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Abstract
Chemical named entity recognition (NER)001
models are used in many downstream tasks,002
from adverse drug reaction identification to003
pharmacoepidemiology. However, it is un-004
known whether these models work the same for005
everyone. Performance disparities can poten-006
tially cause harm rather than the intended good.007
This paper assesses gender-related performance008
disparities in chemical NER systems. We de-009
velop a framework for measuring gender bias in010
chemical NER models using synthetic data and011
a newly annotated corpus of over 92,405 words012
with self-identified gender information from013
Reddit. Our evaluation of multiple biomedi-014
cal NER models reveals evident biases. For015
instance, synthetic data suggests female-related016
names are frequently misclassified as chemi-017
cals, especially for brand name mentions. Ad-018
ditionally, we observe performance disparities019
between female- and male-associated data in020
both datasets. Many systems fail to detect con-021
traceptives such as birth control. Our findings022
emphasize the biases in chemical NER models,023
urging practitioners to account for these biases024
in downstream applications.025

1 INTRODUCTION026

Chemical named entity recognition (NER) is027

the extraction of chemical mentions (e.g., drug028

names) from the text. Chemical NER is es-029

sential in many downstream tasks, from phar-030

macovigilance (O’Connor et al., 2014) to facili-031

tating drug discovery by mining biomedical re-032

search articles (Agarwal and Searls, 2008). For033

instance, Chemical NER systems are the first step034

in pipelines developed to mine adverse drug reac-035

tions (ADRs) (Farrugia and Abela, 2020; Mammì036

et al., 2013). However, it is unknown whether these037

systems perform the same for everyone. Who bene-038

fits from these systems, and who can be harmed? In039

this paper, we present a comprehensive analysis of040

gender-related performance disparities of Chemical041

NER Systems.042

Performance disparities have recently received 043

substantial attention in the field of NLP. For ex- 044

ample, there are differences in text classification 045

models across sub-populations such as gender, race, 046

and minority dialects (Dixon et al., 2018; Park et al., 047

2018; Badjatiya et al., 2019; Rios, 2020; Lwowski 048

and Rios, 2021; Mozafari et al., 2020). Perfor- 049

mance disparities can manifest in multiple parts 050

of NLP systems, including the pre-trained mod- 051

els (e.g., word embeddings) and their downstream 052

applications (Zhao et al., 2019; Goldfarb-Tarrant 053

et al., 2021; Zhao et al., 2017). While previous re- 054

search has explored these disparities for NER sys- 055

tems, the focus has been largely on synthetic data 056

and non-biomedical NER applications (Mehrabi 057

et al., 2020). Our study addresses this gap by 058

providing a comprehensive examination of gender- 059

related performance disparities in Chemical NER, 060

focusing on both synthetic and real-world data. 061

This paper is most similar to Mehrabi et al. 062

(2020) with two primary distinctions. First, our 063

focus is on Chemical NER, a less studied area in 064

Biomedical NLP despite its having major bias im- 065

plications. Second, while Mehrabi et al. (2020) 066

uses synthetic data and templates (e.g., NAME in 067

LOCATION) for bias analysis, we delve deeper 068

into the potential including an analysis of the in- 069

teraction of morphology patterns on bias. For in- 070

stance, Lieven et al. (2015) highlighted a prefer- 071

ence for linguistically feminine brand names in the 072

market, leading drug companies to adopt such nam- 073

ing conventions. These patterns in training data can 074

inadvertently cause models to misclassify female 075

names as chemicals. 076

We also examine real-world data looking at the 077

performance of chemical NER systems on groups 078

that identify as male or female. For instance, Sund- 079

bom et al. (2017) shows that women are more fre- 080

quently prescribed antidepressants than men. Other 081

studies, like Riley III et al. (1998), reveal gender 082

differences in pain sensitivity and opioid prescrip- 083
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tions, with women receiving opioids twice as of-084

ten. If chemical NER models struggle to detect the085

drugs often mentioned, then it may cause gender-086

specific biases in their performance. Our analysis087

identifies some of these patterns in real data.088

Overall, this paper presents a dual approach: we089

explore template data but also assemble and anno-090

tate a novel real-world dataset with self-identified091

gender information. 1 Synthetic data allows us to092

target specific biases in the models (e.g., morpho-093

logical issues). Likewise, we believe exploring data094

from people who have self-identified their demo-095

graphic information will provide a more realistic096

understanding of how these models will perform097

based on how people write and what they write098

about.099

Our main contributions are two-fold:100

1. We introduce a novel annotated Chemical101

NER dataset for social media data. More-102

over, the dataset contains self-identified gen-103

der information to be used to measure gender104

bias in Chemical NER models. To the best of105

our knowledge, this is the first Reddit-based106

Chemical NER dataset. Moreover, it is the107

first Chemical NER dataset with self-identified108

gender information.109

2. We provide a comprehensive testing frame-110

work for gender bias in Chemical NER using111

both synthetic and real-world data. To the112

best of our knowledge, our results are the first113

to conduct bias analysis for chemical NER114

models. This allows a better understanding of115

modern chemical NER techniques.116

2 RELATED WORK117

Prior work extensively curated labeled data for118

chemical NER and developed domain-specific119

models. For example, the CHEMDNER cor-120

pus (Krallinger et al., 2015) was created for the121

2014 BioCreative shared task on chemical extrac-122

tion from text. Researchers recognize the impor-123

tance of these systems and are working to make124

them as fair and accurate as possible. Likewise,125

the CDR (Li et al., 2016) dataset was developed126

to detect chemical-disease relations for the 2015127

shared task. Similar to traditional NER tasks (Li128

et al., 2020), a broad range of approaches have129

been proposed to detect Chemicals (Rocktäschel130

et al., 2012; Chiu et al., 2021; Lee et al., 2020; Sun131

1The dataset and code will be released publicly upon ac-
ceptance.

