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Abstract

Supervised Fine-Tuning (SFT) has been a go-001
to and effective method for enhancing long002
chain-of-thought (CoT) reasoning in relatively003
small LLMs by fine-tuning them with long004
CoT responses from larger LLMs 1. To con-005
tinually improve reasoning abilities, we can006
either collect new high-quality long CoT rea-007
soning SFT data or repeatedly train on existing008
SFT datasets. However, acquiring new long009
CoT SFT data is costly and limited, while re-010
peated training often results in a performance011
plateau or decline. To further boost the perfor-012
mance with the SFT data, we propose Thinking013
Preference Optimization (ThinkPO), a simple014
yet effective post-SFT method that enhances015
long CoT reasoning without requiring new long016
CoT responses. Instead, ThinkPO utilizes read-017
ily available or easily obtainable short CoT018
reasoning responses as rejected answers and019
long CoT responses as chosen answers for020
the same question. It then applies direct pref-021
erence optimization to encourage the model022
to favor longer reasoning outputs. Experi-023
ments show that ThinkPO further improves024
the reasoning performance of SFT-ed models,025
e.g. it increases math reasoning accuracy of026
SFT-ed models by 8.6% and output length by027
25.9%. Notably, ThinkPO is capable of con-028
tinually boosting the performance of the pub-029
licly distilled SFT model, e.g., increasing the030
official DeepSeek-R1-Distill-Qwen-7B’s per-031
formance on MATH500 from 87.4% to 91.2%.032
Our code is available at https://anonymous.033
4open.science/r/ThinkPO-757B/.034

1 Introduction035

The reasoning capability of LLMs is cru-036

cial for their applicability in complex problem-037

solving tasks. Improving the reasoning abil-038

1Deepseek official distilled models DeepSeek-R1-Distill,
OpenThinker-7B, Sky-T1-32B, and Bespoke-Stratos-7B was
trained in this way.

Chosen:  Hmm, let try some steps to ... 
Wait , there may be some errors... Wait , I 

have some good Ideas... The f inal 
probability is 0.5.

Rejected: The probability is 2/4 = 0.5. 
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Figure 1: The illustration of our method ThinkPO and
its performance on math reasoning tasks. Top: Our
ThinkPO enhances fine-tuned LLMs (+SFT) by pro-
moting detailed problem-solving—using long chain-of-
thought reasoning answers as positive (chosen) sam-
ples and short chain-of-thought reasoning answers as
negative (rejected) samples. Bottom Left: ThinkPO
significantly boosts performance across mathematical
benchmarks (e.g., 83.4% on MATH500 vs. 82.8% for
+SFT and 74.0% for the Base model). Bottom Right:
ThinkPO generates more detailed solutions, with aver-
age completion lengths on AIME increasing from 0.94K
to 21.57K to 23.9K tokens. These results underscore
Think Preference Optimization’s effectiveness in foster-
ing and enhancing advanced mathematical reasoning.

ity of large language models is one of the cur- 039

rent research hotspots. Many approaches have 040

emerged in the open-source community that en- 041

hance relatively small models’ reasoning ability 042

through SFT. For example, Sky-Thought (Schul- 043

man et al., 2017), Bespoke-Stratos (Labs, 2025) 044

and OpenThinker-7B(Team, 2025b) have built long 045

reasoning datasets to fine-tune models fully, aiming 046

to improve model reasoning capabilities. Further 047

advancements can be seen in models like s1 (Muen- 048

nighoff et al., 2025) and LIMO (Ye et al., 2025), 049

which focus on the sophisticated design of long rea- 050

soning datasets to enhancereasoning capabilities. 051

Despite the success of supervised fine-tuning, 052
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Figure 2: Analysis of accuracy(Left), average response length(Middle) and reasoning-supportive words count(Right,
like wait, hmm, etc) in SFT and ThinkPO process. We evaluate the model on MATH500 every 300 steps and record
all the three metrics. In the early training stages, all of them improve significantly. However, in the later stages
(e.g., after 1200 steps), the model’s performance gradually plateau. When ThinkPO is applied, we see additional
improvements in all of the three aspects, demonstrating the effectiveness of Thinking Preference Optimization.

continually improving the reasoning abilities of the053

STF-ed model faces the following challenges: (1)054

high resources cost needed to collect new long055

reasoning response: Training a stronger reasoning056

model first requires collecting new large-scale, di-057

verse, and meticulously designed long-reasoning058

questions. Then, responses to these long reason-059

ing problems need to be collected from large-scale060

models, such as DeepSeek-R1. However, collect-061

ing questions and responses requires significant062

computational power and human resources, mak-063

ing the process both expensive and labor-intensive,064

especially in domains such as healthcare or low-065

resource languages, where gathering these input066

questions is non-trivial and models like DeepSeek067

R1 may also struggle to produce accurate responses.068

Furthermore, (2) repeatedly fine-tuning LLMs on069

existing long responses face Performance bot-070

tleneck: As a compromise, one might repeatedly071

train on a limited long reasoning dataset, but this072

approach typically leads to a performance plateau073

or even decline. In Figure 2, we observe that when074

training with a fixed amount of long-reasoning075

data for multiple epochs, model’s average output076

length and accuracy increase significantly in the077

early stages but slow down or even plateau in later078

stages. According to the test-time scaling principle079

(Snell et al., 2024; Welleck et al., 2024), increasing080

the compute at test time generally enhances reason-081

ing ability. However, the limited long-reasoning082

dataset is insufficient to further improve LLMs’083

reasoning capability in later stages of SFT.084

To overcome the performance bottleneck and bet-085

ter utilize existing long reasoning data, we propose086

Thinking Preference Optimization: a simple yet087

efficient method to further enhance model reason-088

ing ability after supervised fine-tuning (SFT). Our089

approach utilizes short CoT reasoning responses—090

which are already available or easy to acquire—as091

rejected answers and existing long CoT responses092

as chosen answers for the same question, and em- 093

ploys Direct Preference Optimization to train mod- 094

els. This encourages models to prefer longer and 095

more structured reasoning processes, thereby im- 096

proving reasoning abilities without acquiring addi- 097

tional high-quality long CoT responses. 098

Figure 1 presents the framework of ThinkPO 099

along with the experimental results. We first fine- 100

tune a Qwen base model using the long CoT data 101

to obtain an SFT-ed model (+SFT), and then we 102

further train it using ThinkPO (+ThinkPO). The 103

results in Figure 1 clearly show that our method im- 104

proves mathematical reasoning ability across four 105

datasets. Additionally, our method increases the 106

average response length on all four datasets, align- 107

ing with the test-time scaling trend. For example, 108

ThinkPO increases the math reasoning accuracy 109

of SFT-ed models by 8.6% and the output length 110

by 25.9%. Notably, ThinkPO increases the offi- 111

cial DeepSeek-R1-Distill-Qwen-7B’s performance 112

on MATH500 from 87.4% to 91.2%. The main 113

contributions are summarized as follows: 114

• We propose Thinking Preference Optimization 115

(ThinkPO) to maximize the value of existing 116

long reasoning data, which successfully further 117

enhances SFT-ed LLMs’ reasoning performance 118

without additional long CoT responses. 119

• Our method continuously improves the perfor- 120

mance of public R1-distilled models, including 121

the DeepSeek-R1 official distilled models. 122

• We release our dataset, codes, and model 123

weights to facilitate further research. 124

2 Thinking Preference Optimization 125

2.1 Motivations 126

This section introduces the motivations behind 127

Thinking Prference Optimization. SFT with fixed 128

long-reasoning datasets is an effective method for 129

enhancing a model’s reasoning ability. However, 130
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further improvement of the model’s reasoning abil-131

