. arXiv preprint arXiv:2009.09761, 2020.

[39] Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence for score-based generative modeling
with polynomial complexity. arXiv preprint arXiv:2206.06227, 2022.

[40] Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence of score-based generative modeling for
general data distributions. arXiv preprint arXiv:2209.12381, 2022.

[41] Xingchao Liu, Lemeng Wu, Mao Ye, and Qiang Liu. Let us build bridges: Understanding and
extending diffusion generative models. arXiv preprint arXiv:2208.14699, 2022.

[42] Yixin Liu, Kai Zhang, Yuan Li, Zhiling Yan, Chujie Gao, Ruoxi Chen, Zhengqing Yuan, Yue
Huang, Hanchi Sun, Jianfeng Gao, et al. Sora: A review on background, technology, limitations,
and opportunities of large vision models. arXiv preprint arXiv:2402.17177, 2024.

[43] Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc
Van Gool. Repaint: Inpainting using denoising diffusion probabilistic models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11461–11471,
2022.

[44] Pierre Marion, Anna Korba, Peter Bartlett, Mathieu Blondel, Valentin De Bortoli, Arnaud
Doucet, Felipe Llinares-López, Courtney Paquette, and Quentin Berthet. Implicit diffusion:
Efficient optimization through stochastic sampling. arXiv preprint arXiv:2402.05468, 2024.

[45] Song Mei and Yuchen Wu. Deep networks as denoising algorithms: Sample-efficient learning
of diffusion models in high-dimensional graphical models. arXiv preprint arXiv:2309.11420,
2023.

[46] Andrea Montanari and Yuchen Wu. Posterior sampling from the spiked models via diffusion
processes. arXiv preprint arXiv:2304.11449, 2023.

[47] Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic
models. In Proceedings of the International Conference on Machine Learning, pages 8162–8171.
PMLR, 2021.

[48] Kazusato Oko, Shunta Akiyama, and Taiji Suzuki. Diffusion models are minimax optimal
distribution estimators. arXiv preprint arXiv:2303.01861, 2023.

[49] Jiachun Pan, Jun Hao Liew, Vincent YF Tan, Jiashi Feng, and Hanshu Yan. Adjointdpm:
Adjoint sensitivity method for gradient backpropagation of diffusion probabilistic models. arXiv
preprint arXiv:2307.10711, 2023.

[50] Jiachun Pan, Hanshu Yan, Jun Hao Liew, Jiashi Feng, and Vincent YF Tan. Towards accurate
guided diffusion sampling through symplectic adjoint method. arXiv preprint arXiv:2312.12030,
2023.

13

[51] Phillip Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, and Tom Goldstein. The
intrinsic dimension of images and its impact on learning. arXiv preprint arXiv:2104.08894,
2021.

[52] Mihir Prabhudesai, Anirudh Goyal, Deepak Pathak, and Katerina Fragkiadaki. Aligning text-
to-image diffusion models with reward backpropagation. arXiv preprint arXiv:2310.03739,
2023.

[53] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10684–10695, 2022.

[54] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9,
2015, Proceedings, Part III 18, pages 234–241. Springer, 2015.

[55] Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear
embedding. science, 290(5500):2323–2326, 2000.

[56] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

[57] Jiaming Song, Qinsheng Zhang, Hongxu Yin, Morteza Mardani, Ming-Yu Liu, Jan Kautz,
Yongxin Chen, and Arash Vahdat. Loss-guided diffusion models for plug-and-play controllable
generation. In International Conference on Machine Learning, pages 32483–32498. PMLR,
2023.

[58] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. Advances in Neural Information Processing Systems, 32, 2019.

[59] Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching: A scalable
approach to density and score estimation. In Uncertainty in Artificial Intelligence, pages
574–584. PMLR, 2020.

[60] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. arXiv
preprint arXiv:2011.13456, 2020.

[61] Zhiwei Tang, Jiangweizhi Peng, Jiasheng Tang, Mingyi Hong, Fan Wang, and Tsung-Hui
Chang. Tuning-free alignment of diffusion models with direct noise optimization. arXiv
preprint arXiv:2405.18881, 2024.

[62] Joshua B Tenenbaum, Vin de Silva, and John C Langford. A global geometric framework for
nonlinear dimensionality reduction. science, 290(5500):2319–2323, 2000.

[63] Masatoshi Uehara, Yulai Zhao, Kevin Black, Ehsan Hajiramezanali, Gabriele Scalia,
Nathaniel Lee Diamant, Alex M Tseng, Tommaso Biancalani, and Sergey Levine. Fine-
tuning of continuous-time diffusion models as entropy-regularized control. arXiv preprint
arXiv:2402.15194, 2024.

[64] Bram Wallace, Akash Gokul, Stefano Ermon, and Nikhil Naik. End-to-end diffusion latent
optimization improves classifier guidance. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 7280–7290, 2023.

[65] Yinhuai Wang, Jiwen Yu, and Jian Zhang. Zero-shot image restoration using denoising diffusion
null-space model. arXiv preprint arXiv:2212.00490, 2022.

[66] Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E
Eisenach, Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo
design of protein structure and function with rfdiffusion. Nature, 620(7976):1089–1100, 2023.

14

[67] Andre Wibisono, Yihong Wu, and Kaylee Yingxi Yang. Optimal score estimation via empirical
bayes smoothing. arXiv preprint arXiv:2402.07747, 2024.

[68] Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation.
arXiv preprint arXiv:2304.05977, 2023.

[69] Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang,
Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and
applications. ACM Computing Surveys, 56(4):1–39, 2023.

[70] Jiwen Yu, Yinhuai Wang, Chen Zhao, Bernard Ghanem, and Jian Zhang. Freedom: Training-
free energy-guided conditional diffusion model. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 23174–23184, 2023.

[71] Hui Yuan, Kaixuan Huang, Chengzhuo Ni, Minshuo Chen, and Mengdi Wang. Reward-directed
conditional diffusion: Provable distribution estimation and reward improvement. arXiv preprint
arXiv:2307.07055, 2023.

15

A Additional Related Works
Direct Latent Optimization in Diffusion Models. Besides guidance methods, an alternative
training-free route by optimizing the initial value of reverse process [64, 5, 36, 61, 49]. These
methods typically backpropagate the gradient of reward directly to the initial latent vector through an
ODE solver, utilizing the chain rule. Thus at inference time, the reverse process is unchanged except
for being fed with an optimized initialization, different from the guidance method we studied.

Sampling and Statistical Theory of Diffusion Model In contrast to the fruitful empirical advances,
the theory of diffusion models is still limited. To the best of our knowledge, a theoretical understanding
of fine-tuning diffusion models is absent. Existing results mainly focus on the sampling ability and
statistical properties of unconditional diffusion models. In particular, for sampling ability, a line of
works shows that the distribution generated by a diffusion model is close to the data distribution, as
long as the score function is accurately estimated [20, 2, 8, 39, 13, 40]. The accuracy of the estimated
score function is measured in terms of an L∞ or L2-norm distance. More recently, [15, 14, 6]
develop refined and tighter analyses using Taylor expansions of the discretized backward process
and localization method. It is worth mentioning that the analysis in [15, 14, 6] extends to broader
sample generation processes such as deterministic ones based on probabilistic ODEs. Going beyond
distributions in Euclidean spaces, [19] analyzes diffusion models for sampling distribution supported
on a low-dimensional manifold. Moreover, [46] consider sampling from symmetric spiked models,
and [25] study sampling from Gibbs distributions using diffusion processes.

