Thinking Preference Optimization

Anonymous ACL submission

Abstract

Supervised Fine-Tuning (SFT) has been a go-
to and effective method for enhancing long
chain-of-thought (CoT) reasoning in relatively
small LLMs by fine-tuning them with long
CoT responses from larger LLMs !. To con-
tinually improve reasoning abilities, we can
either collect new high-quality long CoT rea-
soning SFT data or repeatedly train on existing
SFT datasets. However, acquiring new long
CoT SFT data is costly and limited, while re-
peated training often results in a performance
plateau or decline. To further boost the perfor-
mance with the SFT data, we propose Thinking
Preference Optimization (ThinkPO), a simple
yet effective post-SFT method that enhances
long CoT reasoning without requiring new long
CoT responses. Instead, ThinkPO utilizes read-
ily available or easily obtainable short CoT
reasoning responses as rejected answers and
long CoT responses as chosen answers for
the same question. It then applies direct pref-
erence optimization to encourage the model
to favor longer reasoning outputs. Experi-
ments show that ThinkPO further improves
the reasoning performance of SFT-ed models,
e.g. it increases math reasoning accuracy of
SFT-ed models by 8.6% and output length by
25.9%. Notably, ThinkPO is capable of con-
tinually boosting the performance of the pub-
licly distilled SFT model, e.g., increasing the
official DeepSeek-R1-Distill-Qwen-7B’s per-
formance on MATH500 from 87.4% to 91.2%.
Our code is available at https://anonymous.
4open.science/r/ThinkP0-757B/.

1 Introduction

The reasoning capability of LLMs is cru-
cial for their applicability in complex problem-
solving tasks. Improving the reasoning abil-

'Deepseek official distilled models DeepSeek-R1-Distill,
OpenThinker-7B, Sky-T1-32B, and Bespoke-Stratos-7B was
trained in this way.

1
1

Chosen: Hmm, let try some steps to ...
Wait, there may be some errors... Wait, |
have some good Ideas... The final
probability is 0.5.

Base LLM

LLM
(+SFT)

LLM
(+ThinkPO)

Rejected: The probability is 2/4 = 0.5.

Base
80{ " +SFT &
M +ThinkPO (ours)

Accuracy (%)

10

Completio

o wu

AIME ~ GPQA Olympiad MATH500 AIME

Figure 1: The illustration of our method ThinkPO and
its performance on math reasoning tasks. Top: Our
ThinkPO enhances fine-tuned LLMs (+SFT) by pro-
moting detailed problem-solving—using long chain-of-
thought reasoning answers as positive (chosen) sam-
ples and short chain-of-thought reasoning answers as
negative (rejected) samples. Bottom Left: ThinkPO
significantly boosts performance across mathematical
benchmarks (e.g., 83.4% on MATHS500 vs. 82.8% for
+SFT and 74.0% for the Base model). Bottom Right:
ThinkPO generates more detailed solutions, with aver-
age completion lengths on AIME increasing from 0.94K
to 21.57K to 23.9K tokens. These results underscore
Think Preference Optimization’s effectiveness in foster-
ing and enhancing advanced mathematical reasoning.

ity of large language models is one of the cur-
rent research hotspots. Many approaches have
emerged in the open-source community that en-
hance relatively small models’ reasoning ability
through SFT. For example, Sky-Thought (Schul-
man et al., 2017), Bespoke-Stratos (Labs, 2025)
and OpenThinker-7B(Team, 2025b) have built long
reasoning datasets to fine-tune models fully, aiming
to improve model reasoning capabilities. Further
advancements can be seen in models like s1 (Muen-
nighoff et al., 2025) and LIMO (Ye et al., 2025),
which focus on the sophisticated design of long rea-
soning datasets to enhancereasoning capabilities.

Despite the success of supervised fine-tuning,

https://anonymous.4open.science/r/ThinkPO-757B/
https://anonymous.4open.science/r/ThinkPO-757B/
https://anonymous.4open.science/r/ThinkPO-757B/
https://huggingface.co/collections/deepseek-ai/deepseek-r1-678e1e131c0169c0bc89728d
https://huggingface.co/open-thoughts/OpenThinker-7B
https://huggingface.co/NovaSky-AI/Sky-T1-32B-Preview
https://huggingface.co/bespokelabs/Bespoke-Stratos-7B

=
e SFT __ x ThinkPO g
£ 6000 e SET
& 5
€ 0.80 . 2 4000 .
= 2
3 e g
£ 0.751 £ 2000
0 500 1000 1500 g 0 500

Training Steps

Training Steps

% ThinkPO g e SFT % ThinkPO
8 10000
]
5
2 5000 o
j=
g
g
2 0
1000 1500 & 0 500 1000 1500

Training Steps

Figure 2: Analysis of accuracy(Left), average response length(Middle) and reasoning-supportive words count(Right,
like wait, hmm, etc) in SFT and ThinkPO process. We evaluate the model on MATHS500 every 300 steps and record
all the three metrics. In the early training stages, all of them improve significantly. However, in the later stages
(e.g., after 1200 steps), the model’s performance gradually plateau. When ThinkPO is applied, we see additional
improvements in all of the three aspects, demonstrating the effectiveness of Thinking Preference Optimization.

continually improving the reasoning abilities of the
STF-ed model faces the following challenges: (1)
high resources cost needed to collect new long
reasoning response: Training a stronger reasoning
model first requires collecting new large-scale, di-
verse, and meticulously designed long-reasoning
questions. Then, responses to these long reason-
ing problems need to be collected from large-scale
models, such as DeepSeek-R1. However, collect-
ing questions and responses requires significant
computational power and human resources, mak-
ing the process both expensive and labor-intensive,
especially in domains such as healthcare or low-
resource languages, where gathering these input
questions is non-trivial and models like DeepSeek
R1 may also struggle to produce accurate responses.
Furthermore, (2) repeatedly fine-tuning LLLMs on
existing long responses face Performance bot-
tleneck: As a compromise, one might repeatedly
train on a limited long reasoning dataset, but this
approach typically leads to a performance plateau
or even decline. In Figure 2, we observe that when
training with a fixed amount of long-reasoning
data for multiple epochs, model’s average output
length and accuracy increase significantly in the
early stages but slow down or even plateau in later
stages. According to the test-time scaling principle
(Snell et al., 2024; Welleck et al., 2024), increasing
the compute at test time generally enhances reason-
ing ability. However, the limited long-reasoning
dataset is insufficient to further improve LLMs’
reasoning capability in later stages of SFT.

To overcome the performance bottleneck and bet-
ter utilize existing long reasoning data, we propose
Thinking Preference Optimization: a simple yet
efficient method to further enhance model reason-
ing ability after supervised fine-tuning (SFT). Our
approach utilizes short CoT reasoning responses—
which are already available or easy to acquire—as
rejected answers and existing long CoT responses

as chosen answers for the same question, and em-
ploys Direct Preference Optimization to train mod-
els. This encourages models to prefer longer and
more structured reasoning processes, thereby im-
proving reasoning abilities without acquiring addi-
tional high-quality long CoT responses.

Figure 1 presents the framework of ThinkPO
along with the experimental results. We first fine-
tune a Qwen base model using the long CoT data
to obtain an SFT-ed model (+SFT), and then we
further train it using ThinkPO (+ThinkPO). The
results in Figure 1 clearly show that our method im-
proves mathematical reasoning ability across four
datasets. Additionally, our method increases the
average response length on all four datasets, align-
ing with the test-time scaling trend. For example,
ThinkPO increases the math reasoning accuracy
of SFT-ed models by 8.6% and the output length
by 25.9%. Notably, ThinkPO increases the offi-
cial DeepSeek-R1-Distill-Qwen-7B’s performance
on MATH500 from 87.4% to 91.2%. The main
contributions are summarized as follows:

* We propose Thinking Preference Optimization
(ThinkPO) to maximize the value of existing
long reasoning data, which successfully further
enhances SFT-ed LLMs’ reasoning performance
without additional long CoT responses.

* Our method continuously improves the perfor-
mance of public R1-distilled models, including
the DeepSeek-R1 official distilled models.

e We release our dataset, codes, and model

weights to facilitate further research.

2 Thinking Preference Optimization

2.1 Motivations

This section introduces the motivations behind
Thinking Prference Optimization. SFT with fixed
long-reasoning datasets is an effective method for
enhancing a model’s reasoning ability. However,

further improvement of the model’s reasoning abil-
ity during the later stages faces a bottleneck. In
such cases, by using short reasoning data as re-
jected samples and long reasoning texts from SFT
as chosen samples for DPO training, it is possible
to further leverage the high-quality SFT reasoning
data to boost the model’s reasoning performance
with minimal additional data resources.

First, we finetune Qwen-2.5-7B-Instruct model
using Bespoke-Strato-dataset(LLabs, 2025), which
includes 17k long reasoning data distilled from
Deepseek-R1. During training, we track the
model’s average output length, accuracy and
reasoning-supportive words count (like wait, hmm)
at different steps on the Math500 dataset. These
are visualized by fitting curves. When calculating
the model’s average output length, we only con-
sidered valid sentences, excluding duplicates or
sentences with formatting errors. The results on
other datasets could be found in Appendix A.2.

In Figure 2, in the early stages of SFT, the
model’s average output length, accuracy and
reasoning-supportive words count show significant
improvements. This aligns with the test-time scal-
ing phenomenon (Snell et al., 2024; Welleck et al.,
2024), where a model’s reasoning ability generally
improves as its output length increases. Many ap-
proaches enhance reasoning ability by fine-tuning
models to generate longer responses. However, in
the later stages of SFT, average response length,
accuracy and reasoning-supportive words count
plateau, indicating a performance bottleneck.

To further enhance the model’s reasoning ability,
we can apply DPO, which encourages the model
to favor longer outputs. By treating long-reasoning
responses as chosen samples and short-reasoning
responses as rejected samples, this approach im-
proves the model’s reasoning ability without sig-
nificantly increasing long-reasoning dataset size,
thereby boosting its reasoning performance.