ity during the later stages faces a bottleneck. In132

such cases, by using short reasoning data as re-133

jected samples and long reasoning texts from SFT134

as chosen samples for DPO training, it is possible135

to further leverage the high-quality SFT reasoning136

data to boost the model’s reasoning performance137

with minimal additional data resources.138

First, we finetune Qwen-2.5-7B-Instruct model139

using Bespoke-Strato-dataset(Labs, 2025), which140

includes 17k long reasoning data distilled from141

Deepseek-R1. During training, we track the142

model’s average output length, accuracy and143

reasoning-supportive words count (like wait, hmm)144

at different steps on the Math500 dataset. These145

are visualized by fitting curves. When calculating146

the model’s average output length, we only con-147

sidered valid sentences, excluding duplicates or148

sentences with formatting errors. The results on149

other datasets could be found in Appendix A.2.150

In Figure 2, in the early stages of SFT, the151

model’s average output length, accuracy and152

reasoning-supportive words count show significant153

improvements. This aligns with the test-time scal-154

ing phenomenon (Snell et al., 2024; Welleck et al.,155

2024), where a model’s reasoning ability generally156

improves as its output length increases. Many ap-157

proaches enhance reasoning ability by fine-tuning158

models to generate longer responses. However, in159

the later stages of SFT, average response length,160

accuracy and reasoning-supportive words count161

plateau, indicating a performance bottleneck.162

To further enhance the model’s reasoning ability,163

we can apply DPO, which encourages the model164

to favor longer outputs. By treating long-reasoning165

responses as chosen samples and short-reasoning166

responses as rejected samples, this approach im-167

proves the model’s reasoning ability without sig-168

nificantly increasing long-reasoning dataset size,169

thereby boosting its reasoning performance.170

2.2 Training Pipeline171

The training process in Thinking Preference172

Optimization consists of two stages: Reasoning173

SFT (Supervised Fine-Tuning) stage and Reason-174

ing DPO (Direct Preference Optimization) stage.175

In the Reasoning SFT stage, long-reasoning re-176

sponses are collected for each question to construct177

the dataset Dsft. The base model is then fine-tuned178

on Dsft to acquire advanced reasoning capabilities,179

which helps to prepare the model for next stage.180

In the second stage, the model is further en-181

Q: What is the 
probability, 

expressed as a 
decimal, of 

drawing one 
marble which 
is either red or 

blue from a 
bag containing 
3 red, 2 blue, 
and 5 yellow 

marbles?

Long Chosen: Hmm, 
let try some steps to ... 

Wait , there may be some 
errors... Wait , I have some 

good Ideas... The f inal 
probability is 0.5.

Short Rejected: Therefore, 
the probability is 0.5.

Figure 3: Data Collection Process: we use Deepseek R1
to generate long reasoning answers as chosen samples
and Qwen 2.5-7B-Math to generate short reasoning an-
swers as rejected samples, collecting datasets for DPO
Training. Compare with short reasoning data, long rea-
soning answers includes many reasoning-supportive dis-
course markers, such as wait, hmm, and other hesitation
cues, which can improve the model’s reasoning ability.

couraged to generate extended reasoning using the 182

Direct Preference Optimization (DPO) (Rafailov 183

et al., 2024) approach. First, the long-reasoning 184

data from the initial stage is used as the chosen 185

responses. Then, a smaller model with normal Rea- 186

soning ability, such as Qwen-2.5-7B-Math (Yang 187

et al., 2024b), is utilized to generate shorter reason- 188

ing responses as rejected samples. To ensure data 189

quality, both long and short reasoning responses 190

undergo filtering, including correctness validation. 191

This process results in the dataset Ddpo. Finally, 192

the model trained in the first stage is fine-tuned on 193

Ddpo using DPO, encouraging the model to gener- 194

ate longer outputs while enhancing its reasoning 195

ability. Training pipeline is visualized as Figure 1. 196

2.3 Data Curation 197

The dataset Dsft = {(q, olong)}N is based on 198

bespoke stratos dataset (Labs, 2025). They used 199

DeepSeek-R1 as the teacher reasoning model in- 200

stead of QwQ-32B-Preview to generate long rea- 201

soning response olong and employed GPT-4o-mini 202

in place of Sky-thought T1’s (Team, 2025a) parsing 203

logic to filter out incorrect mathematical solutions. 204

For the dataset Ddpo = {(q, olong, oshort)}N in 205

the second stage, we first use Qwen2.5-Math-7B- 206

Instruct (Yang et al., 2024b) to generate a short rea- 207

soning response oshort , pairing it with the long rea- 208

soning response olong in Dsft. Then we retain most 209

of the samples where Qwen2.5-Math-7B-Instruct’s 210

answer matched DeepSeek R1’s answer. The more 211

details are in Appendix A.3. The dataset is col- 212

lected through a straight foreword and simple pro- 213

cess of gathering short-reasoning data, which did 214
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Table 1: Accuracy and Average Response Length comparison for Our finetuned Qwen-2.5-7B-Instruct before
and after ThinkPO. The "Improv." column shows the percentage change of Ours over the model. After applying
ThinkPO, its accuracy and length almost improve across datasets, further validating the effectiveness of ThinkPO.

Accuracy Average Response Length

Dataset Base +SFT +ThinkPO Improv.(%) Base +SFT +ThinkPO Improv.(%)

MATH500 74.0 82.8 83.4 0.7% 637 5603 7568 35.0%
AIME 10.0 20.0 26.7 33.5% 942 21579 23901 10.7%
GPQA 34.9 35.4 36.9 4.2% 12 5845 7933 35.6%

GSM8K 90.1 93.9 93.0 −0.9% 260 1310 1599 22.1%
Olympiad 38.9 44.5 46.9 5.4% 942 11251 14200 26.2%

Avg. 49.6 55.3 57.4 8.6% 558 9117 11040 25.9%
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Figure 4: Visualization of improvements on Accuracy and Average Response Length of DeepSeek-R1-Distill-Qwen-
7B (Left) and our finetuned Qwen2.5-7B-Instruct (Right) on four datasets After ThinkPO. ThinkPO could improve
DeepSeek-7B’s and our finetuned Qwen2.5-7B’s accuracy and output lengths almost across all the datasets

Figure 5: Training loss, gradient norm, and margin curves for DeepSeek-R1-Distill-Qwen-7B, Bespoke-Stratos-7B
and our finetued Qwen2.5-7B-Instruct during Thinking Preference Optimization phase.

not require significant resources, compared to col-215

lecting high-quality long-reasoning data.216

Since we select responses generated by217

Qwen2.5-Math-7B-Instruct based solely on final218

answer matching, this approach may inadvertently219

include subtle incorrect generations that are not eas-220

ily detected. To address this, we utilize the OpenR1-221

Math-220k dataset, which contains DeepSeek-R1222

responses collected specifically for questions in223

NuminaMath-CoT dataset. This ensures that both224

the short and long reasoning samples in the dataset225

are verified to be correct. We conduct the same set226

of experiments on this dataset and observe consis-227

tent results, as shown in Appendix A.6.228

3 Experiments229

3.1 Experimental Setup230

To evaluate model’s reasoning ability, we se-231

lect five different test sets: MATH500 (Lightman232

et al., 2023), AIME2024 2, GPQA-Diamond (Rein 233

et al., 2023), GSM8K (Cobbe et al., 2021), and 234

Olympiad Bench Math (He et al., 2024). These 235

test sets primarily consist of mathematical reason- 236

ing problems, with GPQA-Diamond also includ- 237

ing problems from physics, chemistry, and biol- 238

ogy. The difficulty levels of these test sets vary 239

significantly, with GSM8K being the easiest while 240

AIME2024 is the most challenging. This diverse 241

selection ensures a comprehensive assessment of 242

the model’s reasoning capability across different 243

levels of difficulty, from fundamental arithmetic to 244

complex problem-solving with different difficulty. 245

When generating responses, we set the temper- 246

ature as 0.7. For results on other temperatures, 247

please refer to Appendix A.1. We present our cho- 248

sen hyper-parameters of ThinkPO in Appendix A.4. 249

2AIME2024 is a math competition for high school students,
acting as a qualifier for the USAMO.

4

https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions


Table 2: Accuracy and Average Response Length comparison for Deepseek-7B and Bespoke-7B before and after
ThinkPO. Qwen2.5-7B-Instruct shows the base performance, Deepseek-7B/Bespoke-7B report performance after
SFT, and the "Improv." column shows the percentage change of Ours over Deepseek-7B/Bespoke-7B. AIME22-24
refers to the AIME datasets from 2022 to 2024, which contains more data samples to evluate models.

