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Abstract

We present a new class of Langevin based algorithms, which overcomes many of the known
shortcomings of popular adaptive optimizers that are currently used for the fine tuning of
deep learning models. Its underpinning theory relies on recent advances of Euler’s polygo-
nal approximations for stochastic differential equations (SDEs) with monotone coefficients.
As a result, it inherits the stability properties of tamed algorithms, while it addresses
other known issues, e.g. vanishing gradients in deep learning. In particular, we provide
a nonasymptotic analysis and full theoretical guarantees for the convergence properties of
an algorithm of this novel class, which we named THεO POULA (or, simply, TheoPouLa).
Finally, several experiments are presented with different types of deep learning models,
which show the superior performance of TheoPouLa over many popular adaptive optimiza-
tion algorithms.

Keywords: Stochastic optimization, nonconvex optimization, non-asymptotic estimates,
taming technique, Euler’s polygonal approximation

1. Introduction

Modern machine learning models including deep neural networks are successfully trained
when they are finely tuned via the optimization of their associated loss functions. Two
aspects of such optimization tasks pose significant challenges, namely the nonconvex nature
of loss functions and the highly nonlinear features of many types of neural networks. More-
over, the analysis in Lovas et al. (2020) shows that the gradients of such nonconvex loss
functions typically grow faster than linearly and are only locally Lipschitz continuous. Natu-
rally, stability issues are observed, which are known as the ‘exploding gradient’ phenomenon
(Bengio et al. 1994; Pascanu et al. 2013), when vanilla stochastic gradient descent (SGDs)
or certain types of adaptive algorithms are used for fine tuning. In addition, the sparsity of
gradients of neural networks is another challenging issue, which is extensively studied in the
literature. For example, momentum methods and adaptive learning rate methods such as
AdaGrad (Duchi et al. 2011), RMSProp (Tieleman and Hinton 2012) and Adam (Kingma
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and Ba 2015) have been developed to tackle this problem by diagonally scaling the gradient
by some function taking the past gradients, also known as preconditioner.

Langevin based algorithms have been another important stream of literature on stochas-
tic optimization. They are built on the theoretical fact that the Langevin stochastic differ-
ential equation (7), under mild conditions, converges to a unique invariant measure with a
very attractive property. The measure concentrates around the global minimizers of the ob-
jective function as β → ∞, see Hwang (1980), even in the case of nonconvex potentials. As
a result, the global convergence of the stochastic gradient Langevin dynamics (SGLD) and
its variants has been extensively studied in a nonconvex setting, see, e.g., Raginsky et al.
(2017); Xu et al. (2018); Erdogdu et al. (2018); Brosse et al. (2018); Lovas et al. (2020).
Moreover, it is worth noting that Langevin based algorithms have been a key element in
Bayesian statistics and in Markov Chain Monte Carlo (MCMC) theory, see, e.g., Roberts
and Tweedie (1996); Durmus and Moulines (2017); Dalalyan (2017); Brosse et al. (2019);
Welling and Teh (2011); Deng et al. (2020a,b).

Motivated by the aforementioned developments in the field, we propose a new class of
stochastic gradient Langevin algorithms that addresses several challenges in deep learning.
Its underpinning theory relies on recent advances of Euler’s polygonal approximations for
stochastic differential equations (SDEs) with monotone coefficients, which originate from
the articles Krylov (1985) and Krylov (1990). We name this new class as polygonal un-
adjusted Langevin algorithms. Mathematically, it is described as follows: Given an i.i.d.
sequence of random variables {Xn}n≥0 of interest, which typically represent available data,
the algorithm follows

θλn+1 := θλn − λHλ(θλn, Xn+1) +
√

2λβ−1ξn+1, (1)

where n ∈ N, θλ0 := θ0, θ0 is an Rd-valued random variable, λ > 0 denotes the step
size of the algorithm, β > 0 is the so-called inverse temperature, (ξn)n∈N is an Rd-valued
Gaussian process with i.i.d. components and Hλ : Rd × Rm → Rd satisfies the following
three properties:

1. For every λ > 0, there exist constants Kλ > 0 and ρ1 ≥ 0 such that

|Hλ(θ, x)| ≤ Kλ(1 + |x|)ρ1(1 + |θ|) for every θ ∈ Rd and x ∈ Rm.

2. There exist constants γ ≥ 1/2, K2 > 0 and ρ2, ρ3 ≥ 0 such that for all λ > 0,

|Hλ(θ, x) −H(θ, x)| ≤ λγK2(1 + |x|)ρ2(1 + |θ|)ρ3 for every θ ∈ Rd and x ∈ Rm,

where H is the (unbiased) stochastic gradient of the objective function of the opti-
mization problem.

3. There exist constants λmax and δ ∈ {1, 2} such that for any λ ≤ λmax,

lim inf
|θ|→∞

E
[
⟨ θ

|θ|δ
, Hλ(θ,X0)⟩ −

2λ

|θ|δ
|Hλ(θ,X0)|2

]
> 0.

One obtains our new algorithm TheoPouLa by considering the case where Hλ(θ, x) is

the vector with entries H
(i)
λ,c(θ, x) as given by (9), for i ∈ {1, . . . , d}. The flexibility of Euler’s
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polygonal approximations allows TheoPouLa to combine an element-wise taming function
and a boosting function, which effectively resolve the ‘exploding gradient’ and ‘vanishing
gradient’ problems that are frequently observed in deep learning. More specifically, the
element-wise taming function is proposed to control the super-linearly growing stochastic
gradient1 in high-dimensional optimization problems, which successfully extends the taming
technique of TUSLA (Lovas et al. 2020). In the literature, the taming techniques have been
widely studied in the construction of stable numerical approximations. For example, see
Hutzenthaler et al. (2012); Sabanis (2013, 2016) for nonlinear SDEs and Brosse et al. (2019);
Sabanis and Zhang (2019) for MCMC algorithms. Furthermore, the boosting function is
introduced to address the sparsity in deep learning by adaptively adjusting the stepsize
of the algorithm in a region where the loss function is flat, i.e., the gradient is small. As
a result, the flat gradients can increase by up to some point that is controlled by the
hyperparameter of TheoPouLa, denoted by ε. Moreover, properly scaled isotropic Gaussian
noise is added at each iteration since TheoPouLa is essentially a type of Langevin based
algorithms. Hence, its name is formed from the above description, so called Tamed Hybrid
ε-Order POlygonal Unadjusted Langevin Algorithm (THεO POULA or TheoPouLa). We
note that TheoPouLa and TUSLA (Lovas et al. 2020) satisfy the above three properties
with δ = 2 and γ = 1/2, whereas TULA (Brosse et al. 2019) satisfies them with δ = γ = 1
as it assumes only deterministic gradients (and thus the i.i.d. data sequence reduces to a
constant).

In Section 2, the precise formula of TheoPouLa and its full detailed analysis (including
its convergence properties) are given. Furthermore, we provide in Section 3.2 extensive nu-
merical experiments which demonstrate remarkable empirical performance of TheoPouLa
on real-world datasets such as CIFAR10 and CIFAR100 for image classification, and the
Penn Treebank for language modeling. Section 3.3 investigates the effect of the key hyperpa-
rameters of TheoPouLa on its performance and Section 3.4 presents additional experiments
to support the effectiveness of the boosting function. All the proofs of main results in
Section 2 are provided in Section 4.

1.1 Related work: Langevin based algorithms and adaptive learning rate
methods

In this paper, we focus on reviewing the literature studying Langevin based algorithms for
optimization problems. We refer to Welling and Teh (2011); Ahn et al. (2021); Chen et al.
(2014); Deng et al. (2020a,b); Zhang et al. (2020) and references therein for recent progress
on MCMC algorithms and Bayesian neural networks. Most research on Langevin based
algorithms for nonconvex optimization in the literature has been focused on theoretical as-
pects. Raginsky et al. (2017) demonstrated the links between Langevin based algorithms
and stochastic optimization in neural networks, stimulating further the development and
analysis of such algorithms. Xu et al. (2018) analyzed the global convergence of gradient
Langevin dynamics (GLD), stochastic gradient Langevin dynamics (SGLD) and stochastic
variance reduced gradient Langevin dynamics (SVRG-LD). The incorporation of depen-
dent data streams in the analysis of SGLD algorithms has been achieved in Barkhagen

1. Hutzenthaler et al. (2012) show that the Euler discretization with super-linearly grwoing coefficients
could diverge to infinity in finite time.

3



Lim and Sabanis

et al. (2021) and in Chau et al. (2019), and local conditions have been studied in Zhang
et al. (2019). Recently, TUSLA in Lovas et al. (2020) has been proposed based on a new
generation of tamed Euler approximations for stochastic differential equations (SDEs) with
monotone coefficients in nonconvex optimization problems. Despite their elegant theoretical
results, the use of Langevin based algorithms for training deep learning models has been
limited in practice as their empirical performance lacked behind in comparison to popular
adaptive learning rate methods.

Adaptive learning rate methods such as AdaGrad (Duchi et al. 2011), RMSProp (Tiele-
man and Hinton 2012), and Adam (Kingma and Ba 2015) have been successfully applied to
neural network models due to their fast training speed. In particular, Adam-type optimizers
can be generally written as follows, for n ∈ N0,

θn+1 = θn − λ
mn

ε+
√
V n

(2)

where mn = ϕn(H1, · · · , Hn), Vn = ψn(H1, · · · , Hn) is a preconditioning matrix, Hi :=
H(θi, Xi) is the stochastic gradient evaluated at the i-th iteration, λ is the learning rate
and all operations are applied element-wise. Table 1 provides the details for some of popular
stochastic optimization methods with corresponding averaging functions ϕn and ψn. Since

Table 1: Summary of stochastic optimization methods within the general framework. Note
that v̂n = max{v̂n−1, vn} is defined as vn = (1 − β2)vn−1 + β2H

2
n.

SGD RMSProp Adam AMSGrad

ϕn := Hn Hn (1− β1)
∑n

i=1 β
n−i
1 Hi (1− β1)

∑n
i=1 β

n−i
1 Hi

ψn := In (1− β2)diag(
∑n

i=1 β
n−i
2 H2

i ) (1− β2)diag(
∑n

i=1 β
n−i
2 H2

i ) diag(v̂n)

the appearance of Adam, a large number of variants of Adam-type optimizers have been
proposed to address the theoretical and practical challenges of Adam by suggesting a new
preconditioner, Vn in (2), to scale the stochastic gradient. For example, Reddi et al. (2018)
provided a simple example that demonstrates the non-convergence issue of Adam and pro-
posed a simple modification, called AMSGrad, to solve the problem. Chen et al. (2019) dis-
cussed the convergence of Adam-type optimizers in a nonconvex setting. RAdam to rectify
the variance of adaptive learning rate has been proposed in Liu et al. (2020). Wilson et al.
(2017) revealed that the generalization ability of adaptive learning rate methods is worse
than a global learning method like SGD. AdaBound of Luo et al. (2019) attempts to over-
come the drawback by employing dynamic bounds on learning rates. Recently, AdaBelief
(Zhuang et al. 2020) and AdamP (Heo et al. 2021) demonstrated their fast convergence and
good generalization via extensive experiments. Nevertheless, these (and other) adaptive
learning rate methods have an obvious theoretical drawback as they are only guaranteed
to converge to a stationary point, which can be a local minimum or even a saddle point
in nonconvex settings. In addition, the theoretical results require strong assumptions such
as the global Lipschitz continuity and boundedness conditions on the stochastic gradient.
One should note that none of these two assumptions hold true in a typical optimization
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problem involving neural networks. This is particularly evident in complex neural network
architectures.

1.2 Our contributions

The newly proposed algorithm, TheoPouLa, combines both advantages: global convergence
in Langevin based algorithms and powerful empirical performance in adaptive learning
rate methods. To the best of the authors’ knowledge, our algorithm is the first Langevin
based algorithm to achieve a comparable (or even better) empirical performance in deep
learning tasks compared to popular stochastic optimization methods such as SGD, Adam,
AMSGrad, RMSProp, AdaBound and AdaBelief. The major strengths of our work over
related algorithms are summarized as follows:

• We provide a global convergence analysis of TheoPouLa in Wasserstein 1 and 2 dis-
tances when the stochastic gradient of the objective function is locally Lipscthiz con-
tinuous. Moreover, a non-asymptotic estimate for the expected excess risk of the
algorithm is derived.

• Polygonal unadjusted Langevin algorithms significantly extend possible approxima-
tions for the drift term of the Langevin SDE, which allows the algorithm to deal with
the exploding and vanishing gradient problems. In particular, TheoPouLa achieves a
stable and fast training process due to the element-wise taming technique and boost-
ing function, which are theoretically well-designed for the algorithm to adaptively
take a desirable stepsize. Furthermore, the effectiveness of both taming and boosting
functions is confirmed through several empirical experiments.

