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ABSTRACT

Parameter-Efficient FineTuning (PEFT) methods have recently gained significant
popularity thanks to the widespread availability of large-scale pretrained mod-
els. These methods allow for quick adaptation to downstream tasks with min-
imal computational cost. However, popular finetuning methods such as LoRA
exhibit limited robustness when it comes to hyperparameter choices or extended
training regimes, preventing optimal out-of-the-box performance. In contrast,
bounded approaches, such as ETHER, provide greater robustness but are limited
to extremely low-rank adaptations and fixed-strength transformations, reducing
their adaptation expressive power. In this work, we propose Decoupled Low-
rank Adaptation (DeLoRA), a novel finetuning method that normalizes and scales
learnable low-rank matrices. By bounding the distance of the transformation,
DeLoRA effectively decouples the angular learning from the adaptation strength,
enhancing robustness without compromising performance. Through evaluations
on subject-driven image generation, natural language understanding, and instruc-
tion tuning, we show that DeLoRA matches or surpasses performance of com-
peting PEFT methods, while exhibiting stronger robustness. Code is available at
https://github.com/ExplainableML/DeLoRA.

1 INTRODUCTION

The rapid advancement of deep learning has led to the development of large-scale pretrained mod-
els in various domains, especially in computer vision and natural language processing (Touvron
et al., 2023a;b; Radford et al., 2021; Rombach et al., 2022). However, the enormous size of these
models, reaching billions of parameters, presents significant challenges when adapting them to spe-
cific downstream tasks, particularly in terms of computational cost and efficiency. To address these
challenges, Parameter Efficient FineTuning (PEFT) methods have emerged. PEFT methods are
characterized by their introduction of a small set of learnable parameters, in contrast to the extensive
parameter updates required in full finetuning. Notable examples include adapters (Houlsby et al.,
2019) and prompt tuning (Lester et al., 2021). In this work, we focus on enhancing LoRA (Hu et al.,
2022), a widely adopted finetuning method known for its simplicity and effectiveness. However,
despite its success, LoRA is sensitive to hyperparameter choices (Biderman et al., 2024) and of-
ten exhibits performance degradation during extended finetuning (Qiu et al., 2023). While robust
finetuning approaches such as ETHER and ETHER+ (Bini et al., 2024) address some of these limi-
tations, they are constrained to extremely low-rank adaptations and fixed-strength transformations.

Therefore, we propose DeLoRA, an enhanced version of LoRA that introduces a boundary on the
weight updates through normalization, decoupling the angular learning from the adaptation strength.
This enhances adaptability across diverse settings while preserving capabilities for personalization
and merging at inference time. We motivate DeLoRA from two distinct perspectives: as an extension
of LoRA through the introduction of additional normalization, and as an evolution of ETHER by
enabling high-rank updates. We conduct ablation studies on the design choices and demonstrate
improvements over both LoRA and ETHER. Additionally, we validate the advantages of DeLoRA
by evaluating it across diverse tasks in image generation and LLM adaptation.
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Figure 1: Visualizations (Left) of the original LoRA (Hu et al., 2022) and (Right) of our proposed
method DeLoRA. In addition to the low-rank matrices B,A, we introduce a normalization Ξ and a
scaling factor λ, which effectively decouple the angular learning from the adaptation strength.

In summary, we make the following contributions in this work: (i) we thoroughly review the for-
mulations of LoRA and ETHER and derive a novel PEFT method, DeLoRA; (ii) we demonstrate
DeLoRA enhanced robustness and decoupling compared to alternatives; (iii) we extensively ablate
the formulation of DeLoRA by deriving it from both LoRA and ETHER; (iv) we evaluate DeLoRA
on both vision and language benchmarks, matching or surpassing the performance of competing
PEFT methods.

2 DECOUPLED LOW-RANK ADAPTATION (DELORA)

Our decoupled low-rank adaptation approach, by introducing learnable boundaries on the weight
updates, effectively combines the strengths of LoRA and ETHER methods, allowing for high ex-
pressivity and finetuning robustness. In the following sections, we will (i) present an overview of
the PEFT methods LoRA and ETHER, focusing on their respective limitations (Section 2.1) and (ii)
describe how we derive our proposed DeLoRA method from both perspectives (Section 2.2), along
with a comparison with DoRA (Liu et al., 2024a), a method that also targets decoupling angular and
magnitude components.

2.1 PRELIMINARIES: LORA & ETHER, AND THEIR LIMITATIONS

Here, we provide a detailed review of LoRA (Hu et al., 2022) and ETHER (Bini et al., 2024), with
a particular focus on their limitations.

Low-rank Adaptation (LoRA). Hu et al. (2022) proposed Low-rank Adaptation (LoRA), which
parametrizes the update of pretrained weights W ∈ Rd×f during finetuning as(

W +
α

r
BA

)⊺
x+ b (1)

where A ∈ Rr×d and B ∈ Rf×r are the learnable matrices, α is a scaling factor, and r is the rank of
the final BA matrix. When r ≪ min(d, f), LoRA substantially reduces the number of parameters
required for finetuning compared to full finetuning. Furthermore, BA matrices can be integrated
into W at inference time, eliminating additional latency.

However, LoRA is known to be highly sensitive to hyperparameter choices (Biderman et al., 2024),
and it is prone to deterioration with over-training (Qiu et al., 2023), thus requiring careful tuning
and experimentation to achieve an optimal balance between a sufficiently high learning rate and
avoiding catastrophic overwriting of the pretrained weights. In our proposed DeLoRA, we mitigate
this behavior by introducing a boundary to the weight updates, which results in robust performance
across a broad range of learning rates.