et al., 2021; López-Úbeda et al., 2021; Weber et al., 132

2021), from traditional conditional random fields 133

to deep learning methods. Many recent neural 134

network-based advances can be broken into three 135

main groups of models, word, character, and con- 136

textual embedding-based models. For instance, Lee 137

et al. (2020) trained a biomedical-specific BERT 138

model that improved on many prior state-of-the-art 139

results. HunFlair (Weber et al., 2021) introduced 140

a method that matches the word, contextual, and 141

character embeddings into a unified framework to 142

achieve state-of-the-art performance. In this pa- 143

per, we evaluate several state-of-the-art systems. 144

Particularly, we focus on systems that use word 145

embeddings, sub-word embeddings, and character 146

embeddings, which allows us to understand the 147

impact of morphological features of the chemical 148

names on gender bias. 149

Several previous works have measured and high- 150

lighted bias in different NLP tasks. For instance, 151

Sap et al. (2019) measures the bias of offensive 152

language detection models on African American 153

English. Likewise, Park et al. (2018) measures gen- 154

der bias of abusive language detection models and 155

evaluates various methods such as word embedding 156

debiasing and data augmentation to improve bi- 157

ased methods. Davidson et al. (2019) shows racial 158

and ethnic bias when identifying hate speech on- 159

line and that tweets in the black-aligned corpus 160

are more likely to be assigned hate speech. Gaut 161

et al. (2020) creates the WikiGenderBias dataset 162

to evaluate the gender bias in the relation extrac- 163

tion (RE) model, confirming that the RE system 164

behaves differently when the target entities are of 165

different genders. Cirillo et al. (2020) demonstrate 166

that biases in biomedical applications can stem 167

from various sources, such as skewed diagnoses re- 168

sulting from clinical depression scales that measure 169

symptoms more prevalent in women, potentially 170

leading to a higher reported incidence of depres- 171

sion among this group (Martin et al., 2013). Other 172

sources include the underrepresentation of minor- 173

ity populations such as pregnant women (Organi- 174

zation and for Women’s Health in Society, 2009), 175

non-representative samples in AI training data, and 176

inherent algorithmic discrimination, all potentially 177

contributing to inaccurate and unfair results. 178

Overall, several metrics have been proposed to 179

measure gender bias. One of the most commonly 180

used metrics involves measuring bias by examin- 181

ing model performance disparities on male and 182
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female data points (Kiritchenko and Mohammad,183

2018). Performance disparities have been observed184

across a wide array of NLP tasks such as detect-185

ing virus-related text (Lwowski and Rios, 2021),186

language generation (Sheng et al., 2019), corefer-187

ence resolution (Zhao et al., 2018), named entity188

recognition (Mehrabi et al., 2020), and machine189

translation (Font and Costa-jussà, 2019). Most re-190

lated to this study, researchers have shown that191

traditional NER systems (i.e., to detect people,192

locations, and organizations) are biased concern-193

ing gender (Mehrabi et al., 2020). Specifically,194

Mehrabi et al. (2020) demonstrates that female-195

related names are more likely to be misidentified196

as a location than male names. This stream of197

research underscores the importance of our investi-198

gation into performance disparities in NLP.199

Finally, while not directly studied in prior NER200

experiments. It is important to discuss some back-201

ground about morphological elements of chemical202

names. Morphological elements often represent-203

ing masculinity or femininity are frequently used204

in chemical naming conventions. According to205

Lieven et al. (2015), consumers perceive linguisti-206

cally feminine brand names as warmer and likelier.207

For instance, adding a diminutive suffix to the mas-208

culine form of the name usually feminizes it. The209

masculine names such as Robert, Julius, Antonio,210

and Carolus (more commonly Charles today) are211

feminized by adding the suffixes “a”, “ia”, “ina”,212

or “ine” to generate Julia, Roberta, Antonia, and213

Caroline, respectively. The suffixes “ia” and “a” is214

commonly used for inorganic oxides such as mag-215

nesia, zirconia, silica, and titania (Hepler-Smith,216

2015). Likewise, “ine” is used as the suffix in many217

organic bases and base substances such as quinine,218

morphine, guanidine, xanthine, pyrimidine, and219

pyridine. Hence, while these practices were not220

originally “biased” in their original usage, they can221

potentially impact model performance (e.g., femi-222

nine names can be detected as chemicals). There-223

fore, the patterns can cause biased models. As part224

of our approach to investigate this potential source225

of bias, we propose using synthetic data to quantify226

this phenomenon.227

3 DATASETS228

We use five main datasets used in our experi-229

ments: three are publicly-released datasets based230

on PubMed (CDR (Li et al., 2016), CHEMD-231

NER (Krallinger et al., 2015), and CHEBI (Shard-232

# of Chemical Mentions # Sentences # Words

CDR 4,409 14,306 346,001
CHEMDNER 84,355 87,125 2,431,247
CHEBI 24,121 12,913 423,577

AskDoc MALE 1,501 2,862 52,221
AskDoc FEMALE 1,774 2,151 40,184
AskDoc ALL 3,275 5,013 92,405

Synthetic MALE 2,800,000 2,800,000 25,760,000
Synthetic FEMALE 2,800,000 2,800,000 25,760,000
Synthetic ALL 5,600,000 5,600,000 51,520,000

Table 1: Dataset statistics.