• While TheoPouLa behaves like adaptive learning rate methods in the early training
phase, it takes an almost global learning rate near an optimal point. In other words,
TheoPouLa is quickly switched from adaptive methods to SGD. As a result, it inherits
the good generalization ability of SGD. Our experiments support this fact by show-
ing that TheoPouLa outperforms the other optimization methods in generalization
measured by test accuracy for various deep learning tasks.

2. New Algorithm: THεO POULA

We propose a new stochastic optimization algorithm by combining ideas from taming meth-
ods specifically designed to approximate Langevin SDEs with a hybrid approach based on
recent advances of polygonal Euler approximations. The latter is achieved by identifying
a suitable boosting function (of order ε ≪ 1) to efficiently deal with the sparsity of the
stochastic gradients of neural networks. The novelty of our algorithm is to utilize a taming
function and a boosting function instead of designing a new preconditioner Vn in (2) as in
Adam-type optimizers.

We proceed with the necessary preliminary information, main assumptions and formal
introduction of the new algorithm.
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2.1 Preliminaries and Assumptions

Let (Ω,F , P ) be a probability space. We denote by E[X] the expectation of a random
variable X. Fix an integer k ≥ 1. For an Rk-valued random variable X, its law on B(Rk),
i.e. the Borel sigma-algebra of Rk, is denoted by L(X). Scalar product is denoted by
⟨·, ·⟩, with | · | standing for the corresponding norm (where the dimension of the space
may vary depending on the context). For µ ∈ P(Rk) and for a non-negative measurable
f : Rk → R, the notation µ(f) :=

∫
Rk f(θ)µ(dθ) is used. For any integer q ≥ 1, let P(Rq)

denote the set of probability measures on B(Rq). For µ, ν ∈ P(Rk), let C(µ, ν) denote the
set of probability measures ζ on B(R2k) such that its respective marginals are µ, ν. For two
probability measures µ and ν, the Wasserstein distance of order p ≥ 1 is defined as

Wp(µ, ν) := inf
ζ∈C(µ,ν)

(∫
Rk

∫
Rk

|θ − θ′|pζ(dθdθ′)

)1/p

(3)

for µ, ν ∈ P(Rk). Let (Xn)n∈N0 be a sequence of i.i.d. Rm-valued random variables gen-
erating the filtration (Gn)n∈N0 and (ξn)n∈N0 be an Rd-valued Gaussian process with inde-
pendent components. It is assumed throughout the paper that the random variable θ0,
G∞ := σ (∪n∈N0Gn), and (ξn)n∈N0 are independent.

Let F : Rd×Rm → Rd be a continuously differentiable function such that E[|F (θ,X0)|] <
∞, for all θ ∈ Rd, where X0 is a given Rm-valued random variable with probability law
L(X0). We then consider the following optimization problem

min
θ∈Rd

u(θ) = min
θ∈Rd

(
E[F (θ,X0)] +

η

2(r + 1)
|θ|2(r+1)

)
(4)

where r > 0 and η ∈ (0, 1). Assume that u : Rd → R is a continuously differentiable
function and denote by h := ∇u its gradient.

In the context of fine tuning of neural networks, F represents the loss function for the
task at hand and θ denotes the vector of the model’s parameters. In particular, r is deter-
mined by the property of the model. More precisely, the regularization term η

2(r+1) |θ|
2(r+1)

is added in order to guarantee a dissipativity condition (6), which is necessary for the
convergence of optimization algorithms.

Remark 1. For the reader who prefers to consider the optimization problem without the
regularization term, i.e., η = 0, the dissipative condition (6) has to be additionally assumed
as in the literature (Raginsky et al., 2017; Xu et al., 2018; Erdogdu et al., 2018). Then,
the same analysis can be applied to obtain our main results without any additional effort.
However, it is yet to be proven theoretically that such an assumption holds in general for
neural networks and thus it becomes a case-by-case investigation. In other words, we present
here the formal theoretical statement with the appropriate regularization term which covers
all of these cases.

We denote by H : Rd × Rm → Rd the stochastic gradient of the objective function,
which is given by

H(θ, x) := G(θ, x) + ηθ|θ|2r, (5)
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where G(θ, x) := ∇θF (θ, x) for all x ∈ Rm, θ ∈ Rd. Note that η = 0 if dissipativity
holds for G. In addition, it is assumed that H(θ, x) is an unbiased estimator of h(θ) for all
θ ∈ Rd, x ∈ Rm.

To derive our main results, we introduce the following assumptions. Let q ∈ [1,∞),
r ∈ [q/2,∞), ρ ∈ [1,∞) be fixed. We then impose conditions on the initial value θ0 and
data process (Xn)n∈N0 . As it is common to use a weight initialization technique using the
uniform or normal distribution, Assumption 1 is mild.

Assumption 1. The process (Xn)n∈N0 has a finite 16ρ(2r+1)-th moment, i.e., E[|X0|16ρ(2r+1)] <
∞ and the initial condition has a finite 16(2r + 1)-th moment, i.e., E[|θ0|16(2r+1)] <∞.

The second requirement is that G is locally Lipschitz continuous satisfying a polynomial
growth condition, which is substantially weaker than a (globally) Lipscthiz continuity or a
bounded condition in the existing literature.

Assumption 2. There exists a constant LG > 0 such that, for all x ∈ Rm, θ, θ′ ∈ Rd,

|G(θ, x) −G(θ′, x)| ≤ LG(1 + |x|)ρ(1 + |θ| + |θ′|)q−1|θ − θ′|.

Remark 2. From Assumption 2, one obtains, for all θ ∈ Rd, x ∈ Rm,

|G(θ, x)| ≤ KG(x)(1 + |θ|)q,

where KG(x) = LG(1 + |x|)ρ + |G(0, x)|.

Under Assumption 1 and 2, one can derive a dissipative condition for h, which is pre-
sented in the next remark.

Remark 3. From Assumption 1 and 2, it can be shown that h satisfies the following
dissipative condition, for all θ ∈ Rd,

⟨θ, h(θ)⟩ ≥ A|θ|2 −B, (6)

where A = 2qE[1 +KG(X0)], B = 3(2q+1E[1 +KG(X0)])
q+2/ηq+1.

Furthermore, under Assumption 1 and 2, the following proposition states that one can
obtain an one-sided Lipschitz continuity condition for h. The proof of Proposition 4 can be
found in (Lovas et al., 2020, Proposition 1).

Proposition 4. Let Assumption 1 and 2 hold. Then, one obtains, for all θ, θ′ ∈ Rd,

⟨θ − θ′, h(θ) − h(θ′)⟩ ≥ −LR|θ − θ′|2,

where LR = LGE[(1 + |X0|)ρ](1 + 2|R|)q−1 > 0 and R is given by

R = max

{(
23(q−1)+1LGE[(1 + |X0|)ρ]

η

) 1
2r−1

,

(
2qLGE[(1 + |X0|)ρ]

η

) 1
2r
}
.

Under Assumption 1 and 2, H(θ, x) given in (5) is locally Lipschitz continuous in θ,
which is explicitly stated in the following proposition. The proof follows the same idea in
(Lovas et al., 2020, Proposition 2).
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Proposition 5. Let Assumption 1 and 2 hold. Then, one obtains that, for all θ ∈ Rd, x ∈
Rm,

|H(θ, x) −H(θ′, x)| ≤ LH(1 + |x|)ρ(1 + |θ| + |θ′|)2r+1|θ − θ′|,

where LH = LG + 8rη.

Remark 6. Let Assumption 1 and 2 hold. Then, Proposition 5 implies that h is locally
Lipschitz continuous. That is, there exists a Lh > 0 such that for all θ ∈ Rd,

|h(θ) − h(θ′)| ≤ Lh(1 + |θ| + |θ′|)2r+1|θ − θ′|,

where Lh = LH(1 + E[|X0|)ρ.

The optimization problem (4) is closely linked to the problem of sampling from a target
distribution πβ(dz) ∝ exp(−βu(z))dz with β > 0 since πβ concentrates around the mini-
mizers of u for sufficiently large β. It is well-known that, under mild conditions (satisfied
by Assumptions 1 and 2), the (overdamped) Langevin SDE given by

dZt = −h(Zt)dt+
√

2β−1dBt, (7)

for t > 0 where θ0 ∈ Rd is a (possibly random) initial condition, β > 0 is the so-called
inverse temperature parameter, and (Bt)t≥0 denoting a d-dimensional Brownian motion,
admits πβ(dz) as its unique invariant measure.

2.2 Mechanism of THεO POULA

We introduce the mechanism of TheoPouLa, which iterately updates as follows: for n ∈ N0

and θλ0 := θ0,

θλn+1 := θλn − λHλ,c(θ
λ
n, Xn+1) +

√
2λβ−1ξn+1, (8)

where λ > 0 is the learning rate and Hλ,c =

(
H

(1)
λ,c(θ, x), . . . ,H

(d)
λ,c (θ, x)

)
: Rd × Rm → Rd

is given by, for all θ ∈ Rd, x ∈ Rm,

H
(i)
λ,c(θ, x) =

G(i)(θ, x)

1 +
√
λ|G(i)(θ, x)|︸ ︷︷ ︸

taming function

(
1 +

√
λ

ε+ |G(i)(θ, x)|︸ ︷︷ ︸
boosting function

)
+ η

θ(i)|θ|2r

1 +
√
λ|θ|2r︸ ︷︷ ︸

regularization term

, (9)

for i = 1, . . . , d and 0 < ε < 1. In the formula of TheoPouLa (9), we call the functions

1 +
√
λ|G(i)(θ, x)| and 1 +

√
λ

ε+|G(i)(θ,x)| as the taming function and boosting function of the

newly proposed algorithm, respectively.
TheoPouLa has several distinct features over the existing optimization methods in the

literature. We give an intuitive explanation as to how these features are complementarily
harmonized to efficiently tackle the exploding and vanishing gradient problems. We omit
the regularization term, i.e., η = 0, and the noise term,

√
2λβ−1ξn+1, throughout the

exposition for simplicity. Also, we refer to λ as the learning rate and |∆θλn| := |θλn+1−θλn| =

λ|G(i)(θλn,Xn+1)|
1+

√
λ|G(i)(θλn,Xn+1)|

×
(

1+
√
λ

ε+|G(i)(θλn,Xn+1)|

)
as the stepsize by the convention in Kingma and

Ba (2015).
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Figure 1: A landscape of a loss function.

Firstly, the new algorithm adopts the taming function to control the super-linearly
growing gradient. In region 1○ of Figure 1 where the loss function is steep and narrow, i.e.,
the gradient is huge, it is ideal for the optimizer to take a small stepsize. This is effectively
achieved because the growth of the taming function is proportional to G, which relieves the
huge gradient. On the other hand, the boosting is close to one, i.e. it becomes useless in this
case. The effectiveness of the taming function is confirmed in the motivating example in
Section 3.1. In particular, we emphasize that the taming function of TheoPouLa is applied
element-wise to scale the effective element-wise learning rate in contrast to TUSLA of Lovas
et al. (2020). This significantly improves the performance of TheoPoula when solving high-
dimensional optimization problems such as the training of neural network models.

Secondly, we first introduce the boosting function to accelerate training speed and pre-
vent the vanishing gradient problem. When the current parameter is located in region 2○ of
Figure 1 where the loss function is (almost) flat, i.e. the gradient is small, the boosting func-
tion helps TheoPoula to adaptively increase its stepsize. Specifically, the boosting function
can increases the stepsize by up to

√
λ/ε, whereas the taming function barely contributes to

the stepsize. We highlight that the taming and boosting functions do not interfere with each
other in any adverse way. On the contrary, they complement each other in a harmonious
way. We verify the effectiveness of the boosting function, which can be found in Section 3.4.
The experiments show that the boosting function brings a significant improvement in test
accuracy across different models and data sets for deep learning models.

Thirdly, TheoPouLa is quickly converted from adaptive learning rate methods to SGD.
In the early training phase, TheoPouLa certainly behaves like adaptive learning rate meth-
ods. Then, when the current position is approaching an optimal solution, TheoPouLa is
similar to SGD with a learning rate (1 +

√
λ/ε). Consequently, TheoPouLa simultaneously

attains two favorable features of fast training in adaptive learning rate methods and good
generalization in SGD. The switching from adaptive learning rates to SGD has been also
investigated by different strategies in Luo et al. (2019) and Keskar and Socher (2017).

Lastly, a scaled Gaussian noise,
√

2λβ−1ξn+1, is added as a consequence of the dis-
cretization of the Langevin SDE. The term is essential to prove the convergence property
of TheoPouLa. Moreover, adding properly scaled Gaussian noise allows the new algorithm
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to escape from region 3○ of Figure 1, local minima or saddle points, in a similar manner to
the standard SGLD method, see Raginsky et al. (2017).

