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Abstract

We propose the generative adversarial neural operator (GANO), a generative model paradigm
for learning probabilities on infinite-dimensional function spaces. The natural sciences
and engineering are known to have many types of data that are sampled from infinite-
dimensional function spaces, where classical finite-dimensional deep generative adversarial
networks (GANs) may not be directly applicable. GANO generalizes the GAN framework
and allows for the sampling of functions by learning push-forward operator maps in infinite-
dimensional spaces. GANO consists of two main components, a generator neural operator and
a discriminator neural functional. The inputs to the generator are samples of functions from
a user-specified probability measure, e.g., Gaussian random field (GRF), and the generator
outputs are synthetic data functions. The input to the discriminator is either a real or
synthetic data function. In this work, we instantiate GANO using the Wasserstein criterion
and show how the Wasserstein loss can be computed in infinite-dimensional spaces. We
empirically study GANO in controlled cases where both input and output functions are
samples from GRFs and compare its performance to the finite-dimensional counterpart GAN.
We empirically study the efficacy of GANO on real-world function data of volcanic activities
and show its superior performance over GAN.

1 Introduction

Generative models are one of the most prominent paradigms in machine learning for analyzing unsupervised
data. To date, there has been considerable success in developing deep generative models for finite-dimensional
data (Goodfellow et al., 2014; Kingma & Welling, 2013; Dinh et al., 2014; Radford et al., 2015). Generative
adversarial networks (GANs) are among the most successful generative models with rich theoretical and
empirical developments (Arjovsky et al., 2017; Liu et al., 2017). The empirical success of GANs has been
mainly within finite-dimensional data regimes; there has been relatively little progress on developing generative
models for infinite-dimensional spaces–and importantly–function spaces. This is the case despite the fact that
many fields of science and engineering, including seismology, computational fluid dynamics, aerodynamics,
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(a) Generator. u = G(a). The input a first gets passed to a pointwise lifting operator
parameterized with P . Then multiple layers of global integral operators Gl’s are applied which
are accompanied by a few skip connections. At last, the output u is generated using a final
pointwise projection layer parameterized with Q.
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(b) Discriminator. r = d(u). The input u first gets passed to a pointwise lifting operator
parameterized with P . Then multiple layers of global integral operators Gl’s are applied which
are accompanied by a few skip connections. At last, the output r is generated using a final
pointwise projection layer parameterized with Q, followed by a linear integral functional layer.

Figure 1: Generative adversarial neural operator (GANO)

physics, and atmospheric sciences, work primarily with data that live in function spaces. In these settings,
the observation data is mainly on irregular and changing points in both space and time.

Applications of functional data are abundant in seismology. For example, for a specific region on Earth,
the base stations record data/seismograms on the surface of Earth. These receiver centers are located on
irregular grids, e.g., point clouds (e.g., more stations closer to faults). The point cloud configuration also is
different from region to region (Tokyo and Osaka). Moreover, due to measurement and local noise, some of
the receivers are on and off in time. It means that we are dealing with functional data that are observed on
irregular grids both in time and space. Moreover, when studying these functions, we aim to evaluate and
query them at any spatiotemporal point. Since the governing equations are partial differential wave equations,
access to the temporal and spatial derivatives reveals information about the dynamics of physical phenomena.
Generative models for the mentioned wave functions allow for sampling many potential seismic behaviors of
each region of Earth, facilitating the hazard study. Similarly, in weather forecasts, many recording stations
on the surface of Earth are located on irregular grids (fewer stations on oceans than on lands) with different
fidelity and frequency of observation. For these applications, scientists represent the weather condition as
a function on a 2D sphere. This allows for evaluating weather conditions at any point on the surface of
Earth and computing the gradient and momentum of the fluid dynamics. The function representation with a
learned generative model allows for accurate sampling of weather forecasts and future events.

In this paper, we study the problem of generative models in function spaces. We propose generative adversarial
neural operator (GANO), a deep learning-based approach that enables the learning of probabilities on function
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spaces, and allows for efficient sampling from such learned models. GANOs generalize the GAN paradigm
to function spaces, and in particular, to separable Polish and Banach spaces. GANO, unlike traditional
kernel density estimation methods, is computationally tractable, works on general spaces, and does not
require the existence of a density nor the assumption of defined underlying measures for density (Rosenblatt,
1956; Parzen, 1962; Craswell, 1965)1. Another line of work proposes to use neural stochastic differential
equation (SDE) solver (Tzen & Raginsky, 2019) to generate temporal signal function with finite-dimensional
co-domain (Kidger et al., 2021). However, while the generated signals are infinite dimensional objects, the loss
construction in the mentioned work is still for finite-dimensional spaces, for grid evaluation points, therefore,
making the learned generative model implicitly yet for finite-dimensional domains, and ergo, a special case
of GAN setting. Such generative models require an underlying SDE solver to solve the temporal equation
and are only designed for temporal data. The same SDE structure is also used for the discriminator models,
resulting in causal discriminators, for which the optimality even for GAN setting is an open problem.

GANO consists of two main components, a generator neural operator and a discriminator neural functional.
GANO architecture is empowered by neural operators, which are maps between function spaces (Li et al.,
2020b). The generator neural operator receives a function sampled from a Gaussian random field (GRF) and
outputs a function sample. This is in contrast to GAN, where the input is a sample from a finite-dimensional
multivariate random variable and the output is a finite-dimensional object. The efficiency of traditional
sampling methods from GRFs enables GANO to be considered as a computationally efficient generative
model. The discriminator neural functional consists of a neural operator followed by an integral function.
The discriminator receives either synthetic or real data as input and outputs a scalar. For the architecture
choices in the generator, we use the efficient implementation of U-shaped neural operators (U-NO) (Rahman
et al., 2022) and use Fourier integration layers, termed Fourier neural operator (FNO) (Li et al., 2020a) layers
to construct push-forward maps from GRFs to the desired probability over function data. We use a similar
architecture for the discriminator neural functional and use a three-layered neural network to implement
the integral functional layer. For the adversarial min-max game, in particular, we instantiate the GANO
framework by generalizing Wasserstein GAN (Arjovsky et al., 2017) setting to infinite dimension space. For
the Wasserstein formulation, the discriminator neural functional is constrained to have a bounded norm in
the infinite-dimensional space in terms of the Fréchet derivative operator. We propose how to impose this
constraint in infinite dimensional space, which is invariant to the discretization. The discretization invariance
property introduces one of the main differences to GAN setting where imposing the norm constraint requires
hyperparameter tuning for each resolution and discretization.