low et al., 2018)) and two are newly curated 233

datasets, one using social media data and another 234

based on templates. Table 1 provides their statis- 235

tics. We selected the PubMed datasets for their 236

prominence in chemical NER research. At the 237

same time, the r/AskDocs subreddit was chosen 238

for its large community, diverse health discussions, 239

and consistent gender identification format, such 240

as “I [25 M]”. We provide complete descriptions of 241

the publicly-released datasets in the Appendix. In 242

this section, focus on the description of the newly 243

collected and annotated data. 244

Synthetic (Template) Data We designed a new 245

synthetic dataset to quantify the gender bias in the 246

Chemical NER models. Intuitively, the purpose 247

of the synthetic dataset is to measure two items. 248

First, do gender-related names and pronouns get 249

incorrectly classified as Chemicals (i.e., cause false 250

positives)? Second, does the appearance of gender- 251

related names/pronouns impact the prediction of 252

other words (i.e., cause false negatives)? Specifi- 253

cally, we create templates such as “[NAME] said 254

they have been taking [CHEMICAL] for an illness.” 255

In the “[NAME]” column, we filled in the names 256

associated with the male and female genders based 257

on the 200 most popular baby names provided by 258

the Social Security Administration 2. Hence, we 259

refer to these “gender-related” names in this paper. 260

We recognize that gender is not binary and that 261

names do not equal gender. We also recognize that 262

the names do not accurately capture immigrants. 263

This is a similar framework used by Mishra et al. 264

(2020) and other gender bias papers (Kiritchenko 265

and Mohammad, 2018). The “[CHEMICAL]” field 266

is filled with the chemicals listed in the Unified 267

Medical Language System (UMLS) (Bodenreider, 268

2004). For example, completed templates include 269

“John said they has been taking citalopram for ill- 270

ness.” and “Karen said they has been taking citalo- 271

pram for illness.” We created examples using five 272

2https://www.ssa.gov/oact/babynames/
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Templates

[NAME] said they have been taking [CHEMICAL] for an illness.

Did you hear that [NAME] has been using [CHEMICAL].

[CHEMICAL] has really been harming [NAME], I hope they stop.

I think [NAME] is addicted to [CHEMICAL].

[NAME], please stop taking [CHEMICAL], it is bad for you.

Table 2: Templates used to create the synthetic dataset.

templates, 200 chemicals, and 200 names for each273

gender for each decade from 1880 to 2010, gener-274

ating a total of 200,000 templates for each of the275

14 decades. A list of additional templates is shown276

in Table 2. This dataset is only used for evaluation.277

AskDocs We develop a new corpus using data278

from the Reddit community r/AskDocs. r/AskDocs279

provides a platform for peer-to-peer and patient-280

provider interactions on social media to ask281

medical-related questions. The providers are gener-282

ally verified medical professionals. We collected all283

the posts from the community with self-identified284

gender mentions. To identify self-identified gen-285

der, we use a simple regular expression that looks286

for mentions of “I” or “My” followed by gender,287

and optionally age, e.g., “I [F34]”, “My (23F)”,288

“I [M]”. Next, following general annotation rec-289

ommendations for NLP (Pustejovsky and Stubbs,290

2012), the annotation process was completed in291

two stages to increase the reliability of the labels.292

First, two graduate students annotated chemicals293

in the dataset resulting in an inter-annotator agree-294

ment of .874, achieving a similar agreement score295

as CDR and CHEMDNER. Second, a graduate296

student manually reviewed all disagreeing items297

to adjudicate the label and generate the gold stan-298

dard. All students followed the same annotation299

guidelines developed for the CHEMDNER corpus.300

Contrary to the synthetic dataset, the actual data301

will allow users to measure biases arising from302

text content differences across posts with different303

self-identified gender mentions.304

4 Methods305

The goal of NER is to classify words into a se-306

quence of labels. Formally, given an input sequence307

X = [x1, x2, . . . , xN ] with N tokens, the goal of308

NER is to output the corresponding label sequence309

Y = [y1, y2, . . . , yN ] with the same length, thus310

modeling the probabilities over a sequence p(Y|X ).311

For this task, we conducted an experiment evaluat-312

ing out-of-domain models on the AskDoc corpus.313

Specifically, models were trained and optimized 314

on the CHEMDNER and CDR datasets and then 315

applied to the AskDoc dataset. All models are 316

evaluated using precision, recall, and F1. To mea- 317

sure bias, we use precision, recall, and F1 differ- 318

ences (Czarnowska et al., 2021). Specifically, let 319

m be Males’ performance metric (e.g., F1), and f 320

represent the Female metric. The bias is measured 321

using the difference f −m. 322

4.1 MODELS 323

We evaluate three distinct models: Word Embed- 324

ding models (Mikolov et al., 2013b), Flair embed- 325

ding models (Akbik et al., 2018), and BERT-based 326

models (Devlin et al., 2019a). While the embed- 327

dings for each model type vary, the sequence pro- 328

cessing component is the same for each method. 329

Specifically, following best practices for state-of- 330

the-art NER models (Akbik et al., 2019a), we use a 331

Bidirectional long short-term memory network (Bi- 332

LSTM) (Hochreiter and Schmidhuber, 1997) due to 333

its sequential characteristics and capability to cap- 334

ture long-term dependencies. Recent research has 335

shown that Bi-LSTM models can produce state-of- 336

the-art performance when combined with contex- 337

tual embeddings and Conditional Random Fields 338

(CRFs) (Mueller et al., 2020; Veyseh et al., 2022). 339

Hence, in this paper, we use the Bi-LSTM+CRF 340

implementation in the Flair NLP framework (Ak- 341

bik et al., 2019a). The Bi-LSTM+CRF model is 342

flexible because it can accept arbitrary embeddings 343

as input. It is not constrained to traditional word 344

embeddings (e.g., Word2Vec). We describe the em- 345

beddings we experiment with in the next Section. 346

4.2 EMBEDDINGS 347

We explore three sets of embeddings: Word2Vec, 348

Flair, and BERT. For all embeddings, we ex- 349

periment with domain-specific (e.g., trained on 350

PubMed) and general embeddings (e.g., Google 351

News corpus). We chose these three embedding 352

types because they cover word, subword, and 353

character-level embedding methods. Social me- 354

dia texts are brief and informal. Drugs and chem- 355

icals are typically described in descriptive, non- 356

technical language with spelling errors. These is- 357

sues challenge social media Chemical NER. More- 358

over, some medications, like “all-trans-retinoic 359

acid”, contain morphologically difficult parts. Yet, 360

similar-structured phrases still generally represent 361

similar things (Zhang et al., 2021). How we rep- 362

resent words can directly impact performance and 363
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bias. We describe each embedding we use below:364