2.3 Convergence Analysis

In this subsection, we present the main convergence results of TheoPouLa in Wasserstein-1
and Wasserstein-2 distances which are defined in (3). The convergence is guaranteed when
λ is less than λmax, which is given by

λmax = min

{
1,

1

4η2
,

1

214η2(8lC4l)2

}
. (10)

where nCk is the binomial coefficient ‘n choose k’ and l = 2r + 1. Note that the learning
rate restriction causes no issues as η is typically very small (η ≪ 1).

Theorem 7 and Corollary 8 state the non-asymptotic estimates for the Wasserstein-1
and -2 distances between L

(
θλn
)

and πβ. The proofs of the main results can be found in
Section 4.

Theorem 7. Let Assumption 1 and 2 hold. Then, for all 0 < λ ≤ λmax, n ∈ N0, we have
that

W1

(
L
(
θλn

)
, πβ

)
≤C1

√
λ+ C2e

−C0λn,

where C0, C1 and C2 are explicitly given in Table 9. Moreover, the constants C0, C1, C2

are independent of n and λ.

Corollary 8. Let Assumption 1 and 2 hold. Then, for all 0 < λ ≤ λmax, n ∈ N0, we have

W2

(
L
(
θλn

)
, πβ

)
≤C3λ

1
4 + C4e

−C5λn,

where C3, C4 and C5 are explicitly given in Table 9. Moreover, the constants C3, C4, C5

are independent of n and λ.

We are now concerned with the expected excess risk of TheoPouLa, so called the opti-
mization error of θλn, which is defined as

E[u(θλn)] − u(θ∗), (11)

where θ∗ := arg minθ∈Rd u(θ). Using the result in Corollary 8, one can further obtain an
error bound of the expected excess risk as stated in the below.

Theorem 9. Let Assumption 1 and 2 hold. For any n ∈ N0, the expected excess risk of
the n-th iterate of TheoPouLa is bounded by

E[u(θλn)] − u(θ∗) ≤ C6W2(L(θλn, πβ)) +

d
2 log

(
Ke
A

(
B
d β + 1

))
+ log 2

β
,

where W2(L(θλn), πβ) is given in Corollary 8 and constants A, B, K, C6 are explicitly given
in Table 9. Moreover, the constants A, B, K, C6 are independent of n and λ.

10
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Remark 10. The constants C0, C1, C2, C3, C4, C6 are independent of n and λ, but
might depend on β and d. In particular, the constants have exponential dependence on the
dimension d because our nonconvex setting should encompass possible pathological scenarios.
In particular, the exponential dependence on d only comes from the contraction property of
the Langevin SDE in Lemma 17, inherited from the result in Eberle et al. (2019). In
other words, if the contraction estimate can be improved under reasonable regularities, the
exponential dependence on d is accordingly relaxed without affecting our analysis.

Using Corollary 8, the expected excess risk of TheoPoula in Theorem 9 is rewritten as

E[u(θλn)] − u(θ∗) ≤ C3C6λ
1
4 + C4C6e

−C5λn +

d
2 log

(
Ke
A

(
B
d β + 1

))
+ log 2

β
.

Then, the error bound of the expected excess risk in Theorem 9 can be interpreted via the
following three steps: (i) For any δ > 0, choose β̄ > 0 such that

d
2 log

(
Ke
A

(
B
d β̄ + 1

))
+ log 2

β̄
≤ δ

3
,

and fix β̄, (ii) Then, pick and fix λ̄ > 0 such that

C3C6λ̄
1
4 ≤ δ

3
,

by using that C3, C6 are independent of λ, (iii) Lastly, choose n̄ > 0 such that

C4C6e
−C5λ̄n̄ ≤ δ

3
.

Therefore, for any δ > 0, one can always find (λ̄, n̄, β̄) that achieves the expected excess
risk of TheoPoula being less than δ.

3. Numerical Experiments

This section provides extensive numerical experiments to demonstrate the empirical perfor-
mance of TheoPouLa. In Section 3.1, we present a simple example to illustrate that popular
stochastic optimization algorithms may fail to find the optimal solution in the presence of
the super-linearly growing stochastic gradient. In Section 3.2, we present two real-world
deep learning tasks such as image classification on CIFAR10 (Krizhevsky et al.) and CIFAR-
100 (Krizhevsk 2009), and language modeling on Penn Treebank (Marcus et al. 1999). In
Section 3.3, we investigate the effect of key hyperparameters λ, ε, β on the performance of
TheoPouLa and the effectiveness of the boosting function.

3.1 Toy example

The super-linearly growing gradient and its effect on the performance of optimization meth-
ods are relatively under-studied because most relevant studies assume that the stochastic

11
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gradient is global Lipscthiz continuous and bounded (Kingma and Ba 2015; Xu et al. 2018;
Brosse et al. 2018; Duchi et al. 2011; Tieleman and Hinton 2012; Reddi et al. 2018; Chen
et al. 2019; Liu et al. 2020; Luo et al. 2019; Zhuang et al. 2020). However, the assumptions
are not true for the problem of training neural networks. This section provides a simple
one-dimensional optimization problem that illustrates the convergence issue of popular opti-
mization algorithms when the stochastic gradient is locally Lipschitz continuous that results
in the super-linearly growing gradient2. Lovas et al. (2020) considers a similar example to
show the stability of TUSLA using a different taming function.

Consider the following optimization problem:

min
θ∈R

u(θ) = min
θ∈R

E[U(θ,X)], (12)

where U : R× R → R is defined as

U(θ, x) =

{
θ2 (1 + 1x≤1) + θ30 if |θ| ≤ 1,
(2|θ| − 1) (1 + 1x≤1) + θ30 if |θ| > 1,

and X is uniformly distributed over (−2, 2), that is, fX(x) = 1
41|x|≤2. Furthermore, the

stochastic gradient H : R× R → R is given by

H(θ, x) =

{
2θ (1 + 1x≤1) + 30θ29 if |θ| ≤ 1,
2(1 + 1x≤1)sgn(θ) + 30θ29 if |θ| > 1,

where sgn(·) is the sign function. Then, one can easily show that the stochastic gradient
H is locally Lipschitz continuous:

|H(θ, x) −H(θ′, x)| ≤ 34(1 + |θ| + |θ′|)28|θ − θ′|,

for all x ∈ R and θ, θ′ ∈ R. Moreover, the minimum value of the optimization problem (12)
is attained at θ = 0.

We examine the behavior of SGD, Adam, and AMSGrad in solving the optimization
problem (12) with the initial value θ0 = 5. For hyperparameters of the optimization algo-
rithms, we use their default settings provided in PyTorch. More specifically, for Adam and
AMSGrad, λ = 0.001, β1 = 0.9 and β2 = 0.999 are used. Figure 2(a) presents the trajecto-
ries of approximate solutions generated by the optimization algorithms, showing that SGD,
Adam, and AMSGrad fail to converge to the optimal solution 0 even after 1, 000 iterations.

Intuitively, the undesirable phenomenon of Adam-type optimizers occurs because, in the
update rule (2), the denominator

√
V n, so-called the preconditioner, excessively dominates

the numerator mn, causing the vanishing gradient problem in the presence of the super-
linealy growing gradient. On the other hand, SGD suffers from the exploding gradient
problem due to the huge gradient. Moreover, Figure 2(b) highlights that the problematic
behavior cannot be simply resolved by adjusting the learning rate within the Adam-type
framework. On the contrary, TheoPouLa rapidly finds the optimal solution only after 200
iterations due to its taming function that controls the super-linearly growing gradient.

2. A function f : Rk → Rj for k, j ∈ N is said to be super-linearly growing if supθ∈Rk
|f(θ)|
1+|θ| = ∞.
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(a) default settings (b) different step sizes

Figure 2: Performance of SGD, Adam, AMSGrad and TheoPouLa on an artificial example
with the initial value θ0 = 5.0

3.2 Empirical performance on real data sets

We compare the performance of TheoPouLa with that of other popular optimization algo-
rithms including Adam (Kingma and Ba 2015), AdaBelief (Zhuang et al. 2020), AdamP
(Heo et al. 2021), AdaBound (Luo et al. 2019), AMSGrad (Reddi et al. 2018), RMSProp
(Tieleman and Hinton 2012), SWATS (Keskar and Socher 2017), SGD (with momentum)
and ASGD (Merity et al. 2018). In particular, we consider three deep convolution neural
networks for image classification: VGG11 (Simonya and Zisserman 2015), ResNet34 (Ioffe
and Szegedy 2016) and DenseNet121 (Huang et al. 2017) models. For language modeling,
AWD LSTMs with 1, 2 and 3 layers are considered. Each experiment is run three times to
compute the mean and standard deviation of the best accuracy on the test dataset.

Recall that it is assumed that r ≥ q
2 ≥ 1

2 to obtain the main results. However, for the
experiments in this section, we consider r = 0 in (4), which is equivalent to ℓ2-regularization.
This is justified by the fact that some form of dissipativity may already exist for specific
problems such as the one considered here, although this has not been verified theoretical
so far. In Section 3.4, we perform additional experiments with r ≥ 1

2 , which show similar
performance of THεO POULA as in Table 2 without any noticeable loss of accuracy. This
demonstrates that there is no gap between theory and practice of our work.

Image classification. We replicate the experiments for image classification based on
the official implementation of Zhuang et al. (2020) as it provides a reliable baseline of
the experiments by comparing the performance of various optimization algorithms with
extensive hyperparameter search. More specifically, all the models are trained for 500 epochs
with batch size of 128. We set η = 0.0005 and r = 0 in (4), which is ℓ2-regularization. We
decay the initial learning rate by 10 after 150 epochs to all optimization algorithms.

For TheoPouLa, we search the optimal hyperparameters as follows: λ ∈ {1, 0.5, 0.1, 0.05,
0.01}, ε ∈ {1, 0.1, 0.01} and β ∈ {108, 1010, 1012}. Regarding hyperparameter values of
Adam, AdaBelief, AdamP, AdaBound, AMSGrad and RMSProp, the best hyperparame-
ters are chosen among λ ∈ {1.0, 0.1, 0.01, 0.001}, β1 ∈ {0.5, 0.6, 0.7, 0.8, 0.9}, β2 = 0.999,
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and ϵ = 10−8. For SGD, we set the momentum as 0.9 and search learning rate λ ∈
{10.0, 1.0, 0.1, 0.01, 0.001}3.

Figure 3 shows test accuracy for VGG11, ResNet34 and DenseNet121 on CIFAR10 and
CIFAR100. Table 2 shows the test accuracy for VGG11, ResNet34 and DenseNet121 on
CIFAR10 and CIFAR100. As shown in Table 2, our algorithm achieves the highest accuracy
and significantly outperforms the other optimization algorithms across all the experiments.
In particular, TheoPouLa with the second best hyperparameter is even comparable to the
AdaBelief (the state-of-the-art algorithm) and outperforms the other methods, validating
that the solutions found by TheoPouLa yield good generalization performance. Also, the
improvement of our algorithm is increasingly prominent as the models and datasets are
more complicated and large-scale.

(a) VGG11 on CIFAR10 (b) ResNet34 on CIFAR10 (c) DenseNet121 on CIFAR10

(d) VGG11 on CIFAR100 (e) ResNet34 on CIFAR100 (f) DenseNet121 on CIFAR100

Figure 3: Test accuracy for VGG11, ResNet34 and DenseNet121 on CIFAR-10 and CIFAR-
100. TheoPouLa† and THεOPOULA∗ represent the performances of TheoPouLa under the
best and second best hyperparameters, respectively.