DeepSeek-R1-Distill-Qwen-7B (Deepseek)

Accuracy Average Response Length

Dataset
Deepseek Ours Improv. Deepseek Ours Improv.

(SFT) (+ThinkPO) (%) (SFT) (+ThinkPO) (%)

MATH500 87.4 91.2 4.3% 2577 3021 17.2%
AIME22-24 43.3 46.4 7.2% 12824 13570 5.8%

GPQA 47.0 49.5 5.3% 4895 5604 14.5%
GSM8K 87.2 87.6 0.5% 619 668 7.9%

Olympiad 58.6 58.6 0.0% 7196 7383 2.6%

Bespoke-Stratos-7B (Bespoke)

Accuracy Average Response Length

Dataset
Bespoke Ours Improv. Bespoke Ours Improv.

(SFT) (+ThinkPO) (%) (SFT) (+ThinkPO) (%)

MATH500 84.0 82.8 −1.4% 5696 6404 12.4%
AIME22-24 16.0 17.6 10.0% 17819 18901 6.1%

GPQA 37.9 43.4 14.5% 5968 7301 22.3%
GSM8K 92.9 93.3 0.4% 1404 1755 25.0%

Olympiad 44.1 48.5 10.0% 11140 12204 9.6%

3.2 Effectiveness of ThinkPO250

This experiment primarily analyzes the aver-251

age response length, accuracy and reasoning-252

supportive words count during both SFT and DPO253

processes to validate the effectiveness of Thinking254

Preference Optimization (ThinkPO). By tracking255

these metrics, we aim to demonstrate how ThinkPO256

enhances the model’s reasoning ability by encour-257

aging longer, more structured outputs, ultimately258

leading to improved reasoning performances.259

First, we fine-tune Qwen-2.5-7B-Instruct with260

Bespoke-Stratos-Dataset. Subsequently, we apply261

ThinkPO to enhance the model’s reasoning ability.262

The final results are shown in Table 1. Our fine-263

tuned model achieves scores across the five datasets264

that are almost identical to Bespoke-Stratos-7B,265

which is also finetuned on Bespoke-Stratos-Dataset,266

confirming the correctness of our SFT process.267

Furthermore, after applying ThinkPO, our model268

demonstrates improvements on almost all the269

datasets, validating the effectiveness of ThinkPO in270

enhancing and improving LLM reasoning ability.271

Additionally, we analyze average response272

length and reasoning-supportive words (like wait,273

hmm, etc) at different steps during both SFT and274

ThinkPO. We record the model’s average response275

length, accuracy and reasoning-supportive words276

(like wait, hmm, etc) count on Math500 at differ- 277

ent training steps, distinguishing between the SFT 278

and ThinkPO. When calculating average response 279

lengths, we exclude duplicate or incomplete re- 280

sponses to ensure accuracy. Additionally, when 281

counting reasoning-supportive words, we only con- 282

sider correct answers to prevent excessive occur- 283

rences of filler words like “wait” due to underthink- 284

ing (Chen et al., 2024; Kirk et al., 2023; Wang et al., 285

2025). The results are visualized in Figure 2. 286

At the initial stage of SFT, the model’s rea- 287

soning ability improves significantly. In the later 288

stages(like after 1200 steps), three metrics gradu- 289

ally plateau, indicating that the model may have 290

reached a local optimum. However, after apply- 291

ing ThinkPO, average response length, reasoning- 292

supportive words count and accuracy improve, 293

showing the effectiveness of ThinkPO in overcom- 294

ing this stagnation. We visualize the trend of three 295

metrics on other datasets in Appendix A.2. 296

3.3 ThinkPO Continually Improves 297

Reasoning Ability of Public Distilled 298

Models 299

We select two open-source reasoning models 300

and perform ThinkPO training using Ddpo. Specifi- 301

cally, we chose DeepSeek-R1-Distill-Qwen-7B and 302

5

https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
https://huggingface.co/bespokelabs/Bespoke-Stratos-7B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B


Table 3: Results of Models with Different Sizes (3B, 7B, 14B) on the Qwen-2.5 Family. We evaluate models
of different sizes (3B, 7B, 14B) trained with Supervised Fine-Tuning (SFT) and Think Preference Optimization
(ThinkPO). Models are fine-tuned on the Bespoke-Strato-Dataset for 1 epoch. As model size increases, accuracy
improves across all five test datasets. After ThinkPO training, accuracy improves consistently for models of all sizes,
including the smallest (3B), demonstrating that ThinkPO enhances reasoning ability across different model scales.

Qwen 2.5-3B Qwen 2.5-7B Qwen 2.5-14B
+SFT +ThinkPO Improv. +SFT +ThinkPO Improv. +SFT +ThinkPO Improv.

MATH500 53.6 54.6 1.8% 73.0 74.6 2.2% 83.2 85.6 2.9%
AIME 3.30 6.7 100% 16.7 13.3 −20.3%∗ 23.3 33.3 42.9%
GPQA 26.3 27.3 3.8% 32.3 36.4 12.7% 45.5 44.0 −3.2%

GSM8K 80.4 81.1 0.8% 88.2 88.9 0.9% 93.7 93.9 0.2%
Olympiad 20.0 22.0 10.0% 35.3 37.2 5.3% 49.9 52.1 4.4%

* Since AIME2024 contains only 30 questions, even a small difference in the number of correct answers can lead to significant fluctuations in accuracy, making the
decline appear larger than it actually is.
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Figure 6: Visualization of improvements on Accuracy and Average Response Length of models in the same
family series from different sizes (Qwen-2.5-3B, Qwen-2.5-7B and Qwen-2.5-14B) on five datasets after ThinkPO.
ThinkPO could improve models’ accuracy and output lengths almost across all the datasets, regradless of sizes

Table 4: Results of ThinkPO on the model finetuned
with a short-Reasoning Dataset. We select a short-
chain reasoning dataset of the same size as the Bespoke-
Stratos dataset and fine-tune Qwen-2.5-7B for 3 epochs.
Models trained with reasoning-style datasets, regard-
less of response length, can benefit from ThinkPO to
enhance and improve their reasoning capability