Word2Vec. We use Word2Vec domain-specific365

embeddings pre-trained on PubMed and PubMed366

Central (Pyysalo et al., 2013) and general embed-367

dings trained on the Google News corpus (Mikolov368

et al., 2013a). The embeddings are publicly re-369

leased as part of the FLAIR package. It is impor-370

tant to state that word embeddings have a major371

limitation. Word embeddings use a distinct vec-372

tor to represent each word and ignore words’ in-373

ternal structure (morphology). This can result in374

models not particularly good at learning rare or375

out-of-vocabulary (OOV) words in the data. The376

growing number of emerging chemicals/drugs with377

diverse morphological forms makes recognizing378

chemical entities on social media platforms partic-379

ularly challenging. Another challenge posed by380

user-generated content is its unique characteristics381

and use of informal language, typically short con-382

text, noisy, sparse, and ambiguous content. Hence,383

we hypothesize that word embeddings would per-384

form worse than other methods. However, it is385

unclear how these differences can impact bias.386

Flair/HunFlair. Weber et al. (2021) and Akbik387

et al. (2019b) recently proposed a Flair contex-388

tual string embeddings (a character-level language389

model). Specifically, we use two versions of the390

embeddings in the HunFlair extension of the Flair391

package (Weber et al., 2021). The domain-specific392

embeddings are pre-trained on a corpus of three393

million full-text articles from the Pubmed Cen-394

tral BioC text mining collection (Comeau et al.,395

2019) and about twenty-five million abstracts from396

PubMed. The general embeddings are trained on a397

one billion word news corpus (Akbik et al., 2019b).398

Unlike word embeddings mentioned above, Flair399

embeddings are a contextualized character-level400

representation. Flair embeddings are obtained from401

the hidden states of a bi-directional recurrent neural402

network (BiRNN). They are trained without any403

explicit notion of a word. Instead, Flair models a404

word as sequences of characters. Moreover, these405

embeddings are determined by the text surrounding406

them, i.e., the same word will have different embed-407

dings depending on its contextual usage. The vari-408

ant of the Flair embedding used in this study is the409

Pooled Flair embedding (Weber et al., 2021; Akbik410

et al., 2018). Furthermore, we use the forward and411

backward representations of Flair embeddings re-412

turned from the BiRNN. Intuitively, character-level413

Prec. Rec. F1

CDR + PubMed Word .8962 .8797 .8615
CDR + PubMed Flair .9090 .8984 .8920
CDR + BioBERT .9030 .8913 .8971

CDR + General Word .8046 .8006 .8026
CDR + General Flair .8794 .8580 .8686
CDR + BERT .9181 .9174 .9100

CHEMDNER + PubMed Word .8963 .8887 .8846
CHEMDNER + PubMed Flair .9133 .9112 .9018
CHEMDNER + BioBERT .9112 .8861 .8985

CHEMDNER + General Word .8267 .7570 .7903
CHEMDNER + General Flair .8985 .8696 .8838
CHEMDNER + BERT .9122 .8840 .8938

CHEBI + PubMed Word .7384 .7123 .7251
CHEBI + PubMed Flair .8051 .7384 .7703
CHEBI + BioBERT .7858 .7703 .7780

CHEBI + General Word .5999 .6793 .6372
CHEBI + General Flair .7454 .7196 .7322
CHEBI + BERT .7740 .7700 .7720

Table 3: CDR, CHEMDNER, and CHEBI Results.

embeddings can potentially help improve model 414

predictions with better OOV handling. 415

(Bio)BERT. We also evaluate two transformer- 416

based embeddings: BERT and BioBERT. Specif- 417

ically, we use the BERT variant “bert-base- 418

uncased” available Flair and HuggingFace (Wolf 419

et al., 2020). BERT was pre-trained using 420

the BooksCorpus (800M words) and English 421

Wikipedia (2,500M words) (Devlin et al., 2019b). 422

Likewise, BioBERT embeddings further fine-tuned 423

BERT on PubMed (Lee et al., 2020). 424

BERT embeddings are based on subword tok- 425

enization, so BERT can potentially handle OOV 426

better than word embeddings alone. Intuitively, 427

it fits somewhere between Flair (generating word 428

embeddings from character representations) and 429

Word2Vec (which independently learns embed- 430

dings for each word). Likewise, each word rep- 431

resentation is context-dependent. Hence, BERT 432

is better at handling word polysemy by capturing 433

word semantics in context. 434

5 RESULTS 435

CDR, CHEMDNER, and CHEBI Results. Ta- 436

ble 3 reports the recall, precision, and F1 scores for 437

each embedding type for the CDR, CHEMDNER, 438

and CHEBI datasets. The reported scores are for 439

the best models-hyperparameter combinations on 440

their original validation datasets. Overall, we find 441

that the Flair and BERT-based methods outperform 442

word embeddings. The BERT embeddings result in 443
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Male Female Difference

Dataset + Embeddings Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

CDR + PubMed Word 1 .8230 .9029 1 .8230 .9029 .0000 .0000 .0000
CDR + PubMed Flair .9711 .9486 .9597 .9344 .9494 .9418 .0367 -.0008 .0179
CDR + BioBERT .8446 .9044 .8733 .7764 .9036 .8352 .0682 .0007 .0381