Finetuning with Hyperplane Reflections (ETHER). Following efficiency and robustness argu-
ments, Bini et al. (2024) propose to employ bounded transformations for finetuning, namely ETHER
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and ETHER+. ETHER (left side in Eq. (2)) and ETHER+ (right side) introduce multiplicative trans-
formations H or H+ respectively, which act on the pretrained weights as follows:

(HW )⊺x+ b ,
(
H+WH̃+

)⊺
x+ b. (2)

Here, H = I − 2uu⊺, H+ = I − uu⊺ + vv⊺, H̃+ = I − ũũ⊺ + ṽṽ⊺ (where u, v, ũ, ṽ are unit
vectors) are bounded in terms of their distance to the identity transformation, as per

∥H − I∥F = 2 ,
∥∥H+ − I

∥∥
F
≤ 2, (3)

where the subscript F denotes the Frobenius norm. This upper bound on the transformation distance
prevents weight changes that cause catastrophic overwriting, as shown by Bini et al. (2024).

However, enforcing a constant boundary on the transformation distance can limit the finetuning
performance, as the boundary may be too strict to adapt the layer or pretrained model at hand to the
respective task. Furthermore, by rewriting the formulations in Eq. (2) in a residual form, we can
show that the weight updates are intrinsically limited to be low-rank (see Appendix A), which limits
the finetuning capacity of such methods. In DeLoRA, by introducing a normalization and a scaling
factor to LoRA matrices, we show how to achieve robustness comparable to ETHER while enabling
control over both boundary and rank, ultimately enhancing model expressivity and performance.

2.2 DELORA

While both LoRA and ETHER demonstrate valuable properties, namely parameter efficiency and
robustness, they also exhibit notable limitations. Our proposed PEFT method, DeLoRA, addresses
these shortcomings by synthesizing the strengths of both approaches. In this regard, DeLoRA can
be thought of as an extension of LoRA that incorporates ETHER’s robustness properties or, al-
ternatively, as an enhancement of ETHER that adopts LoRA’s more expressive paradigm. In the
following, we will present both derivations and finally summarize in a concise way our proposed
DeLoRA formulation.

Deriving DeLoRA from LoRA. In order to achieve robustness to learning rates, we first observe
that in LoRA’s Eq. (1) the norm of the weight updates ∆W is proportional to ∆BA, which in turn is
proportional to the learning rate. This means that the update strength at each training step is directly
driven by the learning rate, which can lead to catastrophic overwriting in high learning rate regimes.
In order to mitigate this behavior, we want to introduce a normalization term. To do this, we start by
decomposing the BA matrix into the sum of its rank-1 components, i.e.

BA =

r∑
i=1

bia
⊺
i (4)

■ Controllable Boundary. Similarly to ETHER, we normalize each rank-1 entry, making the Frobe-
nius norm of each single rank-1 component equal to 1. This normalization can be introduced as
in

r∑
i=1

bia
⊺
i

∥bi∥∥ai∥
= BΞA (5)

where Ξ is a diagonal matrix with entries Ξi,i = 1
∥bi∥∥ai∥ for i = 1, . . . , r, Ξi,j = 0 for i, j =

1, . . . , r, i ̸= j. The final update distance with respect to the pretrained weights thus is bounded as

∥BΞA∥ =
∥∥∥ r∑

i=1

bia
⊺
i

∥∥∥ ≤
r∑

i=1

∥bia⊺i ∥ = r (6)

Most importantly, the boundary is independent of the used learning rate. Next, to control the bound-
ary and remove its rank dependency, we scale BΞA by a factor λ

r , as in∥∥∥λ
r
BΞA

∥∥∥ ≤ λ. (7)

Now, the boundary is equal to λ and can be chosen arbitrarily to better fit the pretrained network
or task at hand. To enable greater flexibility and layer-specific boundaries, we make each distinct λ
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learnable, allowing finetuning to adapt their values accordingly. Hence, we effectively decouple the
angular learning (the normalized BΞA matrices) from the adaptation strength, as measured by the
boundary λ. Furthermore, introducing a single additional learnable parameter λ to each finetuned
matrix creates only negligible overhead in terms of overall trainable parameters and training speed.

■ Weights-norm Scaling. Previous works suggest that when finetuning image generative models
such as Stable Diffusion, multiplicative finetuning methods exhibit stronger performance (Qiu et al.,
2023; Liu et al., 2024b) than additive counterparts. We argue this may arise because multiplicative
methods induce weight updates relative to the pretrained weights W , meaning updates are inherently
layer-specific. This might be especially relevant when adapting a diverse set of layers, which is the
case for our Stable Diffusion adaptations (see Fig. 3). To mimic this approach, in our additive
proposed method DeLoRA, we introduce a scaling factor equal to the pretrained weights norm.
This can be formally stated as

∆W =
λ∥W∥

r
BΞA. (8)

Our ablation studies on Stable Diffusion finetuning tasks demonstrate such performance improve-
ments empirically (see Section 3.2).

■ Initialization. To initialize the finetuning process from the pretrained model, DeLoRA’s normal-
ization operation does not allow to simply follow LoRA’s zero initialization of the B matrix. From
preliminary experiments, we find that introducing a small epsilon to avoid division by 0, would
sometimes lead to unstable results. Therefore, we instead follow (Meng et al., 2024; Bini et al.,
2024) and subtract a copy of the kaiming-randomly initialized matrices to the frozen pretrained
weights, as in

W = W̄ −
(
λ∥W∥

r
BΞA

)
0

(9)

where W̄ is the original pretrained matrix, and (λ∥W∥
r BΞA)0 is the update matrix at time 0.

Deriving DeLoRA from ETHER So far, we showed how to derive DeLORA from LoRA. Al-
ternatively, it is possible to derive DeLoRA by introducing properties of LoRA to ETHER. We
find this to be insightful to understand the impact of each individual component from a theoretical
perspective. In addition, we quantitatively ablate all innovations of DeLoRA in Section 3.2.