2.2 Training Pipeline

The training process in Thinking Preference
Optimization consists of two stages: Reasoning
SFT (Supervised Fine-Tuning) stage and Reason-
ing DPO (Direct Preference Optimization) stage.

In the Reasoning SFT stage, long-reasoning re-
sponses are collected for each question to construct
the dataset D, ¢;. The base model is then fine-tuned
on D, to acquire advanced reasoning capabilities,
which helps to prepare the model for next stage.

In the second stage, the model is further en-

Q: What is the Long Chosen: Hmm,
probability, let try some steps to ...
expressed as a Wait, there may be some ‘
decimal, of errors... Wait, | have some I
drawing one good Ideas... The final
marble which probability is 0.5.
is either red or
blue from a
bag containing
3red, 2 blue, Short Rejected: Therefore,
and 5 yellow the probability is 0.5.
marbles?

Figure 3: Data Collection Process: we use Deepseek R1
to generate long reasoning answers as chosen samples
and Qwen 2.5-7B-Math to generate short reasoning an-
swers as rejected samples, collecting datasets for DPO
Training. Compare with short reasoning data, long rea-
soning answers includes many reasoning-supportive dis-
course markers, such as wait, hmm, and other hesitation
cues, which can improve the model’s reasoning ability.

couraged to generate extended reasoning using the
Direct Preference Optimization (DPO) (Rafailov
et al., 2024) approach. First, the long-reasoning
data from the initial stage is used as the chosen
responses. Then, a smaller model with normal Rea-
soning ability, such as Qwen-2.5-7B-Math (Yang
et al., 2024b), is utilized to generate shorter reason-
ing responses as rejected samples. To ensure data
quality, both long and short reasoning responses
undergo filtering, including correctness validation.
This process results in the dataset Dgy,,. Finally,
the model trained in the first stage is fine-tuned on
Dgpo using DPO, encouraging the model to gener-
ate longer outputs while enhancing its reasoning
ability. Training pipeline is visualized as Figure 1.

2.3 Data Curation

The dataset Dsr; = {(q, 01ong) } v is based on
bespoke stratos dataset (Labs, 2025). They used
DeepSeek-R1 as the teacher reasoning model in-
stead of QwQ-32B-Preview to generate long rea-
soning response 0y,,4 and employed GPT-40-mini
in place of Sky-thought T1’s (Team, 2025a) parsing
logic to filter out incorrect mathematical solutions.

For the dataset Dgpo = {(q; 0jong: Oshort) } ¥ in
the second stage, we first use Qwen2.5-Math-7B-
Instruct (Yang et al., 2024b) to generate a short rea-
soning response Oyt , pairing it with the long rea-
soning response 0joyg in Dy ¢ Then we retain most
of the samples where Qwen2.5-Math-7B-Instruct’s
answer matched DeepSeek R1’s answer. The more
details are in Appendix A.3. The dataset is col-
lected through a straight foreword and simple pro-
cess of gathering short-reasoning data, which did

Table 1: Accuracy and Average Response Length comparison for Our finetuned Qwen-2.5-7B-Instruct before
and after ThinkPO. The "Improv." column shows the percentage change of OQurs over the model. After applying
ThinkPO, its accuracy and length almost improve across datasets, further validating the effectiveness of ThinkPO.

‘ Accuracy ‘ Average Response Length
Dataset | Base +SFT +ThinkPO Improv(%) | Base +SFT +ThinkPO Improv.(%)
MATHS500 | 74.0 82.8 83.4 0.7% 637 5603 7568 35.0%
AIME 10.0 20.0 26.7 33.5% 942 21579 23901 10.7%
GPQA 34.9 35.4 36.9 4.2% 12 5845 7933 35.6%
GSM8K 90.1 93.9 93.0 —0.9% 260 1310 1599 22.1%
Olympiad 38.9 44.5 46.9 5.4% 942 11251 14200 26.2%
Avg. | 496 553 574 8.6% | 558 9117 11040 25.9%

H
)
3
S

Qwen2.5-7B-Instruct (Base)
DeepSeek-7B (SFT only)
mmm DeepSeek-7B+ThinkPO (ours)

@
3
B

o
3
X

ge Completion Length

Accuracy

2
GSM8K MATH500 GPQA Olympiad GSM8K MATH500 GPQA Olympiad

H
1=
8
N

Qwen2.5-7B-Instruct (Base)
Bespoke-7B-Repro. (SFT only)
mmm Bespoke-7B+ThinkPO (ours)

5
K
3

®
<]
2

Accuracy

o
S
b

GSM8K MATH500 GPQA Olympiad

Figure 4: Visualization of improvements on Accuracy and Average Response Length of DeepSeek-R 1-Distill-Qwen-
7B (Left) and our finetuned Qwen2.5-7B-Instruct (Right) on four datasets After ThinkPO. ThinkPO could improve
DeepSeek-7B’s and our finetuned Qwen2.5-7B’s accuracy and output lengths almost across all the datasets

train/grad_norm
— Deepseek-7b = finetuend Qwen2.5-7B-Instruct
35

Bespoke-Tb

0.6
0.5

0.4

100 150 200 0

train/loss
— Deepseek-7b = finetuend Qwen2.5-7B-Instruct

train/rewards/margins
— Deepseek-7b = finetuend Qwen2.5-7B-Instruct
6

| P

Step

Bespoke-7b Bespoke-7b

200 0 50 100 150 200

Figure 5: Training loss, gradient norm, and margin curves for DeepSeek-R1-Distill-Qwen-7B, Bespoke-Stratos-7B
and our finetued Qwen2.5-7B-Instruct during Thinking Preference Optimization phase.

not require significant resources, compared to col-
lecting high-quality long-reasoning data.

Since we select responses generated by
Qwen?2.5-Math-7B-Instruct based solely on final
answer matching, this approach may inadvertently
include subtle incorrect generations that are not eas-
ily detected. To address this, we utilize the OpenR1-
Math-220k dataset, which contains DeepSeek-R1
responses collected specifically for questions in
NuminaMath-CoT dataset. This ensures that both
the short and long reasoning samples in the dataset
are verified to be correct. We conduct the same set
of experiments on this dataset and observe consis-
tent results, as shown in Appendix A.6.

3 Experiments

3.1 Experimental Setup

To evaluate model’s reasoning ability, we se-
lect five different test sets: MATHS00 (Lightman

et al., 2023), AIME2024 2 GPQA-Diamond (Rein
et al., 2023), GSM8K (Cobbe et al., 2021), and
Olympiad Bench Math (He et al., 2024). These
test sets primarily consist of mathematical reason-
ing problems, with GPQA-Diamond also includ-
ing problems from physics, chemistry, and biol-
ogy. The difficulty levels of these test sets vary
significantly, with GSM8K being the easiest while
AIME2024 is the most challenging. This diverse
selection ensures a comprehensive assessment of
the model’s reasoning capability across different
levels of difficulty, from fundamental arithmetic to
complex problem-solving with different difficulty.

When generating responses, we set the temper-
ature as 0.7. For results on other temperatures,
please refer to Appendix A.1. We present our cho-
sen hyper-parameters of ThinkPO in Appendix A.4.

2AIME2024 is a math competition for high school students,
acting as a qualifier for the USAMO.

https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions

Table 2: Accuracy and Average Response Length comparison for Deepseek-7B and Bespoke-7B before and after
ThinkPO. Qwen2.5-7B-Instruct shows the base performance, Deepseek-7B/Bespoke-7B report performance after
SFT, and the "Improv." column shows the percentage change of Ours over Deepseek-7B/Bespoke-7B. AIME22-24
refers to the AIME datasets from 2022 to 2024, which contains more data samples to evluate models.

DeepSeek-R1-Distill-Qwen-7B (Deepseek)

Accuracy Average Response Length
Dataset Deepseek Ours Improv. Deepseek Ours Improv.
(SFT) (+ThinkPO) (%) (SFT) (+ThinkPO) (%)
MATHS500 87.4 91.2 4.3% 2577 3021 17.2%
AIME22-24 43.3 46.4 7.2% 12824 13570 5.8%
GPQA 47.0 49.5 5.3% 4895 5604 14.5%
GSMSK 87.2 87.6 0.5% 619 668 7.9%
Olympiad 58.6 58.6 0.0% 7196 7383 2.6%
Bespoke-Stratos-7B (Bespoke)
Accuracy Average Response Length
Dataset Bespoke Ours Improv. Bespoke Ours Improv.
(SFT) (+ThinkPO) (%) (SFT) (+ThinkPO) (%)
MATHS500 84.0 82.8 —1.4% 5696 6404 12.4%
AIME22-24 16.0 17.6 10.0% 17819 18901 6.1%
GPQA 37.9 43.4 14.5% 5968 7301 22.3%
GSMSK 92.9 93.3 0.4% 1404 1755 25.0%
Olympiad 44.1 48.5 10.0% 11140 12204 9.6%

3.2 Effectiveness of ThinkPO

This experiment primarily analyzes the aver-
age response length, accuracy and reasoning-
supportive words count during both SFT and DPO
processes to validate the effectiveness of Thinking
Preference Optimization (ThinkPO). By tracking
these metrics, we aim to demonstrate how ThinkPO
enhances the model’s reasoning ability by encour-
aging longer, more structured outputs, ultimately
leading to improved reasoning performances.

First, we fine-tune Qwen-2.5-7B-Instruct with
Bespoke-Stratos-Dataset. Subsequently, we apply
ThinkPO to enhance the model’s reasoning ability.
The final results are shown in Table 1. Our fine-
tuned model achieves scores across the five datasets
that are almost identical to Bespoke-Stratos-7B,
which is also finetuned on Bespoke-Stratos-Dataset,
confirming the correctness of our SFT process.
Furthermore, after applying ThinkPO, our model
demonstrates improvements on almost all the
datasets, validating the effectiveness of ThinkPO in
enhancing and improving LLM reasoning ability.