CDR + General Word .9536 .6756 .7907 .8530 .6756 .7539 .1006 .0000 .0368
CDR + General Flair .8325 .9400 .8827 .7610 .9397 .8408 .0715 .0003 .0419
CDR + BERT .9867 .8493 .9128 .9728 .8444 .9041 .0138 .0048 .0087

CHEMDNER + PubMed Word .9990 .8625 .9257 .9968 .8622 .9246 .0021 .0003 .0011
CHEMDNER + PubMed Flair .9982 .8836 .9374 .9885 .8852 .9340 .0097 -.007 .0034
CHEMDNER + BioBERT .8847 .8968 .8907 .8625 .8963 .8790 .0222 .0005 .0116

CHEMDNER + General Word .9614 .1966 .3264 .9311 .1957 .3233 .0302 .0009 .0030
CHEMDNER + General Flair .9559 .8437 .8963 .9105 .8433 .8755 .0454 .0004 .0208
CHEMDNER + BERT .9913 .8768 .9306 .9680 .8762 .9198 .0233 -.0006 .0107

ASKDOC + PubMed Word .9739 .9330 .9530 .9739 .9330 .9530 .0000 .0000 .0000
ASKDOC + PubMed Flair .8833 .9523 .9164 .8278 .9519 .8852 .0555 .0005 .0312
ASKDOC + BioBERT .8026 .9444 .8677 .7703 .9443 .8483 .0323 .0001 .0194

ASKDOC + General Word .9681 .6607 .7854 .9711 .6604 .7862 -.0030 .0003 -.0008
ASKDOC + General Flair .8707 .9491 .9079 .8166 .9468 .8765 .0542 .0023 .0315
ASKDOC + BERT .9394 .9288 .9340 .8967 .9282 .9121 .0427 .0006 .0220

CHEBI + PubMed Word .9999 .8758 .9337 .9979 .8715 .9305 .0019 .0042 .0033
CHEBI + PubMed Flair .9689 .9016 .9340 .9545 .9031 .9281 .0144 -.0015 .0060
CHEBI + PubMed BERT .9170 .8673 .8914 .8690 .8689 .8690 .0480 -.0016 .0225

CHEBI + General Word .9538 .5073 .6620 .9147 .4956 .6424 .0391 .0118 .0196
CHEBI + General Flair .9832 .8720 .9242 .9677 .8701 .9163 .0155 .0019 .0079
CHEBI + BERT .9779 .8892 .9314 .9223 .8882 .9048 .0556 .0011 .0266

Aggregate Measures

AVERAGE PubMed/BioBERT .9370 .8994 .9155 .9126 .8994 .9026 .0242 .0002 .0129
AVERAGE General .9479 .7658 .8238 .9071 .7637 .8047 .0407 .0020 .0191

AVERAGE Word .9763 .6919 .7850 .9548 .6897 .7771 .0214 .0022 .0079
AVERAGE Flair .9329 .9114 .9199 .8951 .9112 .8998 .0378 -.0002 .0201
AVERAGE (Bio)BERT .9181 .8946 .9040 .8797 .8938 .8840 .0382 .0011 .0199

Table 4: Synthetic (Template) Data Results. We bold the least biased aggregate measures and all differences greater
than .01 to easily read the main findings.
the best performance for the CDR dataset. While in444

the CHEMDNER corpus, the PubMed Flair embed-445

dings outperform the BERT embeddings (.9018 vs.446

.8938). For CHEMBI, the BioBERT embeddings447

work the best (.7720 vs. .7322 and .6372).448

Synthetic (Template) Results. We evaluated sev-449

eral Named Entity Recognition (NER) models450

across multiple datasets and embeddings to assess451

gender bias, as summarized in Table 4. Specifi-452

cally, The aggregate measures in the bottom sec-453

tion of Table 4 highlight the overall trends in bias454

across embedding training data sources (PubMed455

vs. General) and embedding types (Word, Flair,456

and BERT). The bias analysis reveals that mod-457

els generally perform differently on male versus458

female templates. Particularly, PubMed-trained (in-459

cluding BioBERT) embeddings across all datasets460

show an average precision bias of .0242 against 461

female-related names. The General embeddings 462

exhibit substantially more bias, especially in preci- 463

sion with an average difference of .0407. Moreover, 464

while the average scores for Word and (Bio)BERT 465

embeddings show less bias, the General and Flair 466

embeddings indicate more significant bias in pre- 467

cision and F1 scores. These aggregate measures 468

underscore the pervasive nature of gender bias in 469

NER systems and the importance of addressing it 470

in future work. 471

Overall, the major source of bias is that female- 472

related names are being classified as chemicals. 473

Intuitively, the word embeddings are less biased 474

than Flair and (Bio)BERT-based embeddings be- 475

cause gender-related names are treated indepen- 476

dently using word embeddings, or better, do not 477

appear in the embeddings at all. This is particularly 478
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evident in the differences in performance between479