■ Controllable Boundary. One of the primary limitations of ETHER and ETHER+ is their fixed
boundary (see Section 2.1), which is fixed and thus cannot be adapted to the pretrained model in
use. We address this limitation by introducing a scaling parameter λ as in

H = I − λuu⊺ , H+ = I − λ

2
uu⊺ +

λ

2
vv⊺. (10)

Consequently, the boundaries on the distances of H and H+ from the identity matrix become
∥H − I∥F = λ, and ∥H+ − I∥F ≤ λ. In Section 3.2, we show that this modification, i.e. in-
troducing a controllable bound, leads to the largest increase in performance.

■ Increasing the rank. In Appendix A, we demonstrate that ETHER and ETHER+ are restricted to
rank-1 and rank-4 weight updates respectively. In order to arbitrarily control the rank, we extend
the H+ parameter of ETHER+ to Ĥ , which allows for an arbitrary number of weight reflection
operations:

Ĥ = I −
r/2∑
i=1

uiu
⊺
i +

r/2∑
i=1

viv
⊺
i . (11)

We can rewrite Ĥ by gathering the u and v unit vectors into two rank- r2 matrices, as in

Ĥ = I − UΣU⊺ + VΘV ⊺, (12)

where Σ and Θ are diagonal normalization matrices with entries Σi,i =
1

∥ui∥2 , Θi,i =
1

∥vi∥2 , The
entries on the diagonals of Σ and Θ are constructed to normalize u and v to unit vectors. Thus, the
distance from the identity matrix becomes

∥Ĥ − I∥ =
∥∥∥ r/2∑

i=1

uiu
⊺
i −

r/2∑
i=1

viv
⊺
i

∥∥∥ ≤
r/2∑
i=1

∥uiu
⊺
i ∥+

r/2∑
i=1

∥viv⊺i ∥ = r. (13)
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As above, we can control the boundary on the distance, and remove the rank dependency, by intro-
ducing a scaling factor λ

r as in

Ĥ = I − λ

r
UΣU⊺ +

λ

r
VΘV ⊺ (14)

■ U ,V Relaxation. Finally, we relax UΣU⊺, VΘV ⊺ and replace them with distinct trainable ma-
trices BΞA and DΦC respectively, which leads to Ĥ = I − λ

r (BΞA −DΦC)W . We emphasize
how this formulation resembles a multiplicative analog of our proposed DeLoRA method, and we
include this variant in our ablation study. We ablate all alternatives in Section 3.2. There, we find
that DeLoRA, combined with weights-norm scaled updates, as in multiplicative finetuning, achieves
overall stronger performance.

DeLoRA formulation. Summarizing, our proposed DeLoRA finetuning method consists in learn-
ing a normalized low-rank matrix BΞA and a scale λ, updating the pretrained weights as in(

W +
λ∥W̄∥

r
BΞA

)⊺

x+ b (15)

This formulation inherently constrains the learnable finetuning updates in a λ∥W̄∥-sized ball, where
W̄ is the norm of the pretrained weights, achieving a decoupling of the transformation strength from
the angular learning.

In more detail, the key components are:
• Normalization: Ξ is a r-dimensional diagonal matrix that normalizes LoRA’s inner low-

dimensional bottleneck (Eq. (5)), bounding the Frobenius norm of BΞA to r (Eq. (6)).
• Scaling Factors: (i) 1/r is used to remove the rank dependency on the boundary dimensionality,

(ii) ∥W̄∥ to make the weight updates proportional to the pretrained weights, and (iii) λ to control
the adaptation strength and allow for a layer-specific boundary adaptation (Eq. (7))

• Initialization: Pretrained initialization follows by merging to the pretrained weights a frozen
copy of the initialized finetuning adaptation matrices (Eq. (9)).

DoRA vs DeLoRA discussion. DoRA (Liu et al., 2024a), similarly to our work, addresses fine-
tuning targeting the decoupling of angular and magnitude components, by using a formulation that
leads to weight updates W ′ = m W+∆W

∥W+∆W∥ . We can summarize the key differences between DoRA
and our proposed method in two main aspects: (i) DoRA applies normalization and scaling oper-
ations on the fully finetuned weights, and (ii) these operations are performed on the column space
of the weight matrices, which significantly differs from our approach. In contrast, we argue that
DeLoRA finetuning has two key advantages: (i) by introducing the normalization and scaling opera-
tions directly on the weight updates ∆W , it more effectively prevents divergence from the pretrained
model, and (ii) by normalizing the inner low-dimensional space (as opposed to the column space),
it implicitly enforces a Frobenius-norm boundary, providing a mathematical guarantee against di-
vergence. These ultimately result in (i) peculiar training dynamics (as depticted in Fig. 3, whereas
DoRA and LoRA exhibit similar behavior), and (ii) enhanced decoupling, supported by the robust-
ness performance in Fig. 2 and in Appendix C. In this regard, we notice that although DeLoRA’s
learnable boundary theoretically allows an unbounded Frobenius norm, divergence from the pre-
trained weights does not happen in practice, as also shown in Appendix D. This demonstrates that
during finetuning, DeLoRA’s learnable boundary is able to effectively adjust and avoid divergence
from the pretrained weights–behavior that is not observed with DoRA.

3 EXPERIMENTS

In this section, we evaluate our proposed DeLoRA method for image generation, natural language
understanding, and instruction tuning tasks. We begin by providing a detailed description of these
tasks and their relevance. To justify our design choices, we present a comprehensive ablation study
that highlights the key innovations of DeLoRA. Finally, we demonstrate that DeLoRA not only
matches or exceeds the performance of LoRA and other state-of-the-art methods but also exhibits
superior robustness. This enhanced stability is particularly evident in two aspects: reduced sen-
sitivity to learning rate selection and improved performance retention during extended finetuning
periods.
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3.1 TASKS

Subject-driven Image Generation. Following (Qiu et al., 2023; Bini et al., 2024), we assess the
effectiveness of our proposed methods in the DreamBooth setting (Ruiz et al., 2023), specifically
by adapting Stable Diffusion (Rombach et al., 2022) to recontextualize a subject shown in a set
of images according to a given prompt. The dataset, sourced from (Ruiz et al., 2023), comprises
30 subjects, each paired with 25 prompts. The task is to finetune Stable Diffusion to generate
images portraying the given subject in the context defined by the prompts. We report an example
in in Appendix E (Fig. 7, left side). For each combination of image and prompt, after finetuning,
we generate four images and measure the subject-fidelity by DINO (Caron et al., 2021) and CLIP
(Radford et al., 2021), as proposed by (Ruiz et al., 2023). Here, the score represents the similarity
of generated and given images, measuring the faithfulness of generating images of the given subject
to the provided real images. Among the two metrics, the DINO score is more significant since it is
more sensitive to subject-unique features (Ruiz et al., 2023).