Additionally, we analyze average response
length and reasoning-supportive words (like wait,
hmm, etc) at different steps during both SFT and
ThinkPO. We record the model’s average response
length, accuracy and reasoning-supportive words

(like wait, hmm, etc) count on Math500 at differ-
ent training steps, distinguishing between the SFT
and ThinkPO. When calculating average response
lengths, we exclude duplicate or incomplete re-
sponses to ensure accuracy. Additionally, when
counting reasoning-supportive words, we only con-
sider correct answers to prevent excessive occur-
rences of filler words like “wait” due to underthink-
ing (Chen et al., 2024; Kirk et al., 2023; Wang et al.,
2025). The results are visualized in Figure 2.

At the initial stage of SFT, the model’s rea-
soning ability improves significantly. In the later
stages(like after 1200 steps), three metrics gradu-
ally plateau, indicating that the model may have
reached a local optimum. However, after apply-
ing ThinkPO, average response length, reasoning-
supportive words count and accuracy improve,
showing the effectiveness of ThinkPO in overcom-
ing this stagnation. We visualize the trend of three
metrics on other datasets in Appendix A.2.

3.3 ThinkPO Continually Improves
Reasoning Ability of Public Distilled
Models

We select two open-source reasoning models
and perform ThinkPO training using Dg,,. Specifi-
cally, we chose DeepSeek-R1-Distill-Qwen-7B and

https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
https://huggingface.co/bespokelabs/Bespoke-Stratos-7B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B

Table 3: Results of Models with Different Sizes (3B, 7B, 14B) on the Qwen-2.5 Family. We evaluate models
of different sizes (3B, 7B, 14B) trained with Supervised Fine-Tuning (SFT) and Think Preference Optimization
(ThinkPO). Models are fine-tuned on the Bespoke-Strato-Dataset for 1 epoch. As model size increases, accuracy
improves across all five test datasets. After ThinkPO training, accuracy improves consistently for models of all sizes,
including the smallest (3B), demonstrating that ThinkPO enhances reasoning ability across different model scales.

Qwen 2.5-3B Qwen 2.5-7B Qwen 2.5-14B
+SFT +ThinkPO Improv. | +SFT +ThinkPO Improv. | +SFT +ThinkPO Improv.
MATHS00 | 53.6 54.6 1.8% | 73.0 74.6 2.2% 83.2 85.6 2.9%
AIME 3.30 6.7 100% | 16.7 13.3 —20.3%" | 23.3 33.3 42.9%
GPQA 26.3 27.3 3.8% | 32.3 36.4 12.7% | 45.5 44.0 -3.2%
GSM8K | 80.4 81.1 0.8% | 88.2 88.9 0.9% 93.7 93.9 0.2%
Olympiad | 20.0 22.0 10.0% | 35.3 37.2 5.3% 49.9 52.1 4.4%

* Since AIME2024 contains only 30 questions, even a small difference in the number of correct answers can lead to significant fluctuations in accuracy, making the

decline appear larger than it actually is.

100
Qwen2.5-3B-SFT
80 Wmm Qwen2.5-3B-ThinkPO

> Y
'

©
601 S

Accuracy (%)
Accuracy (%)

40 % a?

20

0-
AIME Olympiad GPQA MATH500 GSM8K

Table 4: Results of ThinkPO on the model finetuned
with a short-Reasoning Dataset. We select a short-
chain reasoning dataset of the same size as the Bespoke-
Stratos dataset and fine-tune Qwen-2.5-7B for 3 epochs.
Models trained with reasoning-style datasets, regard-
less of response length, can benefit from ThinkPO to
enhance and improve their reasoning capability

1004 Qwen2.5-7B-SFT 3 V@
B Qwen2.5-7B-ThinkPO

AIME Olympiad GPQA MATH500 GSM8K
Figure 6: Visualization of improvements on Accuracy and Average Response Length of models in the same
family series from different sizes (Qwen-2.5-3B, Qwen-2.5-7B and Qwen-2.5-14B) on five datasets after ThinkPO.
ThinkPO could improve models’ accuracy and output lengths almost across all the datasets, regradless of sizes

Short Our Improv.

+SFT +ThinkPO %
MATHS500 | 57.8 59.0 2.4%
AIME 0.0 3.3 100%
GPQA 30.3 31.3 3.3%
GSMSK | 834 85.1 2.0%
Olympiad | 23.3 23.6 1.2%

Bespoke-Stratos-7B, since both reasoning models
were fine-tuned on Qwen2.5-7B-Instruct. Since
Our data is collected using prompts from Bespoke,
which is not align with the prompt format for
DeepSeek-7B. In our comparison between SFT and
ThinkPO, we maintained consistency by using the
same Bespoke-style prompts to evaluate models.

As shown in Table 2 and Figure 4, both models
demonstrate an improvement in accuracy across
five datasets. For example, Bespoke-Stratos-7B
shows an increase in accuracy on all datasets except

Qwen2.5-14B-SFT A (59

Q 1)
>3 1007 Qwen2.5-14B-ThinkPO o & >’ 2
@

801

601

Accuracy (%)

40 -

204

AIME Olympiad GPQA MATH500 GSM8K

for a slight decline on the MATHS00 dataset. No-
tably, the improvements on Olympiad Bench Math
and GPQA-Diamond reach around 5%. DeepSeek-
R1-Distill-Qwen-7B, with the exception of a de-
cline on AIME2024, shows consistent or slightly
improved accuracy. Specifically, on MATHS500, the
accuracy improves from 87.4% to 91.2%.

In addition to accuracy, average response length
of DeepSeek-R1-Distill-Qwen-7B is increased by
around 500 tokens on the MATHS500 dataset, while
Bespoke-Stratos-7B shows a larger increase of ap-
proximately 1000 tokens. These align with test-
time scaling principle (Snell et al., 2024; Welleck
et al., 2024), where the increased response length
reflects an enhancement in reasoning capacities.

3.4 ThinkPO Works for Different-Size Models

Previous experiments are all conducted using
a 7B model for training. Now we utilize the Be-
spoke Stratos dataset and conduct one epoch of
SFT training on models of varying sizes within the
Qwen?2.5 series (Qwen2.5-3B, Qwen2.5-7B, and
Qwen2.5-14B). The learning rate is set to 3e-5,
and other hyperparameters are kept consistent with
Bespoke-Stratos-7B, ensuring the models’ perfor-
mances. The results after SFT and ThinkPO are
presented in Table 3 and Figure 6. First, as the

https://huggingface.co/bespokelabs/Bespoke-Stratos-7B

model scale increases, its accuracy improves across
all the datasets after SFT, which aligns with ex-
pectations. After applying ThinkPO, all models,
regardless of size, achieve further improvements.
Specifically, on Math500, all three models show
an accuracy increase of 1%—2%. After applying
ThinkPO, the Qwen2.5-3B model achieves accu-
racy improvements across all five datasets, while
Qwen2.5-7B and 14B models show improvements
on four datasets, which shows that ThinkPO is
effective across different model scales, further vali-
dating its generalizability and robustness.

4 Ablation

4.1 Whether ThinkPO is Useful when SFT
with Short Reasoning Data?

In our previous experiments, we fully fine-tuned
the model using long reasoning datasets before ap-
plying ThinkPO to further enhance its reasoning
ability. However, an important question arises: If
we use short reasoning data instead of long rea-
soning data during the full fine-tuning stage, can
Thinking Preference Optimization still improve the
model’s reasoning performance effectively?

To investigate this, we conduct the following ex-
periment. We use Qwen2.5-7B as the base model
and select a dataset from AI-MO/NuminaMath-
CoT(LI et al., 2024) that matches the Bespoke-
Stratos dataset with the same data size for fine-
tuning. Unlike our previous experiments, the fine-
tuning data here consists of short reasoning exam-
ples rather than long reasoning ones. Consequently,
the fine-tuned model is expected to underperform
compared to models trained on long-reasoning data.
To equip models with basic reasoning ability, we
fine-tune them for three epochs and set learning rate
as le-5. Following this, we apply Thinking Pref-
erence Optimization using the same dataset in the
previous experiments, aiming to further enhance
and improve the model’s reasoning performance.

As shown in Table 4, even after fine-tuning
on short-reasoning data, ThinkPO still effectively
improves the model’s reasoning ability. For ex-
ample, on the Math500 dataset, after applying
ThinkPO, the model’s accuracy improves by ap-
proximately 2%. This result demonstrates that mod-
els trained with reasoning-style datasets, regardless
of response length, can benefit from ThinkPO to
enhance and improve their reasoning capability.

8k
[}

8

S 6k

3

&

A 4k

=

2

3 2k

0k ¥
Long Middle Short

Figure 7: Length difference distribution between cho-
sen and rejected samples across three datasets. These
three datasets are 1000 samples selected based on the
length difference from our ThinkPO-Dataset. The long
dataset exhibits the widest distribution of length differ-
ences, while the middle and short datasets have smaller
differences with lower mean values and variances.

Table 5: Model performance across three datasets with
varying chosen and rejected sample length difference
distributions. “Avg Differences” represents the average
length difference between chosen and rejected samples.
Short yields the best overall performance, suggesting
that appropriate length differences improve ThinkPO
learning, while too large differences may hinder it.

Short Middle Long

Avg Differences ‘ 621 1525 4758
MATHS00 84.2 81.8 84.0
AIME 26.7 13.3 16.7
GPQA 40.9 419 389
GSMSK 92.9 92.9 93.0
Olympiad 46.1 45.9 45.9

4.2 Exploring the Impact of Length
Differences between Chosen and Rejected
Samples on ThinkPO.

In the entire ThinkPO dataset, we select long rea-
soning data as chosen and short reasoning data as
rejected. A key question is whether the length dis-
parity between chosen and rejected samples affects
the ThinkPO training because length disparity is
not distributed evenly in the dataset. To investigate
this, we conduct an experiment to verify the impact
of length differences on the ThinkPO training.