general word embeddings and the PubMed-based480

word embeddings. The PubMed embeddings do481

not generally have any direct mentions of named482

(e.g., John or Jane), hence they are generally less483

biased than the general domain.484

This finding that female-related names are clas-485

sified as chemicals is consistent with prior re-486

search on naming conventions for brands being487

gendered (Lieven et al., 2015). To further inves-488

tigate this, we randomly sampled 100 chemicals489

from all three datasets and measured the number of490

brand name mentions. Overall, we found one brand491

name in the CHEMDNER dataset, 19 in the CDR492

dataset, and 32 in the ASKDOC dataset, which gen-493

erally matches the bias performance differences in494

Table 4 (i.e., biases are generally worse in CDR and495

ASKDOC datasets than the CHEMDNER dataset).496

AskDoc Results. The AskDoc results, as shown497

in Table 5, highlight various biases in chemi-498

cal NER systems on real-world data. This ta-499

ble presents results from models trained on CDR,500

CHEMDNER, and CHEBI datasets, using different501

embeddings such as Word, Flair, and (Bio)BERT.502

Again, the embeddings are both trained on general503

and domain-specific corpora (e.g., PubMed).504

For the fine-grained results, we note that bias and505

performance can vary depending on unique combi-506

nations of the dataset and embedding types. How-507

ever, for the aggregate results, we have two major508

findings. First, we find that general domain embed-509

dings are more biased when applied to the chemical510

NER task (e.g., .0056 vs. .0330 precision). This511

further emphasizes the results from the synthetic512

data study. Second, we find that word embeddings513

are generally less fair than Flair BERT/BioBERT514

embeddings for precision (.0071 vs. .0156 and515

.0352) and F1 (.0158 vs. .0242 and .0245).516

What does this mean in real-world terms? Con-517

sidering a sample of 1,000,000 chemical mentions518

across male and female posts (a relatively small519

number in social media), a 4% recall difference520

results in an additional 40,000 false negatives for521

the female group. For example, there are well-522

known health disparities between men and women523

for depression, with absolute differences of less524

than 3% (Salk et al., 2017). Hence, a 4% recall dif-525

ference can substantially impact findings if applied526

researchers or practitioners use out-of-domain mod-527

els to understand medications for this disease. Such528

a considerable gap can markedly affect the utility529
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Figure 1: Ratio of false negatives for various drug cat-
egories. The ratio is represented next to each bar. For
female-leaning errors, the female false negative count
(FNk

f ) is in the numerator. For male-leaning errors, the
male false negative count (FNk

m) is in the numerator.
and trustworthiness of these predictive outcomes 530

in practical scenarios. 531

AskDoc Error Analysis. Our experiments show 532

that Chemical NER systems are biased. However, 533

what specifically is causing the errors? For the 534

synthetic data, the answer is gender-related names. 535

To understand the errors in the AskDoc data, we 536

analyzed the errors made by the best NER models 537

trained on the out-of-domain corpus (CHEMDNER 538

and CDR) and tested the male and female splits of 539

the AskDocs corpus. In Figure 1, we report the 540

ratio of false negatives for different categories of 541

drugs/chemicals. For every false negative made by 542

the top models of each dataset-model combination, 543

we manually categorized them into a general chem- 544

ical class (e.g., Contraceptives, Analgesics/Pain 545

Killers, and Stimulants). Formally, let FNk
m repre- 546

sent the total number of false negatives for chemi- 547

cal types k and male data m. Let FNk
f represent 548

the female false negatives. If FNk
m is larger than 549

FNk
f , we define the ratio as −(1− FNk

m/FNk
f ). 550

Likewise, if FNk
f is greater than FNm, then we 551

define the ratio as 1− (FNk
f /FNk

m). Hence, when 552

male ratios are higher, the score is negative; other- 553

wise, it is positive. 554

Overall, we make several important findings. 555

First, we find that the models make slightly more 556

false negatives on the chemicals categories Contra- 557

ceptives (e.g., birth control and Plan B One-Step), 558

Hormones (e.g., Megace used to treat the symp- 559

toms of loss of appetite and wasting syndrome in 560

people with illnesses such as breast cancer), Anal- 561

gesics (i.e., Pain Killers such as Tylenol) and An- 562

tibiotics on the female dataset. In contrast, the 563

models make slightly more errors in the chemical 564

categories Anxiolytics (e.g., drugs used to treat 565
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Male Female Difference

Dataset + Embeddings Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

CDR + PubMed Word .8375 .6023 .7007 .8206 .6249 .7095 -.0169 .0226 .0088
CDR + PubMed Flair .8614 .6160 .7183 .8778 .6702 .7601 .0164 .0542 .0418
CDR + BioBERT .8303 .6352 .7198 .8042 .6693 .7306 -.0261 .0341 .0108

CDR + General Word .7538 .6724 .7108 .7489 .6986 .7229 -.0049 .0262 .0121
CDR + General Flair .8479 .6501 .7359 .8542 .6707 .7514 .0063 .0206 .0155
CDR + BERT .8742 .6453 .7425 .8638 .6589 .7475 -.0104 .0136 .0050

CHEMDNER + PubMed Word .8057 .5966 .6855 .8158 .6049 .6947 .0101 .0083 .0092
CHEMDNER + PubMed Flair .8891 .6155 .7274 .8871 .6282 .7356 -.0020 .0127 .0082
CHEMDNER + BioBERT .8537 .6238 .7208 .8735 .6434 .7410 .0198 .0196 .0202

CHEMDNER + General Word .7490 .5546 .6373 .7975 .5842 .6743 .0485 .0296 .0370
CHEMDNER + General Flair .8159 .5678 .6696 .8821 .6021 .7157 .0662 .0343 .0461
CHEMDNER + BERT .7165 .6315 .6713 .8309 .6349 .7198 .1144 .0034 .0485

CHEBI + PubMed Word .7574 .5998 .6694 .7548 .6287 .6860 -.0026 .0289 .0166
CHEBI + PubMed Flair .7540 .6415 .6932 .7571 .6740 .7131 .0031 .0325 .0199
CHEBI + BioBERT .6896 .5969 .6399 .7380 .6148 .6708 .0484 .0179 .0309

CHEBI + General Word .6047 .6541 .6284 .6132 .6687 .6397 .0085 .0146 .0113
CHEBI + General Flair .6066 .5775 .5917 .6103 .6001 .6052 .0037 .0226 .0135
CHEBI + BERT .6274 .6478 .6374 .6923 .6467 .6687 .0649 -.0011 .0313