Short Our Improv.
+SFT +ThinkPO %

MATH500 57.8 59.0 2.4%
AIME 0.0 3.3 100%
GPQA 30.3 31.3 3.3%

GSM8K 83.4 85.1 2.0%
Olympiad 23.3 23.6 1.2%

Bespoke-Stratos-7B, since both reasoning models303

were fine-tuned on Qwen2.5-7B-Instruct. Since304

Our data is collected using prompts from Bespoke,305

which is not align with the prompt format for306

DeepSeek-7B. In our comparison between SFT and307

ThinkPO, we maintained consistency by using the308

same Bespoke-style prompts to evaluate models.309

As shown in Table 2 and Figure 4, both models310

demonstrate an improvement in accuracy across311

five datasets. For example, Bespoke-Stratos-7B312

shows an increase in accuracy on all datasets except313

for a slight decline on the MATH500 dataset. No- 314

tably, the improvements on Olympiad Bench Math 315

and GPQA-Diamond reach around 5%. DeepSeek- 316

R1-Distill-Qwen-7B, with the exception of a de- 317

cline on AIME2024, shows consistent or slightly 318

improved accuracy. Specifically, on MATH500, the 319

accuracy improves from 87.4% to 91.2%. 320

In addition to accuracy, average response length 321

of DeepSeek-R1-Distill-Qwen-7B is increased by 322

around 500 tokens on the MATH500 dataset, while 323

Bespoke-Stratos-7B shows a larger increase of ap- 324

proximately 1000 tokens. These align with test- 325

time scaling principle (Snell et al., 2024; Welleck 326

et al., 2024), where the increased response length 327

reflects an enhancement in reasoning capacities. 328

3.4 ThinkPO Works for Different-Size Models 329

Previous experiments are all conducted using 330

a 7B model for training. Now we utilize the Be- 331

spoke Stratos dataset and conduct one epoch of 332

SFT training on models of varying sizes within the 333

Qwen2.5 series (Qwen2.5-3B, Qwen2.5-7B, and 334

Qwen2.5-14B). The learning rate is set to 3e-5, 335

and other hyperparameters are kept consistent with 336

Bespoke-Stratos-7B, ensuring the models’ perfor- 337

mances. The results after SFT and ThinkPO are 338

presented in Table 3 and Figure 6. First, as the 339

6

https://huggingface.co/bespokelabs/Bespoke-Stratos-7B


model scale increases, its accuracy improves across340

all the datasets after SFT, which aligns with ex-341

pectations. After applying ThinkPO, all models,342

regardless of size, achieve further improvements.343

Specifically, on Math500, all three models show344

an accuracy increase of 1%–2%. After applying345

ThinkPO, the Qwen2.5-3B model achieves accu-346

racy improvements across all five datasets, while347

Qwen2.5-7B and 14B models show improvements348

on four datasets, which shows that ThinkPO is349

effective across different model scales, further vali-350

dating its generalizability and robustness.351

4 Ablation352

4.1 Whether ThinkPO is Useful when SFT353

with Short Reasoning Data?354

In our previous experiments, we fully fine-tuned355

the model using long reasoning datasets before ap-356

plying ThinkPO to further enhance its reasoning357

ability. However, an important question arises: If358

we use short reasoning data instead of long rea-359

soning data during the full fine-tuning stage, can360

Thinking Preference Optimization still improve the361

model’s reasoning performance effectively?362

To investigate this, we conduct the following ex-363

periment. We use Qwen2.5-7B as the base model364

and select a dataset from AI-MO/NuminaMath-365

CoT(LI et al., 2024) that matches the Bespoke-366

Stratos dataset with the same data size for fine-367

tuning. Unlike our previous experiments, the fine-368

tuning data here consists of short reasoning exam-369

ples rather than long reasoning ones. Consequently,370

the fine-tuned model is expected to underperform371

compared to models trained on long-reasoning data.372

To equip models with basic reasoning ability, we373

fine-tune them for three epochs and set learning rate374

as 1e-5. Following this, we apply Thinking Pref-375

erence Optimization using the same dataset in the376

previous experiments, aiming to further enhance377

and improve the model’s reasoning performance.378

As shown in Table 4, even after fine-tuning379

on short-reasoning data, ThinkPO still effectively380

improves the model’s reasoning ability. For ex-381

ample, on the Math500 dataset, after applying382

ThinkPO, the model’s accuracy improves by ap-383

proximately 2%. This result demonstrates that mod-384

els trained with reasoning-style datasets, regardless385

of response length, can benefit from ThinkPO to386

enhance and improve their reasoning capability.387
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Figure 7: Length difference distribution between cho-
sen and rejected samples across three datasets. These
three datasets are 1000 samples selected based on the
length difference from our ThinkPO-Dataset. The long
dataset exhibits the widest distribution of length differ-
ences, while the middle and short datasets have smaller
differences with lower mean values and variances.

Table 5: Model performance across three datasets with
varying chosen and rejected sample length difference
distributions. “Avg Differences” represents the average
length difference between chosen and rejected samples.
Short yields the best overall performance, suggesting
that appropriate length differences improve ThinkPO
learning, while too large differences may hinder it.

Short Middle Long

Avg Differences 621 1525 4758

MATH500 84.2 81.8 84.0
AIME 26.7 13.3 16.7
GPQA 40.9 41.9 38.9

GSM8K 92.9 92.9 93.0
Olympiad 46.1 45.9 45.9

4.2 Exploring the Impact of Length 388

Differences between Chosen and Rejected 389

Samples on ThinkPO. 390

In the entire ThinkPO dataset, we select long rea- 391

soning data as chosen and short reasoning data as 392

rejected. A key question is whether the length dis- 393

parity between chosen and rejected samples affects 394

the ThinkPO training because length disparity is 395

not distributed evenly in the dataset. To investigate 396

this, we conduct an experiment to verify the impact 397

of length differences on the ThinkPO training. 398

The ThinkPO dataset contains approximately 399

10,000 samples, but the length disparity between 400

chosen and rejected samples is not uniformly dis- 401

tributed. Therefore, we select three datasets with 402

different length distributions: short, middle, and 403

long, each containing 1,000 samples. Figure 7 404

shows details of the length differences distributions 405
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between chosen and rejected samples in these three406