Language modeling. We conduct language modeling over the Penn Treebank (PTB)
with AWD-LSTM models of Merity et al. (2018). It is reported that Non-monotonically
Triggered ASGD (NT-ASGD) achieves state-of-the-art performance for this task. Moti-
vated by this observation, we also consider averaged TheoPouLa, which is performed by
averaging of trajectories of the parameters after a user-specified trigger Q, 1

n−Q+1

∑n
i=Q θ

λ
i ,

instead of the last updated parameter θλn (Polyak and Juditsky 1992). Moreover, we use a

3. Our results for Adam, AdaBelief, AdaBound, AMSGrad, and RMSprop are consistent with the test
accuracies reported in Luo et al. (2019) and Zhuang et al. (2020).
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Table 2: Mean and standard deviation of the best accuracy for VGG11, ResNet34 and
DenseNet121 on CIFAR10. TheoPouLa† and TheoPouLa∗ represent the performances of
TheoPouLa with the best and second best hyperparameters, respectively. The numbers in
parenthesises indicate the standard deviations.

dataset CIFAR-10 CIFAR-100

model VGG ResNet DenseNet VGG ResNet DenseNet

TheoPouLa†
92.30 95.43 95.66 70.31 77.60 79.90
(0.055) (0.095) (0.066) (0.117) (0.208) (0.133)

TheoPouLa∗
91.92 94.92 95.59 70.24 76.88 78.76
(0.119) (0.076) (0.067) (0.227) (0.536) (0.269)

AdaBelief 92.17 95.29 95.58 69.50 77.33 79.12
(baseline) (0.035) (0.196) (0.095) (0.111) (0.172) (0.382)

Adam
90.79 93.11 93.21 67.30 73.02 74.03
(0.075) (0.184) (0.240) (0.137) (0.231) (0.334)

AdamP
91.68 95.18 95.17 69.41 76.14 77.58
(0.162) (0.116) (0.079) (0.297) (0.347) (0.091)

AdaBound
91.81 94.83 95.05 68.61 76.27 77.56
(0.272) (0.131) (0.176) (0.312) (0.256) (0.120)

AMSGrad
91.24 93.76 93.74 67.71 73.51 74.50
(0.115) (0.108) (0.236) (0.291) (0.692) (0.416)

RMSProp
90.82 93.06 92.89 65.45 71.79 71.75
(0.201) (0.120) (0.310) (0.394) (0.287) (0.632)

SGD
90.73 94.61 94.46 67.78 77.16 78.95
(0.090) (0.280) (0.159) (0.320) (0.214) (0.312)

SWATS
87.29 94.76 95.04

N/A
73.86 78.81

(4.210) (0.565) (0.339) (3.928) (1.812)

trigger strategy which starts the averaging when no improvement in the validation metric
is seen for a patience number of epochs. For our experiments, we set the patience num-
ber to 5. Due to a limited computation budget, we only test NT-ASGD, AdaBelief, and
TheoPouLa rather than investigating the various optimization algorithms used in the image
classification. Since AdaBelief significantly outperforms the other optimization algorithms
including vanilla SGD, AdaBound, Yogi (Zaheer et al. 2018), Adam, MSVAG (Balles and
Hennig 2018), RAdam, Fromage and AdamW (Loshchilov and Hutter 2019) in the same ex-
periment, we believe that it is enough to compare the performance of AdaBelief, NT-ASGD
and TheoPouLa.

For a fair comparison, the averaging scheme has also been applied to AdaBelief. How-
ever, it turns out that the averaging scheme does not improve the performance of AdaBelief.
Instead, AdaBelief uses a development-based learning rate decay, which decreases the learn-
ing rate by a constant factor δ if the model does not attain a new best value for k epochs.
We search the optimal learning rate schedule among δ ∈ {0.1, 0.5} and k ∈ {5, 10, 20}.
For ASGD and TheoPouLa, a constant learning rate is used without a learning rate decay.
Moreover, in order to compare with the baseline, we apply gradient clipping of 0.25 to all
three optimization algorithms.

We train the AWD LSTM with 1,2 and 3 layers for 750 epochs with 20 batch size. The
details of models can be found in the official implementation of AWD-LSTM 4. For NT-

4. https://github.com/salesforce/awd-lstm-lm
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Table 3: Test perplexity for language modeling tasks on PTB. Lower is better.

# of layers 1-layer 2-layer 3-layer

TheoPouLa
82.75 67.15 61.07
(0.209) (0.126) (0.161)

ASGD 82.85 67.53 61.60
(baseline) (0.308) (0.171) (0.094)

AdaBelief
84.46 67.34 61.52
(0.272) (0.496) (0.302)

ASGD and averaged TheoPouLa, the constant learning rate of 30 is used for 2 and 3-layer
LSTMs. For 1-layer LSTMs, we set λ to 10. Moreover, we fix the following hyperparam-
eters: ε = 100 and β = 1010 across all the experiments. For AdaBelief, we used the best
hyperparameters reported in Zhuang et al. (2020). That is, we use λ = 0.01 and ϵ = 10−12

for 2 and 3-layer LSTMs, and λ = 0.001 and ϵ = 10−16 for 1-layer LSTMs where β1 = 0.9
and β2 = 0.999 are fixed.

The performance of each optimization algorithm is measured by test perplexity (The
lower is better). Figure 4 displays test perplexity of different algorithms for different AWD-
LSTM models on PTB. Table 3 shows that TheoPouLa attains the lower test perplexity
against the baselines for AWD-LSTM with 1, 2, and 3-layers. AdaBelief shows a comparable
performance with ASGD for 2-layer and 3-layer models.

(a) 1-layer (b) 2-layer (c) 3-layer

Figure 4: Test perplexity for 1, 2 and 3-layer AWD-LSTMs on PTB

3.3 Effect of λ, ε, and β on the performance of TheoPouLa

This section perform a sensitive analysis to understand the effect of key hyperparameters λ,
ε, and β, on the performance of TheoPouLa. We consider image classification for VGG11
and ResNet34 on CIFAR10 and CIFAR100. As in Section 3.2, we train the models for 200
epochs with 128 batch size and then evaluate their test accuracy under varying λ, ε, and β.

We first report the effect of λ on the performance of TheoPouLa. To see this, we
evaluate the models trained with λ ∈ {0.5, 0.1, 0.05, 0.01}, ε = 0.1, β = 1010, r = 0, and
η = 0.0005. As shown in Table 4, λ = 0.1 yields the best accuracy for VGG on CIFAR10
and CIFAR100, and ResNet on CIFAR10, but λ = 0.05 achieves the highest accuracy for
ResNet on CIFAR100.
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Table 4: The test accuracy for VGG11 and ResNet34 on CIFAR-10 and CIFAR-100 with
different λ. We report mean and standard deviation of the accuracy from three repetitive
experiments.

λ

model dataset 0.5 0.1 0.05 0.01

VGG
CIFAR10

42.31 92.14 91.82 89.89
(4.996) (0.201) (0.081) (0.060)

CIFAR100
31.59 70.57 68.96 63.98
(2.929) (0.279) (0.205) (0.185)

ResNet
CIFAR10

91.23 95.41 95.09 93.54
(0.312) (0.175) (0.117) (0.277)

CIFAR100
1.90 74.02 77.31 75.49

(0.316) (0.609) (0.248) (0.066)

The hyperparameter ε controls the intensity of the boosting function as the stepsize
can increase by up to

√
λ/ε. The effect of the boosting function can be exaggerated

when ε is small, whereas a large ε depresses the role of the boosting function. To see
the effect of ε, we fix λ = 0.1 and β = 1010 and then conduct experiments with different
ε ∈ {1, 0.1, 0.01, 0.001}. Table 5 summarizes the test accuracy with varying ε. TheoPouLa
with ε = 0.1 shows the highest accuracy for VGG on CIFAR10 and CIAR100, and ResNet
on CIFAR10. On the other hand, ε = 0.01 is the best hyperparameter for ResNet on CI-
FAR100. Moreover, it is observed that too small ε, 0.001, leads to unstability for VGG on
CIFAR10.

Table 5: The test accuracy for VGG11 and ResNet34 on CIFAR-10 and CIFAR-100 with
different ε. We report mean and standard deviation of the accuracy from three repetitive
experiments.

ε

model dataset 1 0.1 0.01 0.001

VGG
CIFAR10

91.80 92.14 86.75 26.03
(0.262) (0.201) (0.489) (14.473)

CIFAR100
68.75 70.57 60.55 44.74
(0.523) (0.279) (0.202) (0.383)

ResNet
CIFAR10

91.23 95.41 95.09 93.54
(0.312) (0.175) (0.117) (0.277)

CIFAR100
1.90 74.02 77.31 75.49

(0.316) (0.609) (0.248) (0.066)

Lastly, we evaluate the effect of the inverse temperature β > 0, which is a unique feature
of Langevin based algorithms. Intuitively, a small inverse temperature offers relatively
strong random shocks at each iteration, which is helpful to escape sharp local minima, so
called the exploration effect. On the other hand, the solutions generated with a large inverse
temperature explores the local geometry of the objective function, so called the exploitation
effect. To leverage the trade-off of β, it is desirable to apply simulated annealing (Mangoubi
and Vishnoi 2018) and simulated tempering (Lee et al. 2018), which often requires intensive
effort for the hyperparameter tuning. In this paper, we fix β as a constant during the
training. We obtain the test accuracy of TheoPouLa with different values of β ranging
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from {104, 106, 108, 1010, 1012}. The other hyperparameters are as follows: λ = 0.1, ε = 0.1
for VGG on CIFAR10 and CIFAR100, and ResNet on CIFAR10, λ = 0.05, ε = 0.01 for
ResNet on CIFAR100. Table 6 shows that TheoPouLa achieves its best performance when
β is large, say 108 ∼ 1012. We note that the result in Table 6 is consistent with the cold
posterior effect implying that a large inverse temperature β improves the model’s predictive
power, see Aitchison (2021) and Wenzel et al. (2020).

Table 6: The accuracy for VGG11 and ResNet34 on CIFAR-10 and CIFAR-100 with dif-
ferent β. We report mean and standard deviation of the accuracy from three repetitive
experiments.

β

model dataset 104 106 108 1010 1012

VGG
CIFAR10

73.10 91.53 92.31 92.29 92.10
(0.407) (0.141) (0.055) (0.120) (0.023)

CIFAR100
20.69 70.0 70.28 70.16 70.31
(0.718) (0.343) (0.124) (0.110) (0.117)

ResNet
CIFAR10

80.84 94.67 95.42 95.34 95.43
(0.264) (0.145) (0.117) (0.141) (0.095)

CIFAR100
63.58 77.22 77.4 77.6 77.53
(0.103) (0.291) (0.036) (0.208) (0.143)

3.4 Additional Experiments

Experiments with r ≥ 1
2 . In Section 3.2, we set r = 0 in (4) as ℓ2-regularization is widely

used in practice. However, our main results are derived with r ≥ q
2 ≥ 1

2 to theoretically
ensure the dissipativity condition. In this section, we perform additional experiments with
r ≥ 1

2 to demonstrate that there is no gap between theory and practice.

When the regularization parameter r is sufficiently large and the dimension d is big,
|θ|2r becomes extremely large. As a result, the stochastic gradient of the regularization

term η θ(i)|θ|2r

1+
√
λ|θ|2r in (9) approximately ends up with η√

λ
θ(i), which is equivalent to the same

regularization effect of ℓ2-regularization. Therefore, by choosing η = 5 × 10−4
√
λ and large

r, the performance of the models with η = 5 × 10−4
√
λ and large r is similar to that of the

models with ℓ2-regularization (i.e., r = 0) and η = 5 × 10−4.

Table 7 shows that the accuracy for VGG, ResNet and DenseNet on CIFAR10 and
CIFAR100 with r = 10 and η = 5 × 10−4

√
λ. We use the same best hyperparameters used

in Section 3.2. As shown in Table 7, one observes the experiments with large r is highly
similar to the results in Section 3.2.

Table 7: The accuracy for VGG11, ResNet34 and DenseNet121 on CIFAR10 and CIFAR100
with r = 10.

dataset CIFAR10 CIFAR100

model VGG ResNet DenseNet VGG ResNet DenseNet

TheoPouLa 92.2 95.38 95.69 70.07 77.78 80.47
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Effectiveness of the boosting function. This subsection empirically tests the effective-
ness of the boosting function in our algorithm. TheoPouLa without the boosting function
is given by

H
(i)
λ,c(θ, x) =

G(i)(θ, x)

1 +
√
λ|G(i)(θ, x)|

+ η
θ(i)|θ|2r

1 +
√
λ|θ|2r

. (13)

Indeed, this is a special case of TheoPouLa with ε = ∞. We train VGG11, ResNet34 and
DenseNet121 on CIFAR-10 and CIFAR-100 using TheoPoula without the boosting func-
tion. We use the hyperparameters as the best hyperparameters of TheoPouLa in Section 3.2.
Table 8 clearly shows that the performance of TheoPouLa without the boosting function de-
teriorates, confirming that the addition of the boosting function brings meaningful increase
in test accuracy.

Table 8: The best accuracy for VGG11, ResNet34 and DenseNet121 on CIFAR-10 and
CIFAR-100 obtained from TheoPouLa with/without the boosting function.

dataset CIFAR-10 CIFAR-100

model VGG ResNet DenseNet VGG ResNet DenseNet

TheoPouLa 92.30 95.43 95.66 70.31 77.60 79.90

TheoPouLa (ε = ∞) 91.48 94.31 94.22 68.11 75.91 77.99

4. Overview of the Proofs

This section provides an overview of the proofs of Theorem 7, Corollary 8 and Theorem 9.
In Section 4.1, we introduce suitable Lyapunov functions and auxiliary processes, which are
necessary to analyze the convergence of TheoPouLa. Then, necessary momentum bound
for the auxiliary processes are estimated. Lastly, the proofs of main results can be found in
Section 4.3.