Aggregate Measures

AVERAGE PubMed/BioBERT .8087 .6142 .6972 .8143 .6398 .7157 .0056 .0256 .0185
AVERAGE General .7329 .6223 .6694 .7659 .6405 .6939 .0330 .0182 .0245

AVERAGE Word .7514 .6133 .6720 .7585 .6350 .6879 .0071 .0217 .0158
AVERAGE Flair .7958 .6114 .6894 .8114 .6409 .7135 .0156 .0295 .0242
AVERAGE (Bio)BERT .7653 .6301 .6886 .8005 .6447 .7131 .0352 .0146 .0245

Table 5: AskDoc Results. We bold the least biased aggregate measures and all differences greater than .01 to easily
read the main findings.
anxiety), Antipsychotics (e.g., chemicals used to566

manage psychosis, principally in schizophrenia),567

and sexual function drugs (e.g., Viagra). Further-568

more, while the ratio for the most male- and female-569

related errors (Contraceptives and Sexual Function)570

are similar, the absolute magnitudes are substan-571

tially different. For instance, there are 397 Con-572

traceptive FNs in the female dataset, but only 75573

Sexual Function FNs appear in the male dataset.574

This provides an explanation for the large differ-575

ences in recall on the AskDoc corpus between the576

male and female datasets.577

6 CONCLUSION578

In this paper, we evaluate the gender bias of Chem-579

ical NER systems. Moreover, we compare bias580

measurements from synthetic data with real-world581

self-identified data. We make two major findings.582

First, Chemical NER systems are biased with re-583

gard to gender for synthetic data. Specifically, our584

study found that female name-like patterns fea-585

ture prominently in chemical naming conven-586

tions. This characteristic leads to a notable bias587

in NER systems, where female-related names are 588

disproportionately identified as chemicals, inadver- 589

tently escalating the gender bias in these systems. 590

Second, we explored the performance of these mod- 591

els in real-world scenarios and found that most 592

models perform better on male-related data than 593

female-related data. A striking revelation was 594

the system’s poor performance when identify- 595

ing chemicals frequently found in female-related 596

data, such as mentions of contraceptives. 597

In conclusion, the results of our study empha- 598

size the urgent need for deliberate bias mitigation 599

strategies in Chemical NER systems. Our findings 600

spotlight the necessity for incorporating both syn- 601

thetic and real-world data considerations to develop 602

models that are both fair and reliable. There are two 603

major paths for future research. First, while large 604

language models are still behind in terms of perfor- 605

mance for NER systems (Wang et al., 2023), they 606

are becoming more common. Future work should 607

explore biases in prompting-based NER solutions. 608

Second, we plan to explore how the chemical NER 609

biases impact downstream tasks such as relation- 610

ship classification and question answering. 611
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A Appendix938