Turning towards the statistical theory of diffusion models, [59] and [41] provide asymptotic analyses,
assuming a parametric form of the score function. Unfortunately, asymptotic analysis does not lead
to concrete sample complexities. Later, concurrent works, [48] and [10], establish sample complexity
bounds of diffusion models for estimating nonparametric data distributions. In high dimensions, their
results highlight a curse of dimensionality issue without further assumptions, which also appears in
[67] considering kernel methods. More interestingly, these works demonstrate that diffusion models
can circumvent the curse of dimensionality issue if the data has low-dimensional structures. In the
same spirit, [45] investigate learning high-dimensional graphical models using diffusion models,
without the curse of dimensionality. [23] establishes statistical theory for consistency models. For
conditional diffusion models, [71, 27] establish sample complexity bounds for learning generic
conditional distributions. We refer readers to [12] for an overview of contemporary theoretical
progress.

B Discussion
Limitations We do not see significant limitations in our analysis. The linear score class initiates the
study of gradient-like guidance. We have already demonstrated that our proposed gradient guidance
preserves low-dimensional structures for any score and data distribution (Theorem 1). Moving
forward, we aim to analyze the convergence properties for general score functions.

Broader Impacts This paper’s exploration of gradient-guided diffusion models offers theoretical
implications that could inspire further algorithmic advancements. By establishing a connection
between gradient-guided diffusion and optimization, the research opens new avenues for efficient
and effective optimization through a generative approach. This work has the potential to enhance the
precision and personalization of AI systems across various fields, including image synthesis and drug
design. However, these techniques could also be misused to generate harmful content.

C Characterization for Output Distribution of Backward Process
In this section, we provide analytical characterizations for the output distribution of the backward
process guided by Gloss when the pre-trained score is linear. We first give the result of score matching
as follows.

Lemma 2 (Pre-training with Linear Score Functions). Suppose for pre-training the score network,
the class in (14) is

S =
{
s(x, t) = Ctx+ bt : Ct ∈ RD×D, bt ∈ RD

}
, (recall (12))

16

If we freeze Ct in (12), that is, minimizing the score matching objective (14) over the class{
s(x, t) = Ctx+ bt : bt ∈ RD

}
gives
sθ(xt, t) = Ct (xt − α(t)x̄) ,

where x̄ =
(∑k

i=0 wk,iEx∈Di [x]
)/(∑k

i=0 wk,i

)
. Moreover, minimizing the score matching objec-

tive (14) over the class (12) yields

sθ(xt, t) = −
(
α2(t)Σ̄ + h(t)ID

)−1
(xt − α(t)x̄) ,

where Σ̄ =
(∑k

i=0 wk,iEx∈Dk

[
(x− x̄)(x− x̄)⊤

])/(∑k
i=0 wk,i

)
are weighted data covariance.

Proof. Using the linear score network class S with freezing Ct, we cast the score matching loss (14)
into
∫ T

0

k∑

i=0

wk,iEx0∈DiExt∼N (α(t)x0,h(t)ID)

[
∥∇xt log ϕt(xt|x0)− s(xt, t)∥2

]
dt

=

∫ T

0

k∑

i=0

wk,iEx0∈Di
Ext∼N (α(t)x0,h(t)ID)

[∥∥∥∥−
1

h(t)
(xt − α(t)x0)− Ctxt − bt

∥∥∥∥
2
]
dt

=

∫ T

0

k∑

i=0

wk,iEx0∈Di
Ext∼N (α(t)x0,h(t)ID)

[∥∥∥∥
(
Ct +

1

h(t)
ID

)
(xt − α(t)x0) + (α(t)Ctx0 + bt)

∥∥∥∥
2
]
dt

(i)
=

∫ T

0

k∑

i=0

wk,iEx0∈Di

[
∥bt + α(t)Ctx0∥2

]
+ w

∫ T

0

trace

(
h(t)

(
Ct +

1

h(t)
ID

)⊤(
Ct +

1

h(t)
ID

))
dt,

where w =
∑k

i=0 wk,i, equality (i) follows from computing the expectation over
the conditional Gaussian distribution of xt|x0. We note that bt should minimize∑k

i=0 wk,iEx0∈Di

[
∥bt + α(t)Ctx0∥2

]
for any t, which leads to

b̂t = −α(t)Ctx̄.

Now, we solve Ct for the second result. Substituting b̂t into the optimization objective (14) yields:
∫ T

0

k∑

i=0

wk,iEx0∈Di

[
∥α(t)Ctx̄− α(t)Ctx0∥2

]
+ w

∫ T

0

trace

(
h(t)

(
Ct +

1

h(t)
ID

)⊤(
Ct +

1

h(t)
ID

))
dt

=

∫ T

0

α2(t)

k∑

i=0

wk,iEx0∈Di

[
∥Ct(x0 − x̄)∥2

]
+ w

∫ T

0

trace
(
h(t)

(
C⊤t Ct +

1

h(t)
Ct +

1

h(t)
C⊤t +

1

h2(t)
ID

))
dt.

Taking the gradient for Ct, we get

2α2(t)Ct

k∑

i=0

wk,iEx0∈Di

[
(x0 − x̄)(x0 − x̄)⊤

]
+ 2wh(t)Ct + 2wID.

Setting the gradient above to 0, we get the solution for Ct as

Ĉt = −
(
α2(t)w−1

k∑

i=0

wk,iEx0∈Di

[
(x0 − x̄)(x0 − x̄)⊤

]
+ h(t)ID

)−1
.

Therefore, the proof is completed.

When wk,0 = 1, wk,i = 0, i ∈ [k], Lemma 2 reduces to the pre-traning score matching.
Corollary 1. Let D be the pre-training data. Minimizing the score matching objective (3) over the
function class (12) gives

sθ(xt, t) = −
(
α2(t)Σ̄ + h(t)ID

)−1
(xt − α(t)µ̄) . (17)

The following lemma characterizes the output distribution of the backward process guided by Gloss
when the pre-trained score is linear.

17

Lemma 3. If the pre-trained score sθ(xt, t) is (17), substituting the score function with sθ(xt, t) +
Gloss(xt, t) in the backward SDE (2) yields, when T → ∞,

X←T
d
= N

(
µ̄+

y − g⊤µ

σ2 + g⊤Σ̄g
Σ̄g, Σ̄− Σ̄gg⊤Σ̄

σ2 + g⊤Σ̄g

)
.

with β(t) assigned as β(t) =
1

2

(
σ2 + g⊤Σ̄−1

(
ID + α2(t)Σ̄/h(t)

)−1
g
)−1

. Moreover, if pre-

training data reside in Span(A) following Assumption 1, it holds X←T ∈ Span(A).

Proof. Consider X0
d
= N

(
µ̄, Σ̄

)
, Y = g⊤X0 + ϵ where ϵ ∼ N

(
0, σ2

)
. Let X0 be the initialization

of the forward process. Similar to the proof in Appendix D.4, we get[
Xt

Y

]
d
= N

([
α(t)µ̄
g⊤µ̄

]
,

[
α2(t)Σ̄ + h(t)ID α(t)Σ̄g

α(t)g⊤Σ̄ σ2 + g⊤Σ̄g

])
.