The generator in GANO is a neural operator, a type of deep learning model that is resolution and discretization
invariant Kovachki et al. (2021). It means that, the input function to the generator can be expressed with an
arbitrary discretization or basis representation, yet the generated output is a function, which can be queried
at any resolution or point. Similarly, the discriminator is a neural functional with input functions that can
be expressed in any resolution or basis representation. These properties follow the recent advancements in
operator learning that generalize neural networks that only operate on a fixed resolution (Li et al., 2020b;
Kovachki et al., 2021).

The effective dimension of the output function space can be controlled by restricting the effective dimension of
the GRF, e.g. by increasing the length scale of the defining covariance function. This is in contrast to GANs
where the dimension of the input space controls the dimension of the output manifold. Table 1 compares the
settings of GANOs and GANs. Since finite-dimensional spaces are special cases of infinite-dimensional spaces,
and multi-variate Gaussian is a reduction of GRFs, then, GAN is a special case of GANO when applied on
fixed grids.

We construct a series of controlled empirical study to assess the performance of GANO. To maintain full
control of the data characteristics and complexity of the task at hand, we generate the data itself using
GRFs of varying complexities. We show that GANO can learn probability measures on function spaces.
One important example is when the data is generated from a mixture of GRFs; GANO reliably recovers
the measure, while GAN collapses to a mode. In this work, we use the Wasserstein version of GAN for

1In finite dimensional spaces, it is conventional and standard to define density with respect to Lebesgue measures. However,
in the infinite dimensional cases considered in this paper, Lebesgue measures do not exists and a density, if exists, needs to be
defined with respect to a user-defined measure that the users need to argue for its relevance.
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Table 1: GANOs and GANs

Models GANO GAN

Input/output spaces Function Spaces Euclidean spaces
Input measure Gaussian Random Fields Multivariate random variables
Controls length scale, variance, energy, etc. dimension, variance, etc.

compassion. We show that as the roughness/noisiness of the input GRF is increased, GANO properly learns
to generate functions from the underlying data probability, while if the input GRF generates smooth or nearly
fixed-value functions, the trained models lose the ability to properly capture the data measure.

We extend our empirical study to satellite remote sensing observations of an active volcano, where each data
point is the phase of a complex-valued function defined on a 2D domain (Rosen et al., 2012). This is a real
world function dataset in which each data point represents ∼ millimeter-scale changes in the surface of a
volcano at a spatial resolution of ∼ 70 meters, measured every 12 days. This dataset constitutes a noisy and
challenging function dataset for GANO and GAN training. We show that GANO learns to generate functions
on par with the real dataset while GAN fails in generating these volcanic phase functions.

We release the code to generate the data sets in the first part of the empirical study. For the purpose of
bench-marking, we also release the processed volcano dataset, which is ready to be deployed in future studies.
We also release the implementation code along with the training procedure.

2 Related Works
The original GAN formulation can be interpreted as an adversarial game procedure in which the
Jensen–Shannon divergence between a synthetic distribution, implicitly defined by a generator model,
and a real data distribution is minimized (Goodfellow et al., 2014). However, models trained with a Jensen-
Shannon objective function require substantial tuning, suffer from stability issues, and are notoriously
difficult to scale (Radford et al., 2015). Considerable work has therefore been devoted to developing novel
architectures, improving the formulation, and enhancing the theoretical understanding. In particular, the
Wasserstein version of GAN allows for a more stable training scheme, is less sensitive to hyperparameter and
architectural choices, and provides a loss function that correlates with output quality (Arjovsky et al., 2017).
The Wasserstein formulation is often understood as an attempt to minimize the Wasserstein or Earth Mover’s
distance between the synthetic and real data distributions. In Adler & Lunz (2018), a rigorous theoretical
extension of WGANs along with theoretically grounded choices of hyperparameters are presented, which the
present paper follows. For the comparison study, we choose the Wasserstein version of GAN.

There has been limited previous work on learning densities over function spaces. These works have mainly
focused on non-parametric density estimation with δ-sequences on separable Banach spaces and topological
groups (Rao, 2010; Craswell, 1965). Heuristic kernel density estimation for infinite-dimensional spaces
was also developed (Dabo-Niang, 2004). Such methods assume the existence of a density with respect to
(sometimes unspecified) base measures (Lebesgue measures are undefined for infinite-dimensional spaces) and
impose strong assumptions on the metric and similarity of the output spaces. Moreover, learning the density
does not provide matching algorithmic sampling methods from such infinite-dimensional spaces. Since pure
memorization using δ-sequences does not exploit the data structure and does not constitute a particularly
appealing approach, we do not consider it an appropriate baseline for this study. For this study, we choose the
GAN framework mainly due to its proximity to GANO, its vast success in many machine learning domains,
and the lack of suitable methods for learning generative models in infinite dimensional spaces.

Pioneering work by (Li et al., 2020b) generalized the notion of neural networks to infinite-dimensional spaces
and introduced the concept of neural operators, a novel composable architecture that is able to learn mappings
between functions spaces. (Li et al., 2020a) showed that neural operators could be efficiently implemented as
a series of convolutions performed in the Fourier domain of the input function. It has also been shown that
any complex operator can be approximated by neural operators, which are compositions of linear integral
operators and non-linear activation functions (Kovachki et al., 2021). Neural operators have been successfully
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used for learning the solution spaces of Partial Differential Equations (PDE). FNOs have been used to learn
the solutions to the Accustic Wave-equation in two spatial dimensions (Yang et al., 2021). Operator learning
has transformed the field of physics-informed machine learning. (Li et al., 2021; 2020a) and improvements
in the underlying architecture have allowed neural operators to learn complex solutions to multiphase flow
problems (Wen et al., 2021).