Semantic Map to Image Following (Qiu et al., 2023; Bini et al., 2024), we evaluate the ability
of our proposed methods in finetuning Stable Diffusion to generate realistic images based on given
segmentation maps. The image should follow the spatial structure laid out in the segmentation map
as closely as possible. Examples of segmentation maps and their corresponding generated images
are presented in Appendix E (Fig. 7, right side). For the control signal, we use the pretrained encoder
from ControlNet (Zhang et al., 2023a). For training and evaluation, we utilize semantic maps and
images from the ADE20K dataset (Zhou et al., 2019). After training, we generate images for 2000
segmentation masks from the ADE20K validation set and report the mean Intersection-over-Union
(mIoU) and accuracy of semantic maps as predicted by UperNet-101 (Xiao et al., 2018). Note that
we only use the Semantic Map to Image task to ablate our method design decisions.

Natural Language Understanding We evaluate DeLoRA’s performance in adapting small-scale
language models by finetuning and evaluating a pretrained RoBERTa-base model (Liu et al., 2020)
on the General Language Understanding Evaluation (GLUE) benchmark (Wang et al., 2018). GLUE
tasks have been extensively used to measure natural language understanding performance, compris-
ing inference tasks (MNLI, QNLI, RTE), sentiment classification (SST-2), and correct identification
of English grammatical structures (CoLA). CoLA results refer to Matthews correlation coefficient,
MNLI to matched accuracy, and STS-B to average correlation, while all other tasks are evaluated
on accuracy. For a proper evaluation on the validation set, we adopt the setup proposed by Wu et al.
(2024b), and split the validation set into two subsets, guarded by a pre-defined seed, that will be
used for model selection and evaluation. We provide more details in Section 3.3.

Instruction Tuning. We evaluate how effectively DeLoRA can adapt LLMs to follow user-given
instructions, finetuning LLaMA-2-7B (Touvron et al., 2023b) on the Alpaca dataset (Taori et al.,
2023). Following Bini et al. 2024, we evaluate the zero-shot performance of instruction-tuned
models on four different tasks, namely (1) Massive Multitask Language Understanding (MMLU)
(Hendrycks et al., 2021), which features 57 tasks in different categories such as STEM, Humani-
ties, and Social Sciences; (2) AI2 Reasoning Challenge (ARC) (Clark et al., 2018), which contains
over 7000 grade-school science questions; (3) TruthfulQA (Lin et al., 2022), which contains 817
questions representing common misconceptions in 38 categories like health, law, finance and pol-
itics. TruthfulQA additionally features two separate sub-tasks, namely single-true and multi-true.
In single-true, only one of the provided answers is correct, and the model has to select the unique
correct answer. In multi-true, several of the provided answers may be correct, and the model has to
assign a high probability to correct answers and a low probability to incorrect answers.

3.2 ABLATION OF DELORA DESIGN CHOICES

In this section, we ablate the incremental design choices that transform LoRA and ETHER+ into
DeLoRA, evaluating these on the subject-driven generation and semantic map-to-image tasks. From
the LoRA derivation (top-down in Tables 1,2), we show how incorporating normalization with a
controllable boundary and weight scaling into pretrained matrices enhances performance. From the
ETHER+ derivation (bottom-up in Tables 1,2), we show how introducing a controllable scale, a
higher-rank formulation, relaxed learnable matrices, and an additive finetuning tranformation, in-
crementally improves performance.
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Method ∆W formulation DINO CLIP-I

LoRA [rank-r] BA 0.674 0.785
↓ + normalize w/ controllable boundary λ

rBΞA 0.682 0.809
· + normalize w/ controllable boundary + weights-scaling
· + controllable boundary + high rank + relaxed + additive FT (DeLoRA) ∥W∥λ

r BΞA 0.701 0.825

↑ + controllable scale + high rank + relaxed λ
r (BΞA−DΦC)W 0.696 0.833

| + controllable boundary + high rank λ
r (UΣU⊺ − VΘV ⊺)W 0.685 0.840

| + controllable boundary λ(uu⊺ − vv⊺)W 0.678 0.810
ETHER+ (one-sided) [rank-2, boundary equal to 2] (uu⊺ − vv⊺)W 0.624 0.746

Table 1: Ablation of DeLoRA innovations on the Subject-driven Image Generation task. We show
how different components affect performance from both LoRA and ETHER derivation.

Method ∆W Formulation mIoU ↑ Acc. ↑ FID ↓
LoRA [rank-r] BA 25.13 64.95 31.35
↓ + normalize w/ controllable boundary λ

rBΞA 25.66 65.82 31.01
· + normalize w/ controllable boundary + weights-scaling
· + controllable boundary + high rank + relaxed + additive FT (DeLoRA) ∥W∥λ

r BΞA 26.10 65.08 30.71

↑ + controllable boundary + high rank + relaxed λ
r (BΞA−DΦC)W 25.55 65.16 29.89

| + controllable boundary λ(uu⊺ − vv⊺)W 24.56 62.70 31.28
ETHER+ (one-sided) [rank-2, boundary equal to 2] (uu⊺ − vv⊺)W 23.46 62.26 31.18

Table 2: Ablation of DeLoRA innovations on the Semantic Map to Image task. We show how
different components from both LoRA and ETHER derivations incrementally improve performance.