Thus, we get sθ(xt, t) is exactly the score of marginal distribution of Xt, i.e., ∇ log pt(xt) = sθ(xt, t).
According to the proof in Appendix D.4, we get sθ(xt, t) + Gloss(xt, t) = ∇ log pt(xt | y). Thus,
the backward SDE turns out to be

dX←t =

[
1

2
X←t +∇ log pT−t(X

←
t | y)

]
dt+ dW t, X←0

d
= N (0, ID) . (18)

The initial distribution p0(x0 | y) of the forward process can also be obtained by (18) where we
replace the initial distribution as pT (xT | y). According to the data processing inequality, we get the
bound of the total variation distance between the terminal distribution p←T of (18) and p0(x0 | y):

TV (p0, p
←
T) ≤ TV (pT , φ) ,

where p0, pT are short hands for p0(x0 | y) and pT (xT | y), and φ(·) is the density for the standard
normal distribution N (0, ID). Since in the forward process, pT → φ when T → ∞, we have
TV (p0, p

←
T) → 0 when T → ∞. We complete the first part of the lemma. As for the second part,

if data reside in Span(A) following Assumption 1, we have µ̄ = Aū and Σ̄ = AΣ̄uA
⊤, where

ū = Ex∈D,u=A⊤x[u], Σ̄u = Ex∈D,u=A⊤x[(u− ū) (u− ū)
⊤
]. Thus, the covariance matrix of X←T is

Σ̄− Σ̄gg⊤Σ̄

σ2 + g⊤Σ̄g
= A

[
Σ̄u − Σ̄uA

⊤gg⊤AΣ̄u

σ2 + g⊤Σ̄g

]
A⊤,

and due to X←T follows Gaussian distribution, we get X←T ∈ Span(A). Thus, the proof is completed.

D Additional Materials for Section 4
Contents

D.1 Score decomposition for subspace data . 18

D.2 Proof of Proposition 1 . 19

D.3 Discussion for gradient-like guidance . 19

D.4 Proof of Lemma 1 . 19

D.5 Proof of Theorem 1 . 20

D.1 Score decomposition for subspace data
Under Assumption 1, the score function ∇ log pt(x) decomposes to two orthogonal parts: an on-
support component belonging to the subspace; and an orthogonal component. We recall this key
result in Proposition 2, which later plays a key role in deriving subspace preserving guidance.

Proposition 2 (Score Decomposition for Subspace Data ([10] Lem. 1, Thm. 3)). Under Assumption 1,
the score function ∇ log pt(x) decomposes as

∇ log pt(x) = A∇ log pLDt (A⊤x)︸ ︷︷ ︸
s∥(A⊤x,t): on-support score

−h−1(t)
(
ID −AA⊤

)
x︸ ︷︷ ︸

s⊥(x,t): ortho. score

. (19)

where pLDt (u′) =
∫
ϕt(u

′|u)pu(u) du with ϕt(·|u) being the density of N (α(t)u, h(t)Id) for the
same α(t) and h(t) in the forward process (1).

18

D.2 Proof of Proposition 1
We give the proof of Proposition 1, which shows the failure of naive gradient guidance.

Proof. Under Assumption 1, the score can be decomposed to terms parallel and orthogonal to
Span(A) (Proposition 2). Applying naive guidance, we examine the orthogonal reverse process:

dX←t,⊥ =

[
1

2
− 1

h(T − t)

]
X←t,⊥dt+ b(t)gdt+

(
ID −AA⊤

)
dW t.

Solving this SDE, we get the expectation of the final state following E[X←T,⊥] =
∫ T

0
exp

(
−
∫ t

0
h−1(s)ds

)
et/2b(T − t)gdt. For the schedule h(t) = 1 − exp(−

√
t), we have the

coefficient of direction g is larger than
∫ T

0
exp(−t/2− 2

√
t)b(T − t)dt >

∫ 1

0
exp(−5/2)b0dt > 0

where we can assume T > 1. Thus, E[X←T,⊥] ̸= 0. This means the generated sample is leaving the
subspace, i.e., naive gradient guidance will violate the latent structure.

D.3 Discussion for gradient-like guidance
To further clarify the derivation of our gradient guidance, we present a variant of Lemma 1.

Proposition 3. Under Assumption 2, we have

∇xt log pt(y|xt) = β(t)
[
y − g⊤E[x0|xt]

]
·
(
α2(t)Σ + h(t)ID

)−1
Σg, (20)

where E[x0|xt] denotes the conditional expectation of x0 given xt in the forward process (1), and
β(t) = α(t)/(σ2 + g⊤Σ−1

(
ID + α2(t)/h(t) · Σ

)−1
g).

Remarks. Observe that, when Σ = I , (20) suggests the following form of guidance that is aligned
with the naive gradient, i.e., the steepest ascent direction:

G(xt, t) ∝
[
y − g⊤E[x0|xt]

]
· g.

However, even for Gaussian distributions, as long as Σ ̸= I , the term of (6) is no longer proportional
to g but becomes a pre-conditioned version of the gradient. We show the guidance above can maintain
the subspace structure of data in the experiments Appendix F.

Figure 7: Plot of β(t), α(t), h(t) for
t ∈ [0, 10] when Σ = I .

Another observation is that this guidance scales with a residual
term y − g⊤E[x0 | xt]. In particular, the residual term y −
g⊤E[x0 | xt] tunes the strength of guidance. Recall E[x0 | xt]
denotes the posterior expectation of clean data x0 given xt in
the forward process. Thus, in a backward view, E[x0 | xt]
coincides with the expected sample to be generated conditioned
on xt. In this sense, the quantity y − g⊤E[x0 | xt] measures
a look-ahead gap between the expected reward of generated
samples and the target value. A larger absolute value of the
residual means stronger guidance in the backward generation
process.

Under q(t) ≡ 1 in the forward process (1), we plot the theoreti-
cal choice of β(t) and α(t), h(t) to t in Figure 7. In practice, the choice of α(t), h(t) can vary and
they are determined by the forward process used for pre-training; and β(t) can be treated as a tuning
parameter to adjust the strength of guidance.

The proof of Proposition 3 is included in the proof of Lemma 1.

D.4 Proof of Lemma 1

Proof. Recall {Xt}t≥0 is the stochastic process from the forward process. X0
d
= N (µ,Σ) , Y =

g⊤X0 + ϵ where ϵ ∼ N (0, σ2) is independent with X0. Since X0, Xt and Y are joint Gaussian, we
have Y | Xt also follows Gaussian distribution, denoted as N

(
my(xt), σ

2
y(xt)

)
.Then, the closed

form of ∇xt
log pt(y | xt) can be derived as

∇xt
log pt(y | xt) = −∇xt

[
1

2

(
y −my(xt)

σy(xt)

)2
]
−∇xt

log σy(xt).

19

Due to the linearity of Y with regard to X0, my(xt) can be computed as

my(xt) = E[y | xt] = E[g⊤x0 + ϵ | xt] = E[g⊤x0 | xt] = g⊤E[x0 | xt]. (21)

To get the variance σ2
y(xt), we compute the joint distribution (Xt, Y). In the forward process, given

X0 = x0, Xt can be written as α(t)x0 + Zt for Zt
d
= N (0, h(t)ID) independent of x0. Due to the

linear function assumption, we have
[
Xt

Y

]
=

[
α(t)ID 0 ID
g⊤ 1 0

]

x0

ϵ
Zt


 .