The ThinkPO dataset contains approximately
10,000 samples, but the length disparity between
chosen and rejected samples is not uniformly dis-
tributed. Therefore, we select three datasets with
different length distributions: short, middle, and
long, each containing 1,000 samples. Figure 7
shows details of the length differences distributions

between chosen and rejected samples in these three
datasets, with the long dataset exhibiting the largest
and most widely distributed differences, the mid-
dle dataset showing moderate differences, and the
short dataset having the smallest differences.
Table 5 displays the results after ThinkPO for
one epoch, using the Bespoke-Stratos-7B model
as the base model. Each dataset shows certain ad-
vantages across the five test datasets. However, the
short dataset yields the best performance on overall
datasets. We propose that when the length differ-
ence is smaller, the model’s output distributions for
both samples are more consistent, which benefits
ThinkPO learning. On the other hand, when it is
too large, it may not help the model’s learning.

5 Related Works

LLM Reasoning Ability. With the development
of large models, reasoning ability (Wang et al.,
2022; Zhang et al., 2023; Yao et al., 2023; Plaat
et al., 2024) has become one of the most crucial
capabilities and a necessary condition for achiev-
ing AGI (Artificial General Intelligence) (Minaee
et al., 2024; Xu et al., 2024; Morris et al., 2023;
Feng et al., 2024; Krishnan, 2025). The earliest
appearance of long-chain reasoning ability in large
models can be traced to OpenAl ol (Jaech et al.,
2024; Arrieta et al., 2025; Hurst et al., 2024), which
excelled across various mathematical reasoning test
sets and outperform contemporary LLMs.

This was followed by the release of the QwQ
model (Yang et al., 2024b; Bai et al., 2023a,b;
Chu et al., 2024), which trained reasoning capa-
bilities using a process reward model approach (Li
and Li, 2024; Ma et al., 2023; Zhang et al., 2025;
Lambert et al., 2024). Currently, the emergence
of DeepSeek R1 (DeepSeek-Al et al., 2025) and
Kimi 1.5 (Team et al., 2025) has further enhanced
the reasoning abilities of large open-source mod-
els. DeepSeek R1 utilizes a simple rule-based re-
ward model (Ramesh et al., 2024; Hu, 2025; Shao
et al., 2024; Alonso et al., 2025; Kirk et al., 2023;
Yang et al., 2024a) to effectively boost the model’s
reasoning performance, bringing about an aha mo-
ment that narrows the reasoning capability gap be-
tween open-source and closed-source models. On
the other hand, Kimi 1.5 employs several tricks,
such as long-to-short reasoning, to achieve high
efficiency in LLM reasoning performance.

Many works on open-source reasoning models
have also emerged. First is Sky-Thought T1 (Team,

2025a), which uses QwQ-32B-Preview as a teacher
model to generate reasoning answers for training
data. Then, Bespoke-Stratos (Labs, 2025) built
upon Sky-Thought T1, using DeepSeek R1 as the
teacher model to generate answers for Sky-Thought
data. Since DeepSeek R1 has far superior reason-
ing abilities compared to QwQ-32B-Preview, the
generated data quality is higher, allowing Bespoke-
Stratos-7B and Bespoke-Stratos-32B models to
achieve DeepSeek-level advanced reasoning per-
formance after training on around 17k data points.
Recently, s1 (Muennighoff et al., 2025) and LIMO
(Ye et al., 2025) have emphasized that fine-tuned,
high-quality data construction is essential for mod-
els to achieve SOTA reasoning capabilities.
Direct Preference Optimization. @ RLHF
(Chaudhari et al., 2024; Kirk et al., 2023; Kauf-
mann et al., 2023) is designed to align model out-
puts with human preferences after supervised fine-
tuning (SFT). Various methods have been intro-
duced, such as Proximal Policy Optimization (PPO)
(Engstrom et al., 2019; Huang et al., 2022; Wij-
mans et al., 2019). However, PPO is an online
method that requires significant computational re-
sources. To address this, Direct Preference Op-
timization was proposed, enabling offline train-
ing with only chosen and rejected sample pairs
while reducing computational costs compared to
PPO. Recently, several DPO variants (Wu et al.,
2024b,a; Qi et al., 2024; Zhong et al., 2024; Su
etal., 2025) have emerged, including StepDPO (Lai
et al., 2024), KTO (Ethayarajh et al., 2024), SimPO
(Meng et al., 2024), LongDPO (Ping et al., 2025),
Test-Time Preference Optimization (Li et al., 2025)
etc. Among them, LongDPO shares similarities
with our proposed method. However, LongDPO
primarily focuses on improving long-form story
generation instead of reasoning abilities.

6 Conclusion

We propose ThinkPO, a lightweight post-SFT
method without additional high-quality long-
reasoning data. By treating short responses as re-
jected and long responses as chosen, ThinkPO en-
courages models to generate more detailed rea-
soning. Experiments show that ThinkPO im-
proves accuracy by 8.6% and output length by
25.9%, and boosts DeepSeek-R1-Distill-Qwen-
7B’s MATHS00 score from 87.4% to 91.2%. These
results highlight ThinkPO as an efficient way to en-
hance reasoning with existing long reasoning data.

Limitations

ThinkPO can further enhance SFT-ed models
without requiring additional high-quality long rea-
soning data. However, since ThinkPO is based on
the DPO method, it is sensitive to hyperparameters,
requiring careful tuning of 5 and learning rate to
achieve optimal improvements.

References

Noguer I Alonso and 1 others. 2025. The mathematics
of group relative policy optimization: A multi-agent
reinforcement learning approach. The Mathemat-
ics of Group Relative Policy Optimization: A Multi-
Agent Reinforcement Learning Approach (January
03, 2025).

Aitor Arrieta, Miriam Ugarte, Pablo Valle, José An-
tonio Parejo, and Sergio Segura. 2025. 03-mini vs
deepseek-rl: Which one is safer? arXiv preprint
arXiv:2501.18438.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, and 1 others. 2023a. Qwen technical report.
arXiv preprint arXiv:2309.16609.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. 2023b. Qwen-vl: A frontier large
vision-language model with versatile abilities. arXiv
preprint arXiv:2308.12966.

Shreyas Chaudhari, Pranjal Aggarwal, Vishvak Mura-
hari, Tanmay Rajpurohit, Ashwin Kalyan, Karthik
Narasimhan, Ameet Deshpande, and Bruno Castro
da Silva. 2024. RIhf deciphered: A critical analysis
of reinforcement learning from human feedback for
llms. arXiv preprint arXiv:2404.08555.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He,
Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, and 1 others.
2024. Do not think that much for 2+ 3=? on
the overthinking of ol-like llms. arXiv preprint
arXiv:2412.21187.

Yunfei Chu, Jin Xu, Qian Yang, Haojie Wei, Xipin Wei,
Zhifang Guo, Yichong Leng, Yuanjun Lv, Jinzheng
He, Junyang Lin, and 1 others. 2024. Qwen2-audio
technical report. arXiv preprint arXiv:2407.10759.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,

Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhi-
hong Shao, Zhuoshu Li, Ziyi Gao, and 181 others.
2025. Deepseek-rl: Incentivizing reasoning capa-
bility in llms via reinforcement learning. Preprint,
arXiv:2501.12948.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar,
Dimitris Tsipras, Firdaus Janoos, Larry Rudolph, and
Aleksander Madry. 2019. Implementation matters in
deep rl: A case study on ppo and trpo. In Interna-
tional conference on learning representations.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff,
Dan Jurafsky, and Douwe Kiela. 2024. Kto: Model
alignment as prospect theoretic optimization. arXiv
preprint arXiv:2402.01306.

Tao Feng, Chuanyang Jin, Jingyu Liu, Kunlun Zhu,
Haoqin Tu, Zirui Cheng, Guanyu Lin, and Jiaxuan
You. 2024. How far are we from agi. arXiv preprint
arXiv:2405.10313.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu,
Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han, Yu-
jie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan
Liu, and Maosong Sun. 2024. Olympiadbench:
A challenging benchmark for promoting agi with
olympiad-level bilingual multimodal scientific prob-
lems. Preprint, arXiv:2402.14008.

Jian Hu. 2025. Reinforce++: A simple and efficient
approach for aligning large language models. arXiv
preprint arXiv:2501.03262.

Shengyi Huang, Anssi Kanervisto, Antonin Raffin,
Weixun Wang, Santiago Ontafién, and Rousslan Fer-
nand Julien Dossa. 2022. A2c is a special case of
ppo. arXiv preprint arXiv:2205.09123.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow,
Akila Welihinda, Alan Hayes, Alec Radford, and 1
others. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed El-Kishky, Aiden Low, Alec Helyar,
Aleksander Madry, Alex Beutel, Alex Carney, and 1
others. 2024. Openai ol system card. arXiv preprint
arXiv:2412.16720.

Timo Kaufmann, Paul Weng, Viktor Bengs, and Eyke
Hiillermeier. 2023. A survey of reinforcement
learning from human feedback. arXiv preprint
arXiv:2312.14925.

Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis,
Jelena Luketina, Eric Hambro, Edward Grefenstette,
and Roberta Raileanu. 2023. Understanding the ef-
fects of rlhf on llm generalisation and diversity. arXiv
preprint arXiv:2310.06452.

Vinod Krishnan. 2025. From artificial intelligence (ai)
to artificial general intelligence (agi)-the road ahead.
Journal of the World Federation of Orthodontists,
14(1):1-2.

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008

Bespoke Labs. 2025. Bespoke-stratos: The un-
reasonable effectiveness of reasoning distilla-
tion. www.bespokelabs.ai/blog/bespoke-stratos-
the-unreasonable-effectiveness-of-reasoning-
distillation. Accessed: 2025-01-22.