Results for subject-driven image generation are in Table 1. For this ablation we use a small-scale
version of the setting proposed by (Ruiz et al., 2023), finetuning 3 subjects over 25 prompts each
(10% of the data). Among all modifications, we notice how the introduction of a controllable bound-
ary in ETHER+ (one-sided) has the highest impact, raising the DINO score from 0.624 to 0.678 and
the CLIP score from 0.746 to 0.810. This shows how the lack of strength is the hindering factor for
ETHER+(one-sided), as already noted by (Bini et al., 2024). Starting from LoRA, we notice how
the weights-norm scaling has the largest impact on performance, raising the DINO score from 0.682
to 0.701 and the CLIP score from 0.809 to 0.825. Additionally, we note that DeLoRA’s performance
without the weights-norm scaling falls short compared to its multiplicative counterpart.

For the Semantic Map to Image ablation study, we run a small-scale grid search by finetuning Stable
Diffusion for 10 epochs on ADE20K in bfloat16 precision. Results are reported in Table Table 2.
We note how DeLoRA achieves best controllability among different variations. In addition, we also
note the increase in Accuracy when increasing the rank of ETHER+, hinting that it could have been
a limiting factor.

3.3 BENCHMARK RESULTS

Subject-Driven Image Generation Results are in Table 3. For a comprehensive benchmark per-
formance comparison, we report low-rank results from Bini et al. (2024), while running and eval-
uating LoRA, DoRA, and DeLoRA methods at a consistent rank. For each method, we conduct a
grid search to identify optimal hyperparameters using the same 3 subjects as in the ablation stud-
ies, then evaluate the top-performing configurations on the full 30-subject benchmark, testing each
across three distinct seeds. The best and average results are reported in Table 3. We notice that
LoRA, DoRA, and DeLoRA, all achieve comparable average performance in terms of DINO and
CLIP-Image, all outperforming lower-rank baselines. This shows that DeLoRA is able to effectively
combine ETHER+ robustness properties with superior performance.

Natural Language Understanding Results are in Table 4. For proper evaluation on the GLUE
validation set, we follow Wu et al. (2024a;c) and split the validation set into two subsets (determined
by pre-defined seeds), and use the first subset to tune hyperparameters, and the second subset to
evaluate method performance. For fair comparisons we use same seeds as Wu et al. (2024a;c).
In addition, in order to compare with LoRA’s implementation, we simply apply DeLoRA to Q,V
attention layers with rank 8, which is likely sub-optimal with respect to applying lower-rank modules
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Method #param DINO CLIP-I

Real Images 0.703 0.864

DreamBooth (Ruiz et al., 2023) 859.5M 0.644 0.793
OFTn=4 (Qiu et al., 2023) 11.6M 0.652 0.794
ETHER+ (Bini et al., 2024) 0.4M 0.666 0.800
LoRAr=4 (Hu et al., 2022) 0.8M 0.660 0.796
LoRAr=16 (Hu et al., 2022) 3.2M 0.686 0.818
DoRAr=16 (Liu et al., 2024a) 3.2M 0.687 0.819
DeLoRAr=16 (ours) 3.2M 0.686 0.820

LoRA†
r=16 (Hu et al., 2022) 3.2M 0.688 0.818

DoRA†
r=16 (Liu et al., 2024a) 3.2M 0.689 0.819

DeLoRA†
r=16 (ours) 3.2M 0.693 0.820

Table 3: Results for evaluating DeLoRA in subject-driven image generation. † indicates experi-
ments with tuned hyperparameters.

Method #param MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg

Full Finet. 125M 87.3 94.4 87.9 62.4 92.5 91.7 78.3 90.6 85.6

BitFit (Zaken et al., 2022) 0.1M 84.7 94.0 88.1 54.0 91.0 87.3 69.8 89.5 82.3
IA3 (Liu et al., 2022) 0.06M 85.4 93.4 86.4 57.8 91.1 88.5 73.5 88.5 83.1
LoReFT (Wu et al., 2024c) 0.02M 83.1 93.4 89.2 60.4 91.2 87.4 79.0 90.0 84.2
RED (Wu et al., 2024a) 0.02M 83.9 93.9 89.2 61.0 90.7 87.2 78.0 90.4 84.3
LoRA (Hu et al., 2022) 0.3M 86.6 93.9 88.7 59.7 92.6 90.4 75.3 90.3 84.7
AdapterFFN (Pfeiffer et al., 2021) 0.3M 87.1 93.0 88.8 58.5 92.0 90.2 77.7 90.4 84.7
Adapter (Houlsby et al., 2019) 0.4M 87.0 93.3 88.4 60.9 92.5 90.5 76.5 90.5 85.0
DeLoRA (ours) 0.3M 86.9 93.7 88.6 64.7 92.6 90.2 77.3 90.6 85.6

Table 4: Comparisons of different methods finetuning RoBERTa-base on GLUE benchmark. Re-
sults of all baselines are taken from Wu et al. (2024a) and Wu et al. (2024c).

to a larger set of layers (Hu et al., 2022). We notice how DeLoRA achieves better performance
on CoLA, QNLI and STS-B, and an overall significantly better average score with respect to all
baselines, demonstrating its efficacy in adapting language models for NLU tasks.

Instruction Tuning Results are in Table 5. Results for all methods but DoRA and DeLoRA are
reported from Bini et al. (2024). For these two, a proper grid search has been run following the same
setup of Bini et al. (2024). Further details cab be found in B. We can see that DeLoRA achieves best
results on three out of four tasks. This confirms the effectiveness of our improvements, which lead to
optimal average performance in this setup. On the MMLU task, ETHER and ETHER+ outperform
other methods, but fall short on other tasks, achieving lower average performance compared to
DeLoRA. This might be due to the limited capacity of ETHER methods from their rank limitation.