Observing that the joint distribution of (x0, ϵ, zt) is Gaussian, we deduce[
Xt

Y

]
d
= N

([
α(t)µ
g⊤µ

]
,

[
α2(t)Σ + h(t)ID α(t)Σg

α(t)g⊤Σ σ2 + g⊤Σg

])
.

Thus, we get σ2
y(xt) = σ2 + g⊤Σg − α2(t)g⊤Σ

(
α2(t)Σ + h(t)ID

)−1
Σg. Together with the

derivation of the mean my(xt) (21), we get

∇xt
log pt(y | xt) = − 1

2σ2
y(xt)

∇xt

[(
y − g⊤E[x0 | xt]

)2]

=
1

σ2
y(xt)

(
y − g⊤E[x0 | xt]

)
∇xt

E[x0 | xt]g.

To get E[x0 | xt], we derive the joint distribution of (X0, Xt):[
X0

Xt

]
d
= N

([
µ

α(t)µ

]
,

[
Σ α(t)Σ

α(t)Σ α2(t)Σ + h(t)ID

])
.

Thus, we get E[x0|xt] = µ + α(t)
(
α2(t)Σ + h(t)ID

)−1
Σ (xt − α(t)µ). As a consequence, we

have

∇xt log pt(y | xt) =
1

σ2
y(xt)

(
y − g⊤E[x0 | xt]

)
α(t)

(
α2(t)Σ + h(t)ID

)−1
Σg.

Together with the following equality by Woodbury identity, we get the result.

σ−2y (xt) =
(
σ2 + g⊤Σg − α2(t)g⊤Σ

(
α2(t)Σ + h(t)ID

)−1
Σg
)−1

=

[
σ2 + g⊤Σ−1

(
ID +

α2(t)

h(t)
Σ

)−1
g

]−1
.

D.5 Proof of Theorem 1
Proof. We expand the derivative in Gloss as

Gloss(xt, t) = 2β(t)(y − g⊤E[x0|xt]) (∇xtE[x0|xt])
⊤
g.

It holds E[x0|xt] =
1

α(t) (xt + h(t)∇ log pt(xt)). Via the score decomposition under linear subspace
data in Chen et al. [10, Lemma 1], we have

∇ log pt(xt) = A∇ log pLDt (A⊤xt)−
1

h(t)

(
ID −AA⊤

)
xt,

where pLDt denotes the diffused latent distribution, i.e., pLDt (u′) =
∫
ϕt(u

′|u0)pu(u0) du0. Recall
that ϕt is the Gaussian transition kernel of the forward process and pu is the density of latent variable
u0 in Assumption 1.

To ease the derivation, we denote m(u) = ∇ log pLDt (u) + 1
h(t)u. It then holds that

E[x0|xt] =
1

α(t)

(
xt + h(t)

[
Am(A⊤xt)−

1

h(t)
xt

])

=
h(t)

α(t)
Am(A⊤xt).

20

As a consequence, we can verify that

∇xt
E[x0|xt] =

h(t)

α(t)
A
[
∇m(A⊤xt)

]
A⊤,

where ∇m(A⊤xt) ∈ Rd×d is the Jacobian matrix of m at A⊤xt. Plugging the last display into Gloss,
we conclude that

Gloss(xt, t) = 2β(t)(y − g⊤E[x0|xt]) (∇xtE[x0|xt])
⊤
g

= ℓt · g
for ℓt = 2β(t)(y − g⊤E[x0|xt]) and g′ = (∇xtE[x0|xt])

⊤
g = h(t)

α(t)A
[
∇m(A⊤xt)

]⊤
A⊤g ∈

Span(A). The proof is complete.

E Additional Materials for in Sections 5 and 6
Contents

E.1 Convergence to Regularized Maxima in Mean . 21

E.2 Proof of Theorem 2 . 21

E.3 Proof of Theorem 3 . 24

E.4 Auxiliary Lemma . 25

E.1 Convergence to Regularized Maxima in Mean
Here we present a more fundamental version of Theorem 2.

Theorem 4 (Convergence to Regularized Maxima in Mean). Let Assumption 3 hold, and let the
pre-training data D have arbitrary distribution with covariance matrix Σ̄ ≻ 0. Suppose the score
function sθ is pre-trained via minimizing the score matching loss (3) over the linear function class
(12). Let Alg. 1 take sθ(·, ·) and f as the input. For any λ > L, there exists {β(t)}, {yk}, {Bk} such
that, with probability ≥ 1− δ , the mean of the output distribution µK converges to be near x∗λ, and

f (x∗λ)− f(µK) = λ

(
L

λ

)K

O
(
D log

(
K

δ

))
, (22)

where D is the ambient dimension of data, and x∗λ is a regularized maximizer of f given by

x∗λ = argmax
x∈RD

{
f(x)− λ

2
∥x− µ̄∥2Σ̄−1

}
, (23)

where µ̄, Σ̄ are empirical mean and covariance of pre-training data D.

Proof. The proof is a special case of Theorem 2 in Appendix E.2, via setting the representation
matrix A = ID.

E.2 Proof of Theorem 2
We first provide a proof sketch.

Proof Sketch Solving the score matching problem (3) with a linear function class (12) yields a
pre-trained score as follows

sθ(xt, t) = −
(
α2(t)Σ̄ + h(t)ID

)−1
(xt − α(t)µ̄) .

With proper choices of β(t), gradient guidance Gloss leads to the following output distribution at the
end of round k:

N
(
µ̄+

yk − g⊤k µ̄

σ2 + g⊤k Σ̄gk
Σ̄gk, Σ̄− Σ̄gkg

⊤
k Σ̄

σ2 + g⊤k Σ̄gk

)
.

Thus, we obtain the mean of the above distribution, i.e., µk+1 = µ̄+ ηkΣ̄∇f(z̄k), where z̄k is the
empirical mean of previous samples, ηk is a stepsize determined by yk. By a rearrangement, we
obtain a recursive formula

µk+1 = z̄k + ηkΣ̄
[
∇f(z̄k)− η−1k Σ̄−1 (z̄k − µ̄)

]
. (24)

21

We observe that (24) resembles a gradient ascent update from µk ≈ z̄k to µk+1 corresponding to
a regularzed optimization problem (23). In this regularized objective, the original objective f(x)
incorporates an additional proximal term with λ := 1/ηk. Therefore we can analyze the convergence
of µk by following the classical argument for gradient optimization.

Proof of Theorem 2. Define a filtration {Hk}K−1k=0 with Hk be the information accumulated after k
rounds of Alg.1.

H0 := σ(µ̄),

Hk := σ
(
Hk−1, σ

(
zk−1,1, . . . , zk−1,Bk−1

))
, k ∈ [K].

Define the expectation of samples generated at k-th round as
µk := E[zk,i | Hk−1], k ∈ [K − 1].