4.1 Auxiliary processes.

For each p ≥ 1, define the Lyapunov function Vp by, for all θ ∈ Rd,

Vp(θ) := (1 + |θ|2)
p
2 , (14)

and similarly, define vp(x) = (1 + x2)
p
2 for x ≥ 0. Both functions are continuously differen-

tiable and lim|θ|→∞∇Vp(θ)/Vp(θ) = 0. Also, denote by Zλt := Zλt, t ∈ R+, the time-changed
Langevin dynamics of (7) given by

dZλt = −λh(Zλt )dt+
√

2λβ−1dBλ
t , (15)

with t > 0, Z0 := θ0, where Bλ
t := Bλt/

√
λ is a d-dimensional standard Brownian mo-

tion. We then consider the continuous-time interpolation of the TheoPouLa algorithm (8),
denoted by (θ̄λt )t∈R+ as

dθ̄λt = −λHλ

(
θ̄λ⌊t⌋, X⌈t⌉

)
dt+

√
2λβ−1dBλ

t (16)
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with the initial condition θ̄λ0 = θ0. Here, ⌊x⌋ denotes the integer part of a positive real
x and ⌈x⌉ := ⌊x⌋ + 1. Due to the construction of (16), the law of interpolated process is
equivalent to the law of the TheoPouLa algorithm at grid points, i.e., L(θ̄λn) = L(θλn), for
all n ∈ N0.

Furthermore, define the continuous-time process ζs,v,λt , t ≥ s which is the solution to the
following SDE:

dζs,v,λt = −λh
(
ζs,v,λt

)
dt+

√
2λβ−1dBλ

t , (17)

with the initial condition ζs,v,λs := v ∈ Rd.

Definition 11. For each fixed λ > 0 and n ∈ N0, define ζ̄
λ,n
t := ζ

nT,θ̄λnT ,λ
t , t ≥ nT where

T = ⌊1/λ⌋ and ζs,v,λt is given in (17).

4.2 Primary estimates

We provide moment estimates for (θλn)n≥1 in the following two lemmas. Recall that λmax is
defined in (10).

Lemma 12. Let Assumption 1 and 2 hold. Then there exists M0 > 0 such that ,for
0 < λ ≤ λmax, n ∈ N0,

E|θλn+1|2 ≤
(

1 − η

2

√
λ

)n
E|θ0|2 +

[
5M2

0 +
4d

η

(
β−1 + 4

)
+

8
√
dM0

η
+ 4ηM2

0

]
,

and

sup
n

E|θλn+1|2 ≤E|θ0|2 +

[
5M2

0 +
4d

η

(
β−1 + 4

)
+

8
√
dM0

η
+ 4ηM2

0

]
.

Proof. See Appendix B.

Lemma 13. Let Assumption 1 and 2 hold. Then, one obtains that, for all 0 < λ < λmax),
n ∈ N0, p ∈ [1, 8(2r + 1)],

E|θλn+1|2p ≤ (1 − η2λ)nE|θλ0 |2p +
Ap
η2
,

and

sup
n∈N

E|θλn+1|2p ≤ E|θλ0 |2p +
Ap
η2
,

where Ap is given in Table 9.

Proof. See Appendix B.

Using Lemma 12 and Lemma 13, one can establish the fourth moment bounds for
(θ̄λt )t≥nT and (ζ̄λ,nt )t≥nT . To this end, we introduce a drift condition for the Lyapunov
function, which is stated in the following lemma.
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Lemma 14. Let Assumption 1 and 2 hold. Then, one obtains, for any p ∈ [2,∞) ∩ N,
θ ∈ Rd,

∇Vp(θ)
β

− ⟨∇Vp(θ), h(θ)⟩ ≤ −c̄(p)Vp(θ) + c̃(p),

where c̄(p) = Ap/4, c̃(p) = (3/4)Apvp(M̄p), M̄p = (1/3 + 4B/(3A) + 4d/(3Aβ) + 4(p −
2)/(3Aβ))1/2, and A, B are explicitly given in Remark 3.

Proof. See (Chau et al., 2019, Lemma 3.5).

Lemma 15. Let Assumption 1 and 2 hold. Then, one obtains, for n ∈ N0, 0 < λ ≤ λmax,

E[V4(θ̄
λ
nT )] ≤ 2E|θ0|4 + 2 + 2

A2

η2
,

where A2 is given in Table 9.

Proof. From the definition of the Lyapunov function Vm given in (14) and Lemma 13, we
have

E[V4(θ̄
λ
nT )] = E[(1 + |θ̄λnT |2)2]

≤ 2 + 2E|θ̄λnT |4

≤ 2 + 2E|θ0|4 + 2
A2

η2
.

Lemma 16. Let Assumption 1 and 2 hold. Then, one obtains that, for n ∈ N0, 0 < λ ≤
λmax, t ∈ (nT, (n+ 1)T ],

E[V4(ζ̄
λ,n
t )] ≤ 2E|θ0|4 + 2 +

2A2

η2
+
c̃(4)

c̄(4)
,

where c̄(4), c̃(4), A2 are given in Table 9.

Proof. See Appendix B.

Denote by PV2(Rd) the subset of P(Rd) such that µ ∈ PV2(Rd) satisfies
∫
Rd V2(θ)µ(dθ) <

∞. Moreover, we consider the following functional, for all p ≥ 1, µ, ν ∈ PV2(Rd),

w1,2(µ, ν) := inf
ζ∈C(µ,ν)

∫
Rd

∫
Rd

[
1 ∧ |θ − θ|′

] [(
1 + V2(θ) + V2

(
θ′
))
ζ
(
dθdθ′

)
, (18)

where C(µ, ν) is defined in (3). For any µ, ν ∈ PV2(Rd), the following inequalities hold:

W1(µ, ν) ≤ w1,2(µ, ν), W2(µ, ν) ≤
√

2w1,2(µ, ν). (19)

The following lemma states the contraction property of the Langevin SDE (15) in w1,2,
which is a key result of our analysis.
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Lemma 17. Let Assumption 1 and 2 hold. Let Z ′
t, t ∈ R+ be the solution of the Langevin

SDE (7) with initial condition Z ′
0 = θ′0 which is independent of G∞ and |θ′0| ∈ L2. Then,

one obtains
w1,2

(
L(Zλt ),L(Z ′

t)
)
≤ ĉe−C0tw1,2

(
L (θ0) ,L

(
θ′0
))

where w1,2 is given in (18). The constant C0 is given by

C0 := min{ϕ̄, c̄(2), 4c̃(2)c̄(2)ϵ}/2,

where c̄(2) = A/2, c̃(2) = (3/2)Av2(M̄2), M̄2 = (1/3+4B/(3A)+4d/(3Aβ))1/2, ϕ̄ is defined
by

ϕ̄ =

(√
8βπ/LRċ0 exp

{(
ċ0
√
βLR/8 +

√
8/(βLR)

)2})−1

,

where LR is defined in Proposition 4, and ϵ is chosen such that the following inequality is
satisfied

ϵ ≤ 1 ∧
(

4c̃(2)
√

2βπ/LR

∫ ċ1

0
exp

{(
s
√
βLR/8 +

√
8/(βLR)

)2}
ds

)−1

,

with ċ0 = 2 (4c̃(2)(1 + c̄(2))/c̄(2) − 1)1/2 and ċ1 = 2 (c̃(2)/c̄(2) − 1)1/2. Moreover, the con-
stant ĉ is given by

ĉ = 2(1 + ċ0) exp(βLRċ
2
0/8 + 2ċ0)/ϵ.

Proof. See (Chau et al., 2019, Proposition 3.14).

We are now able to provide non-asymptotic bounds in the Wasserstein distances be-

tween the Auxiliary processes, namely W2

(
L(θ̄λt ),L(ζ̄λ,mt )

)
, W1

(
L(ζ̄λ,mt ),L(Zλt )

)
, and

W2

(
L(ζ̄λ,mt ),L(Zλt )

)
. These results are key components to derive our main results.

Lemma 18. Let Assumptions 1 and 2 hold. Then, one obtains, for all 0 < λ ≤ λmax,
n ∈ N0, t ∈ (nT, (n+ 1)T ],

W2

(
L(θ̄λt ),L(ζ̄λ,nt )

)
≤

√
λ
√
e3LR(C̄1 + C̄2 + C̄3)

where the constants C̄1, C̄2, C̄3 are given explicitly in Table 9, and LR is given in Proposi-
tion 4.

Proof. See Appendix B.

Lemma 19. Let Assumptions 1 and 2 hold. Then, one obtains, for all 0 < λ ≤ λmax,
n ∈ N0, t ∈ (nT, (n+ 1)T ],

W1

(
L(ζ̄λ,nt ),L(Zλt )

)
≤

√
λz1

where z1 is given explicitly in Table 9.

Proof. See Appendix B.
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Lemma 20. Let Assumptions 1 and 2 hold. Then, one obtains, for all 0 < λ ≤ λmax,
n ∈ N0, t ∈ (nT, (n+ 1)T ],

W2

(
L
(
ζ̄λ,nt

)
,L
(
Zλt

))
≤ λ

1
4 z2

where z2 is given explicitly in Table 9.

Proof. See Appendix B.

4.3 Proofs of main results

To derive non-asymptotic upper bounds for W1

(
L(θλt ), πβ

)
and W2

(
L(θλt ), πβ

)
, we consider

the following decomposition in terms of the auxiliary processes θ̄λt , ζ̄λ,nt , and Zλt as follows:

Wj

(
L(θλt ), πβ

)
≤Wj

(
L(θ̄λt ),L(ζ̄λ,nt )

)
+Wj

(
L(ζ̄λ,nt ),L

(
Zλt

))
+Wj

(
L(Zλt ), πβ

)
,

for j = 1, 2.

Proof of Theorem 7. Observe that W1

(
L(θλn),L(Zλt )

)
is decomposed as follows: for all

t ∈ (nT, (n+ 1)T ], n ∈ N0, 0 < λ ≤ λmax,

W1

(
L(θ̄λt ), πβ

)
≤W1

(
L(θ̄λt ),L(Zλt )

)
+W1

(
L(Zλt ), πβ

)
. (20)

Then, from the results of Lemma 18 and 19, the first term in (20) is estimated by, for
t ∈ (nT, (n+ 1)T ], 0 < λ ≤ λmax, n ∈ N0,

W1

(
L(θ̄λt ),L(Zλt )

)
≤ W1

(
L(θ̄λt ),L(ζ̄λ,nt )

)
+W1

(
L(ζ̄λ,nt ),L(Zλt )

)
≤ W2

(
L(θ̄λt ),L(ζ̄λ,nt )

)
+W1

(
L(ζ̄λ,nt ),L(Zλt )

)
≤

√
λ(
√
e3LR(C̄1 + C̄2 + C̄3) + z1)

≤ C1

√
λ, (21)

where C1 :=
√
e3LR(C̄1 + C̄2 + C̄3) + z1.

Consequently, using (21), (19), and Lemma 17, we derive, for t ∈ (nT, (n + 1)T ], 0 <
λ ≤ λmax, n ∈ N0,

W1

(
L(θ̄λt ), πβ

)
≤

√
λ(
√
e3LR(C̄1 + C̄2 + C̄3) + z1) + w1,2

(
L(Zλt ), πβ

)
≤

√
λ(
√
e3LR(C̄1 + C̄2 + C̄3) + z1) + ĉe−C0λtw1,2(θ0, πβ)

≤
√
λ(
√
e3LR(C̄1 + C̄2 + C̄3) + z1)

+ ĉe−C0λt

[
1 + E[V2(θ0)] +

∫
Rd

V2(θ)πβ(dθ)

]
≤ C1

√
λ+ C2e

−C0n,
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where C2 := ĉ

(
1 + E[V2(θ0)] +

∫
Rd V2(θ)πβ(dθ)

)
, which yields that, for all n ∈ N0,

W1

(
L(θ̄λnT ), πβ

)
≤ C1

√
λ+ C2e

−C0n.

By setting nT to n and noticing that nλ ≤ n/T in the above inequality, we obtain the
desired result.

Proof of Corollary 8. Similar to the proof of Theorem 7, we consider the following de-
composition: for t ∈ (nT, (n+ 1)T ], 0 < λ ≤ λmax, n ∈ N0,

W2

(
L(θλt ), πβ

)
≤W2

(
L(θ̄λt ),L(ζ̄λ,nn )

)
+W2

(
L(ζ̄λ,nt ),L(Zλt )

)
+W2

(
L(Zλt ), πβ

)
.