3.4 INSIGHTS

In this section we analyze (i) the learning rate robustness properties, and (ii) the training dynamics,
with a focus on prolonged training setting, of DeLoRA with respect to other finetuning methods.
Then, we analyze (iii) how weights norms differ in a pretrained model, to better understand the
weights-norm scaling effect in DeLoRA.

Learning Rate Robustness. We conducted a comprehensive learning rate robustness analysis in
the setting of the Subject-driven Generation task of Section 3. Evaluation is done reporting DINO
scores (Fig.2, Left) and Euclidean distance between finetuned and pretrained weights of a projection
layer in an attention module (Fig.2, Right) across multiple methods, using a range of learning rates
derived from each method’s base learning rate. Our analysis shows that DeLoRA is able to achieve
the same robustness of ETHER+, while improving performance, whereas both LoRA and DoRA
performance degrade at 4× the base learning rate. We also notice how LoRA updates’ distance
grows at higher learning rates, while interestingly DoRA, after 8×, does not diverge further, likely
thanks to its magnitude control. However this does not lead to better performance in these regimes.
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Method #param MMLU ARC Tru-1 Tru-2 Avg

LLaMA-2-7B - 41.81 42.92 25.21 38.95 37.22

ETHERn=32 (Bini et al., 2024) 0.26M 44.57 45.14 27.91 41.83 39.86
ETHER+n=32 (Bini et al., 2024) 1.04M 44.87 46.50 29.38 43.51 41.07
LoRAr=8 (Hu et al., 2022) 4.19M 43.61 46.16 28.76 42.21 40.19
DoRAr=8 (Liu et al., 2024a) 4.19M 43.24 47.18 29.01 43.47 40.73
DeLoRAr=8 (ours) 4.19M 44.21 47.70 29.62 44.14 41.42

Table 5: Results for Instruction Tuning on MMLU, ARC, and TruthfulQA benchmarks. Values
represent accuracy scores achieved by different finetuning methods. Best scores are highlighted in
bold, and second-best scores are underlined.

DeLoRA (lr=6e-3) LoRA (lr=6e-4) DoRA (lr=6e-4) ETHER+ (lr=6e-3)

Figure 2: Learning rate robustness plots in Subject-driven generation task in terms of DINO scores
(Left) and Euclidean distance between a finetuned vs pretrained projection layer weights (Right).
Learning rates used for robustness evaluation were derived by multiplying the base learning rate in
a range of factors.

Finetuning Regime and Prolonged Training. We further investigate the behavior of weight up-
dates across different methods by measuring the Euclidean distance between finetuned weight ma-
trices (after merging) and the pretrained corresponding matrices during fine-tuning. This provides
us a quantitative measure of the shift and rate at which fine-tuned weight matrices diverge from the
pretrained weights. In Fig. 3 (Left), we show this analysis for the out-projection matrix in one of
StableDiffusion’s Unet self-attention layers. We find that LoRA- and DoRA-trained weights con-
tinuously depart from the pretrained weights over the course of training, passing through an optimal
regime but eventually overshooting and ending in a diverging regime (notice that best performance
are typically found between 1000 and 1400 steps). In contrast, DeLoRA-trained weights exhibit a
peculiar behavior, quickly moving away from the pretrained weights, until they reach the boundary,
from which they cannot diverge further. We argue that this leads to prolonged training robustness,
effectively avoiding catastrophic overwriting. Qualitative examples are provided in Fig. 3 (Right)
and in Appendix E. Additionally, we highlight that by adjusting the boundary parameter λ, one can
easily control the maximum allowable shift and, therefore, the level of finetuning robustness.

Weights Norms Heterogeneity. In Fig. 4, we show the mean of column norms for weight matrices
in different attention blocks of the U-Net in Stable Diffusion v1.5. By doing so, we highlight the
effect of weights-norm scaling as introduced in Section 2. We find that different modules, as well
as different positions in the U-Net, show systematic differences with respect to weights norms. This
points at differences within the pretrained model which finetuning methods should account for. Our
proposed scaling is one possibility to accomplish this. Exploring more sophisticated methods to
include layer-wise differences is an interesting direction for future research.

4 RELATED WORK

Parameter efficient finetuning (PEFT) is an active field of research, encompassing methods such as
adapters (Houlsby et al., 2019), prompt- and prefix-tuning variations (Lester et al., 2021; Li & Liang,
2021; Liu et al., 2023), and more specialized methods such as BitFit (Zaken et al., 2022), FourierFT
(Gao et al., 2024), and LayerNorm Tuning (Zhao et al., 2024). In this paper, we propose an improved
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Figure 3: (Left) Euclidean Distance of finetuned weights to pretrained weights as a function of the
number of training steps. (Right) Qualitative examples show that LoRA exhibits significant artifacts
earlier in the process compared to DeLoRA, which maintains better image quality.

down_blocks.0
down_blocks.1

down_blocks.2
up_blocks.1

up_blocks.2
up_blocks.3

mid_block.attentions

Layer Position

0.0

0.5

1.0

1.5

2.0

Av
g.

 N
or

m Block Type
Q
K
V
Out

Figure 4: Average column norms of parameters in the attention modules of Stable Diffusion’s Unet

PEFT method based on low-rank adapters (LoRA) first described by (Hu et al., 2022). Therefore, we
focus our review of previous work on LoRA variants and refer to recent surveys (Han et al., 2024;
Xin et al., 2024) regarding PEFT methods in general. LoRA is a popular finetuning approach for
large models, featuring advantages such as low-memory footprint and no additional inference cost
(Hu et al., 2022). Compared to full-finetuning, LoRA is also less prone to catastrophic forgetting
(Biderman et al., 2024).