Applying Corollary 1, we get the pre-trained score as

sθ(xt, t) = −
(
α2(t)Σ̄ + h(t)ID

)−1
(xt − α(t)µ̄) ,

If we set yk as follows
yk = η ·

(
σ2 + g⊤k Σ̄gk

)
+ g⊤k µ̄,

where η = 1/λ. And we choose β(t) at k-round as β(t) =
1

2

(
σ2 + g⊤k−1Σ̄

−1 (ID + α2(t)Σ̄/h(t)
)−1

gk−1
)−1

. Then, Lemma 3 provides the generated
distribution in k-th round:

N
(
µ̄+ ηΣ̄gk−1, Σ̄− Σ̄gk−1g⊤k−1Σ̄

σ2 + g⊤k−1Σ̄gk−1

)
. (25)

Define the empirical covariance matrix of the latent variable U as Σ̄u =

Ex∈D,u=A⊤x[(u− ū) (u− ū)
⊤
] where ū = ED[u]. Then in the subspace setting, the empir-

ical mean and covariance of data X can be written as µ̄ = AA⊤µ̄ and Σ̄ = AΣ̄uA
⊤ respectively.

The mean of the sample zk,i follows

µk = E[zk,i | Hk−1] = AA⊤µ̄+ η ·AΣ̄uA
⊤gk−1,

where gk−1 = ∇f (z̄k−1) and z̄k−1 = (1/B)
∑B

i zk−1,i. We rearrange the update rule to show a
gradient ascent formula as follows

µk = AA⊤µk−1 −AA⊤ (µk−1 − µ̄) + η ·AΣ̄uA
⊤∇f(µk−1) + η ·AΣ̄uA

⊤ (gk−1 −∇f(µk−1))

= AA⊤µk−1 −AΣ̄uA
⊤AΣ̄−1u A⊤ (µk−1 − µ̄) + η ·AΣ̄uA

⊤∇f(µk−1) + η ·AΣ̄uA
⊤ (gk−1 −∇f(µk−1))

= AA⊤µk−1 + η ·AΣ̄uA
⊤ [∇f(µk−1)− λAΣ̄−1u A⊤ (µk−1 − µ̄)

]
+ η ·AΣ̄uA

⊤ (gk−1 −∇f(µk−1)) .

where λ = 1/η. Define h(x) := f(x)− λ/2 ∥x− µ̄∥2Σ̄−1 , we have

µk = AA⊤µk−1 + η · Σ̄∇h(µk−1) + η · Σ̄ (gk−1 −∇f(µk−1)) .

Recall the notation for the optimum: x⋆
A,λ = argmaxx=Au h(x). We consider the distance of µk to

x⋆
A,λ under the semi-norm ∥·∥Σ̄−1 .
∥∥µk − x⋆

A,λ

∥∥
Σ̄−1 =

∥∥µk−1 − x⋆
A,λ + ηΣ̄∇h(µk−1) + ηΣ̄ (gk−1 −∇f(µk−1))

∥∥
Σ̄−1

≤
∥∥µk−1 − x⋆

A,λ + ηΣ̄∇h(µk−1)
∥∥
Σ̄−1︸ ︷︷ ︸

:=I1

+
∥∥ηΣ̄ (gk−1 −∇f(µk−1))

∥∥
Σ̄−1︸ ︷︷ ︸

:=I2

. (26)

We bound the second term I2 first. According to f is L-smooth with respect to ∥·∥Σ̄−1 , we have
I2 = η ∥gk−1 −∇f(µk−1)∥Σ̄ ≤ ηL ∥z̄k−1 − µk−1∥Σ̄−1 ,

Lemma 3 shows the distribution of zk−1,i. Therefore, according to concentration inequality for
Gaussian distribution, with the probability at least 1− δ/K, it holds

∥z̄k−1 − µk−1∥2Σ̄−1 ≤ 2 log

(
2K

δ

)
· trace

(
V(zk−1,i) · Σ̄−1

)

Bk−1
.

We have trace
(
V(zk−1,i) · Σ̄−1

)
≤ trace

(
Σ̄ · Σ̄−1

)
= d. Therefore, I2 is bounded by

I2 ≤ M0/
√
Bk−1,

22

where M0 := ηL
√
2 log

(
2K
δ

)
· d. Next, we consider the first term in (26). Since x∗A,λ is the optimum

of h within Span(A), the gradient ∇h(x∗A,λ) is in the orthogonal subspace, i.e., A⊤∇h(x∗A,λ) = 0,
thus Σ̄∇h(x∗A,λ) = 0. The first term in (26) can be written as

I21 =
∥∥(µk−1 − x⋆

A,λ

)
+ ηΣ̄

(
∇h(µk−1)−∇h(x∗A,λ)

)∥∥2
Σ̄−1

=
∥∥µk−1 − x⋆

A,λ

∥∥2
Σ̄−1 + η2

∥∥∇h(µk−1)−∇h(x∗A,λ)
∥∥2
Σ̄

+ 2
〈
µk−1 − x⋆

A,λ, η
(
∇h(µk−1)−∇h(x∗A,λ)

)〉
.

Recall h is f adding a ∥·∥Σ̄−1 regularized term. We get h is (L + λ)-smooth with respect to semi
norm ∥·∥Σ̄−1 which is derived from f L-smooth. Also, h is λ-strongly concave with respect to semi
norm ∥·∥Σ̄−1 since f is concave. According to Lemma 4, we derive
〈
µk−1 − x⋆

A,λ,∇h(µk−1)−∇h(x∗A,λ)
〉
≤ −λ(L+ λ)

L+ 2λ

∥∥µk−1 − x∗A,λ

∥∥2
Σ̄−1 −

1

L+ 2λ

∥∥∇h(µk−1)−∇h(x∗A,λ)
∥∥2
Σ̄
.

Plugin the formula of I1, we get

I21 ≤
(
1− 2ηλ(L+ λ)

L+ 2λ

)∥∥µk−1 − x⋆
A,λ

∥∥2
Σ̄−1 +

(
η2 − 2η

L+ 2λ

)∥∥∇h(µk−1)−∇h(x∗A,λ)
∥∥2
Σ̄
.

Since η = 1/λ, it holds η2 − 2η

L+ 2λ
> 0. Due to h (L+ λ)-smoothness, we get

I21 ≤
(
1− 2ηλ(L+ λ)

L+ 2λ

)∥∥µk−1 − x⋆
A,λ

∥∥2
Σ̄−1 +

(
η2 − 2η

L+ 2λ

)
(L+ λ)2

∥∥µk−1 − x⋆
A,λ

∥∥2
Σ̄−1

= (1− η (L+ λ))
2 ∥∥µk−1 − x⋆

A,λ

∥∥2
Σ̄−1 ,

thus, we get the bound of I1
I1 ≤ ζ

∥∥µk−1 − x⋆
A,λ

∥∥
Σ̄−1 ,

where ζ := |1− η (L+ λ)|. Combing the upper bound of I1 and I2, we get with probability at least
1− δ/K, for 1 < k ≤ K,

∥∥µk − x⋆
A,λ

∥∥
Σ̄−1 ≤ ζ

∥∥µk−1 − x⋆
A,λ

∥∥
Σ̄−1 +

M0√
Bk−1

.