Then, using Lemma 18, Lemma 20 and (19), one further obtains that

W2

(
L(θλt ), πβ

)
≤
√
e3LR(C̄1 + C̄2 + C̄3)

√
λ+ z2λ

1
4 +

√
2w1,2(L(Zλt ), πβ),

which yields from Lemma 17

W2

(
L(θλt ), πβ

)
≤

(√
e3a(C̄1 + C̄2 + C̄3) + z2

)
λ

1
4

+
√

2ĉe−C0λt/2

(
1 + E [V2 (θ0)] +

∫
Rd

V2(θ)πβ(dθ)

)1/2

≤ C3λ
1
4 + C4e

−C5n

where

C3 :=
√
e3a(C̄1 + C̄2 + C̄3) + z2,

C4 :=
√

2ĉ

(
1 + E [V2 (θ0)] +

∫
Rd

V2(θ)πβ(dθ)

)1/2

,

C5 =
C0

2
.

Therefore, we have for m ∈ N0, 0 < λ < λmax,

W2

(
L(θλmT ), πβ

)
≤ C3λ

1
4 + C4e

−C5m,

and by setting n = mT and using −λm ≤ −λn/T ≤ −nλ, we complete the proof.

Proof of Theorem 9. We begin by decomposing expected excess risk (11) as follows:

E[u(θλn)] − u(θ∗) ≤ E[u(θλn)] − E[u(Z∞)] + E[u(Z∞)] − u(θ∗) (22)

where Z∞ follows the target invariant measure πβ, i.e., L(Z∞) = πβ. Let us focus on
estimating the first part, E[u(θλn)] − E[u(Z∞)]. Due to Remark 2, it follows that

|∇u(θ)| = |h(θ)| ≤ (22rE[K(X0)] + η)(1 + |θ|2r+1)

≤ r1(1 + |θ|2r+1),
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where r1 := 22rE[K(X0)] + η. Then, one calculates that, for all θ, θ ∈ Rd,

u(θ) − u(θ′) =

∫ 1

0
⟨∇u(tθ + (1 − t)θ′), θ − θ′⟩dt

≤
∫ 1

0

(
r1 + r12

2r(t2r+1|θ|2r+1 + (1 − t)2r+1|θ′|2r+1)

)
dt|θ − θ′|

≤
(
r1 +

r12
2r

2r + 2
|θ|2r+1 +

r12
2r

2r + 2
|θ′|2r+1

)
|θ − θ′|. (23)

Let P denote the coupling between µ and ν that achieves W2(µ, ν) with µ = L(θλn) and ν =
L(Z∞), i.e., W 2

2

(
L(θλn),L(Z∞)

)
= EP

[
|θλn − Z∞|2

]
. By using (23) and Cauchy-Schwarz

inequality, we obtain

E[u(θλn)] − E[u(Z∞)] = EP[u(θλn) − u(Z∞)]

≤ EP

[(
r1 +

r12
2r

2r + 2
|θλn|2r+1 +

r12
2r

2r + 2
|Z∞|2r+1

)
|θλn − Z∞|

]
≤
(
r1 +

r12
2r

2r + 2

√
E|θλn|4r+2 +

r12
2r

2r + 2

√
E|Z∞|4r+2

)
W2

(
L(θλn), πβ

)
≤
(
r1 +

r12
2r

2r + 2

√
E|θλ0 |4r+2 +

A2r+1

η2
+

r12
2r

2r + 2

√
E|Z∞|4r+2

)
×W2

(
L(θλn), πβ

)
≤ C6W2

(
L(θλn), πβ

)
(24)

where we have used Lemma 13 for the last inequality and the constant C6 is given by

C6 := r1 +
r12

2r

2r + 2

√
E|θλ0 |4r+2 +

A2r+1

η2
+

r12
2r

2r + 2

√
E|Z∞|4r+2.

We take a similar approach in Raginsky et al. (2017) to estimate the second term in the
RHS of (22). From Equation (3.18), (3.20) in Raginsky et al. (2017), we obtain

Eu(Z∞) − u(θ∗) ≤ 1

β

(
−
∫
Rd

e−βu(θ)

Λ
log

e−βu(θ)

Λ
dθ − log Λ

)
− u∗

≤ d

2β
log

(
2πe(B + d/β)

Ad

)
− log Λ

β
− u∗ (25)

where Λ =
∫
Rd e

−βu(θ)dθ is the normalizing constant.
Using (6), we obtain

⟨θ∗, h(θ∗)⟩ ≥ A|θ∗|2 −B

which yields

|θ∗|2 ≤
√
B

A
.
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Moreover, for w ∈ Rd, we have

u(θ∗) − u(w) =

∫ 1

0
⟨∇u(w + t(θ∗ − w)), θ∗ − w⟩dt

=

∫ 1

0
⟨∇u(w + t(θ∗ − w)) −∇u(θ∗), θ∗ − w⟩dt

=

∫ 1

0

1

t− 1
⟨∇u(w + t(θ∗ − w)) −∇u(θ∗), w − θ∗ + t(θ∗ − w)⟩dt.

From Remark 6, we further obtain

−β(u(θ∗) − u(w)) = β|u(θ∗) − u(w)|

≤ β

∫ 1

0

1

t− 1
|⟨h(w + t(θ∗ − w)) − h(θ∗), w − θ∗ + t(θ∗ − w)⟩|dt

≤ βLh

∫ 1

0
(1 + |w + t(θ∗ − w)| + |θ∗|)2r+1(1 − t)|w − θ∗|2dt

≤ βLh

∫ 1

0
(1 + |w| + |θ∗ − w| + |θ∗|)2r+1(1 − t)|w − θ∗|2dt

= βLh(1 + 2|θ∗| + 2|θ∗ − w|)2r+1 |w − θ∗|2

2

where we have used the elementary inequality 0 ≤ |w|−|θ∗| ≤ |θ∗−w| for the last inequality.

Define R0 := max{
√
B/A,

√
2d/(βLh)} and Br(p) = {x ∈ Rd||x− p| > r}. Then, from

the above inequality, one further calculates

log Λ

β
= −u(θ∗) +

1

β
log

∫
Rd

eβ(u(θ
∗)−u(w))dw

≥ −u(θ∗) +
1

β
log

∫
Rd

e−βLh(1+2|θ∗|+2|θ∗−w|)2r+1 |w−θ∗|2
2 dw

≥ −u(θ∗) +
1

β
log

∫
BR0

(θ∗)
e−βLh(1+4R0)2r+1 |w−θ∗|2

2 dw

= −u(θ∗) +
1

β
log

[(
2π

βK

)d/2 ∫
BR0

(θ∗)
fX(w)dw

]

≥ −u(θ∗) +
1

β
log

(
1

2

(
2π

Kβ

)d/2)
(26)

where K = Lh(1+4R0)
2r+1 and fX is the density function of a multivariate normal variable

X with mean θ∗ and covariance 1
Kβ Id. Here, the last inequality is obtained from the
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following inequality:∫
BR0

(θ∗)
fX(w)dw = P (|X − θ∗| > R0)

= P

(
|X − θ∗| >

√
KβR2

0

d

√
d

Kβ

)
≤ d

KβR2
0

≤ 1

2(1 + 4R0)2r+1

≤ 1

2
.

Combining (25) and (26), we derive

Eu(Z∞) − u(θ∗) ≤ d

2β
log

(
2πe(B + d/β)

Ad

)
− 1

β
log

(
1

2

(
2π

Kβ

)d/2)
≤ 1

β

[
d

2
log

(
Ke

A

(
B

d
β + 1

))
+ log 2

]
. (27)

Consequently, from (24) and (27), we derive

Eu(θλn) − u(θ∗) ≤ C6W2(L(θλn, πβ))

+
d

2
log

(
Ke

A

(
B

d
β + 1

))
+ log 2.

5. Conclusion and Discussion

This paper begins with an example which illustrates that local Lipschitz continuous gradi-
ents can cause serious convergence issues for popular adaptive optimization methods. Such
issues manifest themselves as vanishing/exploding gradient phenomena. It proceeds by
proposing a novel optimization framework, which is suitable for the fine tuning of neural
network models by combining elements of the theory of Langevin SDEs, tamed algorithms
and carefully designed boosting functions that handle sparse and super-linearly growing gra-
dients. Further, a detailed convergence analysis of the newly proposed algorithm TheoPouLa
is provided along with full theoretical guarantees for obtaining the best known convergence
rates. Our experiments confirm that TheoPouLa outperforms other popular stochastic op-
timization methods.

We believe that this work opens a new door for stochastic (adaptive) optimization meth-
ods beyond the popular ADAM-type framework. Also, there is much room for improvement
of our novel framework. For example, the improved performance can be further achieved by
identifying more efficient taming and boosting functions, which demonstrates the potential
of our framework.

27



Lim and Sabanis

Acknowledgments

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Sk lodowska-Curie grant agreement No 801215 and
the University of Edinburgh Data-Driven Innovation programme, part of the Edinburgh
and South East Scotland City Region Deal.

28



Polygonal Unadjusted Langevin Algorithms

A. Auxiliary Results

This section introduces some auxiliary results and their proofs, which are useful to obtain
the main results.

Proof of Remark 2. By Assumption 2, it follows that for all θ ∈ Rd, x ∈ Rm,

|G(θ, x)| ≤ LG(1 + |x|)ρ(1 + |θ|)q−1|θ| + |G(0, x)|
≤ LG(1 + |x|)ρ(1 + |θ|)q + |G(0, x)|(1 + |θ|)q

≤ KG(x)(1 + |θ|)q,

where KG(x) = LG(1 + |x|)ρ + |G(0, x)|.

Proof of Remark 3. From the definition of H in (5), one obtains, for all θ ∈ Rd,

⟨θ, h(θ)⟩ = ⟨θ, E[G(θ,X0)]⟩ + ⟨θ, ηθ|θ|2r⟩
≥ η|θ|2r+2 − 2qE[KG(X0)](1 + |θ|q+1)

≥ η|θ|2r+2 − 2qE[1 +KG(X0)](1 + |θ|q+1). (28)

To prove (6), we want to show

η|θ|2r+2 +B ≥ A|θ|2 + 2qE[1 +KG(X0)](1 + |θ|q+1),

for A = 2qE[1 +KG(X0)], B = 3(2q+1E[1 +KG(X0)])
q+2/ηq+1.

One first observes that, for |θ| ≥ 2A/η > 1 with η ∈ (0, 1) and r ≥ q/2 ≥ 1/2,

η|θ|2r+2 +B ≥ η

2
|θ|3 +

η

2
|θ|q+2 +

3(2q+1E[1 +KG(X0)])
q+2

ηq+1

≥ 2qE[1 +KG(X0)]|θ|2 + 2qE[1 +KG(X0)]|θ|q+1 + 2qE[1 +KG(X0)]

≥ A|θ|2 + 2qE[1 +KG(X0)](1 + |θ|q+1) (29)

Similarly, one can check that, for |θ| < 2A/η,

η|θ|2r+2 +B ≥ 3(2q+1E[1 +KG(X0)])
q+2

ηq+1

≥ η

(
2q+1E[1 +KG(X0)]

η

)3

+ η

(
2q+1E[1 +KG(X0)]

η

)q+2

+ 2qE[1 +KG(X0)]

≥ 2q+1E[1 +KG(X0)]|θ|2 + 2q+1E[1 +KG(X0)]|θ|q+1 + 2qE[1 +KG(X0)]

≥ A|θ|2 + 2qE[1 +KG(X0)](1 + |θ|q+1) (30)

Therefore, using (28), (29), and (30), we have for all θ ∈ Rd

⟨θ, h(θ)⟩ ≥ η|θ|2r+2 − 2qE[1 +KG(X0)](1 + |θ|q+1)

≥ A|θ|2 −B

where A = 2qE[1 +KG(X0)], B = 3(2q+1E[1 +KG(X0)])
q+2/ηq+1.
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Remark 21. Let Assumption 2 holds and recall that the definitions of H and Hλ,c are given
in (5) and (9), respectively. Then, one obtains that, for all θ ∈ Rd, x ∈ Rm, i = 1, . . . , d,

|H(i)(θ, x) −H
(i)
λ,c(θ, x)| ≤

(
|G(i)(θ, x)|2 + 1 + η|θ(i)||θ|2r

)√
λ. (31)

Moreover, it follows that, for all θ ∈ Rd, x ∈ Rm,

|H(θ, x) −Hλ,c(θ, x)|2 ≤ 9

[
8|KG(x)|4(1 + |θ|4q) + d+ η2|θ|4r+2

]
λ. (32)

Proof of Remark 21. Recall the expressions of H and Hλ,c in (5) and (9), respectively.