Xin Lai, Zhuotao Tian, Yukang Chen, Senqgiao Yang, Xi-
angru Peng, and Jiaya Jia. 2024. Step-dpo: Step-wise
preference optimization for long-chain reasoning of
llms. arXiv preprint arXiv:2406.18629.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison,
LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi,
and 1 others. 2024. Rewardbench: Evaluating re-
ward models for language modeling. arXiv preprint
arXiv:2403.13787.

Jia LI, Edward Beeching, Lewis Tunstall, Ben
Lipkin, Roman Soletskyi, Shengyi Costa Huang,
Kashif Rasul, Longhui Yu, Albert Jiang, Ziju
Shen, Zihan Qin, Bin Dong, Li Zhou, Yann
Fleureau, Guillaume Lample, and Stanislas Polu.
2024. Numinamath. [https://huggingface.co/
AI-MO/NuminaMath-CoT](https://github.com/
project-numina/aimo-progress-prize/blob/
main/report/numina_dataset.pdf).

Wendi Li and Yixuan Li. 2024.
model with g-value rankings.
arXiv:2410.11287.

Process reward
arXiv preprint

Yafu Li, Xuyang Hu, Xiaoye Qu, Linjie Li, and
Yu Cheng. 2025. Test-time preference optimization:
On-the-fly alignment via iterative textual feedback.
Preprint, arXiv:2501.12895.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

Qianli Ma, Haotian Zhou, Tingkai Liu, Jianbo Yuan,
Pengfei Liu, Yang You, and Hongxia Yang. 2023.
Let’s reward step by step: Step-level reward model
as the navigators for reasoning. arXiv preprint
arXiv:2310.10080.

Yu Meng, Mengzhou Xia, and Dangi Chen.

2024. Simpo: Simple preference optimization

with a reference-free reward. arXiv preprint

arXiv:2405.14734.

Shervin Minaee, Tomas Mikolov, Narjes Nikzad,
Meysam Chenaghlu, Richard Socher, Xavier Am-
atriain, and Jianfeng Gao. 2024. Large language
models: A survey. arXiv preprint arXiv:2402.06196.

Meredith Ringel Morris, Jascha Sohl-Dickstein, Noah
Fiedel, Tris Warkentin, Allan Dafoe, Aleksandra
Faust, Clement Farabet, and Shane Legg. 2023. Lev-
els of agi: Operationalizing progress on the path to
agi. arXiv preprint arXiv:2311.02462.

10

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and
Tatsunori Hashimoto. 2025. sl: Simple test-time
scaling. Preprint, arXiv:2501.19393.

Bowen Ping, Jiali Zeng, Fandong Meng, Shuo Wang,
Jie Zhou, and Shanghang Zhang. 2025. Longdpo:
Unlock better long-form generation abilities for 1lms
via critique-augmented stepwise information. arXiv
preprint arXiv:2502.02095.

Aske Plaat, Annie Wong, Suzan Verberne, Joost
Broekens, Niki van Stein, and Thomas Back. 2024.
Reasoning with large language models, a survey.
arXiv preprint arXiv:2407.11511.

Biqing Qi, Pengfei Li, Fangyuan Li, Junqi Gao, Kaiyan
Zhang, and Bowen Zhou. 2024. Online dpo: Online
direct preference optimization with fast-slow chasing.
arXiv preprint arXiv:2406.05534.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems, 36.

Shyam Sundhar Ramesh, Yifan Hu, Iason Chaimalas,
Viraj Mehta, Pier Giuseppe Sessa, Haitham Bou Am-
mar, and Ilija Bogunovic. 2024. Group robust prefer-
ence optimization in reward-free rlhf. arXiv preprint
arXiv:2405.20304.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju-
lian Michael, and Samuel R Bowman. 2023. Gpga: A
graduate-level google-proof q&a benchmark. arXiv
preprint arXiv:2311.12022.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y Wu, and 1 others. 2024. Deepseek-
math: Pushing the limits of mathematical reason-
ing in open language models. arXiv preprint
arXiv:2402.03300.

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling llm test-time compute optimally
can be more effective than scaling model parameters.
arXiv preprint arXiv:2408.03314.

Xuerui Su, Yue Wang, Jinhua Zhu, Mingyang Yi, Feng
Xu, Zhiming Ma, and Yuting Liu. 2025. Reveal the
mystery of dpo: The connection between dpo and rl
algorithms. arXiv preprint arXiv:2502.03095.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing,
Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, Chuning
Tang, Congcong Wang, Dehao Zhang, Enming Yuan,

[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
https://arxiv.org/abs/2501.12895
https://arxiv.org/abs/2501.12895
https://arxiv.org/abs/2501.12895
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393

Enzhe Lu, Fengxiang Tang, Flood Sung, Guangda
Wei, Guokun Lai, and 75 others. 2025. Kimi k1.5:
Scaling reinforcement learning with llms. Preprint,
arXiv:2501.12599.

NovaSky Team. 2025a. Sky-tl: Train your own
ol preview model within $450. https://novasky-
ai.github.io/posts/sky-tl. Accessed: 2025-01-09.

OpenThoughts Team. 2025b.
https://open-thoughts.ai.

Open Thoughts.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Yue Wang, Qiuzhi Liu, Jiahao Xu, Tian Liang, Xingyu
Chen, Zhiwei He, Linfeng Song, Dian Yu, Juntao Li,
Zhuosheng Zhang, and 1 others. 2025. Thoughts are
all over the place: On the underthinking of ol-like
llms. arXiv preprint arXiv:2501.18585.

Sean Welleck, Amanda Bertsch, Matthew Finlayson,
Hailey Schoelkopf, Alex Xie, Graham Neubig, Ilia
Kulikov, and Zaid Harchaoui. 2024. From de-
coding to meta-generation: Inference-time algo-
rithms for large language models. arXiv preprint
arXiv:2406.16838.

Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan
Lee, Irfan Essa, Devi Parikh, Manolis Savva, and
Dhruv Batra. 2019. Dd-ppo: Learning near-perfect
pointgoal navigators from 2.5 billion frames. arXiv
preprint arXiv:1911.00357.

Junkang Wu, Xue Wang, Zhengyi Yang, Jiancan Wu,
Jinyang Gao, Bolin Ding, Xiang Wang, and Xiangnan
He. 2024a. a-dpo: Adaptive reward margin is what
direct preference optimization needs. arXiv preprint
arXiv:2410.10148.

Junkang Wu, Yuexiang Xie, Zhengyi Yang, Jiancan Wu,
Jinyang Gao, Bolin Ding, Xiang Wang, and Xiangnan
He. 2024b. B-dpo: Direct preference optimization
with dynamic 3. arXiv preprint arXiv:2407.08639.

Mengwei Xu, Wangsong Yin, Dongqi Cai, Rongjie Yi,
Daliang Xu, Qipeng Wang, Bingyang Wu, Yihao
Zhao, Chen Yang, Shihe Wang, and 1 others. 2024. A
survey of resource-efficient 1lm and multimodal foun-
dation models. arXiv preprint arXiv:2401.08092.

Adam X Yang, Maxime Robeyns, Thomas Coste,
Zhengyan Shi, Jun Wang, Haitham Bou-Ammar, and
Laurence Aitchison. 2024a. Bayesian reward models
for llm alignment. arXiv preprint arXiv:2402.13210.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jian-
hong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,
Jingren Zhou, Junyang Lin, Kai Dang, and 22 others.
2024b. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115.

11

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2023. Tree of thoughts: Deliberate problem solving
with large language models. Advances in neural
information processing systems, 36:11809-11822.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie
Xia, and Pengfei Liu. 2025. Limo: Less is more for
reasoning. Preprint, arXiv:2502.03387.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen
Zhang, Runji Lin, Bowen Yu, Dayiheng Liu, Jin-
gren Zhou, and Junyang Lin. 2025. The lessons of
developing process reward models in mathematical
reasoning. arXiv preprint arXiv:2501.07301.

Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao,
George Karypis, and Alex Smola. 2023. Multi-
modal chain-of-thought reasoning in language mod-
els. arXiv preprint arXiv:2302.00923.

Han Zhong, Guhao Feng, Wei Xiong, Xinle Cheng,
Li Zhao, Di He, Jiang Bian, and Liwei Wang. 2024.
Dpo meets ppo: Reinforced token optimization for
rlhf. arXiv preprint arXiv:2404.18922.

https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2502.03387
https://arxiv.org/abs/2502.03387
https://arxiv.org/abs/2502.03387

A Appendix

A.1 Evaluating ThinkPO with Different
Temperatures

In our experiments, we initially evaluated the
model at a temperature of 0.7. While this pro-
vides a good measure of performance, it is impor-
tant to explore different sampling conditions for
a more robust analysis. Therefore, we addition-
ally tested temperatures of 0.1 and 0.5 to examine
how ThinkPO impacts Bespoke-Strato-7B under
varying levels of randomness in sampling. By com-
paring results across these temperature settings,
we can assess whether ThinkPO consistently en-
hances the model’s reasoning ability regardless of
generation strategy. To provide a comprehensive
evaluation, we average the results across all three
temperatures. The results are shown in Table 6.

Our findings demonstrate that ThinkPO consis-
tently improves model performance across differ-
ent temperature settings. Specifically, at temper-
atures of 0.1 and 0.7, accuracy increases on four
datasets, while at 0.5, improvements are observed
on three. To gain a more holistic understanding of
ThinkPO’s impact, we average the results across
all temperature settings, showing that ThinkPO
enhances performance on all five datasets. No-
tably, on MATHS500, ThinkPO improves accuracy
by 1.4%. These results further validate the effec-
tiveness of our proposed method and demonstrate
its ability to consistently enhance reasoning perfor-
mance across different sampling conditions.