However, beyond falling behind in performance on downstream tasks compared to full finetuning
(Biderman et al., 2024), previous work has identified and attempted to address different limitations
of the original LoRA method. Lialin et al. (2023); Zi et al. (2023); Xia et al. (2024); Ren et al. (2024)
propose methods to overcome the low-rank limitation without sacrificing memory efficiency. Simi-
larly, VeRA (Kopiczko et al., 2024) keeps the original LoRA setup but reduces trainable parameters
further by only scaling the randomly initialized matrices, which are shared across layers. To ac-
count for differences between layers, (Zhang et al., 2023b; Ding et al., 2023; Zhang et al., 2024; Liu
et al., 2024c) describe methods to dynamically adapt the rank of different LoRA adapters. Instead of
changing the rank, in this work, we propose to dynamically change the scaling of LoRA matrices for
different layers, highlighting the need for layer-adaptive methods. PiSSA (Meng et al., 2024) and
MiLoRA (Wang et al., 2024) show how improved initialization of LoRA can lead to better perfor-
mance and faster convergence. Zhu et al. (2024) and Hayou et al. (2024) show that LoRA matrices
behave differently in terms of optimal initialization and learning rate. Our work is complementary
to these findings, as we also argue for different treatments of LoRAs, but regarding different layers
within a model, not within the same adapter. DoRA (Liu et al., 2024a), similarly to our work, tar-
gets decoupling of angles and magnitudes, normalizing and scaling the full updated weight matrix
W +∆W on the column space, controlling each singular column of the finetuned matrices, whereas
we propose to normalize the inner r-dimensional space of each ∆W update matrix.

5 CONCLUSIONS

In this work, we proposed a novel parameter efficient finetuning method, DeLoRA, which com-
bines the strengths of LoRA –controllable rank– and ETHER –bounded updates– to address their
respective limitations. We showed that by normalizing and scaling low-rank updates, DeLoRA is
able to effectively decouple the angular learning from the adaptation strength, leading to competitive
performance and enhanced robustness. Beyond showing the advantages of DeLoRA, we provided
detailed insights into its derivation, from both perspective of LoRA and ETHER, ablating the intro-
duction of each incremental innovation. Finally, we investigated DeLoRA’s robustness to learning
rate variations and extended training, demonstrating that its decoupled update mechanism is critical
for preventing divergence from the pretrained weights. These findings offer valuable perspectives
for adapting pretrained models, by addressing key limitations of current PEFT approaches.
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A ETHER AND ETHER+ LOW-RANK LIMITATION

In ETHER and ETHER+, even if the applied transformation matrices I − uu⊺ are full-rank, the
resulting weight updates to the pretrained layers are limited to be low-rank. We can show this by
rewriting the transformation result in a residual form.

For ETHER the matrix multiplication can be written as:

HW = (I − 2uu⊺)W

= W − 2uu⊺W

where the second term on the right-hand side, by multiplying the pretrained matrix with a rank-1
transformation, restricts the learnable weight updates, which are driven by u, to be rank-1.

Similarly, for ETHER+:

H+WH̃+

= (W − uu⊺W + vv⊺W )H̃+

= W − uu⊺W + vv⊺W − (W − uu⊺W + vv⊺W )ũũ⊺ + (W − uu⊺W + vv⊺W )ṽṽ⊺

where the rank-1 residual matrices on the right-hand side will lead to rank-4 overall weight updates.

This simple mathematical derivation, demonstrates that ETHER and ETHER+ methods are limited
to be low-rank, arguably limiting the expressivity and the learning capacity of the two methods.

B EXPERIMENTAL DETAILS

In this section we report further details about experiments in Section 3, along with hyperparameter
choices, and standard deviation results.

Subject-Driven Generation. To find the best hyperparameters, we trained and evaluated on the
first 3 subjects (10% of the data) for each method among LoRA, DoRA and DeLoRA, all with rank
16. Then, we used best hyperparameters to evaluate each method on all 30 subjects, for 3 different
seeds. For LoRA and DoRA we followed best practices and fixed lambda to twice the rank during
hyperparemeter search. Optimal learning rate for both methods is 6e-4. For DeLoRA we fixed the λ
scaling parameter to 1e-3, and found an optimal learning rate of 2e-2 for the BA matrices. Results
with standard deviations are reported in Table 6.

Method DINO CLIP-I

LoRAr=16 (Hu et al., 2022) 0.686±.0012 0.818±.0017

DoRAr=16 (Liu et al., 2024a) 0.687±.0015 0.819±.0015

DeLoRAr=16 (ours) 0.686±.0056 0.820±.0027

Table 6: Results with standard deviation for subject-driven image generation trained methods. Best
scores are highlighted in bold, and second-best scores are underlined.

GLUE. Following Wu et al. (2024c), for each benchmark task, we split the publicly available val-
idation set in two subsets as reported in Table 7. When validation sets are larger than 2K, a 1K
subset is used as new validation set, and the remaining as test set, otherwise the validation is split
in two equally sized subsets. We use the new validation set to tune the hyperparameters on seed 42.
Then, best hyperparameters are used to evaluate test performance for seeds 42, 43, 44, 45, 46. For
each training run, we use checkpointing to save the best training run, and evaluate with that. For all
experiments we use a max sequence length of 512. For larger datasets (MNLI, SST-2, QNLI, QQP)
we fix the λ scaling learning rate to 3e-3, while for smaller datasets we fix it to 1e-2. For other
hyperparameters we run a small grid search. Best values are reported in Table 9. We highlight that
with respect to Wu et al. (2024c), we don’t discard any underperforming seed. Experiments with
standard deviation details are reported in Table 8.
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Splits Sizes MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Training Set 393K 67K 3.7K 8.5K 105K 364K 2.5K 5.7K
New Validation Set 1K 436 204 522 1K 1K 139 750

New Test Set 8K 436 204 521 4.5K 39K 138 750

Table 7: GLUE dataset sizes, with new validation and test splits following Wu et al. (2024c) setup.