A set of earlier attempts are made to develop learning methods to generate function samples using point
cloud and point-wise evaluation of sampled data functions. Along these, neural process (Garnelo et al., 2018)
is motivated as a Bayesian framework to generate function samples. While motivated as a generative model
for underlying function distributions, the proposed amortized variational method aims at generating values
of point sets, rather than functions. Therefore, it may come with a few limitations to be considered as a
generative model for the underlying function distribution. This approach consists of an encoder model that
given the point evaluation data, generates a finite-dimensional vector z of noise which is aimed to be close to
a prior multivariate Gaussian random variable. The noise z is used as an input to an implicit neural network,
i.e., the decoder. For any z, the implicit neural network represents a function sample that can be queried at
any point on the domain. However, this early attempt does not learn the data distribution over functions
and comes with a few limitations.

The proposed neural process method has limitation in the way the data is perceived, lacks expressively, and
may not learn the underlying function distribution. As pointed out in the prior works (Dupont et al., 2021),
the proposed neural process approach perceives the point cloud data as a set of values (no metric between
points), therefore it ignores the presence of the metric space which is noted as a crucial limitation in prior
works (Dupont et al., 2021). Furthermore, the proposed model maps a finite-dimensional z vector to an
infinite dimensional space of functions. Due to this limited input dimension, the generated functions can only
cover a finite-dimensional manifold in function spaces, ergo, this method may lack the required approximation
theoretic expressively to learn generating data functions. The last limitation is the fundamental issue with
the formalism of the proposed neural process that prevents this method from being a generative model for the
data function distribution. The proposed approach learns a model to maximize the probability of observing
the values on the set of points rather than learning to generate function data. This is a major limitation of
the proposed method and therefore, undesirable for the setting of learning function distribution. For example,
consider a dataset consisting of many functions with a very low resolution (a few point evaluations) and
only one function in the dataset with super high resolution (orders of magnitude more point evaluations,
e.g., infinity). The objective of the neural process ignores the presence of all the function samples except
the high-resolution one since it aims at maximizing the probability of point evaluation rather than the
function samples. Moreover, since the formulation is Bayesian for points rather than functions, for a fixed
number of function data samples, as we increase the number of point evaluations (e.g., to infinity), the prior
will be ignored, and at the inference time, since the z is drawn from the prior, even the generated points
sample would not match the data. In the appendix, we show these limitations in a set of empirical tests,
appendix A.1.

Another line of an attempt to learn generative models in function spaces proposes to accomplish the learning
task in the space of implicit neural network parameterize of the given function space (Dupont et al., 2021).
This approach proposes to train implicit neural networks to fit each data point in the data set. Ergo, for
each data point, there will be a trained implicit neural network approximating it. Then a GAN model is
trained to map input random vector z, e.g., drawn from a multi-variate Gaussian to the parameters of the
implicit neural network. Ergo, for each draw of z, this approach computes the parameters of an implicit
neural network, resulting in a function that can be queried at any point on the domain. This method requires
extensive computation due to fitting many implicit neural networks and needs extensive memory to store
these models. Furthermore, this model in the end is a map from finite-dimensional z to infinite dimensional
space, limiting its cover to the space of functions. In general, the proposed approach is a generic idea that has
many favorable points as opposed to the prior works and does not have the fundamental and mathematical
limitation of point samplings in prior works of neural processes (Garnelo et al., 2018). However, the current
setting proposed in the prior work (Dupont et al., 2021) comes with a few limitations that prevent this
approach to be considered as generative models of underlying function distribution.
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The definition of the discriminator and the gradient penalty introduces fundamental mathematical limitations
that prevent the model from learning the data distribution on function space. Given the construction of
the discriminator, as the function resolution increases, e.g., the resolution goes to infinity, the proposed
discriminator reduces to trivial maps, outputs a function instead of a number, and lacks the discrimination
power desired for the learning task. The discriminator is implemented such that for an input function u, it
computes

∑
i W (xi − x)u(xi) where the summation is on the nearest neighbors and W is a learnable multi

layered neural network. As the resolution goes to infinity, i.e., on a uniform grid,
∑

i W (xi − x)u(xi) →
W ′(x)u(x). Therefore, repeating such pointwise operating layers many times results in a function with values
at any x equal to W̄ (x)u(x), here W̄ is the multiplication of W ′s at all the layers. This pointwise architecture
lacks expressive discriminating power. Moreover, the output of the discriminator is a function instead of a
single number, which is undesirable since the discriminator is expected to output a number. The second issue
is that, as the resolution of the function increases, e.g., goes to infinity, the gradient penalty merges to infinity
and the training process misses learning the data distribution. A similar limitation is also observed in period
works that use the stochastic differential equations (Kidger et al., 2021) to generate causal in-time data. This
limitation makes the resulting models to be generative models for finite-dimensional spaces.

3 Generative Models in Function Spaces
One of the requirements to develop a stable model that maps an input probability measure to a general
probability measure defined on infinite dimensional spaces is to have an infinite-dimensional input space. In
this section, we describe the setting of such maps and propose GANO, a deep learning approach for learning
generative models in infinite-dimensional function spaces. We propose GANO by extending the Wasserstein
GAN formulation (Gulrajani et al., 2017) with a gradient penalty term applied to an infinite-dimensional
setting.

3.1 GANO
Let A and U denote Polish function spaces, such that for any a ∈ A, a : DA → RdA , and for u ∈ U ,
u : DU → RdU . Let G denote a space of operators and for any operator G ∈ G, we have G : A → U , an
operator map from A to U . Let L denote a space of functionals such that for any functional d ∈ L, we have
d : U → R, a functional map from U to R.