datasets, with the long dataset exhibiting the largest407

and most widely distributed differences, the mid-408

dle dataset showing moderate differences, and the409

short dataset having the smallest differences.410

Table 5 displays the results after ThinkPO for411

one epoch, using the Bespoke-Stratos-7B model412

as the base model. Each dataset shows certain ad-413

vantages across the five test datasets. However, the414

short dataset yields the best performance on overall415

datasets. We propose that when the length differ-416

ence is smaller, the model’s output distributions for417

both samples are more consistent, which benefits418

ThinkPO learning. On the other hand, when it is419

too large, it may not help the model’s learning.420

5 Related Works421

LLM Reasoning Ability. With the development422

of large models, reasoning ability (Wang et al.,423

2022; Zhang et al., 2023; Yao et al., 2023; Plaat424

et al., 2024) has become one of the most crucial425

capabilities and a necessary condition for achiev-426

ing AGI (Artificial General Intelligence) (Minaee427

et al., 2024; Xu et al., 2024; Morris et al., 2023;428

Feng et al., 2024; Krishnan, 2025). The earliest429

appearance of long-chain reasoning ability in large430

models can be traced to OpenAI o1 (Jaech et al.,431

2024; Arrieta et al., 2025; Hurst et al., 2024), which432

excelled across various mathematical reasoning test433

sets and outperform contemporary LLMs.434

This was followed by the release of the QwQ435

model (Yang et al., 2024b; Bai et al., 2023a,b;436

Chu et al., 2024), which trained reasoning capa-437

bilities using a process reward model approach (Li438

and Li, 2024; Ma et al., 2023; Zhang et al., 2025;439

Lambert et al., 2024). Currently, the emergence440

of DeepSeek R1 (DeepSeek-AI et al., 2025) and441

Kimi 1.5 (Team et al., 2025) has further enhanced442

the reasoning abilities of large open-source mod-443

els. DeepSeek R1 utilizes a simple rule-based re-444

ward model (Ramesh et al., 2024; Hu, 2025; Shao445

et al., 2024; Alonso et al., 2025; Kirk et al., 2023;446

Yang et al., 2024a) to effectively boost the model’s447

reasoning performance, bringing about an aha mo-448

ment that narrows the reasoning capability gap be-449

tween open-source and closed-source models. On450

the other hand, Kimi 1.5 employs several tricks,451

such as long-to-short reasoning, to achieve high452

efficiency in LLM reasoning performance.453

Many works on open-source reasoning models454

have also emerged. First is Sky-Thought T1 (Team,455

2025a), which uses QwQ-32B-Preview as a teacher 456

model to generate reasoning answers for training 457

data. Then, Bespoke-Stratos (Labs, 2025) built 458

upon Sky-Thought T1, using DeepSeek R1 as the 459

teacher model to generate answers for Sky-Thought 460

data. Since DeepSeek R1 has far superior reason- 461

ing abilities compared to QwQ-32B-Preview, the 462

generated data quality is higher, allowing Bespoke- 463

Stratos-7B and Bespoke-Stratos-32B models to 464

achieve DeepSeek-level advanced reasoning per- 465

formance after training on around 17k data points. 466

Recently, s1 (Muennighoff et al., 2025) and LIMO 467

(Ye et al., 2025) have emphasized that fine-tuned, 468

high-quality data construction is essential for mod- 469

els to achieve SOTA reasoning capabilities. 470

Direct Preference Optimization. RLHF 471

(Chaudhari et al., 2024; Kirk et al., 2023; Kauf- 472

mann et al., 2023) is designed to align model out- 473

puts with human preferences after supervised fine- 474

tuning (SFT). Various methods have been intro- 475

duced, such as Proximal Policy Optimization (PPO) 476

(Engstrom et al., 2019; Huang et al., 2022; Wij- 477

mans et al., 2019). However, PPO is an online 478

method that requires significant computational re- 479

sources. To address this, Direct Preference Op- 480

timization was proposed, enabling offline train- 481

ing with only chosen and rejected sample pairs 482

while reducing computational costs compared to 483

PPO. Recently, several DPO variants (Wu et al., 484

2024b,a; Qi et al., 2024; Zhong et al., 2024; Su 485

et al., 2025) have emerged, including StepDPO (Lai 486

et al., 2024), KTO (Ethayarajh et al., 2024), SimPO 487

(Meng et al., 2024), LongDPO (Ping et al., 2025), 488

Test-Time Preference Optimization (Li et al., 2025) 489

etc. Among them, LongDPO shares similarities 490

with our proposed method. However, LongDPO 491

primarily focuses on improving long-form story 492

generation instead of reasoning abilities. 493

6 Conclusion 494

We propose ThinkPO, a lightweight post-SFT 495

method without additional high-quality long- 496

reasoning data. By treating short responses as re- 497

jected and long responses as chosen, ThinkPO en- 498

courages models to generate more detailed rea- 499

soning. Experiments show that ThinkPO im- 500

proves accuracy by 8.6% and output length by 501

25.9%, and boosts DeepSeek-R1-Distill-Qwen- 502

7B’s MATH500 score from 87.4% to 91.2%. These 503

results highlight ThinkPO as an efficient way to en- 504

hance reasoning with existing long reasoning data. 505
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Limitations506

ThinkPO can further enhance SFT-ed models507

without requiring additional high-quality long rea-508

soning data. However, since ThinkPO is based on509

the DPO method, it is sensitive to hyperparameters,510

requiring careful tuning of β and learning rate to511

achieve optimal improvements.512
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A Appendix798

A.1 Evaluating ThinkPO with Different799

Temperatures800

In our experiments, we initially evaluated the801

model at a temperature of 0.7. While this pro-802

vides a good measure of performance, it is impor-803

tant to explore different sampling conditions for804

a more robust analysis. Therefore, we addition-805

ally tested temperatures of 0.1 and 0.5 to examine806

how ThinkPO impacts Bespoke-Strato-7B under807

varying levels of randomness in sampling. By com-808

paring results across these temperature settings,809

we can assess whether ThinkPO consistently en-810

hances the model’s reasoning ability regardless of811

generation strategy. To provide a comprehensive812

evaluation, we average the results across all three813

temperatures. The results are shown in Table 6.814

Our findings demonstrate that ThinkPO consis-815

tently improves model performance across differ-816

ent temperature settings. Specifically, at temper-817

atures of 0.1 and 0.7, accuracy increases on four818

datasets, while at 0.5, improvements are observed819

on three. To gain a more holistic understanding of820

ThinkPO’s impact, we average the results across821

all temperature settings, showing that ThinkPO822

enhances performance on all five datasets. No-823

tably, on MATH500, ThinkPO improves accuracy824

by 1.4%. These results further validate the effec-825

tiveness of our proposed method and demonstrate826

its ability to consistently enhance reasoning perfor-827

mance across different sampling conditions.828

A.2 Analysis of our Reproduce Model in other829

datasets830

Previously, we only presented the changes in831

accuracy, average response length, and reasoning-832

supportive words count over training steps on the833

MATH500 dataset. Here, we extend our analysis834

by showcasing results on two additional datasets835

(like GSM8K) from our reproduced model. The836

detailed results are illustrated in Figure 9.837

As observed in the results for GSM8K and838

Olympiad Bench Math, the model exhibits a similar839

trend to MATH500 across all three metrics. Dur-840

ing the early stages of SFT, the model’s reasoning841

ability improves rapidly. However, in later stages,842

it reaches a performance plateau. ThinkPO effec-843

tively helps the model overcome this bottleneck,844

further enhancing its reasoning capability.845

A.3 Details of Data Curation 846

Here, we show the details of how to collect the 847

ThinkPO Dataset. we collect it in the following 848

manner, referring to (Team et al., 2025): For each 849

question q in Dsft, we use Qwen2.5-Math-7B- 850

Instruct (Yang et al., 2024b) to generate a short 851

reasoning response oshort , pairing it with the long 852

reasoning response olong in Dsft. We then retain 853

the samples where Qwen2.5-Math-7B-Instruct’s 854

answer matched DeepSeek R1’s answer, result- 855

ing in 8,080 samples. Additionally, we include 856

2,000 samples where Qwen2.5-Math-7B-Instruct’s 857

answer differed from DeepSeek R1’s but adhered 858

to the correct response format, including more out- 859

put distribution in Ddpo. All of these combined 860

samples consequently form the final dataset Ddpo. 861

A.4 Training Recipe 862

Here, we provide the corresponding hyperparam- 863

eters—batch size, learning rate, and β—that were 864

used to achieve these optimal outcomes. All the 865

hyperparameters are presented in Table 7. 866

Besides, we present the training loss curves, gra- 867

dient norm curves, and margin curves for three 868

models during the ThinkPO phase in Figure 5. 869

These metrics provide insights into how the models 870

perform throughout the training process, includ- 871

ing their convergence behavior, stability of gra- 872

dients, and the differences in preference between 873

chosen and rejected samples. By examining these 874

curves, we can better understand the effectiveness 875

of ThinkPO in enhancing model performance. 876

A.5 Examples of LLM’s outputs before and 877

after ThinkPO 878

We present the changes in the total number of 879

reasoning-supportive words (such as wait, hmm, 880

let’s think, etc.) throughout both the SFT and 881

ThinkPO training stages in Figure 2 and Figure 9. 882

These words serve as indicators of the model’s 883

reasoning process, reflecting its ability to struc- 884

ture logical steps before arriving at a final answer. 885

Our results show that the number of reasoning- 886

supportive words increases significantly during the 887

initial stages of SFT but eventually plateaus, sug- 888

gesting that conventional fine-tuning alone may not 889

be sufficient to further enhance structured reason- 890

ing. However, after applying ThinkPO, we observe 891

a clear upward trend in the use of these reasoning- 892

supportive expressions, indicating that our method 893

effectively encourages the model to adopt a more 894
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Table 6: Evaluation of Bespoke-Strato-7B with different temperatures(0.1,0.5,0.7). Across different values of
temperatures, the model achieves accuracy improvements on most datasets. After averaging the results, ThinkPO
consistently enhances the model’s performance across all five datasets.

Temperature=0.1 Temperature=0.5 Temperature=0.7 Average
+SFT +ThinkPO +SFT +ThinkPO +SFT +ThinkPO +SFT +ThinkPO Improv.

MATH500 70.2 73.4 ↑ 81.4 82.6↑ 84.0 82.8 ↓ 78.5 79.6↑ 1.4%
AIME 10.0 16.7 ↑ 20.0 16.7↓ 20.0 23.3↑ 16.7 18.9 ↑ 13.2%
GPQA 34.9 30.8↓ 33.8 41.0↑ 37.9 43.4↑ 35.5 38.4↑ 8.1%

GSM8K 89.3 91.0 ↑ 92.4 92.3↓ 92.9 93.3 ↑ 91.5 92.2↑ 0.7%
Olympiad 32.8 39.6↑ 42.3 44.8↑ 44.1 48.5↑ 39.7 44.3↑ 11.6%
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Figure 8: Analysis of accuracy(Left), average response length(Middle) and reasoning-supportive words count(Right,
like wait, hmm, etc) in reproducing Bespoke-Stratos-7B. We evaluate the model on GSM8K every 300 steps and
record results. In the early training stages, all of them improve significantly. However, in the later stages (e.g., after
1200 steps), the model’s performance plateau. When ThinkPO is applied, we see additional improvements in all of
the three aspects, demonstrating the effectiveness of Think Preference Optimization.
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Figure 9: Analysis of accuracy(Left), average response length(Middle) and reasoning-supportive words count(Right,
like wait, hmm, etc) in reproducing Bespoke-Stratos-7B. We evaluate the model on OlympiadBenchMath every
300 steps and record results. In the early training stages, all of them improve significantly. However, in the later
stages (e.g., after 1200 steps), the model’s performance plateau. When ThinkPO is applied, we see additional
improvements in all of the three aspects, demonstrating the effectiveness of Think Preference Optimization.