As for k = 1, by similar derivation, we can obtain
∥∥∥µ1 − x⋆

A,λ

∥∥∥
Σ̄−1

≤ ζ
∥∥∥z0 − x⋆

A,λ

∥∥∥
Σ̄−1

. By

induction, we get with probability at least 1− ((K − 1)/K) δ,

∥∥µK − x⋆
A,λ

∥∥
Σ̄−1 ≤ ζK

∥∥z0 − x⋆
A,λ

∥∥
Σ̄−1 +M0

K−1∑

k=1

ζK−k−1√
Bk

.

Choose Bk ≥ ζ−4k(1− ζ)−2 for all k ∈ [K − 1], then we can get
∥∥µK − x⋆

A,λ

∥∥
Σ̄−1 ≤ ζK

(∥∥z0 − x⋆
A,λ

∥∥2
Σ̄−1 +M1 ·

√
d
)

(27)

where M1 := ηL

√
2 log

(
2K

δ

)
. Since h is (L+ λ)-smooth with respect to ∥·∥Σ̄−1 , it holds

|h(µK)− h(x∗A,λ)−
〈
∇h(x∗A,λ), µK − x∗A,λ

〉
| ≤ L+ λ

2

∥∥µK − x∗A,λ

∥∥2
Σ̄−1 .

Considering that ∇h(x∗A,λ) ⊥ Span(A) yields
〈
∇h(x∗A,λ), µK − x∗A,λ

〉
= 0, we obtain the follow-

ing by rearranging the equation above

f
(
x∗A,λ

)
− f(µK) ≤ λ

2

(∥∥x∗A,λ − µ̄
∥∥2
Σ̄−1 − ∥µK − µ̄∥2Σ̄−1

)
+

L+ λ

2

∥∥µK − x∗A,λ

∥∥2
Σ̄−1 (28)

≤
[
λ
∥∥µ̄− x∗A,λ

∥∥
Σ̄−1

∥∥µK − x∗A,λ

∥∥
Σ̄−1 + (L+ λ)

∥∥µK − x∗A,λ

∥∥2
Σ̄−1

]
.

Substitute (27) into above upper bound, with z0 = µ̄ we have

f
(
x∗A,λ

)
− f(µK) ≲ ζK · (L+ λ)

[∥∥µ̄− x∗A,λ

∥∥2
Σ̄−1 +M2

1 d
]
.

23

Since
∥∥∥µ̄− x∗A,λ

∥∥∥
2

Σ̄−1
=
∥∥∥A⊤

(
µ̄− x∗A,λ

)∥∥∥
2

Σ̄−1
u

is the distance within Span(A), i.e., O(d). Recall

η = 1/λ, ζ = |1− η (L+ λ)| = L/λ, λ > L, and M1 = ηL

√
2 log

(
2K

δ

)
. Therefore, we get the

final result:
f
(
x∗A,λ

)
− f(µK) ≲ λ

(
L

λ

)K

d log

(
K

δ

)
, w.p.1− δ.

E.3 Proof of Theorem 3
We first provide a proof sketch.

Proof Sketch The proof idea is similar to the proof of Theorem 2. For simplicity, we analyze the
case where only the most recent sample batch Dk is merged with D0 for finetuning the score function.
More specifically, we let wk,i = 0 for 0 < i < k and wk,0 = 1 − wk,k. Similar to the proof of
Theorem 4, we obtain a recursive update rule given by

µk+1 = z̄k + ηkΣ̄
[
∇f(z̄k)− (1− wk,k) η

−1
k · Σ̄−1 (z̄k − µ̄)

]
, (29)

where z̄k ≈ µk is the empirical mean of previous samples. This update rule also closely resembles
the gradient ascent iteration for maximizing a regularized objective. A key difference here is that we
can control the weights wk,i to reduce the impact of D0 and make the regularization term vanish to
zero. Thus the mean µk eventually converges to the global maxima.

Proof. Define
H0 := σ(µ̄),

Hk := σ
(
Hk−1, σ

(
zk−1,1, . . . , zk−1,Bk−1

))
, k ∈ [K − 1],

µk := E[zk,i | Hk−1], k ∈ [K].

According to Lemma 2, with freezing Ct in class (12), the pre-trained score in Round k is
sθk+1

(xt, t) = −
(
α2(t)Σ̄ + h(t)ID

)
(xt − α(t)x̄k) where x̄k =

∑k
j=0 wk,j z̄j and z̄j = Ex∈Dj

[x].
By choosing yk, and weights wk,j as

yk = ηk ·
(
σ2 + g⊤k AΣ̄uA

⊤gk
)
+ g⊤k AA⊤x̄k,

wk,0 = 1− wk

wk,j = 0, 1 ≤ j < k,

wk,k = wk,

where ηk > 0, 0 < wk < 1 will be specified later. And we choose β(t) at Round k as β(t) =
1

2

(
σ2 + g⊤k−1Σ̄

−1 (ID + α2(t)Σ̄/h(t)
)−1

gk−1
)−1

. Lemma 3 gives the mean of distribution of
zk+1,i as

µk+1 = x̄k + ηkΣ̄gk, (30)
and the output distribution

N
(
x̄K−1 + ηk−1Σ̄gK−1, Σ̄− Σ̄gK−1g⊤K−1Σ̄

σ2 + g⊤K−1Σ̄gK−1

)
. (31)

Applying Lemma 3 yields zk,i ∈ Span(A), thus, x̄k = AA⊤x̄k and Σ̄ = AΣ̄uA
⊤, we get the update

rule reduced to
µk+1 = AA⊤ ((1− wk)µ̄+ wkz̄k) + ηk−1AΣ̄uA

⊤gk−1

= AA⊤z̄k + ηkAΣ̄uA
⊤ (∇f(z̄k)− η−1k (1− wk)AΣ̄−1u A⊤ (z̄k − µ̄)

)
.

We set wk = 1− ηkλ and set ηk = η, where λ, η > 0 will be specified later. Therefore, we have
µk+1 = AA⊤z̄k + ηAΣ̄uA

⊤∇hλ(z̄k), (32)

24

where hλ(x) := f(x)− (λ/2) ∥x− µ̄∥2Σ̄−1 . Define x⋆
A,λ = argmaxx=Au hλ(x). With some similar

steps in proof in Appendix E.2, by choosing Bk ≥ ζ−4k(1− ζ)−2, together with z0 = µ̄, we get
∥∥µK − x⋆

A,λ

∥∥
Σ̄−1 ≲ ζK

(∥∥µ̄− x⋆
A,λ

∥∥
Σ̄−1 +M1 ·

√
d
)
, w.p. 1− δ,

with η =
2

L+ 2λ
, ζ = |1− η(L+ λ)| and M1 = 2L

√
(1 + η2) log

(
2K

δ

)
. Also, we can get (28)

as in proof in Appendix E.2. We restate it here:

f
(
x∗A,λ

)
− f(z̃K) ≤ λ

2

(∥∥x∗A,λ − µ̄
∥∥2
Σ̄−1 − ∥µK − µ̄∥2Σ̄−1

)
+

L+ λ

2

∥∥µK − x∗A,λ

∥∥2
Σ̄−1 . (33)

Since f is concave,
f (x∗A)− f

(
x∗A,λ

)
≤
〈
∇f

(
x∗A,λ

)
, x∗A − x∗A,λ

〉
= λ

〈
Σ̄−1(x∗A,λ − µ̄), x∗A − x∗A,λ

〉
.