The difference between the H(i) and H
(i)
λ,c can be estimated by, for i = 1, . . . , d,

|H(i)(θ, x) −H
(i)
λ,c(θ, x)| ≤

∣∣∣∣G(i)(θ, x) − G(i)(θ, x)

1 +
√
λ|G(i)(θ, x)|

(
1 +

√
λ

ε+ |G(i)(θ, x)|

)∣∣∣∣
+

∣∣∣∣ηθ(i)|θ|2r − η
θ(i)|θ|2r

1 +
√
λ|θ|2r

∣∣∣∣
≤ |G(i)(θ, x)|

√
λ|G(i)(θ, x)|

1 +
√
λ|G(i)(θ, x)|

+

√
λ|G(i)(θ, x)|

(1 +
√
λ|G(i)(θ, x)|)(ε+ |G(i)(θ, x)|)

+ η|θ(i)||θ|2r
∣∣∣∣

√
λ|θ|2r

1 +
√
λ|θ|2r

∣∣∣∣
≤

√
λ|G(i)(θ, x)|2 +

√
λ+

√
λη|θ(i)||θ|2r.

By Remark 2 and Cauchy-Schwarz inequality, the above estimate further yields that

|H(θ, x) −Hλ,c(θ, x)|2 =
d∑
i=1

(√
λ|G(i)(θ, x)|2 +

√
λ+

√
λη|θ(i)||θ|2r

)2

≤ 9λ
d∑
i=1

[
|G(i)(θ, x)|4 + 1 + η2|θ(i)|2|θ|4r

]

≤ 9λ

[( d∑
i=1

|G(i)(θ, x)|2
)2

+ d+ η2|θ|8r+2

]
≤ 9λ

[
|G(θ, x)|4 + d+ η2|θ|4r+2

]
≤ 9λ

[
8|KG(x)|4(1 + |θ|4q) + d+ η2|θ|4r+2

]
.
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Remark 22. Let Assumption 2 holds and recall that the definitions of H and Hλ,c are
given in (5) and (9), respectively. Then, the growth of H can be estimated as follows: for
all θ ∈ Rd, x ∈ Rm,

|H(θ, x)|2 ≤ 4|KG(x)|2(1 + |θ|2q) + 2η2|θ|4r+2.

Moreover, one obtains, for all θ ∈ Rd, x ∈ Rm,

|Hλ,c(θ, x)|2 ≤ 18|KG(x)|2(1 + |θ|2q) + 9λd+ 9η2|θ|4r+2.

Proof of Remark 22. By Remark 2, one calculates that, for all θ ∈ Rd and x ∈ Rm,

|H(θ, x)|2 = |G(θ, x) + ηθ|θ|2r|2 ≤ 2|G(θ, x)|2 + 2η2|θ|4r+2

≤ 4|KG(x)|2(1 + |θ|2q) + 2η2|θ|4r+2,

and

|Hλ,c(θ, x)|2 =
d∑
i=1

(
G(i)(θ, x)

1 +
√
λ|G(i)(θ, x)|

(
1 +

√
λ

ε+ |G(i)(θ, x)|

)
+ η

θ(i)|θ|2r

1 +
√
λ|θ|2r

)2

≤
d∑
i=1

(
|G(i)(θ, x)|

1 +
√
λ|G(i)(θ, x)|

+

√
λ|G(i)(θ, x)|

(1 +
√
λ|G(i)(θ, x)|)(ε+ |G(i)(θ, x)|)

+ η
|θ(i)||θ|2r

1 +
√
λ|θ|2r

)2

≤
d∑
i=1

(
|G(i)(θ, x)| +

√
λ+ η|θ(i)||θ|2r

)2

≤ 9

d∑
i=1

(
|G(i)(θ, x)|2 + λ+ η2|θ(i)|2|θ|4r

)
≤ 9

(
|G(θ, x)|2 + λd+ η2|θ|4r+2

)
≤ 18|KG(x)|2(1 + |θ|2q) + 9λd+ 9η2|θ|4r+2.

B. Proofs of Lemmas in Appendix 4

Proof of Lemma 12. For each i = 1, . . . , d and fixed ε > 0, define

Ĝ
(i)
λ,c(θ, x) =

G(i)(θ, x)

1 +
√
λ|G(i)(θ, x)|

(
1 +

√
λ

ε+ |G(i)(θ, x)|

)
,
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for all θ ∈ Rd, x ∈ Rm, 0 < λ ≤ λmax. Denote by θ(i) the i-th component of θ ∈ Rd for
i = 1, . . . , d. One then observes that, for all θ ∈ Rd, x ∈ Rm, i = 1, . . . , d,

|Ĝ(i)
λ,c(θ, x)| =

|G(i)(θ, x)|
1 +

√
λ|G(i)(θ, x)|

+
√
λ

|G(i)(θ, x)|
(1 +

√
λ|G(i)(θ, x)|)(ε+ |G(i)(θ, x)|)

≤ 1√
λ

+
√
λ

|G(i)(θ, x)|/ε
1 + |G(i)(θ, x)|/ε

≤ 1√
λ

+
√
λ. (33)

By using Cauchy-Schwartz inequality and (33), one can further calculate that for all θ ∈ Rd,
x ∈ Rm,

⟨θ, Hλ,c(θ, x)⟩ =
d∑
i=1

θ(i) · Ĝ(i)
λ,c(θ, x) + η

|θ|2r+2

1 +
√
λ|θ|2r

≥
d∑
i=1

|θ(i)|
(
− 1√

λ
−
√
λ

)
+ η

|θ|2r+2

1 +
√
λ|θ|2r

≥ −
(

1√
λ

+
√
λ

)√
d|θ| + η

|θ|2r+2

1 +
√
λ|θ|2r

, (34)

which implies that

− 2λ

|θλn|2
E
[
⟨θλn, Hλ,c(θ

λ
n, Xn+1)⟩

∣∣∣∣θλn] ≤ 2
√
d

|θλn|

(√
λ+ λ

3
2

)
− 2ηλ|θλn|2r

1 +
√
λ|θλn|2r

. (35)

Moreover, using (33), it is shown that, for all θ ∈ Rd, x ∈ Rm,

|Hλ,c(θ, x)|2 =
d∑
i=1

(
Ĝ

(i)
λ,c(θ, x) + η

θ(i)|θ|2r

1 +
√
λ|θ|2r

)2

≤
d∑
i=1

(
2|Ĝ(i)

λ,c(θ, x)|2 + 2η2
|θ(i)|2|θ|4r

(1 +
√
λ|θ|2r)2

)
≤ 4d

(
1

λ
+ λ

)
+ 2η2|θ|2 |θ|4r

(1 +
√
λ|θ|2r)2

, (36)

which yields that

λ2

|θλn|2
E
[
|Hλ,c(θ

λ
n, Xn+1)|2

∣∣∣∣θλn] ≤ 4λd
(1 + λ2)

|θλn|2
+ 2λη2. (37)
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Combining (35) and (37), one calculates that

E
[
|θλn+1|2|θλn

]
= E

[
|θλn − λHλ,c(θ

λ
n, Xn+1) +

√
2λβ−1ξn+1|2|θλn

]
= |θλn|2

(
1 − 2λ

|θλn|2
E
[
⟨θλn, Hλ,c(θ

λ
n, Xn+1)⟩

∣∣∣∣θλn]
+

λ2

|θλn|2
E
[
|Hλ,c(θ

λ
n, Xn+1)|2

∣∣∣∣θλn])+
2λd

β

≤ |θλn|2
[
1 +

2
√
d

|θλn|

(√
λ+ λ

3
2

)
− 2ηλ|θλn|2r

1 +
√
λ|θλn|2r

+ 4λd
(1 + λ2)

|θλn|2
+ 2λη2

]
+

2λd

β

= |θλn|2
(

1 − fλ(θλn)
)

+
2λd

β
, (38)

where fλ(θ) := −2
√
d

|θ|

(√
λ+ λ

3
2

)
+ 2ηλ|θ|2r

1+
√
λ|θ|2r − 4λd (1+λ2)

|θ|2 − 2λη2 for all θ ∈ Rd \0. We note

that, for all 0 < λ ≤ λmax ≤ (4η2)−1,

lim
|θ|→∞

fλ(θ) = 2η
√
λ(1 −

√
λη) ≥ η

√
λ > 0.

In addition, using the fact that f(s) := s/(1 +
√
λs) is non-decreasing for all s ≥ 0, one

can choose M0 > 0 such that

fλ(θ) ≥ η
√
λ(1 −

√
λη) ≥ η

√
λ

2
, (39)

for all θ ≥M0, 0 < λ ≥ λmax. Therefore, from (38) and (39), we have that

E
[
|θλn+1|21|θλn|≥M0

∣∣∣∣θλn] ≤ |θλn|2
(

1 − η
√
λ

2

)
+

2λd

β
. (40)

Let us consider the case of |θλn| < M0. From (34) and (36), we have for all |θ| < M0,
x ∈ Rm,

−2λ⟨θ, Hλ,c(θ, x)⟩ + λ2|Hλ,c(θ, x)|2|θ] ≤ 2

(√
λ+ λ

3
2

)√
dM0

+ 2η
√
λM2

0 + 4d(λ+ λ3) + 2η2λM2
0 .

The above estimate directly yields that, for 0 < λ ≥ λmax,

E
[
|θλn+1|21|θλn|<M0

∣∣∣∣θλn] ≤ |θλn|2 +
2λd

β
+ 2

(√
λ+ λ

3
2

)√
dM0 + 2η

√
λM2

0

+ 4d(λ+ λ3) + 2η2λM2
0

≤
(

1 − η
√
λ

2

)
|θλn|2

+
√
λ

(
2d

β
+ 4

√
dM0 +

5η

2
M2

0 + 8d+ 2η2M2
0

)
. (41)
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Consequently, (40) and (41) yield that

E
[
|θλn+1|2

∣∣∣∣θλn] ≤
(

1 − η
√
λ

2

)
|θλn|2 +

√
λ

(
2d

β
+ 4

√
dM0 +

5η

2
M2

0 + 8d+ 2η2M2
0

)
,

and

E
[
|θλn+1|2

]
≤

(
1 − η

√
λ

2

)n
E|θλ0 |2

+
√
λ

(
2d

β
+ 4

√
dM0 +

5η

2
M2

0 + 8d+ 2η2M2
0

) ∞∑
j=0

(
1 − η

√
λ

2

)j
≤

(
1 − η

√
λ

2

)n
E|θλ0 |2 +

(
4d

βη
+

8
√
dM0

η
+ 5M2

0 +
16d

η
+ 4ηM2

0

)
.

Proof of Lemma 13. For any integer p ≥ 2, n ∈ N0, |θλn+1|2p is written as

|θλn+1|2p =

(
|∆n|2 +

2λ

β
|ξn+1|2 + 2⟨∆n,

√
2λ

β
ξn+1⟩

)p

where ∆n = θλn − λHλ,c(θ
λ
n, Xn+1). Then, we obtain

E[|θλn+1|2p|θλn] = E
[(

|∆n|2 +

∣∣∣∣
√

2λ

β
ξn+1

∣∣∣∣2 + 2⟨∆n,

√
2λ

β
ξn+1⟩

)p∣∣∣∣θλn]

= E[|∆n|2p|θλn] + 2pE
[
|∆n|2p−2⟨∆n,

√
2λ

β
ξn+1⟩

∣∣∣∣θλn]

+
∑

k1+k2+k3=p
{k1 ̸=p−1}∩{k2 ̸=1}

{k1 ̸=p}

p!

k1!k2!k3!
E
[
|∆n|2k1

∣∣∣∣
√

2λ

β
ξn+1

∣∣∣∣k2

×
∣∣∣∣2⟨∆n,

√
2λ

β
ξn+1⟩

∣∣∣∣k3∣∣∣∣θλn]

≤ E[|∆n|2p|θλn] +

2p∑
k=2

(
2p
k

)
E
[
|∆n|2p−k

∣∣∣∣
√

2λ

β
ξn+1

∣∣∣∣k∣∣∣∣θλn] (42)
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where the above inequality follows from the result in (Chau et al., 2019, Lemma A.3). Using
the fact that ξn+1 is independent of ∆n and θλn, one further calculates that

E[|θλn+1|2p|θλn] ≤ E[|∆n|2p|θλn] +

2p−2∑
l=0

(
2p
l + 2

)
E
[
|∆n|2p−2−l

∣∣∣∣
√

2λ

β
ξn+1

∣∣∣∣l+2∣∣∣∣θλn]
= E[|∆n|2p|θλn]

+

2p−2∑
l=0

2p(2p− 1)

(l + 2)(l + 1)

(
2p− 2
l

)
E
[
|∆n|2p−2−l

∣∣∣∣
√

2λ

β
ξn+1

∣∣∣∣l+2∣∣∣∣θλn]
≤ E[|∆n|2p|θλn]

+ p(2p− 1)E
[(

|∆n| +

∣∣∣∣
√

2λ

β
ξn+1

∣∣∣∣
)2p−2 ∣∣∣∣

√
2λ

β
ξn+1

∣∣∣∣2∣∣∣∣θλn]
≤ E[|∆n|2p|θλn]

+ 22p−3p(2p− 1)

(
E[|∆n|2p−2|θλn]

2λd

β
+

(
2λ

β

)p
E|ξn+1|2p

)
.