#param MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg

Full Finet. 125M 87.3±.34 94.4±.96 87.9±.91 62.4±3.29 92.5±.22 91.7±.19 78.3±3.20 90.6±.59 85.6

BitFit 0.1M 84.7±.08 94.0±.87 88.1±1.57 54.0±3.07 91.0±.05 87.3±.02 69.8±1.51 89.5±.35 82.3
IA3 0.06M 85.4±− 93.4±− 86.4±− 57.8±− 91.1±− 88.5±− 73.5±− 88.5±− 83.1
LoReFT 0.02M 83.1±.26 93.4±.64 89.2±2.62 60.4±2.60 91.2±.25 87.4±.23 79.0±2.76 90.0±.29 84.2
RED 0.02M 83.9±.14 93.9±.31 89.2±.98 61.0±2.96 90.7±.35 87.2±.17 78.0±2.06 90.4±.32 84.3
LoRA 0.3M 86.6±.23 93.9±.49 88.7±.76 59.7±4.36 92.6±.10 90.4±.08 75.3±2.79 90.3±.54 84.7
AdapterFFN 0.3M 87.1±.10 93.0±.05 88.8±1.38 58.5±1.69 92.0±.28 90.2±.07 77.7±1.93 90.4±.31 84.7
Adapter 0.4M 87.0±.28 93.3±.40 88.4±1.54 60.9±3.09 92.5±.02 90.5±.08 76.5±2.26 90.5±.35 85.0
DeLoRA(ours) 0.3M 86.9±.21 93.7±.79 88.6±1.49 64.7±2.33 92.6±.53 90.2±.17 77.3±1.96 90.6±.38 85.6

Table 8: GLUE benchmark. Comparisons of different methods finetuning RoBERTa-base, with
standard deviations. Results of all baselines are taken from Wu et al. (2024a) and Wu et al. (2024c).

Hyperparameters MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

λ 12 12 4 4 12 4 12 12
Learning Rate 1e-3 1e-3 3e-2 1e-2 3e-3 1e-3 1e-2 1e-2

Batch Size 32 32 32 8 32 256 8 8
Num. Epochs 30 30 40 80 25 25 80 40

Dropout 0 0.1 0.2 0.2 0.25 0.25 0 0.2

Table 9: GLUE benchmark hyperparameters.

Instruction Tuning. To assess the performance of DeLoRA in finetuning LLMs for Instruction
Tuning, we adopted the experimental setup from Bini et al. (2024), finetuning Llama-2-7B (Touvron
et al., 2023b) on the Alpaca dataset (Taori et al., 2023) for one epoch, and searching for hyperparam-
eters that deliver the best average performance across MMLU, ARC, and TruthfulQA. For DoRA
we used a learning rate of 3e-4, a batch size of 8, and 100 warmup steps. For DeLoRA we used an
initial scaling λ of 8, learning rates of 1e-2 for BA and 5e-3 for λ, and other hyperparameters as
DoRA. All additional reported results are sourced from Bini et al. (2024).

C FIXING THE MAGNITUDE TERM IN DORA

In the following section we provide preliminary experiments testing if fixing the magnitude in DoRA
could lead to similar robustness properties as DeLoRA.

Performance. We first evaluate if fixing the magnitude term could be detrimental in terms of
performance. Following the setting of our small-scale ablation in Section 3.2, we run a small scale
experiment comparing DoRA with its variation.

Method DINO CLIP-I

DoRAr=16(fixed-magnitude) 0.681 0.822
DoRAr=16 0.683 0.820

Table 10: Subject-driven Image Generation small-scale ablation
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We notice how DoRA results without updating the magnitude term seem to lead to only slightly
underperforming results with respect to standard DoRA.

Robustness. We then run the same robustness analysis as reported in Fig. 2. We see how fixing
the magnitude term does not lead to a behavior similar to DeLoRA, but rather still follows DoRA
behavior.

Plots in Fig. 5 show that simply fixing the magnitude term does not alter DoRA robustness proper-
ties (Fig. 5, Left), while actually in higher learning rate regimes seems to lead to further divergence
(Fig. 5 Right), not allowing the magnitude to counterbalance the divergent trend. This behavior sug-
gests that keeping column norms constant might not be restrictive enough. In this regard, DeLoRA
inner normalization in terms of Frobenius distance seems to be a more promising strategy to avoid
model divergence.

DoRA (lr=6e-4) DoRA fixed-magnitude (lr=6e-4)

Figure 5: Robustness analysis between DoRA with and without magnitude updates, with respect to
learning rate changes from the optimal learning rate.

D ROBUSTNESS ABLATION ON DELORA’S BOUNDARY AND ANGLES

We additionally conducted an ablation on DeLoRA’s setting, where we run the same robustness anal-
ysis of Section 3.4 by varying the learning rate of the scaling term λ (affecting the boundary), and
the weights BA (angular component). We notice how all methods lead to convergence, additionally
demonstrating DeLoRA’s robustness properties.

DeLoRA lr sweep on λ (lr=1e-3) DeLoRA lr sweep on BA (lr=6e-3) DeLoRA lr sweep on both

Figure 6: Learning rate robustness plots for DeLoRA in Subject-driven generation task in terms of
DINO scores (Left) and Euclidean distance finetuned vs pretrained weights of a projection layer
(Right). Ablation testing impact of increasing learning rate for boundary (λ) or angular weights
(BA).
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E QUALITATIVE EXAMPLES

We report in Fig. 7 qualitative examples generated by our propopsed DeLORA finetuning Stable
Diffusion for the tasks of Subject-driven Generation and Semantic Map to Image. While in Figure 8
we report qualitative examples of prolonged genearation with DeLoRA, LoRA and DoRA methods.

"an empty 
building" "a flooded river" "a stone wall" "an office" 

"A vase [V] in the snow"

[V]

Figure 7: Examples generated by DeLoRA-finetuned Stable Diffusion for personalized generation
on a small set of subject-specific images (left), and for semantic map to image on ADE20K (right).
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Figure 8: Prolonged finetuning generated examples generated by DeLoRA, LoRA, and DoRA meth-
ods, up to time step 2600.
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