Adding (33), it holds

f
(
x∗A,λ

)
− f(µK) ≤ λ

2

(∥∥x∗A,λ − µ̄
∥∥2
Σ̄−1 −

∥∥x∗A,λ − x∗A
∥∥2
Σ̄−1 − ∥µK − µ̄∥2Σ̄−1

)
+

L+ λ

2

∥∥µK − x∗A,λ

∥∥2
Σ̄−1 .

Due to (32), we have, it holds w.p. 1− δ,

f
(
x∗A,λ

)
− f(µK) ≲

[
λ ∥x∗A − µ̄∥2Σ̄−1 + (L+ λ)ζK

(∥∥µ̄− x∗A,λ

∥∥2
Σ̄−1 +M1d

)]
.

We choose λ = L logK/(4K) and get

f
(
x∗A,λ

)
− f(µK) ≲

L logK

K
·
[
∥x∗A − µ̄∥2Σ̄−1 +

∥∥µ̄− x∗A,λ

∥∥2
Σ̄−1 +M1d

]
, w.p. 1− δ.

With assuming
∥∥∥x⋆

A,λ

∥∥∥ is bounded, we derive

f
(
x∗A,λ

)
− f(µK) = O

(
dL2 logK

K
· log

(
K

δ

))
, w.p. 1− δ.

E.4 Auxiliary Lemma
The following is a standard result in convex optimization utilized in previous proofs.

Lemma 4. Let f be α-strongly concave and β-smooth with respect to the (semi) norm ∥·∥Σ−1 , for
all x and y, it holds

−⟨∇f(x)−∇f(y), x− y⟩ ≥ αβ

α+ β
∥x− y∥2Σ−1 +

1

α+ β
∥∇f(x)−∇f(y)∥2Σ . (34)

Proof. See Bubeck et al. [9, Lemma 3.11] for a proof.

F Additional Materials for Experiments
F.1 Simulation
We experiment with our design of the gradient guidance as well as Algorithm 1 and Algorithm 2.
Going beyond our theoretical assumptions, we adopt a 15M-parameter U-Net as the score function
class for training and fine-tuning our diffusion model.

F.1.1 Experiment Setup
For linear data structure, we set the data’s ambient dimension as D = 64 and the linear subspace
dimension as d = 16. The linear subspace is represented by an orthogonal matrix A ∈ RD×d. We
randomly generate a matrix A and fix it once generated. After that, we sample a data point X by
first randomly sampling a latent variable U ∼ N (0, Id) and computing X = AU . We independently
sample a total of 65536 data points as our pre-training data set. For nonlinear data structure, data are
uniformly sampled from a unit ball in R64.

The objective functions considered in our experiments are f1(x) = 10− (θ⊤x− 3)2 and f2(x) =
5− 0.5∥x− b∥. Here, θ and b are randomly generated and fixed afterward. Since our data assumes a
low-dimensional subspace representation, it is convenient to decompose θ into θ⊥ = (I −AA⊤)θ

25

and θ∥ = AA⊤θ, representing the off-support and on-support components. We refer to ∥θ⊥∥∥θ∥∥ as the
off/on-support ratio. Analogously, for a generated sample, we can also define its off/on-support ratio.
Clearly, a small off/on-support ratio indicates close vicinity to the subspace.

Score Network Pre-training. We utilize a version of the U-Net [54], with 14.8M trainable parame-
ters. Note that this is a complicated network going beyond the linear score function class considered
in our theories. Following the implementation of Denoising Diffusion Probabilistic Models (DDPM,
Ho et al. [34]), we train the U-Net o estimate the score function ∇ log pt, via minimizing the score
matching loss introduced in Eqn. (3). We discretize the backward process to have 200 time steps as
in Nichol and Dhariwal [47], and the U-Net is trained using our generated data set for 20 epochs. We
use Adam as the optimizer, set the batch size as 32, and set the learning rate to be 10−4. After the
pre-training phase, we confirmed that the data subspace structure is well learned, as the generated
samples using the pre-trained diffusion model have an average off/on-support ratio of 0.039.

Implementation of Algorithm 1. In each iteration of Algorithm 1, we need to compute the gradient
guidance Gloss. We set the targeted y value at the k-th iteration as yk = δ + g⊤k zk, where δ specifies
the increment per iteration. The choice on δ is instance-dependent and we set it via tuning for
near-optimal in different experiments. For comparing naive gradient with gradient guidance in
Figure 8, we set δ = 0.2 and 0.9, respectively for using naive gradient G and gradient guidance Gloss.
In Figure 9, we choose δ to be (a) 0.05, (b) 0.2, (c) 1, and (d) 1, corresponding to each panel. We
initialize Algorithm 1 with a batch of 32 samples generated by the pre-trained model. Each sample
determines an optimization trajectory. We repeat Algorithm 1 for 5 times with different random seeds
and report the error bars.

Implementation of Algorithm 2. Algorithm 2 differs from Algorithm 1 in that it allows additional
fine-tuning of the pre-trained score network. In practice, to update the score network incorporating
newly generated data, one does not have to exactly solve (14) by re-training the full model from
scratch. Instead, (14) can be viewed as a guideline that motivates more computationally efficient
ways for updating the pre-trained score. It is a common practice to only fine-tune the weights of
the old model by performing gradient descent over a few batches of newly generated data, which is
similar to the spirit of (14). To be more specific, we adopt a computationally lightweight fine-tuning
strategy: We only perform one Adam optimization step using the re-weighted loss given by Eqn. (14)
with a batch of 32 generated samples. We set the learning rate as 10−6. This simple strategy already
demonstrates good performances as shown in Figure 10. Other implementation details are kept the
same as those of Algorithm 1.

F.1.2 Results
We first demonstrate our gradient guidance Gloss preserves the subspace structure learned from
the pre-trained model. For comparison, we also tested the naive guidance G defined following
Proposition 3 (with Σ = I). For a quick reference, we repeat the definition here:

G(xt, t) := β(t)
(
y − g⊤E[x0|xt]

)
g,

where β(t) > 0 and y ∈ R are tuning parameters, and E[x0|xt] is the conditional expectation of x0

given noise corrupted data xt. For implementation, we replace E[x0|xt] by its look-ahead estimator
Ê[x0|xt] based on the Tweedie’s formular.

Comparing G and Gloss on Preserving Subspace Structure. Figure 8 (a), (c) verify that the naive
gradient G performs much worse than Gloss in preserving the linear subspace structure. It is consistent
with our theoretical finding that the gradient guidance Gloss keeps the generated sample close to
the latent subspace, with substantially smaller off-support errors. When allowing adaptive score
fine-tuning in Algorithm 2, Figure 8 (b), (d) show that the off-support error increases as the model
gets fine-tuned using self-generated data, due to increasing distribution shift. Even in this case, the
naive gradient G leads to much more severe off-support errors as compared to Gloss.