Let (A, σ(A), PA) denote a probability space induced by a GRF on the function space A. Following the
construction of GRF, PA is a probability measure such that for any sample a ∼ PA we have that for any finite
collection of points {xi}i in the domain DA, the joint probability of collection {a(xi)}i follows a Gaussian
probability. Furthermore, let (U , σ(U), PU ) denote the probability space on the function spaces U that the
real data is generated from. For a given function space U , let U∗ denote the dual space of U . When U is
also a Banach space, and G is Fréchet differentiable, we define ∂G as the Fréchet derivative of G. For the
measure PU and the pushforward measure of PA under map G, i.e., G♯PA, we define the Wasserstein distance
as follows,

W (PU , G♯PA) = sup
d:d∈L,Lip(d)≤1

EPU [d] − EG♯PA [d] (1)

For the dual space U∗, we have that Lip(d) ≤ 1 ⇔ ∥∂d(u)∥U∗ ≤ 1, ∀u ∈ U . Therefore, we write the constraint
in the form of an extra penalty part in the objective function, i.e.,

inf
G∈G

sup
d∈L

EPU [d(u)] − EG♯PA [d(u)] + λEP′
U

(∥∂d∥U∗ − 1)2 (2)

This relaxation is similar to the relaxation proposed in improved Wasserstein GAN Gulrajani et al. (2017) for
finite dimensional spaces which recently have been shown to be equivalent to congestion transport (Milne &
Nachman, 2022). In this objective, the constraint is induced as a soft penalty. The P′

U is an uniform mixture
of the data and generated data measures, i.e., P′

U := γG♯PA + (1 − γ)PU for γ ∼ U [0, 1], where U [0, 1] is
the uniform distribution in the interval [0, 1] . Note that, while the cost functional in Eq. 2 is well defined,
showing that the learned measure is indeed an approximation of PU remains an open problem. We address
this issue empirically and perform a set of experiments that demonstrate that GANO produces diverse outputs
from the data probability measure. To this end, algorithm. 14 summarizes the GANO training procedure. In
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algorithm. 14, we first initialize the parameters of the generator θG and the discriminator θd. The learning
process, at for each iteration, updates θG and θd for nG and nd times, respectively, each with m samples to
approximation the cost in Eq. 2.

3.2 GANO Architecture
We explain neural operators architecture as maps between function spaces. We describe the input and
output of the generator which itself is a neural operator. We propose neural functionals that are maps from
infinite dimensional spaces, e.g., function spaces, to finite-dimensional spaces, e.g., R. Neural functionals are
neural operators that are followed by kernel integral functional. We deploy neural functionals to implement
discriminators.

Neural operators Neural Operators are deep learning models that are the building blocks of the generator
and discriminator architectures in GANO to learn maps between function spaces, and the space of reals.
Given an input function a to a neural operator G, we first apply a pointwise operator P , parameterized with
a neural network P , to compute ν0, i.e., ν0(x) = P (a(x)) ∀x ∈ D. Let D0 denote the domain functions for
which ν0 is defined in. Given the application of P , we have D0 = D. This point-wise operator layer is followed
by L integral layers. For any layer i, we have,

νi+1(y) =
∫

Di

κi(x, y)νi(x)dµi(x) + Wiνi(y) + bi(y), ∀y ∈ Di+1

where κi is the kernel function, dµi is the measure in the i’th layer, Wi is a pointwise operator, and b is the
bias function. This operation is followed by a pointwise non-linearity. The role of the pointwise operator Wi,
aside from decomposing the linear operator to local and global terms, is similar to the residual connection
in residual neural networks (He et al., 2016). We deploy convolution theorem to compute this integral as
proposed in Fourier neural operator layer Li et al. (2020a). In particular, we write the κi(x − y) and compute
the first part of the integral operation in the Fourier domain. Let F denote the Fourier transform and
F−1 the inverse Fourier transform operations. Given a periodic function µi (periodicity can be achieved by
padding, a common practice in convolutional neural networks), the output of the layer is as follows,

νi+1 = F−1 (Ri · (Fvi)) + Wivi + bi

where R is the Fourier transform of κ, and for each Fourier mode k, Ri(k) is a matrix of learnable parameters.
To improve computation complexity, after the Fourier transforms at each layer i, we keep Fourier modes up
to kmax

i . This allows for an efficient implementation of the layer and the presence of the residual connection
Wi makes sure all the Fourier components are passed to the next layer. This step, along with the residual
connection Wi, allows the resulting Fourier neural operators to take into account all the Fourier components
at each layer.

After L above mentioned integral layers and computing νL defined on the domain DL = D, we apply the
final pointwise operator Q, parameterized with a neural network Q. It is such that for any x ∈ D, we
have u(x) = Q(νL(x)). When the input function is provided on a discretized domain, e.g., on a grid, we
use the Riemannian approximation of the Fourier transform to compute the Fourier modes at each layer.
When the input is provided on a regular and uniform grid, this operation can be accomplished using fast
and memory-efficient methods such as fast Fourier transform, resulting in efficient implementation of the
corresponding neural operators.

Neural operators output functions that can be queried at any point. Furthermore, they can be applied on
input functions presented in many forms, e.g., presented as weighted sum of basis functions, or presented on a
discrete set of points that includes regular and irregular grids. This property of neural operators is known as
discretization invariance (Kovachki et al., 2021). In the following, we provide the definition of discretization
invariance. Let Dj denote a discretization (e.g., point cloud) of size j in DA. We call a sequence of nested
sets D1 ⊂ D2 ⊂ · · · ⊂ DA a discrete refinement of DA and each Dj a discretization of DA if for any ϵ > 0,
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there exists a number j ∈ N such that,

D ⊆
⋃

x∈Dj

{y ∈ DA : ∥y − x∥2 < ϵ}.