A.1 Datasets939

CDR (Li et al., 2016) We use the BioCreative V940

CDR shared task corpus. The CDR corpus com-941

prises 1,500 PubMed articles with 4,409 annotated942

chemicals, 5,818 diseases, and 3,116 chemical dis-943

ease interactions. This corpus is designed to ad-944

dress two distinct tasks: Relation classification and945

NER. For this study, we focus on the NER for946

chemical entities. The annotator agreement for this947

corpus was .87. Finally, we used the same train,948

validation, and test splits from the shared task for949

our experiments.950

CHEMDNER (Krallinger et al., 2015) The951

CHEMDNER corpus includes abstracts from952

10000 chemistry-related journals published in 2013953

on PubMed. Each abstract was manually annotated954

for chemical mentions. These mentions were cat-955

egorized into seven subtypes: abbreviation, fam-956

ily, formula, identifier, multiple, systematic, and957

trial. The BioCreative organizers divided the cor-958

pus into training (3500 abstracts), development959

(3500 abstracts), and test (3000 abstracts) sets.960

The BioCreative IV CHEMDNER corpus com-961

prises 84,355 chemical mention annotations across962

10,000 abstracts, with an inter-annotator agreement963

of .91 (Krallinger et al., 2015). For this study, we964

only use the major Chemical annotations and ig-965

nore the subtypes for consistency across corpora.966

Finally, we use the same train, validation, and test967

splits used in the shared task for our experiments.968

CHEBI (Shardlow et al., 2018). We also use969

the ChEBI corpus, an extensive dataset consist-970

ing of 199 annotated abstracts and 100 full papers.971

This corpus contains over 15,000 named entity972

annotations and more than 6,000 inter-entity re-973

lations, specifically aligned with the needs of the974

ChEBI database curators. The dataset has anno-975

tated chemicals, proteins, species, biological ac-976

tivities, and spectral data. Moreover, it has a high977

inter-annotator agreement of 0.80-0.89 (F1 score,978

strict-matching). It also categorizes relationships979

into several types such as Isolated From, Associ-980

ated With, Binds With, and Metabolite Of, offering981

a detailed view of the interactions between metabo-982

lites and other entities. This corpus is not only a983

rich source for exploring lexical characteristics of984

metabolites and associated entities but also serves985

as a critical resource for training machine learning986

algorithms in the recognition of these entities and 987

their relations in the biochemical context. 988

A.2 Hyper-Parameter Settings 989

In this section, we report the best hyperparameter 990

for each model. Similar to random hyperparameter 991

search (Bergstra and Bengio, 2012), we generate 992

100 samples using different parameters for each 993

dataset-model combination (e.g., we generate 100 994

versions of BERT for the CDR dataset). For the 995

specific hyper-parameters, we used sample dropout 996

from .1 to .9, hidden layer sizes from {128, 256, 997

512, 1024}, learning rates selected from 1e-4 to 998

1e-1 at random, and the option of whether to fine- 999

tune the embedding layers (i.e., True vs. False). In 1000

addition, we trained all models for 25 epochs with 1001

a mini-batch size set to 32, where only the best 1002

model on the validation dataset is saved after each 1003

epoch. Finally, all experiments were run on four 1004

NVidia GeForce GTX 1080 Ti GPUs. 1005

A.3 Error Analysis and Discussion 1006

Interestingly, we find that the prevalence of chemi- 1007

cals across gender-related posts matches the preva- 1008

lence found in traditional biomedical studies. Pre- 1009

vious research report that women have been pre- 1010

scribed analgesics (e.g., pain killers such as opi- 1011

oids) twice as often as men (Chilet-Rosell, 2014; 1012

Serdarevic et al., 2017). While there is still lim- 1013

ited understanding about whether men are under- 1014

prescribed or women are over-prescribed, the dis- 1015

parities in prescriptions are evident. Thus, the find- 1016

ing in Figure 1 that we receive twice as many anal- 1017

gesics FNs for female data is important. Depend- 1018

ing on the downstream application of the Chemical 1019

NER system, these performance disparities may 1020

potentially increase harm to women. For exam- 1021

ple, if more varieties of drugs are prescribed to 1022

women, but our system does not detect them, then 1023

an ADR detection system will not be able to detect 1024

important harms. 1025

We also find differences in Antibiotic FNs in 1026

Figure 1. There have also been medical studies 1027

showing gender differences in Antibiotic prescrip- 1028

tions. For example, a recent meta-analysis of pri- 1029

mary care found that women received more an- 1030

tibiotics than men, especially women aged 16–54, 1031

receiving 36%–40% more than males of the same 1032

age (Smith et al., 2018). Again, if we do not de- 1033

tect many of the antibiotics prescribed to women, 1034

this can cause potential health disparities in down- 1035

stream ADR (and other) systems. 1036
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Total Male FNR Male Total Female FNR Female

Contraceptives 33 1.0000 408 .9730
Hormones 170 .0882 230 .1565
Analgesics 571 .1489 952 .2048
Antibiotics 326 .2454 347 .4438
Antihistamines 270 .5593 295 .6780
Stimulants 522 .3065 390 .5051
Antidepressants 781 .4110 1043 .3365
Minerals 605 .3983 785 .3312
Opioids 43 .5814 95 .2316
Organic Chemical 441 .3764 346 .3902
Illicit drug 353 .5666 311 .5048
Vaccine 108 1.0000 78 1.0000
Stomach Drug 55 .5455 44 .4545
Antipsychotics 47 .6170 95 .1368
Anxiolytics 126 .5603 100 .2300
Sexual Function Drug 78 .9615 8 1.0000

PCC between Total and FNR -.58 -.26

Table 6: False negatives rate (FNR) for female and male-related AskDoc datasets. The pearson correlation coefficient
(PCC) between the frequency of each chemical type and the FNR for teach group is marked in the last row.

Next, in Table 6, we report the false negative1037

rate (FNR) for each category along with the gen-1038

eral frequency of each category. Using the Pearson1039

correlation coefficient, we relate the frequency of1040

each category with the false negative rate for the1041

male and female groups, respectively. Intuitively,1042

we would expect the false negative rate to go down1043

as the frequency increases, which matches our find-1044

ings. However, we find that the correlation is much1045

stronger for the male group than the female group.1046

In Table 7, we report the FNR for the female1047

and male groups, respectively. We also introduce a1048

new metric, weighted FNR, which assigns impor-1049

tance scores for each of the FNRs shown to create1050

a macro-averaged metric. Intuitively, the distribu-1051

tion of categories is different for both the male and1052

female groups. So, we want to test whether the1053

FNR scores are distributed uniformly across all cat-1054

egories, irrespective of, whether the errors are more1055

concentrated for gender-specific categories. More1056

errors in gender-specific categories can adversely1057

impact a group that is not captured with the global1058

FNR metric. Formally, we define wFNR for the1059

female group as1060

wFNRf =
N∑
i

wf
i FNRf

i1061

where FNRf
i represents the female false negative1062

FNR wFNR

Male .3948 .6875
Female .4064 .8088

Gap .0116 .1213
Ratio 1.0294 1.1764

Table 7: FNR and weighted FNR (wFNR) results.

rate for category i. Likewise, wf
i is defined as 1063

wf
i =

1∑
iw

f
i

·
Nf

i /N
f

Nm
i /Nm

1064

where Nf
i and Nm

f represent the total number of 1065

times a category i appears for the female and male 1066

groups, respectively. Intuitively, we are dividing 1067

the ratio of each category for female and male 1068

groups. So, if a category appears more often for 1069

females than males, proportionally, then the score 1070

will be higher. We normalize these scores for each 1071

group so they sum to one. Overall, we find an abso- 1072

lute gap of more than 1% (3% relative difference) 1073

between the FNR for male and female groups. But, 1074

even worse, there is a much larger gap (.1213 vs 1075

.0116) when using wFNR. This result suggests that 1076

many of the false negatives are concentrated for 1077

gender-specific categories (e.g., contraceptives) for 1078

the female group more than the male group. 1079
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A.4 Limitation1080

There were several limitations to our study. First,1081

the adjudication of disagreeing items was depen-1082

dent on the judgment of a single graduate student,1083

potentially introducing human error and bias com-1084

pared to a multi-adjudicator approach. Second, the1085

vast volume of data from the active r/AskDoc sub-1086

reddit community makes the feasibility of one per-1087

son’s comprehensive review debatable. Although1088

our annotation method is in line with standard1089

practices, a more multi-faceted approach involv-1090

ing numerous annotators and adjudicators might1091

offer improved accuracy and consistency in future1092

datasets. Third, our study focuses on binary repre-1093

sentations of gender (ignoring non-binary people).1094

Moreover, the SSN names may not adequately men-1095

tion immigrant-related names. Hence, the results1096

may be European-specific.1097
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