A.2 Analysis of our Reproduce Model in other
datasets

Previously, we only presented the changes in
accuracy, average response length, and reasoning-
supportive words count over training steps on the
MATHS500 dataset. Here, we extend our analysis
by showcasing results on two additional datasets
(like GSM8K) from our reproduced model. The
detailed results are illustrated in Figure 9.

As observed in the results for GSM8K and
Olympiad Bench Math, the model exhibits a similar
trend to MATHS00 across all three metrics. Dur-
ing the early stages of SFT, the model’s reasoning
ability improves rapidly. However, in later stages,
it reaches a performance plateau. ThinkPO effec-
tively helps the model overcome this bottleneck,
further enhancing its reasoning capability.

12

A.3 Details of Data Curation

Here, we show the details of how to collect the
ThinkPO Dataset. we collect it in the following
manner, referring to (Team et al., 2025): For each
question g in Dy, we use Qwen2.5-Math-7B-
Instruct (Yang et al., 2024b) to generate a short
reasoning response Ogport » pairing it with the long
reasoning response 0jo,4 in D¢ We then retain
the samples where Qwen2.5-Math-7B-Instruct’s
answer matched DeepSeek R1’s answer, result-
ing in 8,080 samples. Additionally, we include
2,000 samples where Qwen2.5-Math-7B-Instruct’s
answer differed from DeepSeek R1’s but adhered
to the correct response format, including more out-
put distribution in Dg,,. All of these combined
samples consequently form the final dataset Dg,,.

A.4 Training Recipe

Here, we provide the corresponding hyperparam-
eters—batch size, learning rate, and S—that were
used to achieve these optimal outcomes. All the
hyperparameters are presented in Table 7.

Besides, we present the training loss curves, gra-
dient norm curves, and margin curves for three
models during the ThinkPO phase in Figure 5.
These metrics provide insights into how the models
perform throughout the training process, includ-
ing their convergence behavior, stability of gra-
dients, and the differences in preference between
chosen and rejected samples. By examining these
curves, we can better understand the effectiveness
of ThinkPO in enhancing model performance.

A.5 Examples of LLM’s outputs before and
after ThinkPO

We present the changes in the total number of
reasoning-supportive words (such as wait, hmm,
let’s think, etc.) throughout both the SFT and
ThinkPO training stages in Figure 2 and Figure 9.
These words serve as indicators of the model’s
reasoning process, reflecting its ability to struc-
ture logical steps before arriving at a final answer.
Our results show that the number of reasoning-
supportive words increases significantly during the
initial stages of SFT but eventually plateaus, sug-
gesting that conventional fine-tuning alone may not
be sufficient to further enhance structured reason-
ing. However, after applying ThinkPO, we observe
a clear upward trend in the use of these reasoning-
supportive expressions, indicating that our method
effectively encourages the model to adopt a more

Table 6: Evaluation of Bespoke-Strato-7B with different temperatures(0.1,0.5,0.7). Across different values of
temperatures, the model achieves accuracy improvements on most datasets. After averaging the results, ThinkPO
consistently enhances the model’s performance across all five datasets.

Temperature=0.1 | Temperature=0.5 | Temperature=0.7 Average
+SFT +ThinkPO | +SFT +ThinkPO | +SFT +ThinkPO | +SFT +ThinkPO Improv.

MATHS00 | 70.2 73.4 1 81.4 82.61 84.0 82.8 | 78.5 79.67 1.4%
AIME 10.0 16.7 1 20.0 16.7] 20.0 23.37 16.7 18.9 1 13.2%
GPQA 34.9 30.8 33.8 41.07 37.9 43.47 35.5 38.47 8.1%

GSMSK | 89.3 91.0 1 924 92.3] 92.9 9331 91.5 92.21 0.7%

Olympiad | 32.8 39.61 42.3 4481 44.1 48.57 39.7 4437 11.6%

e SFT x ThinkPO e SFT x ThinkPO

1500 X

e SFT x ThinkPO

1000

=}

Accuracy

o o

© ©
=g~
Average Response Length
o

=]

S
Reasoning Words Count

v

)

S

S S
7

o

500 1000 1500 500 1000 1500 0 500 1000 1500
Training Steps Training Steps Training Steps

Figure 8: Analysis of accuracy(Left), average response length(Middle) and reasoning-supportive words count(Right,
like wait, hmm, etc) in reproducing Bespoke-Stratos-7B. We evaluate the model on GSM8K every 300 steps and
record results. In the early training stages, all of them improve significantly. However, in the later stages (e.g., after
1200 steps), the model’s performance plateau. When ThinkPO is applied, we see additional improvements in all of
the three aspects, demonstrating the effectiveness of Think Preference Optimization.

e SFT x_ ThinkPO e SFT x_ ThinkPO

10000 S
D
5000

0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
Training Steps Training Steps Training Steps

e SFT x_ ThinkPO

Accuracy
e N
w [
o S
x
X
Average Response Length
Reasoning Words Count
o
=]
S
o o
?

Figure 9: Analysis of accuracy(Left), average response length(Middle) and reasoning-supportive words count(Right,
like wait, hmm, etc) in reproducing Bespoke-Stratos-7B. We evaluate the model on OlympiadBenchMath every
300 steps and record results. In the early training stages, all of them improve significantly. However, in the later
stages (e.g., after 1200 steps), the model’s performance plateau. When ThinkPO is applied, we see additional
improvements in all of the three aspects, demonstrating the effectiveness of Think Preference Optimization.

deliberative reasoning process. A.6 Validation of ThinkPO on OpenR1
Datasets and Deepseek-style metric

To further validate the effectiveness of ThinkPO,

We provide examples of model outputs before we conduct experiments using a newly constructed

and after applying ThinkPO in Table 12 and Ta- dataset and a more robust evaluation metric.

ble 13. Before ThinkPO, the model’s responses First, we adopt the open-source dataset OpenR1-
tend to be more direct, with fewer reasoning- Math-220K, which is created by re-collecting
supportive words, often resulting in incorrect or DeepSeek-R1 responses for the questions from
incomplete answers. In contrast, after apply- NuminaMath-CoT. We randomly sample 15K ex-
ing ThinkPO, the model generates responses that ~ amples from the dataset, where the DeepSeek-R1
utilize a greater number of reasoning-supportive =~ IESPONSES S€Ive as long chosen samples, and the
words. This shift leads to a noticeable improvement original NuminaMath-CoT responses serve as short
in answer correctness, reinforcing the effectiveness 7 ejected samples.

of ThinkPO in enhancing the model’s reasoning Second, we introduce a DeepSeek-style met-
ability. These findings highlight that ThinkPO not ric, where the model is prompted to generate five
only improves accuracy but also aligns the model’s ~ responses per question, and the final accuracy is
output with human-like problem-solving patterns. ~ computed across all generated responses. This met-

13

Table 7: The optimal hyperparameters identified in our experiments are listed here, including batch size, learning
rate (Ir), and beta. These parameters were carefully tuned to achieve the best performance improvements.

‘ Deepseek-7B Bespoke-7B Bespoke-7B-reproduced
batch size 48 48
Ir le-7 S5e-7 3e-7
I3 0.01 0.01 0.01
‘ Qwen2.5-3B-SFT Qwen2.5-7B-SFT Qwen2.5-14B-SFT
batch size 48 48
Ir Se-7 8e-8 le-7
I} 0.01 0.01 0.01

Table 8: Results of baseline DPO and ThinkPO on the
model. DeepSeek-R1 responses are used as chosen
samples and the model outputs after SFT are collected
as rejected samples.

Baseline Our Improv.
+DPO +ThinkPO %
MATHS00 84.6 84.6 0.0%
AIME22-24 22.0 22.4 2.0%
GPQA 42.5 43.0 1.2%
GSMSK 93.2 93.0 —0.2%
Olympiad 48.6 49.1 1.0%
Average | 582 58.4 0.4%
ric provides more stable and reliable evaluation

compared to single-response accuracy.
We conduct the following experiments:

1.

We first fine-tune Qwen-2.5-7B-Instruct on
the 15K subset of OpenR1-Math-220K. Then,
we further improve it using ThinkPO. As
shown in Table 8, both the model’s accu-
racy and output length improve after applying
ThinkPO.

We apply ThinkPO training to two open-
source models: open-r1/OpenR1-Qwen-7B
and deepseek-ai/DeepSeek-R1-Distill-Qwen-
7B. The results in Table 9 show that both mod-
els benefit from further accuracy gains after
ThinkPO.

We extend the study to the Qwen-2.5-Instruct
family with three different model sizes: 3B,
7B, and 14B. All models are trained with stan-
dard SFT and then improved via ThinkPO. Ta-
ble 9 shows consistent performance improve-
ments across scales.

Finally, we introduce a baseline, where

14

DeepSeek-R1 responses are used as chosen
samples and the model outputs after SFT
are collected as rejected samples. Table 8
shows that the baseline performs comparably
to ThinkPO. However, collecting rejected sam-
ples via model inference introduces additional
time and resource costs. In contrast, ThinkPO
leverages pre-existing datasets to extract long
rejected samples efficiently, often with longer
output lengths, demonstrating the method’s
efficiency and practicality.

Table 9: Accuracy and Average Response Length comparison for our finetuned Qwen-2.5-7B-Instruct before and
after ThinkPO. The "Improv." column shows the percentage change of Ours over the model. After applying
ThinkPO, its accuracy and length almost improve across datasets, further validating the effectiveness of ThinkPO.

‘ Accuracy ‘ Average Response Length

Dataset | Base +SFT +ThinkPO Improv.(%) | Base ~ +SFT +ThinkPO Improv.(%)
MATHS500 74.0 84.5 84.6 0.1% 637 5416 5521 1.9%
AIME22-24 | 10.0 20.7 22.4 8.2% 942 17828 18082 1.4%
GPQA 349 418 43.0 2.9% 12 10096 10449 3.5%
GSMSK 90.1 92.8 93.0 0.2% 260 1599 1606 0.4%
Olympiad 38.9 48.3 49.1 1.7% 942 10876 10975 0.9%

Avg. \ 496 57.6 58.4 1.4% \ 558 9117 9249 1.4%

Table 10: Accuracy and Average Response Length comparison for OpenR1-Qwen-7B and DeepSeek-R1-Distill-
Qwen-7B before and after ThinkPO. The "Improv." column shows the percentage change of Ours over the base
model.