Definition 3.1 (Discretization Insurance) For an operator G : A → U , where A is a set of m-valued
functions, let DL ∈ Rd be a L-point discretization of DA, and for any θ ∈ Θ, a finite dimensional parameter
space, Ĝ : RLd × RLm × Θ → U some map. We define the discretized uniform risk as,

R(G, Ĝ, DL, θ) = sup
a∈A

∥Ĝ(DL, a|DL
) − G(a)∥U .

Given a discrete refinement (Dj)∞
j=1 of the domain DA we say G is discretization-invariant if there exists a

sequence of maps Ĝ1, Ĝ2, . . . where ĜL : RLd × RLm × Θ → U such that, for any θ ∈ Θ,

lim
L→∞

R(G(·, θ), ĜL(·, ·, θ), DL) = 0.

This definition implies that, as the discretization used to present the input function becomes finer, the
approximate error in the approximate operator vanishes. It has been proven that neural operators are
discretization invariant deep learning models and traditional neural networks fall short in this desirable
property.

Generator We implement the generator operator G using an eight-layered neural operator model. The P
point-wise operator consists of a one-layered neural network. The Q point-wise operator consists of a two-layer
neural network. The parameter vector of the generator model is denoted by θG . The inputs to the G model
are samples generated from a GRF defined on the 2D domain of D = [0, 1]2. The output of G, and u’s are
sample functions that are defined on a 2D domain. In this work, we utilize the U-NO architecture (Rahman
et al., 2022) for its efficiency, stability, and robustness to the choice of hyperparameters. This architecture
uses skip connections between layers and increases the dimensionality of the co-dimensions of the functions
in the intermediate layers. Moreover, U-NO allows for highly parameterized models, a favorable property
missing in the earlier Fourier neural operator models. In GANO, the generator neural operator model G
outputs a function u given a sample function a, i.e., u = G(a). Therefore, G pushes the GRF measure to a
measure on the data space.

Discriminator The discriminator is a neural functional that consists of an eight-layer neural operator
followed by an integral functional that maps the output function of the neural operator to a number in R. In
other words, we feed an input function u ∈ U to the neural operator part of the discriminator to compute the
intermediate function h and the output of the discriminator r ∈ R is computed as,

r := d(u) =
∫

κd(x)h(x)dx (3)

where the function κd is parameterized as a 3-layered fully connected neural network. Note that h is the
output of the inner neural operator with u as an input, therefore, h directly depends on u. The parameter
vector of the discriminator model is denoted by θd. The function kd constitutes the integral functional

∫
κd(x)

which acts point-wise on its input function. This linear integral functional as the last layer is the direct
generalization of the last layer of discriminators in GAN models to map a function to a number. In many
GAN models, the last layer maps a high dimensional vector to a number. This step is accomplished by a
vector-vector inner product. Such a product, in continuum, resembles function-function inner product, i.e.,
the act of linear integral functional. This also directly follows the Riesz representation theorem Walter (1974)
stating that, under suitable construction, a linear functional (map from infinite dimension to the space of
reals) can be written as a linear integral functional. Fig. 1 demonstrate the architecture of the generator G
and the discriminator d.
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Gradient penalty In this paper, we consider the case where DU is a subset of a Euclidean space and to
define the function space U , we consider a measure µ on DU . We often use Lebesgue measure for µ in this paper.
The construction of the dual space of U and the computation of the Fréchet derivative used in the penalty term
Eq. 2 follow after defining µ. We represent the input function on a grid of m1 ×m2 (in general, it can be on any
point cloud or basis function representation and following derivation follows). It allows us to use auto-grad to
compute the gradient penalty for the Wasserstein loss. Following the function space definitions, the gradient
penalty using the auto-grad call of ∇d(u) is implemented as EP′

A
(||∇d(u)||{u(xi)}m1m2

i
− 1/

√
m1m2)2 which is

different than the finite-dimensional view in GAN. The choice of √
m1m2 arises from the fact that we use the

Lebesgue measure on DU to define the space U . This ratio resembles that the basis functions deployed to
represent the function u on the grid of m1 × m2 need to be chosen and scaled according to m1m2 due to
the fact that the basis functions are functions with unit norms in the metric space U with L2 as the metric.
It is important to note that since we compute the gradient with the consideration of the underlying metric
space, the gradient computation using auto-grad is resolution invariant. Ergo, any resolution of choice can be
used to train GANO models, fulfilling the premise of learning in infinite-dimensional spaces. Note that, for
irregular grids where measures other than the deployed Lebesgue measures are used, this calculation should
be adapted properly.

Algorithm 1 GANO
1: Input: Gradient penalty weight λ, number of discriminator updates per iteration nd, number of generator

updates per iteration nG , number of samples per update m.
2: Init: Initialize generator parameters θG , discriminator parameters θd, and optimizers Optd, OptG
3: for each iteration t = 1, . . . do
4: for τ = 1, . . . , nd do
5: Sample {ai}m

i from PA, {ui}m
i from PU , and {γi}m

i from U [0, 1]
6: Compute loss L := 1

m

∑m
i

(
d(ui) − d(G(ai)) + λ(∥∂d(u)|u=λG(ai)+(1−λ)ui

∥U∗ − 1)2)
7: Update θd via a call to Optd(L, θd)
8: end for
9: for τ = 1, . . . , nG do

10: Sample {ai}m
i from PA

11: Compute loss L := 1
m

∑m
i −d(G(ai))