Algorithm 1 Converges to Regularized Optima. We plot the convergence of Algorithm 1 in terms
of the objective value in Figure 9. Figure 9 (a),(b) are for the objective function f1 = 10− (θ⊤x−3)2

as the objective function, while Figure 9(c),(d) are for the objective f2 = 5− 0.5∥x− b∥. We observe

26

(a) Algorithm 1 (b) Algorithm 2 (c) 300-350 round of (a) (d) 1000-1200 round of (b)

Figure 8: Comparison between two types of gradient guidance G and Gloss. We plot the off/on support
ratio of the generated samples, denoted by roff = ∥x⊥∥

∥x∥∥
. The objective function is f1(x), with θ having an

off/on-support ratio of 9.

that the algorithm converges to reach some sub-optimal objective value, but there remains a gap to
the maximal value. This is consistent with our theory that the pre-trained model essentially acts as a
regularization in addition to the objective function. Adding gradient guidance alone cannot reach
global maxima. This coincides with our theoretical findings in Theorem 2.

(a) θ = Aβ∗ (b) ∥θ⊥∥∥θ∥∥
= 9 (c) b = 4 · 1D (d) b ∼ N (4 · 1D, 9 · ID)

Figure 9: Convergence of Algorithm 1 under different objectives. Objectives are f1(x) for (a) and (b), and
f2(x) for (c) and (d). Parameters θ and b are specified as (a) θ = Aβ∗ with β∗ being sampled from the unit ball
in Rd; (b) the off/on-support ratio of θ being 9 (same as Figure 8); (c) and (d) choosing b as a homogeneous
vector or randomly from a Gaussian distribution. All the experiments adopt the gradient guidance Gloss.

Algorithm 2 Converges to Global Optima. Algorithm 2 converges to the maximal value of the
objective function f1 = 10− (θ⊤x− 3)2 as shown in Figure 10(a). In Figure 10(b), we visualize
the distribution of generated samples of Algorithm 1 (blue) and 2 (red), respectively, as the iteration
evolves. We see that samples from Algorithm 1 mostly stay close to the pre-training data distribution
(area described by the dotted contour). In constrast, samples of Algorithm 2 move outside the contour,
as the diffusion model gets fine-tuned using self-generated data.

Results for Nonlinear Data Structure. We apply Algorithm 1 to data uniformly sampled from a
unit ball in R64. The objective reward function is defined as f(x) = θ⊤x, where ∥θ∥ = 1. The left
panel of Figure 11 demonstrates that rewards increase and converge when using Algorithm 1. Higher
guidance strength ∆ (corresponding to lower regularization) results in a higher convergent reward.
The right panel of Figure 11 shows that, for the same reward level, gradient guidance achieves a
smaller deviation from the unit ball compared to the naive gradient approach. This suggests that
gradient guidance can better preserve data structure for nonlinear manifolds.

F.2 Image Generation
Hyperparameters. Since tuning parameters y and β(t) are both for the strength of guidance, we
can fix one of them. We choose β(t) = 100 as suggested by [71], and set a series of y ∈ {2, 4, 10}.
We run batch size = 20 samples parallelly across iterations to evaluate the rewards. The prompt is
uniformly sampled from the 1000 classes of ImageNet [21].

F.3 Time Efficiency
We summarize the time cost of our experiments on one NVIDIA A100 GPU in Table 1.

27

(a) Convergence of Algorithm 2 (b) Distribution of generated samples

Figure 10: Convergence of Algorithm 2. Panel (a) plots the objective values achieved by Algorithm 2 as a
function of iterations. Here θ is chosen the same as in Figure 9 (b) with off/on-support ratio ∥θ⊥∥∥θ∥∥

= 9. Panel (b)
visualizes the distribution of the generated samples of Algorithm 2 (red) across the iterations. For comparison,
we also visualize the distribution of generated samples of Algorithm 1 (blue).

Figure 11: Nonlinear data structure experiment. We apply Algorithm 1 to data uniformly sampled
from a unit ball in R64. The objective reward function is f(x) = θ⊤x, where ∥θ∥ = 1. Left: Rewards
increase and converge with Algorithm 1. Higher guidance strength ∆ (lower regularization) results
in a higher convergent reward. Right: For the same reward, gradient guidance achieves a smaller
deviation from the unit ball compared to the naive gradient. This indicates that gradient guidance can
preserve data structure for nonlinear manifolds.

Total runtime (iterations) Per iteration No guidance

Simulation 3.8 min (50 iter) 76 min (1000 iter) 4.6 s 2.6 s
Image 1.3 min (5 iter) 15.8 s 4.9 s

Table 1: Runtime Efficiency of Algorithm 1. Red refers to the total time to converge. No guidance
refers to the time for one-time inference of the pre-trained model.

28

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The introduction (Section 1) includes a paragraph “Scope and Contribution",
together with the abstract, clearly reflecting the paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Appendix B.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

29

Answer: [Yes]

Justification: All the theoretical results Lemma 1, Theorem 1, Theorem 2 and Theorem 3
provide the full set of assumptions, and the correspond proofs are in Appendix D.4, Ap-
pendix D.5, Appendix E.2 and Appendix E.3, respectively.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The main information of the experiments are described in Section 7, and the
details are provided in Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in

30

some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The codebase is released at https://github.com/yukang123/GGDMOptim.git.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental details are provided in Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The experiments that support the main claims of the paper provide error bars,
as shown in Figure 4, Figure 5 and Figure 6.

Guidelines:

• The answer NA means that the paper does not include experiments.

31

https://github.com/yukang123/GGDMOptim.git
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All information on the computer resources is included in Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer:[Yes]

Justification: The research adheres to all guidelines and principles outlined in the NeurIPS
Code of Ethics, including considerations for fairness, accountability, and transparency.
Ethical practices were maintained throughout the study, ensuring compliance with all
applicable standards.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

32

https://neurips.cc/public/EthicsGuidelines

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the social impacts of this paper in Appendix B.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

33

Justification: All creators and original owners of assets used in this paper are properly
credited. The licenses and terms of use are explicitly mentioned and respected according to
their respective guidelines.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release our code and models along with documentation at
https://github.com/yukang123/GGDMOptim.git.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

34

paperswithcode.com/datasets
https://github.com/yukang123/GGDMOptim.git

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

35

	Introduction
	Related Works
	Preliminaries: Diffusion Models and Guidance
	A Primer on Gradient Guidance
	Structural Data Distribution with Subspace
	Naive Gradient Does't Work as Guidance
	Motivating Latent Subspace Preserving Guidance from Conditional Score Function
	Estimation and Implementation of Gloss

	Gradient-Guided Diffusion Model as Regularized Optimizer
	Gradient-Guided Generation with A Pre-trained Score
	Gradient-Guided Diffusion Converges to Regularized Optima in Latent Space

	Gradient-Guided Diffusion with Adaptive Fine-Tuning for Global Optimization
	Adaptive Fine-Tuning Algorithm with Gradient Guidance
	Guided Generation Finds Unregularized Global Optima

	Experiments
	Simulation
	Image Generation

	Conclusion
	Additional Related Works
	Discussion
	Characterization for Output Distribution of Backward Process
	Additional Materials for sec:gradguidance
	Score decomposition for subspace data
	Proof of prop:failurenaive
	Discussion for gradient-like guidance
	Proof of Lemma 1
	Proof of Theorem 1

	Additional Materials for in sec:reg opt,sec:update pre-score
	Convergence to Regularized Maxima in Mean
	Proof of Theorem 2
	Proof of Theorem 3
	Auxiliary Lemma

	Additional Materials for Experiments
	Simulation
	Experiment Setup
	Results

	Image Generation
	Time Efficiency