deliberative reasoning process.895

We provide examples of model outputs before896

and after applying ThinkPO in Table 12 and Ta-897

ble 13. Before ThinkPO, the model’s responses898

tend to be more direct, with fewer reasoning-899

supportive words, often resulting in incorrect or900

incomplete answers. In contrast, after apply-901

ing ThinkPO, the model generates responses that902

utilize a greater number of reasoning-supportive903

words. This shift leads to a noticeable improvement904

in answer correctness, reinforcing the effectiveness905

of ThinkPO in enhancing the model’s reasoning906

ability. These findings highlight that ThinkPO not907

only improves accuracy but also aligns the model’s908

output with human-like problem-solving patterns.909

A.6 Validation of ThinkPO on OpenR1 910

Datasets and Deepseek-style metric 911

To further validate the effectiveness of ThinkPO, 912

we conduct experiments using a newly constructed 913

dataset and a more robust evaluation metric. 914

First, we adopt the open-source dataset OpenR1- 915

Math-220K, which is created by re-collecting 916

DeepSeek-R1 responses for the questions from 917

NuminaMath-CoT. We randomly sample 15K ex- 918

amples from the dataset, where the DeepSeek-R1 919

responses serve as long chosen samples, and the 920

original NuminaMath-CoT responses serve as short 921

rejected samples. 922

Second, we introduce a DeepSeek-style met- 923

ric, where the model is prompted to generate five 924

responses per question, and the final accuracy is 925

computed across all generated responses. This met- 926
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Table 7: The optimal hyperparameters identified in our experiments are listed here, including batch size, learning
rate (lr), and beta. These parameters were carefully tuned to achieve the best performance improvements.

Deepseek-7B Bespoke-7B Bespoke-7B-reproduced

batch size 48 48 48
lr 1e-7 5e-7 3e-7
β 0.01 0.01 0.01

Qwen2.5-3B-SFT Qwen2.5-7B-SFT Qwen2.5-14B-SFT

batch size 48 48 48
lr 5e-7 8e-8 1e-7
β 0.01 0.01 0.01

Table 8: Results of baseline DPO and ThinkPO on the
model. DeepSeek-R1 responses are used as chosen
samples and the model outputs after SFT are collected
as rejected samples.

Baseline Our Improv.
+DPO +ThinkPO %

MATH500 84.6 84.6 0.0%
AIME22-24 22.0 22.4 2.0%

GPQA 42.5 43.0 1.2%
GSM8K 93.2 93.0 −0.2%

Olympiad 48.6 49.1 1.0%

Average 58.2 58.4 0.4%

ric provides more stable and reliable evaluation927

compared to single-response accuracy.928

We conduct the following experiments:929

1. We first fine-tune Qwen-2.5-7B-Instruct on930

the 15K subset of OpenR1-Math-220K. Then,931

we further improve it using ThinkPO. As932

shown in Table 8, both the model’s accu-933

racy and output length improve after applying934

ThinkPO.935

2. We apply ThinkPO training to two open-936

source models: open-r1/OpenR1-Qwen-7B937

and deepseek-ai/DeepSeek-R1-Distill-Qwen-938

7B. The results in Table 9 show that both mod-939

els benefit from further accuracy gains after940

ThinkPO.941

3. We extend the study to the Qwen-2.5-Instruct942

family with three different model sizes: 3B,943

7B, and 14B. All models are trained with stan-944

dard SFT and then improved via ThinkPO. Ta-945

ble 9 shows consistent performance improve-946

ments across scales.947

4. Finally, we introduce a baseline, where948

DeepSeek-R1 responses are used as chosen 949

samples and the model outputs after SFT 950

are collected as rejected samples. Table 8 951

shows that the baseline performs comparably 952

to ThinkPO. However, collecting rejected sam- 953

ples via model inference introduces additional 954

time and resource costs. In contrast, ThinkPO 955

leverages pre-existing datasets to extract long 956

rejected samples efficiently, often with longer 957

output lengths, demonstrating the method’s 958

efficiency and practicality. 959
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Table 9: Accuracy and Average Response Length comparison for our finetuned Qwen-2.5-7B-Instruct before and
after ThinkPO. The "Improv." column shows the percentage change of Ours over the model. After applying
ThinkPO, its accuracy and length almost improve across datasets, further validating the effectiveness of ThinkPO.

Accuracy Average Response Length

Dataset Base +SFT +ThinkPO Improv.(%) Base +SFT +ThinkPO Improv.(%)

MATH500 74.0 84.5 84.6 0.1% 637 5416 5521 1.9%
AIME22-24 10.0 20.7 22.4 8.2% 942 17828 18082 1.4%

GPQA 34.9 41.8 43.0 2.9% 12 10096 10449 3.5%
GSM8K 90.1 92.8 93.0 0.2% 260 1599 1606 0.4%

Olympiad 38.9 48.3 49.1 1.7% 942 10876 10975 0.9%

Avg. 49.6 57.6 58.4 1.4% 558 9117 9249 1.4%

Table 10: Accuracy and Average Response Length comparison for OpenR1-Qwen-7B and DeepSeek-R1-Distill-
Qwen-7B before and after ThinkPO. The "Improv." column shows the percentage change of Ours over the base
model.

OpenR1-Qwen-7B

Accuracy Average Response Length

Dataset
OpenR1 Ours Improv. OpenR1 Ours Improv.

(SFT) (+ThinkPO) (%) (SFT) (+ThinkPO) (%)

MATH500 90.7 90.6 −0.1% 3276 3427 4.6%
AIME22-24 43.1 44.2 2.6% 13559 13764 1.5%

GPQA 42.2 43.9 4.0% 9533 9972 4.6%
GSM8K 95.0 95.1 0.1% 1227 1274 3.8%

Olympiad 60.2 60.5 0.5% 8587 8594 0.1%

DeepSeek-R1-Distill-Qwen-7B

Accuracy Average Response Length

Dataset
DeepSeek Ours Improv. DeepSeek Ours Improv.

(SFT) (+ThinkPO) (%) (SFT) (+ThinkPO) (%)

MATH500 91.0 91.8 0.9% 3702 3832 3.5%
AIME22-24 48.1 48.0 −0.2% 13867 13918 0.4%

GPQA 47.4 48.7 2.7% 6113 6450 5.5%
GSM8K 86.7 87.1 0.5% 467 464 −0.6%

Olympiad 60.2 61.1 1.5% 8541 8525 −0.2%

Table 11: Results of Models with Different Sizes (3B, 7B, 14B) on the Qwen-2.5 Family. We evaluate models
of different sizes (3B, 7B, 14B) trained with Supervised Fine-Tuning (SFT) and Think Preference Optimization
(ThinkPO). Models are fine-tuned on the Bespoke-Strato-Dataset for 1 epoch. As model size increases, accuracy
improves across all five test datasets. After ThinkPO training, accuracy improves consistently for models of all sizes,
including the smallest (3B), demonstrating that ThinkPO enhances reasoning ability across different model scales.

Qwen 2.5-3B-Instruct Qwen 2.5-7B-Instruct Qwen 2.5-14B-Instruct
+SFT +ThinkPO Improv. +SFT +ThinkPO Improv. +SFT +ThinkPO Improv.

MATH500 64.9 65.6 1.2% 84.5 84.6 0.1% 90.7 91.2 0.5%
AIME22-24 7.1 9.3 30.8% 20.7 22.4 8.2% 44.0 43.6 −0.9%

GPQA 29.5 29.9 1.4% 41.8 43.0 2.9% 55.3 55.6 0.6%
GSM8K 83.5 84.8 1.6% 92.8 93.0 0.2% 94.8 95.0 0.2%

Olympiad 28.7 28.6 −0.3% 48.3 49.1 1.7% 58.7 59.2 0.8%
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Question What is the domain of the function f(x) = 2−x
log(2−log(x−2))

, where log is the base 10 logarithm function?
Express your answer in interval notation.