OpenR1-Qwen-7B

Accuracy Average Response Length
Dataset OpenR1 Ours Improv. OpenR1 Ours Improv.
(SFT) (+ThinkPO) (%) (SFT) (+ThinkPO) (%)
MATHS500 90.7 90.6 —0.1% 3276 3427 4.6%
AIME22-24 43.1 44.2 2.6% 13559 13764 1.5%
GPQA 42.2 43.9 4.0% 9533 9972 4.6%
GSMSK 95.0 95.1 0.1% 1227 1274 3.8%
Olympiad 60.2 60.5 0.5% 8587 8594 0.1%
DeepSeek-R1-Distill-Qwen-7B
Accuracy Average Response Length
Dataset DeepSeek Ours Improv. DeepSeek Ours Improv.
(SFT) (+ThinkPO) (%) (SFT) (+ThinkPO) (%)
MATHS500 91.0 91.8 0.9% 3702 3832 3.5%
AIME22-24 48.1 48.0 —0.2% 13867 13918 0.4%
GPQA 474 48.7 2.7% 6113 6450 5.5%
GSMS8K 86.7 87.1 0.5% 467 464 —0.6%
Olympiad 60.2 61.1 1.5% 8541 8525 —0.2%

Table 11: Results of Models with Different Sizes (3B, 7B, 14B) on the Qwen-2.5 Family. We evaluate models
of different sizes (3B, 7B, 14B) trained with Supervised Fine-Tuning (SFT) and Think Preference Optimization
(ThinkPO). Models are fine-tuned on the Bespoke-Strato-Dataset for 1 epoch. As model size increases, accuracy
improves across all five test datasets. After ThinkPO training, accuracy improves consistently for models of all sizes,
including the smallest (3B), demonstrating that ThinkPO enhances reasoning ability across different model scales.

Qwen 2.5-3B-Instruct Qwen 2.5-7B-Instruct Qwen 2.5-14B-Instruct
+SFT +ThinkPO Improv. | +SFT +ThinkPO Improv. | +SFT +ThinkPO Improv.
MATHS500 | 64.9 65.6 1.2% | 84.5 84.6 0.1% | 90.7 91.2 0.5%
AIME22-24 | 7.1 9.3 30.8% | 20.7 224 82% | 44.0 43.6 —0.9%
GPQA 29.5 29.9 1.4% | 41.8 43.0 2.9% | 55.3 55.6 0.6%
GSMSK 83.5 84.8 1.6% | 92.8 93.0 0.2% | 94.8 95.0 0.2%
Olympiad | 28.7 28.6 —0.3% | 48.3 49.1 1.7% | 58.7 59.2 0.8%

15

https://huggingface.co/open-r1/OpenR1-Qwen-7B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B

Question | What is the domain of the function f(x) = 1072’7“7 where log is the base 10 logarithm function?
9(2—log(z—2))
Express your answer in interval notation.

SFT Okay, so I need to find the domain of the function f(x) = (2 - x)/log(2 - log(x - 2)). hmm, let’s start by recalling
that the domain of a function includes all the real numbers x for which the function is defined. Since this
function has a logarithm in the denominator, there are a couple of things I need to check: first, the argument
of the outer logarithm (the one in the denominator) must be positive because logarithms are only defined for
positive numbers. Second, the argument of the inner logarithm (the one inside the denominator’s argument)
must also be positive because we can’t take the logarithm of a non-positive number. Let me break this down step
by step.... But wait, 102 is already the upper bound, so actually, the domain is (2, 102). But we have to make
sure that within (2, 102), the expression 2 - log(x - 2) is positive, which we already considered. Let me verify
this again. So, starting with the inner logarithm: x > 2. Then, log(x - 2) is defined. Then, the outer logarithm
requires that 2 - log(x - 2) > 0, which as we saw, leads to x < 102. So combining x > 2 and x < 102 gives (2,
102). Additionally, we need to ensure that the denominator is not zero, which occurs at x = 102, but since 102 is
already the upper limit, the interval is open at 102. Therefore, the domain is (2, 102). Let me check if there
are any other restrictions or if I missed something. wait, another thing to consider: the numerator is 2 - X. The
numerator is a linear function, so it’s defined for all real numbers. The denominator is log(2 - log(x - 2)), ...
Then, log(3 - 2) =1og(1) = 0. Then, 2 - 0 = 2, so log(2) is the denominator. That’s valid. If x = 100, then log(100
-2) =10g(98), which is positive, so 2 - 1og(98) would be 2 - 10g(98), which is positive because 10g(98) is less
than 2 (since 10% = 100). So, denominator is positive. If x approaches 2 from the right, x approaches 2+, so x -
2 approaches 0+, so log(x - 2) approaches -infty, so 2 - log(x - 2) approaches +infty, so denominator is defined. If
x approaches 102 from the left, x approaches 102-, so x - 2 approaches 100-, so log(x - 2) approaches log(100-),
which is close to 2, so 2 - log(x - 2) approaches 0 from the positive side, so the denominator approaches 0+,
making the whole function approach +infty. But x can’t be 102. So, in all other points between 2 and 102, the
denominator is defined and positive, so the function is defined there. Therefore, the domain is indeed (2, 102). I
think that’s it. Final Answer The domain of the function is (2, 102).

ThinkPO | Okay, so I need to find the domain of the function f(x) = (2 - x)/log(2 - log(x - 2)), where the log here is base
10. hmm, let me think step by step about what’s required here. ... But wait, I need to check if this x > 2 is
compatible with the first condition. So maybe I need to solve both inequalities together?Let me start with the
second condition: log(x - 2) is defined when x - 2 > 0, so x > 2. So that’s the domain from the argument of the
inner logarithm. But then, ... So combining x > 2 and x < 102 gives me 2 < x < 102. wait, but hold on. Let me
verify this. Tf log(x - 2) < 2, then — 2 < 10% = 100, so x < 102. But since x - 2 must be positive (because
log requires positive argument), X > 2. So indeed, x is in (2, 102). But wait, when I take log(x - 2) <2, ... If x
approaches 2 from the right, x - 2 approaches 0+, so log(x - 2) approaches -infty, so 2 - log(x - 2) approaches
infinity. wait, but as x approaches 2+, the inner log(x - 2) goes to -infty, so 2 - log(x - 2) goes to +infty. Therefore,
the denominator log(2 - log(x - 2)) approaches log(infinity) which is +infty. wait, but that would mean the
denominator is positive and approaching infinity. But wait, is there a point where the denominator could be
zero? Let’s check. For 2 - log(x - 2) = 0, then log(x - 2) =2, so — 2 = 102 = 100, so x = 102. But x = 102 is
the upper bound of the domain. So at x = 102, the denominator is log(2 - log(100)) = log(2 - 2) = log(0), which
is undefined. So x cannot be 102. So the domain is (2, 102). But wait, we also have to consider the numerator.
The numerator is 2 - X. So 2 - X can be zero, but if the denominator is non-zero, then the function is defined.
If numerator is zero, then f(x) = 0/denominator, which is zero. But division by zero is undefined. wait, but if
numerator is zero, does that make the entire expression zero, but with denominator non-zero? For example, if x
= 2, then numerator is 0, denominator is log(2 - log(0)). wait, x=2 is not in the domain because x - 2 = 0, so
log(0) is undefined. ...wait, but the denominator is log(2 - log(x - 2)). So the denominator is log of something.
The logarithm output can be any real number, but in this case, the denominator is used in the function, so as long
as the argument inside the log is positive, which we already considered. But the denominator itself can be any
real number except zero. wait, no. wait, the denominator is log(2 - log(x - 2)),wait, so...Let’s compute log(10)
is 1 (base 10),s02 - 1 =1, log(1) =0, ...That seems correct.wait, but let’s check another value. If x is 11, then
x—2=9,log(9) = 0.954,2 — 0.954 = 1.046, so log(1.046) is a positive number. So denominator is defined
and non-zero. If x is 13, then x - 2 =11, log(11) = 1.041, 2 - 1.041 = 0.959, 10g(0.959) is negative. But wait, the
original function is defined only if the denominator is log(positive number). So if the denominator is log of a
number less than 1, that’s negative, but is that allowed? wait, no. wait, the denominator is log(2 - log(x - 2)). For
the log to be defined, 2 - log(x - 2) must be positive. So if 2 - log(x - 2) is negative, then log of that is undefined
(since log of a negative number is not real). wait, x=1 is less than 2,... wait, no. wait, the denominator is
log(2 - log(x -2)). For log to be defined, the argument must be positive. So if 2 - log(x -2) is positive, then log is
defined, regardless of whether it’s positive or negative. wait, no. wait, So intervals (2,12) and (12,102). That
should be correct.

Table 12: One example of LLM’s wrong outputs before ThinkPO and correct outputs after ThinkPO. ThinkPO helps
models generate more reasoning-supportive discourse markers, such as wait, hmm, and other hesitation cues.

16

Question

How many positive two-digit integers are factors of both 100 and 150?