12: Update θG via a call to OptG(L, θG)
13: end for
14: end for

4 Experiments
In this section, we study the performance of GANO when the data is generated from a GRF. We compare
the performance of GANO against GAN in this setting. The models in GANO consist of eight-layer neural
operators following the architecture in (Rahman et al., 2022). The initial lifting dimension, i.e., co-dimension
is set to 16 and the number of modes is set to 20. To implement the GAN baseline model, we deploy
convolutional neural networks, consisting of ten layers for the generator and half the size discriminator, and
use Wasserstein loss for the training. For both models, we kept the number of parameters of the generative
models roughly the same (20M). To train GAN models, we use GANO loss with the gradient penalty provided
in the prior section. This choice is made to avoid otherwise required parameter turning for GAN loss for any
resolution. We use the same grid representation of the input and output functions for the GAN and GANO
studies. For training, we use Adam optimizer (Kingma & Ba, 2014) and choose a 2D domain of [0, 1]2 to be
the domain where both input and output functions are defined on. For the empirical study, GAN is trained,
optimized, and tested on a given discretization. Despite the fact that GANO can be trained and tested
on any discretization, to make the comparison on par with GAN, we limit GANO experiment to the same
discretization as GAN. It is worth noting that, GANO generates samples of functions that can be queried at
any point and the GAN setting does not allow for it. Since GAN is not resolution invariant and does not
generate function samples, it fails to be applicable to the general setting of function spaces.

We then study the effect of the roughness and smoothness of the input GRF on the quality of learning
probability measures on function spaces for which we use the resolution of ∼64 for each dimension. Lastly,
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(a) Data GRF samples
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(b) GAN generated samples
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(c) GANO generated samples
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Figure 2: The input function sample is GRF and the data is generated from another GRF. (a) The samples
of data GRF. (b) The samples of generated data from GAN model. (c) The samples of generated data from
GANO model. (d) GAN Auto correlation. (e) GAN histogram. (f) GANO auto correlation. (g) GANO
histogram

we study the performance of GANO on a real-world remote sensing dataset of an active volcano for which
we use the resolution of ∼128 for each dimension. This is a challenging dataset with often times very low
signal-to-noise ratio. For the choice of GRF, we choose the efficient implementation of Matérn based Gaussian
process (Nelsen & Stuart, 2021) parameterized with τ , the inverse length scale.

GRF data. For the setting where data is generated by sampling from a GRF, we use a dataset of random
functions drawn from a GRF with length scale τ = 1 (somewhat smooth functions). We use GAN and GANO
approaches to learn the data GRF. We train the generative models using the inputs sampled from the same
GRF Fig. 2. Fig. 2a demonstrate the sample data. Subsequently, Figs. 2b and 2c demonstrate the generated
samples of GAN and GANO models respectively. To analyze the quality of the generated functions, we
compare the auto-correlation and histogram of point-wise function values of the generated data and the true
data, Fig 2. The x−axis in the histogram plots denote the values the functions take. The x−axis in the
auto-correlation plots denote the positional distance of the points on the domain DU for which we compute
the auto-correlation. We observe that GANO properly recovers the statistics of the data GRF in terms
of auto-correlation, Fig. 2d, 2f, and the histogram of the generated function values, Figs. 2e, and 2g. We
observe that, while the GAN approach provides smoother-looking functions, the functional statistics fail to
be exact.

Mixture of GRFs data. For this experiment, we aim to learn to generate data from a mixture of GRFs.
The training data is generated with an equal chance from either a GRF with a fixed mean function of 1 or −1,
and both with τ = 1. We use GAN and GANO approaches to learn the data probability measure, where the
input functions are sampled from a mean zero GRF with τ = 1, Fig. 3. Fig. 2a demonstrate the sample data.
Subsequently, Figs. 2b and 2c demonstrate the generated samples of GAN and GANO models respectively.
The auto-correlation and histogram of point-wise function values of generated data and the true data are
provided in Figs, 2d, 2f 2e, and 2g. As we observe, GANO properly recovers the statistics of the data GRF
in terms of functional statistics of auto-correlation and histogram. Similar to the previous experiment, we
observe that the GAN approach provides smoother-looking functions, but in terms of the functional statistics,
it drastically underperforms GANO.

In the previous two experiments, we observed that GANO enables us to learn measures on function spaces and
generate samples that match the functional statistics of the underlying data. In the following, we examine
the importance of the choice of input GRF on the performance of GANO.

GANO and the length scale of the input GRF. In GANO, when the GRF input to the generative model
is very smooth (compared with the output GRF), we expect the generator to fail to learn a proper map. We
expect this to be the case because the input lacks sufficient high-frequency components, and this smoothness
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Figure 3: The input function sample is GRF and the data is generated from a mixture of GRFs. (a) The
samples of data from a mixture of GRFs. (b) The samples of generated data from GAN model. (c) The
samples of generated data from GANO model. (d) GAN Auto correlation. (e) GAN histogram. (f) GANO
Auto correlation. (g) GANO histogram
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(d) GANO Histogram
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(e) GANO Auto Correlation

Figure 4: GANO trained on smooth data (τ = 5) with rougher input GRF (τ = 7)

prevents the generator from generating high-frequency and rough output functions. On the contrary, we
expect that when the input GRF is much rougher than the data GRF and contains many high-frequency
components, the generator would have an easier task to generate output functions. Therefore, the length
scale and smoothness of the input GRF can play a role in regularizing GANO model, a very similar role that
the dimension of the input multivariate Gaussian plays in the GAN approach.

We first show that when the input GRF is rougher (τ = 7) and contains more high frequency components
than the output GRF (τ = 5), GANO successfully learns to generate samples with similar statistic of data
GRF, Fig. 4.

When the output and input GRF are identical measures (τ = 5), GANO still successfully learns to generate
samples with similar statistics of the data GRF, Fig. 5. However, this setting requires more delicate hyper
parameter tuning and requires more training epochs to converge. It is worth noting that, with proper choices
of the spaces, an identity map may also be a solution.

Lastly, when the input GRF is smoother (τ = 3) than the functions samples in the output data GRF (τ = 5),
the generative model fails to recover higher order statistics, including the auto correlation Fig.6. In this
experiment the input function is much simpler than the output functions. This study suggest that, when the
real function data is very complex, very noisy, contains varying high frequency components, and poses high
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(e) GANO Auto Correlation

Figure 5: GANO trained on same GRF as input and data (τ = 5)
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Figure 6: GANO trained on rougher data (τ = 5) with smoother input GRF (τ = 3)

entropy, it is crucial to provide the generator with on par GRF. On the contrary, when the function data at
hand poses smoother behavior, a smooth GRF suffices for training a generator.