SFT Okay, so I need to find the domain of the function f(x) = (2 - x)/log(2 - log(x - 2)). hmm, let’s start by recalling
that the domain of a function includes all the real numbers x for which the function is defined. Since this
function has a logarithm in the denominator, there are a couple of things I need to check: first, the argument
of the outer logarithm (the one in the denominator) must be positive because logarithms are only defined for
positive numbers. Second, the argument of the inner logarithm (the one inside the denominator’s argument)
must also be positive because we can’t take the logarithm of a non-positive number. Let me break this down step
by step.... But wait, 102 is already the upper bound, so actually, the domain is (2, 102). But we have to make
sure that within (2, 102), the expression 2 - log(x - 2) is positive, which we already considered. Let me verify
this again. So, starting with the inner logarithm: x > 2. Then, log(x - 2) is defined. Then, the outer logarithm
requires that 2 - log(x - 2) > 0, which as we saw, leads to x < 102. So combining x > 2 and x < 102 gives (2,
102). Additionally, we need to ensure that the denominator is not zero, which occurs at x = 102, but since 102 is
already the upper limit, the interval is open at 102. Therefore, the domain is (2, 102). Let me check if there
are any other restrictions or if I missed something. wait, another thing to consider: the numerator is 2 - x. The
numerator is a linear function, so it’s defined for all real numbers. The denominator is log(2 - log(x - 2)), ...
Then, log(3 - 2) = log(1) = 0. Then, 2 - 0 = 2, so log(2) is the denominator. That’s valid. If x = 100, then log(100
- 2) = log(98), which is positive, so 2 - log(98) would be 2 - log(98), which is positive because log(98) is less
than 2 (since 102 = 100). So, denominator is positive. If x approaches 2 from the right, x approaches 2+, so x -
2 approaches 0+, so log(x - 2) approaches -infty, so 2 - log(x - 2) approaches +infty, so denominator is defined. If
x approaches 102 from the left, x approaches 102-, so x - 2 approaches 100-, so log(x - 2) approaches log(100-),
which is close to 2, so 2 - log(x - 2) approaches 0 from the positive side, so the denominator approaches 0+,
making the whole function approach +infty. But x can’t be 102. So, in all other points between 2 and 102, the
denominator is defined and positive, so the function is defined there. Therefore, the domain is indeed (2, 102). I
think that’s it. Final Answer The domain of the function is (2, 102).

ThinkPO Okay, so I need to find the domain of the function f(x) = (2 - x)/log(2 - log(x - 2)), where the log here is base
10. hmm, let me think step by step about what’s required here. ... But wait, I need to check if this x > 2 is
compatible with the first condition. So maybe I need to solve both inequalities together?Let me start with the
second condition: log(x - 2) is defined when x - 2 > 0, so x > 2. So that’s the domain from the argument of the
inner logarithm. But then, ... So combining x > 2 and x < 102 gives me 2 < x < 102. wait, but hold on. Let me
verify this. If log(x - 2) < 2, then x− 2 < 102 = 100, so x < 102. But since x - 2 must be positive (because
log requires positive argument), x > 2. So indeed, x is in (2, 102). But wait, when I take log(x - 2) < 2, ... If x
approaches 2 from the right, x - 2 approaches 0+, so log(x - 2) approaches -infty, so 2 - log(x - 2) approaches
infinity. wait, but as x approaches 2+, the inner log(x - 2) goes to -infty, so 2 - log(x - 2) goes to +infty. Therefore,
the denominator log(2 - log(x - 2)) approaches log(infinity) which is +infty. wait, but that would mean the
denominator is positive and approaching infinity. .... But wait, is there a point where the denominator could be
zero? Let’s check. For 2 - log(x - 2) = 0, then log(x - 2) = 2, so x− 2 = 102 = 100, so x = 102. But x = 102 is
the upper bound of the domain. So at x = 102, the denominator is log(2 - log(100)) = log(2 - 2) = log(0), which
is undefined. So x cannot be 102. So the domain is (2, 102). But wait, we also have to consider the numerator.
The numerator is 2 - x. So 2 - x can be zero, but if the denominator is non-zero, then the function is defined.
If numerator is zero, then f(x) = 0/denominator, which is zero. But division by zero is undefined. wait, but if
numerator is zero, does that make the entire expression zero, but with denominator non-zero? For example, if x
= 2, then numerator is 0, denominator is log(2 - log(0)). wait, x=2 is not in the domain because x - 2 = 0, so
log(0) is undefined. ...wait, but the denominator is log(2 - log(x - 2)). So the denominator is log of something.
The logarithm output can be any real number, but in this case, the denominator is used in the function, so as long
as the argument inside the log is positive, which we already considered. But the denominator itself can be any
real number except zero. wait, no. wait, the denominator is log(2 - log(x - 2)), ....wait, so...Let’s compute log(10)
is 1 (base 10), so 2 - 1 = 1, log(1) = 0, ...That seems correct.wait, but let’s check another value. If x is 11, then
x− 2 = 9, log(9) = 0.954, 2− 0.954 = 1.046, so log(1.046) is a positive number. So denominator is defined
and non-zero. If x is 13, then x - 2 = 11, log(11) = 1.041, 2 - 1.041 = 0.959, log(0.959) is negative. But wait, the
original function is defined only if the denominator is log(positive number). So if the denominator is log of a
number less than 1, that’s negative, but is that allowed? wait, no. wait, the denominator is log(2 - log(x - 2)). For
the log to be defined, 2 - log(x - 2) must be positive. So if 2 - log(x - 2) is negative, then log of that is undefined
(since log of a negative number is not real). .... wait, x=1 is less than 2,... wait, no. wait, the denominator is
log(2 - log(x -2)). For log to be defined, the argument must be positive. So if 2 - log(x -2) is positive, then log is
defined, regardless of whether it’s positive or negative. wait, no. wait, .... So intervals (2,12) and (12,102). That
should be correct.

Table 12: One example of LLM’s wrong outputs before ThinkPO and correct outputs after ThinkPO. ThinkPO helps
models generate more reasoning-supportive discourse markers, such as wait, hmm, and other hesitation cues.
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Question How many positive two-digit integers are factors of both 100 and 150?