SFT Okay, so I need to figure out how many positive two-digit integers are factors of both 100 and 150. hmm, let’s start by understanding
the problem....So, the GCD of 100 and 150 is 50. That means all the common factors of 100 and 150 are the factors of 50. Let me
list out the factors of 50 to make sure. The factors of 50 are 1, 2, 5, 10, 25, and 50. wait, that’s six factors. But the problem asks for
two-digit integers. From this list, the two-digit factors would be 25 and 50. So that’s two numbers. But wait, hold on. Let me
verify if 25 and 50 are indeed factors of both 100 and 150. For 25: 100 / 25 = 4, which is an integer. 150 /25 = 6, which is also an
integer. So yes, 25 is a common factor. For 50: 100/ 50 =2, and 150/ 50 = 3. Both integers, so 50 is also a common factor. But
wait, are there any other two-digit numbers that are factors of both 100 and 150? Let’s check. The factors of 100 are 1, 2, 4, 5, 10,
20, 25, 50, 100. The factors of 150 are 1, 2, 3, 5, 6, 10, 15, 25, 30, 50, 75, 150. The common factors are 1, 2, 5, 10, 25, 50. So, the
two-digit common factors are 25 and 50. That gives us two numbers. wait, but hold on. The problem says "positive two-digit
integers". ... So, factors of 50 are 1, 2, 5, 10, 25, 50. So, two-digit ones are 25 and 50. Therefore, the answer is 2. But wait, let
me check if there are any other numbers between 10 and 99 that divide both 100 and 150. For example, 10 divides both. 10 is
two-digit. 20 divides 100 but 150/ 20 is 7.5, which is not integer. So 20 is out. 30 divides 150 but 100 / 30 is approximately 3.333,
not integer. 15 divides 150 but 100 / 15 is about 6.666, not integer. 75 divides 150 but 100 / 75 is 1.333, not integer. So, indeed,
only 25 and 50 are in the two-digit range. Therefore, the answer is 2. But wait, wait a second. Let me check 25 and 50 again. 25
divides both 100 and 150, yes. 50 divides both, yes. Are there any other numbers between 10 and 99 that divide both? Let me
check 10. 10 divides 100 and 150. 10 is two-digit. But we already have 10, 25, 50. wait, 10 is a factor, but it’s single-digit. So 10 is
not included. So 25 and 50 are the only two. Therefore, the answer is 2. So, the number of positive two-digit integers that are
factors of both 100 and 150 is 2. But just to be thorough, let me check 25: 100 /25 =4, 150/ 25 = 6. Both integers. 50: 100 /50 =
2,150/ 50 = 3. Both integers. So yes, they are factors. Are there any others? Let me check 30: 100 / 30 = 3.333, not integer. 40:
100 /40 = 2.5, not integer. 45: 100/ 45 = 2.222, no. 55: 100/ 55 = 1.818, no. 60: 100/ 60 = 1.666, no. 65: 100/ 65 = 1.538, no.
70: 100 /70 = 1.428, no. 75: 100/ 75 = 1.333, no. 80: 100/ 80 = 1.25, no. 85: 100/ 85 = 1.176, no. 90: 100/90 = 1.111, no. 95:
100 /95 = 1.052, no. So, none of these two-digit numbers are factors of both 100 and 150. Therefore, only 25 and 50. Therefore,
the answer is 2. So, the final answer is 2, which in boxed form is 2.

ThinkPO | Okay, so I need to figure out how many positive two-digit integers are factors of both 100 and 150. hmm, let’s start by understanding
the problem.... For prime 5, both have exponent 2, so min(2,2)=2. Prime 3 is only in 150, so we ignore it. So GCDis 2 * 5 * 5 =
2 *25 =50. wait, so the GCD of 100 and 150 is 50. ... wait, that’s two numbers. But let me verify. wait, 50’s divisors: 1, 2, 5,
10, 25, 50. Yep, that’s all. So two-digit numbers here are 10 and 50. So the answer would be 2? But let me make sure I didn’t
miss anything. But wait, is 10 and 50 the only two-digit divisors of 50? Let’s check. 50 divided by 10 is 5, which is integer. 50
divided by 50 is 1. So yes, those are the divisors. But wait, 5 is a single-digit number. So the two-digit divisors are 10 and 50.
So that’s two numbers. wait, but the problem says positive two-digit integers; so 10 and 50. But wait, is 50 a two-digit number?
Yes, 50 is two digits. But 10 is also two digits. So that’s two numbers. So the answer is 2? hmm, but let me cross-verify this.
Alternatively, maybe I should approach it another way. ...So from 10 to 99, the numbers that divide both 100 and 150 are 10, 25,
and 50. wait, but 25 and 50 are two-digit numbers. So that’s three numbers: 10, 25, 50. wait, but why did I think earlier that 25 is a
two-digit number? It is. So three numbers. But then 10, 25, 50. So three numbers. But when I first thought of the GCD approach, I
considered the divisors of 50, which are 1, 2, 5, 10, 25, 50. So only two two-digit divisors. But here, when checking manually, I
found three. So there’s a discrepancy. Which one is correct?wait, perhaps I made a mistake in the initial approach. Let’s check
again. The GCD of 100 and 150 is 50. So the common factors are the divisors of 50. Divisors of 50 are 1, 2, 5, 10, 25, 50. So
yes, two-digit divisors are 10 and 50. So that’s two numbers. But according to the manual check, there are three. So which is
correct?wait, let’s check 25. 25 is a divisor of both 100 and 150. 25 divides 100 because 25%4=100, and 25 divides 150 because
25%6=150. So 25 is indeed a common factor. But 25 is a two-digit number, right? 2 and 5. So yes, two digits. So 25 is a two-digit
divisor. Then 10 and 50. So that’s three numbers. But according to the GCD method, the common factors are exactly the divisors
of 50, which are six numbers, but only two two-digit. However, when I checked manually, I found three two-digit divisors. So
where’s the mistake?wait, maybe I made a mistake in the GCD calculation. Let me check again. 100 factors: 2% x 52, 150 factors:
2! % 3 % 5. Common prime factors: 2™in(2,1) = 1, 5™in(2,2) = 2. So GCD is 2' % 57 = 2 % 25 = 50. So that’s correct. So
the common factors are exactly the divisors of 50. Therefore, divisors of 50 are 1,2,5,10,25,50. So the two-digit ones are 10,25,50.
wait, that’s three numbers. But according to GCD approach, divisors of GCD. So why the discrepancy? wait, but if the GCD is
50, then the common factors are exactly the divisors of 50. So that’s six numbers, but only three are two-digit. So why did the
manual check show three? But according to the list, divisors of 50 are 1,2,5,10,25,50. So two-digit are 10,25,50. That’s three. So
that’s correct. But why did I think earlier that there were two? Because maybe I made a mistake in the first thought process. wait,
no. wait, when I first considered the problem, I thought the answer is two. But then when I did the manual check, I found three.
So which is correct? Let me verify each of the three numbers:10: 10 divides 100 (10¥10=100) and 150 (10¥15=150). So yes.25:
25%4=100, 25*6=150. Yes, so 25 divides both.50: 50*2=100, 50*3=150. Yes, so 50 divides both.So all three are valid. Therefore,
the answer should be 3. But wait, the initial GCD approach said divisors of 50, which are six numbers, but only three are two-digit.
However, when I checked the manual approach, I found three. Therefore, the answer is three? But I need to make sure there are
no other two-digit numbers that divide both 100 and 150. wait, let’s check 30. 100 divided by 30 is 3.333, not integer. But
wait, let me check another way. Alternatively, since the GCD is 50, the common factors are the divisors of 50. So divisors of 50
are 1,2,5,10,25,50. So two-digit are 10,25,50. So three numbers. Therefore, the answer is 3. But why did I initially think it was
two? Maybe I confused divisors of 50 with common divisors. But no, the common divisors are exactly the divisors of the GCD.
So if GCD is 50, then common divisors are divisors of 50. Therefore, three numbers. wait, but in the initial thought process, I
considered that the GCD is 50, so common factors are 1,2,5,10,25,50. Then two-digit are 10,25,50. Three numbers. Therefore, the
answer is 3. But let me check once more. Let’s take 25. 25 divides 100 and 150. 25%4=100, 25*6=150. Yes. 10: 10*10=100,
10*15=150. Yes. 50: 50*2=100, 50*3=150. Yes. So all three are valid. Therefore, the number of positive two-digit integers that
are factors of both 100 and 150 is 3. But wait, hold on. Let me check 5. 5 is a divisor of both, but it’s single-digit. 1, 2, 5 are
also divisors but single-digit. So the only two-digit divisors are 10,25,50. So three numbers. Therefore, the final answer should
be 3. But wait, when I first did the GCD approach, I thought it was two, but after manual checking, I found three. So why the
discrepancy? But wait, the initial problem says positive two-digit integersy so numbers from 10 to 99. So 10,25,50 are within
that range. So yes, three numbers. Therefore, after thorough checking, the answer is 3. So I need to make sure I didn’t make a
mistake in the initial GCD approach. But since GCD is 50, and common factors are divisors of 50, then three two-digit. So the
answer is 3. But let me also check if 50 is indeed a two-digit number. Yes, 50 has two digits. 10 is two-digit. 25 is two-digit. So
three numbers. Therefore, I think the correct answer is 3. So the final answer should be 3, boxed as 3

Table 13: One more examples of LLM’s wrong outputs before ThinkPO and correct outputs after ThinkPO. ThinkPO
helps models generate more reasoning-supportive discourse markers, such as wait, hmm, and other hesitation cues.

17

	Introduction
	Thinking Preference Optimization
	Motivations
	Training Pipeline
	Data Curation

	Experiments
	Experimental Setup
	Effectiveness of ThinkPO
	ThinkPO Continually Improves Reasoning Ability of Public Distilled Models
	ThinkPO Works for Different-Size Models

	Ablation
	Whether ThinkPO is Useful when SFT with Short Reasoning Data?
	Exploring the Impact of Length Differences between Chosen and Rejected Samples on ThinkPO.

	Related Works
	Conclusion
	Appendix
	Evaluating ThinkPO with Different Temperatures
	Analysis of our Reproduce Model in other datasets
	Details of Data Curation
	Training Recipe
	Examples of LLM's outputs before and after ThinkPO
	Validation of ThinkPO on OpenR1 Datasets and Deepseek-style metric