Inputs and outputs of the generator in GANO are functions The GANO framework is based on
neural operators that are discretization invariant maps between functions spaces 3.1. The inputs to the
generator neural operator model in GANO are functions and following the discretization invariance property
of such models, these input functions can be provided to the generator in any discretization, and in particular
in any mesh, grid, and resolution. In addition, the generator outputs functions, therefore, by definition, the
outputs can be queried at any point in the domain. In the following empirical study, we demonstrate these
properties of neural operators. We train the GANO models on one resolution and test the trained generator
in another resolution. In particular, we consider a setting where for the training, the input GRF samples
(with τ = 5) are presented on a 64 × 64 grid on the two-dimensional domain. Moreover, the training data
functions are draws from a GRF, with the same parameter as the input GRF, and samples are represented on
the same 64 × 64 grid.

After training, we assess the above-mentioned properties of neural operators. We double the resolution of
the input GRF samples and present them in a 128 × 128 grid. We provide these higher-resolution inputs
to the generator to generate output functions. We evaluate the generated functions on a finer grid of
128 × 128. Figure 7 demonstrates the result of the study. Figure (c) represents high-resolution data, and
figure (e) represents the generated samples on the higher-resolution input and query points. Figures (g)
and (i) demonstrate the histogram and auto-correlation of the higher-resolution data and higher-resolution
generated samples. This study expresses that neural operators can take inputs at any resolution and the
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(a) Input GRF samples
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(b) Data GRF samples at 64 × 64
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(c) Data GRF samples at 128 × 128

(d) GANO generated samples on 64 × 64 (e) GANO generated samples on 128 × 128
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(f) GANO Histogram on 64 × 64
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(g) GANO Histogram on 128 × 128
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(h) GANO Auto Correlation on 64 × 64
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(i) GANO Auto Correlation on 128 × 128

Figure 7: We train GANO on a function data set of resolution 64 × 64. The data samples are generated
using a GRF (τ = 5). The input GRF (τ = 5) sample functions are also represented on a 64 × 64 grid.
The generator neural operator takes a function as an input and outputs a function. To demonstrate this
fact, we test the trained generative model on a different resolution. We change the resolution of the input
function to a higher resolution of 128×128 and query the generated function samples on a higher resolution of
128 × 128. Figure (c) represents high-resolution data, and figure (e) represents the generated samples on the
higher-resolution input and query points. Figures (g) and (i) demonstrate the histogram and auto-correlation
of the higher-resolution data and higher-resolution generated samples. This study expresses that neural
operators can take inputs at any resolution and the output function can be queried at any point in the
domain. Furthermore, despite the fact that the model has never seen high-resolution data during the training,
it can generate statistically matching samples of high resolution.

output function can be queried at any point in the domain. Furthermore, despite the fact that the model
has never seen high-resolution data during the training, it can generate statistically matching samples of
high resolution. These are desirable properties of the GANO framework, as the first generative model on
function spaces. Please note that, for this empirical study, we use smaller models in GANO in order to fit the
high-resolution data to the present GPU machines. In particular, we reduce the number of layers to 5, the
co-dimension to 8, and the number of modes to 10. These choices for the smaller model did not alter the
performance of the trained generator.

Volcano deformation signals in InSAR data. Interferometric Synthetic Aperture Radar (InSAR) is
a remote sensing technology used to measure deformation of Earth’s surface, often in response to volcanic
eruptions, earthquakes, or subsidence due to excessive groundwater extraction. In InSAR, a radar signal
is emitted from satellites or various types of aircraft and echoes are recorded. Changes in these echoes
over time (as measured by repeat flyovers) can be used to precisely measure the amount that a point on
the surface moves between repeats. The most common form of InSAR data is the interferogram, which
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(a) Real samples
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(b) GAN samples
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(c) GANO samples

(d) Circular variance (e) Circular skewness

Figure 8: GANO and GAN samples of InSAR data for Long Valley Caldera

is an angular-valued spatial field u ∈ U , with u(x) ∈ [−π, π] and x ∈ D. Interferograms are known to be
highly-complex functions because they exhibit many modalities, types of noises, and patterns that depend
strongly on local atmospheric and topographic conditions. Additionally, since the values are angles on [−π, π],
if the change between two echoes is large enough, the angles can wrap around.

We produce a dataset of 4096 data points from raw interferograms, each in a grid of 128 × 128, from the
Sentinel-1 satellites covering the Long Valley Caldera, which is an active volcano near Mammoth Lakes,
California. We processed the InSAR functions/images, publicly provided by the European Space Agency,
from 2014-Nov to 2022-Mar, covering an area around Long Valley Caldera (approximately 250 by 160 km
wide) using the InSAR Scientific Computing Environment (Rosen et al., 2012). The stack of SAR functions is
co-registered with pure geometry (precise orbits and digital elevation model) and the network-based enhanced
spectral diversity approach. Then, we pair each function (277 in total) with its three nearest neighbors in
time to form 783 initial interferograms with pixel spacing of 70 m. Finally, we subset each interferogram
into six windows non-overlapping windows of 128 × 128 grid. Examples of real samples are shown in Fig.
8a.