SFT Okay, so I need to figure out how many positive two-digit integers are factors of both 100 and 150. hmm, let’s start by understanding
the problem....So, the GCD of 100 and 150 is 50. That means all the common factors of 100 and 150 are the factors of 50. Let me
list out the factors of 50 to make sure. The factors of 50 are 1, 2, 5, 10, 25, and 50. wait, that’s six factors. But the problem asks for
two-digit integers. From this list, the two-digit factors would be 25 and 50. So that’s two numbers. But wait, hold on. Let me
verify if 25 and 50 are indeed factors of both 100 and 150. For 25: 100 / 25 = 4, which is an integer. 150 / 25 = 6, which is also an
integer. So yes, 25 is a common factor. For 50: 100 / 50 = 2, and 150 / 50 = 3. Both integers, so 50 is also a common factor. But
wait, are there any other two-digit numbers that are factors of both 100 and 150? Let’s check. The factors of 100 are 1, 2, 4, 5, 10,
20, 25, 50, 100. The factors of 150 are 1, 2, 3, 5, 6, 10, 15, 25, 30, 50, 75, 150. The common factors are 1, 2, 5, 10, 25, 50. So, the
two-digit common factors are 25 and 50. That gives us two numbers. wait, but hold on. The problem says "positive two-digit
integers". ... So, factors of 50 are 1, 2, 5, 10, 25, 50. So, two-digit ones are 25 and 50. Therefore, the answer is 2. But wait, let
me check if there are any other numbers between 10 and 99 that divide both 100 and 150. For example, 10 divides both. 10 is
two-digit. 20 divides 100 but 150 / 20 is 7.5, which is not integer. So 20 is out. 30 divides 150 but 100 / 30 is approximately 3.333,
not integer. 15 divides 150 but 100 / 15 is about 6.666, not integer. 75 divides 150 but 100 / 75 is 1.333, not integer. So, indeed,
only 25 and 50 are in the two-digit range. Therefore, the answer is 2. But wait, wait a second. Let me check 25 and 50 again. 25
divides both 100 and 150, yes. 50 divides both, yes. Are there any other numbers between 10 and 99 that divide both? Let me
check 10. 10 divides 100 and 150. 10 is two-digit. But we already have 10, 25, 50. wait, 10 is a factor, but it’s single-digit. So 10 is
not included. So 25 and 50 are the only two. Therefore, the answer is 2. So, the number of positive two-digit integers that are
factors of both 100 and 150 is 2. But just to be thorough, let me check 25: 100 / 25 = 4, 150 / 25 = 6. Both integers. 50: 100 / 50 =
2, 150 / 50 = 3. Both integers. So yes, they are factors. Are there any others? Let me check 30: 100 / 30 = 3.333, not integer. 40:
100 / 40 = 2.5, not integer. 45: 100 / 45 = 2.222, no. 55: 100 / 55 = 1.818, no. 60: 100 / 60 = 1.666, no. 65: 100 / 65 = 1.538, no.
70: 100 / 70 = 1.428, no. 75: 100 / 75 = 1.333, no. 80: 100 / 80 = 1.25, no. 85: 100 / 85 = 1.176, no. 90: 100 / 90 = 1.111, no. 95:
100 / 95 = 1.052, no. So, none of these two-digit numbers are factors of both 100 and 150. Therefore, only 25 and 50. Therefore,
the answer is 2. So, the final answer is 2, which in boxed form is 2.

ThinkPO Okay, so I need to figure out how many positive two-digit integers are factors of both 100 and 150. hmm, let’s start by understanding
the problem.... For prime 5, both have exponent 2, so min(2,2)=2. Prime 3 is only in 150, so we ignore it. So GCD is 2 * 5 * 5 =
2 * 25 = 50. wait, so the GCD of 100 and 150 is 50. ... wait, that’s two numbers. But let me verify. wait, 50’s divisors: 1, 2, 5,
10, 25, 50. Yep, that’s all. So two-digit numbers here are 10 and 50. So the answer would be 2? But let me make sure I didn’t
miss anything. But wait, is 10 and 50 the only two-digit divisors of 50? Let’s check. 50 divided by 10 is 5, which is integer. 50
divided by 50 is 1. So yes, those are the divisors. But wait, 5 is a single-digit number. So the two-digit divisors are 10 and 50.
So that’s two numbers. wait, but the problem says p̈ositive two-digit integers,̈ so 10 and 50. But wait, is 50 a two-digit number?
Yes, 50 is two digits. But 10 is also two digits. So that’s two numbers. So the answer is 2? hmm, but let me cross-verify this.
Alternatively, maybe I should approach it another way. ...So from 10 to 99, the numbers that divide both 100 and 150 are 10, 25,
and 50. wait, but 25 and 50 are two-digit numbers. So that’s three numbers: 10, 25, 50. wait, but why did I think earlier that 25 is a
two-digit number? It is. So three numbers. But then 10, 25, 50. So three numbers. But when I first thought of the GCD approach, I
considered the divisors of 50, which are 1, 2, 5, 10, 25, 50. So only two two-digit divisors. But here, when checking manually, I
found three. So there’s a discrepancy. Which one is correct?wait, perhaps I made a mistake in the initial approach. Let’s check
again. The GCD of 100 and 150 is 50. So the common factors are the divisors of 50. Divisors of 50 are 1, 2, 5, 10, 25, 50. So
yes, two-digit divisors are 10 and 50. So that’s two numbers. But according to the manual check, there are three. So which is
correct?wait, let’s check 25. 25 is a divisor of both 100 and 150. 25 divides 100 because 25*4=100, and 25 divides 150 because
25*6=150. So 25 is indeed a common factor. But 25 is a two-digit number, right? 2 and 5. So yes, two digits. So 25 is a two-digit
divisor. Then 10 and 50. So that’s three numbers. But according to the GCD method, the common factors are exactly the divisors
of 50, which are six numbers, but only two two-digit. However, when I checked manually, I found three two-digit divisors. So
where’s the mistake?wait, maybe I made a mistake in the GCD calculation. Let me check again. 100 factors: 22 ∗ 52. 150 factors:
21 ∗ 31 ∗ 52. Common prime factors: 2min(2, 1) = 1, 5min(2, 2) = 2. So GCD is 21 ∗ 52 = 2 ∗ 25 = 50. So that’s correct. So
the common factors are exactly the divisors of 50. Therefore, divisors of 50 are 1,2,5,10,25,50. So the two-digit ones are 10,25,50.
wait, that’s three numbers. But according to GCD approach, divisors of GCD. So why the discrepancy? wait, but if the GCD is
50, then the common factors are exactly the divisors of 50. So that’s six numbers, but only three are two-digit. So why did the
manual check show three? But according to the list, divisors of 50 are 1,2,5,10,25,50. So two-digit are 10,25,50. That’s three. So
that’s correct. But why did I think earlier that there were two? Because maybe I made a mistake in the first thought process. wait,
no. wait, when I first considered the problem, I thought the answer is two. But then when I did the manual check, I found three.
So which is correct? Let me verify each of the three numbers:10: 10 divides 100 (10*10=100) and 150 (10*15=150). So yes.25:
25*4=100, 25*6=150. Yes, so 25 divides both.50: 50*2=100, 50*3=150. Yes, so 50 divides both.So all three are valid. Therefore,
the answer should be 3. But wait, the initial GCD approach said divisors of 50, which are six numbers, but only three are two-digit.
However, when I checked the manual approach, I found three. Therefore, the answer is three? But I need to make sure there are
no other two-digit numbers that divide both 100 and 150. wait, let’s check 30. 100 divided by 30 is 3.333, not integer. .... But
wait, let me check another way. Alternatively, since the GCD is 50, the common factors are the divisors of 50. So divisors of 50
are 1,2,5,10,25,50. So two-digit are 10,25,50. So three numbers. Therefore, the answer is 3. But why did I initially think it was
two? Maybe I confused divisors of 50 with common divisors. But no, the common divisors are exactly the divisors of the GCD.
So if GCD is 50, then common divisors are divisors of 50. Therefore, three numbers. wait, but in the initial thought process, I
considered that the GCD is 50, so common factors are 1,2,5,10,25,50. Then two-digit are 10,25,50. Three numbers. Therefore, the
answer is 3. But let me check once more. Let’s take 25. 25 divides 100 and 150. 25*4=100, 25*6=150. Yes. 10: 10*10=100,
10*15=150. Yes. 50: 50*2=100, 50*3=150. Yes. So all three are valid. Therefore, the number of positive two-digit integers that
are factors of both 100 and 150 is 3. But wait, hold on. Let me check 5. 5 is a divisor of both, but it’s single-digit. 1, 2, 5 are
also divisors but single-digit. So the only two-digit divisors are 10,25,50. So three numbers. Therefore, the final answer should
be 3. But wait, when I first did the GCD approach, I thought it was two, but after manual checking, I found three. So why the
discrepancy? ..... But wait, the initial problem says p̈ositive two-digit integers,̈ so numbers from 10 to 99. So 10,25,50 are within
that range. So yes, three numbers. Therefore, after thorough checking, the answer is 3. So I need to make sure I didn’t make a
mistake in the initial GCD approach. But since GCD is 50, and common factors are divisors of 50, then three two-digit. So the
answer is 3. But let me also check if 50 is indeed a two-digit number. Yes, 50 has two digits. 10 is two-digit. 25 is two-digit. So
three numbers. Therefore, I think the correct answer is 3. So the final answer should be 3, boxed as 3

Table 13: One more examples of LLM’s wrong outputs before ThinkPO and correct outputs after ThinkPO. ThinkPO
helps models generate more reasoning-supportive discourse markers, such as wait, hmm, and other hesitation cues.
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