We train GANO on the entire dataset of 4096 inteferograms. Generated samples are shown in Fig. 8c, where
it is clear that many of the complexities of this dataset have been learned. One of the types of noise in
interferograms results from decorrelation of the radar signal between repeat flyovers, and in the most extreme
case, can lead to a stochastic process that is random uniform on [−π, π] that covers part or all of the image.
GANO is able to learn an effective operator that approximates this complex behavior. We quantitatively
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evaluate the quality of the learned samples using circular statistics, which is necessary since these functions
are angular-valued. Analogously to traditional random variables, there are moments of circular random
variables. For a collection of N random angular variables, {θi}N

i=1, define zp =
∑N

j eipθ, where i =
√

−1.
Then, Rp = |zp|/N and φp = arg(zp). The circular variance is then given by σ = 1 − R1, and the circular
skewness is given by, s = R2 sin(φ2−2φ1)

(1−R1)3/2 . Figs. 8d and 8e show the performance of GANO w.r.t circular
variance and circular skewness. These results demonstrate the suitability of GANO framework on learning
complex probabilities on function spaces and emphasizes the data efficiency of this framework.

For the comparison study, we train a GAN model on the same data set. Despite extensive hyperparameter
tuning, the GAN model fails to learn to generate proper samples of functions. Fig. 8b demonstrates samples
generated using a trained GAN model. The generated samples do not resemble the true samples, neither
perceptually nor with respect to the circular variance and skewness Fig. 8d,8e. This study establishes the
importance of learning the generative model directly in function spaces using global kernel integration instead
of local kernels.

5 Conclusion
We propose GANO, a generative adversarial learning approach for learning probabilities on function spaces
and generating samples of functions. GANO generalizes GAN, an established and powerful method for
learning generative models on finite-dimensional samples. GANO framework consists of two models, a
generator operator and a discriminator functional. We use the neural operator framework to directly model
the generator and deploy the ideas from neural operators, and propose a new deep learning paradigm, namely
neural functional, for the discriminator. We empirically show that the GANO framework is suitable for
dealing with function spaces. We show that the input to the generative model can be chosen to be a GRF for
which the length scale controls the diversity of the pushed measure. We release the code, package, datasets,
and the results of this study for future reproducibility.
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A Appendix
A.1 Neural Process and generative functions
In this section, we expand the discussion on neural process approach (Garnelo et al., 2018) and show a few
problems it may have in learning generative models for data function distribution. For a given function
sample u, let (xi, yi))n

i denote its point evaluation representation, where for any xi, a collocation point,
yi is the point evaluation of the function at point xi. For this construction, the following is the evidence
lower-bound objective function proposed in neural process,

log p ({yi}i|{xi}i) ≥ Eq(z|{xi,yi}n
i

)

[
n∑
i

log p (yi|z, xi) + log p(z)
q(z|{xi, yi}n

i )

]

where the method learns the encoder q and a decoder map from (z, x) to mean and variance of p (yi|z, x).
This objective function maximize the probability yis, and does not give a formulation to learn the data
function distribution.

Let’s consider a trivial setting where the function distribution is a Dirac, meaning that, the data set consists
of many repetitions of a single function. For example, consider the function u(x) = 0.5 on the interval
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[−π, +π]. The dataset consists of many sample functions, all are the mentioned u. Following the Bayesian
and variation form of this objective, when n is small, e.g., n = 100 Fig. 9a, training this model results in a
function distribution around the input function but does not collapse on the data function, Figure 9b.

For a reasonable generative model, we expect that, if we increase the function resolution, e.g., taking it to
infinity, the function distribution learning approach to get better at learning a sensible generative model.
However, in the heuristic neural process approach, as we increase the function resolution, the first term in
the objective function dominates (goes to negative infinity), and q(z|{xi, yi}n

i ) no longer can be replaced by
p(z) in the inference time. Figure 9c shows data function with 10000 point evaluations, and when neural
process is trained on 10000 resolution input function, Figure 9d shows that the generated sample become
more off and do not capture much about the function distribution.
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(a) Function data with 100 point evaluations
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(b) Generated samples using input data of 100
point evaluations.
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(c) Function data with 10000 point evaluations
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(d) Generated samples using input data of 10000
point evaluations.

Figure 9: The sample generation in the neural process does not collapse to the data samples. As a Bayesian
approach for point evaluations rather functions, as the number of point evaluations increases, the training
process ignores the prior, resulting in an inconsistent model in the inference time.

To elaborate more on the inconsistency of the proposed heuristic neural processes model and its lack of
foundations on leaning function data distribution, we construct the following additional toy example. Consider
a similar setting as previous example with function distribution as a mixture of two Diracs on u(x) = 0.5
and u(x) = 0.7. In this setting, the data set consists of repetitions of u(x) = 0.5 and u(x) = 0.7 functions.
A sensible function distribution learning method should be able to learn this mixture. Let us consider the
setting where the resolution of u(x) = 0.7 is 2 (2 point evaluations), and the resolution of u(x) = 0.5 is 100.
Per our above discussion on the lack of motivation behind the objection function proposed in neural process
approach and the fact that this approach aims to capture point evaluation distribution, training on such
mixture of data results in model that totally ignores the data samples of u(x) = 0.7. Figure 10a shows the
data set and Figure 10b shows the learned model totally ignores the function samples u(x) = 0.7, only because
they contain fewer point evaluations. We expect that, as the resolution of u(x) = 0.5 increases, neural process
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approach even misses learning u(x) = 0.5. Figure 10c shows the data sets where u(x) = 0.5 has a resolution
of 10000 and Figure 10d shows training on such data set does not learn the function distribution.

To this end, we concluded that the heuristic approach proposed in neural process does not learn function
distribution, rather attempts to learn point evaluation, and it is not clear how this approach can be helpful
to learn distribution of function data.2
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(a) Function data with 2 and 100 point evalua-
tions
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(b) Generated samples using input data of 2
and 100 point evaluations.
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(c) Function data with 2 and 10000 point evalu-
ations
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(d) Generated samples using input data of 2
and 10000 point evaluations.

Figure 10: Since the neural process approach aims to follow point evaluation distribution, the sample generated
using the neural process ignores the low resolution data. Also, as the number of point evaluations in one
function u(x) = 0.5 increases, the training process ignores the prior more, resulting in an inconsistent model
in the inference time.

2For the empirical study on neural processes, we used the implementation provided in
https://github.com/EmilienDupont/neural-processes
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