Define |∆n|2 = |θλn|2+rn where rn = −2λ⟨θλn, Hλ,c(θ
λ
n, Xn+1)⟩+λ2|Hλ,c(θ

λ
n, Xn+1)|2 to write

E
[
|∆n|2p|θλn

]
=

p∑
k=0

(
p
k

)
|θλn|2(p−k)E

[
rkn|θλn

]
= |θλn|2p + p|θλn|2p−2E

[
rn|θλn

]
+

p∑
k=2

(
p
k

)
|θλn|2(p−k)E

[
rkn|θλn

]
. (43)

Now, we focus on the case where |θλn| > M where

M := max

{
M0, 1,

4d

(2 − η)η
,

2
√
d

η(2 − η)
,

22p−2p(2p− 1)d

ηβ

}
.

Recall that M0 is defined in the proof of Lemma 12. We need the following relations to
estimate the moments of rn: for all x ∈ Rd, 0 < λ ≤ λmax, 0 < η < 1, |θ| ≥M ,

λ2|Hλ,c(θ, x)|2 ≤ 4d(λ+ λ3) + 2η2λ|θ|2 λ|θ|4r

(1 +
√
λ|θ|2r)2

≤ 4dλ(1 + λ2) + 2η2λ|θ|2

≤ 4dλ(1 + λ2)|θ| + 2η2λ|θ|2

≤ 2
√
λη

(
4d

|θ|η
+ η

)
|θ|2

≤ 2
√
λη

(
4d

Mη
+ η

)
|θ|2

≤ 4
√
λη|θ|2, (44)

where we have used the inequality (36) and

M >
4d

(2 − η)η
⇔
(

4d

Mη
+ η

)
< 2.
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Notice that 4d
(2−η)η is finite due to λmax being less than 1

4η2
. Moreover, from (34), we have

the following inequality, for 0 < λ ≤ λmax,

|2λ⟨θ, Hλ,c(θ, x)⟩| ≤ 2(
√
λ+ λ1.5)

√
d|θ| + 2η

√
λ|θ|2

√
λ|θ|2r

1 +
√
λ|θ|2r

≤ 2
√
λ(1 + λ)

√
d|θ| + 2η

√
λ|θ|2

≤ 2
√
λη

(
2
√
d

|θ|η
+ η

)
|θ|2

≤ 2
√
λη

(
2
√
d

Mη
+ η

)
|θ|2

≤ 4
√
λη|θ|2, (45)

where the last inequality holds since

M >
2
√
d

η(2 − η)
⇔
(

2
√
d

Mη
+ η

)
≤ 2.

Thus, rkn can be written as

E[1{|θλn|>M}|rn|k|θλn] = E
[
1{|θλn|>M}

(
− 2λ⟨θλn, Hλ,c(θ

λ
n, Xn+1)⟩

+ λ2|Hλ,c(θ
λ
n, Xn+1)|2

)k∣∣∣∣θλn]
≤ E

[
1{|θλn|>M}

(
|2λ⟨θλn, Hλ,c(θ

λ
n, Xn+1)⟩|

+ λ2|Hλ,c(θ
λ
n, Xn+1)|2

)k∣∣∣∣θλn]
≤ E

[
1{|θλn|>M}(8

√
λη|θλn|2)k

∣∣∣∣θλn]
≤ λ

k
2 (8η)k|θλn|2k.

Moreover, (39) implies that

E[1{|θλn|>M}rn|θλn] ≤ −η
√
λ

2
|θλn|2,

or, equivalently,

p|θλn|2p−2E[1{|θλn|>M}rn|θλn] ≤ −pη
√
λ

2
|θλn|2p. (46)
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Using (46), the L2p-norm of ∆n conditional on θλn > M is given by

E
[
1{|θλn|>M}|∆n|2p

∣∣∣∣θλn] ≤ |θλn|2p + p|θλn|2p−2E[1{θλn>M}rn|θλn]

+

p∑
k=2

(
p
k

)
|θλn|2(p−k)E[1{θλn>M}|rn|k|θλn]

≤ |θλn|2p − p
η
√
λ

2
|θλn|2p +

p∑
k=2

(
p
k

)
|θλn|2(p−k)λ

k
2 (8η)k|θλn|2k

≤ |θλn|2p − p
η
√
λ

2
|θλn|2p + |θλn|2p

p∑
k=2

(
p
k

)
λ

k
2 (8η)k. (47)

Moreover, it follows that, for 0 < λ ≤ λmax,

λ ≤ 1

(27ηpC⌈ p
2⌉)2

=
1

28(8η)2pC2
⌈ p

2⌉
≤ 1

2
8

k−1 (8η)2(pC2
⌈ p

2⌉
)

2
k−1

,

which is equivalent to

λ
k−1
2 ≤ 1

24(8η)k−1
pC⌈ p

2⌉

=
η

2(8η)kpC⌈ p
2⌉
,

for all k ∈ [2, p] ∩ N. Then, one observes the following inequality

p∑
k=2

pCkλ
k
2 (8η)k ≤

p∑
k=2

pC⌈ p
2⌉λ

k
2 (8η)k

≤ 1

2

p∑
k=2

√
λη

=
p− 2

2

√
λη,

to obtain

E
[
1{|θλn|>M}|∆n|2p

∣∣∣∣θλn] ≤ (1 − η
√
λ)|θλn|2p, (48)

and

E
[
1{|θλn|>M}|∆n|2p−2

∣∣∣∣θλn] ≤ (1 − η
√
λ)|θλn|2(p−2) ≤ 1

M2
(1 − η

√
λ)|θλn|2p. (49)
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By combining (42), (49) and (48), we derive

E[1{|θλn|>M}|θλn+1|2p|θλn] ≤ (1 − η
√
λ)|θλn|2p

+
22p−2p(2p− 1)λd

M2β
(1 − η

√
λ)|θλn|2p

+ 22p−3p(2p− 1)

(
2λ

β

)p
E|ξn+1|2p

≤ (1 − η
√
λ)

(
1 +

22p−2p(2p− 1)λd

M2β

)
|θλn|2p

+ 22p−3p(2p− 1)

(
2λ

β

)p
E|ξn+1|2p

≤ (1 − η2λ)|θλn|2p + 22p−3p(2p− 1)

(
2λ

β

)p
E|ξn+1|2p, (50)

where we used the fact that M ≥ 22p−2p(2p−1)d
ηβ for the last inequality.

Consider the case of |θλn| ≤M . By observing that from (36)

1{|θ|≤M}λ
2|Hλ,c(θ, x)|2 ≤ λ

(
8d+ 2η2M2

)
,

and

1{|θ|≤M}|2λ⟨θ, Hλ,c(θ, x)⟩| ≤ 2λ
√

|θ|
√
|Hλ,c(θ, x)|

≤ 2λ
√
M

√
|G(θ, x)| + d

√
λ+ 2ηM2r+1

≤ 2λ
√
M

√
|KG(x)|(1 +M q) + d

√
λ+ 2ηM2r+1,

it can be shown that

E
[
1{|θλn|≤M}|rn|k

∣∣∣∣θλn] = E
[
1{|θλn|≤M}

(
|2λ⟨θλn, Hλ,c(θ

λ
n, Xn+1)⟩|

+ λ2|Hλ,c(θ
λ
n, Xn+1)|2

)k∣∣∣∣θλn]
≤ E

[
1{|θλn|≤M}

(
2λ

√
M
√
KG(Xn+1)(1 +M q) + d+ 2ηM2r+1

+ λ

(
8d+ 2η2M2

))k∣∣∣∣θλn]
≤ D̃kλ

k,

where D̃k = 2k−1

(
(2
√
M)k(E[KG(X0)](1 + M q) + d + 2ηM2r+1)k/2 + (8d + 2η2M2)k

)
.

Hence, one calculates that

E
[
1{|θλn|≤M}|∆n|2p

∣∣∣∣θλn] ≤ |θλn|2p +

p∑
k=1

(
p
k

)
|θλn|2(p−k)E[1{θλn≤M}|rn|k|θλn]

≤ (1 − η2λ)|θλn|2p + η2λM2p +M2pλ

p∑
k=1

(
p
k

)
λk−1D̃k,
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and

E
[
1{θλn≤M}|∆n|2p−2

∣∣∣∣θλn] ≤
p−1∑
k=0

(
p− 1
k

)
|θλn|2(p−1−k)E[1{|θλn|≤M}|rn|k|θλn]

≤ M2p−2
p−1∑
k=0

(
p
k

)
D̃kλ

k.

Consequently, we obtain

E[1{|θλn|≤M}|θλn+1|2p|θλn] ≤ (1 − η2λ)|θλn|2p + η2λM2p + λM2p
p∑

k=1

(
p
k

)
λk−1D̃k

+
λd

β
22p−2p(2p− 1)M2p−2

p−1∑
k=0

(
p
k

)
λkD̃k (51)

+ 22p−3p(2p− 1)

(
2λ

β

)p
E|ξn+1|2p.

By defining

Ap = η2M2p +M2p
p∑

k=1

(
p
k

)
D̃k

+ 22p−3p(2p− 1)

(
2dM2p−2

β

p−1∑
k=0

(
p
k

)
λkD̃k +

2

β

(
2

β

)p−1

dp(2p− 1)!!

)
,

we conclude that

E|θλn+1|2p ≤ (1 − η2λ)E|θλn|2p + λAp

≤ (1 − η2λ)nE|θλ0 |2p + λAp

∞∑
j=0

(1 − η2λ)j

≤ (1 − η2λ)nE|θλ0 |2p +
Ap
η2
.

Proof of Lemma 16. For p ≥ 1, 0 < λ ≤ λmax, t ∈ (nT, (n+ 1)T ], n ∈ N0, Itô’s formula
yields that

E[Vp(ζ̄
λ,n
t )] = E[Vp(θ̄

λ
nT )] +

∫ t

nT
E

[
λ

∆Vp(ζ̄
λ,n
s )

β
− λ⟨h(ζ̄λ,ns ),∇Vp(ζ̄λ,ns )⟩

]
ds

+ E
[∫ t

nT

〈
∇Vp(ζ̄λ,ns ),

√
2λβ−1 dBλ

s

〉]
= E[Vp(θ̄

λ
nT )] +

∫ t

nT
E

[
λ

∆Vp(ζ̄
λ,n
s )

β
− λ⟨h(ζ̄λ,ns ),∇Vp(ζ̄λ,ns )⟩

]
ds. (52)
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Then, differentiating both sides of (52) and applying Lemma 14, we have

d

dt
E[Vp(ζ̄

λ,n
t )] = E

[
λ

∆Vp(ζ̄
λ,n
t )

β
− λ⟨h(ζ̄λ,nt ),∇Vp(ζ̄λ,nt )⟩

]
≤ −λc̄(p)E[Vp(ζ̄

λ,n
t )] + λc̃(p).

Therefore, we have the following inequality:

E[Vp(ζ̄
λ,n
t )] ≤ e−λ(t−nT )c̄(p)E[Vp(θ̄

λ
nT )] +

c̃(p)

c̄(p)

(
1 − e−λc̄(p)(t−nT )

)
.

By setting p = 4 and applying Lemma 15, we obtain the desired result:

E[V4(ζ̄
λ,n
t )] ≤ e−λ(t−nT )c̄(4)E[V4(θ̄

λ
nT )] +

c̃(4)

c̄(4)

(
1 − e−λc̄(4)(t−nT )

)
≤ 2 + 2E[|θ0|4] + 2

A4

η2
+
c̃(4)

c̄(4)
.

Proof of Lemma 18. We begin by applying Itô’s formula to observe, for all n ∈ N0 and
t ∈ (nT, (n+ 1)T ],

W 2
2

(
L(θ̄λt ),L(ζ̄λ,nt )

)
≤ E

[
|θ̄λt − ζ̄λ,nt |2

]
= −2λ

∫ t

nT
E
[
⟨ζ̄λ,ns − θ̄λs , h(ζ̄λ,ns ) −Hλ(θ̄λ⌊s⌋, X⌈s⌉)⟩

]
ds

= −2λ

∫ t

nT
E
[
⟨ζ̄λ,ns − θ̄λs , h(ζ̄λ,ns ) − h(θ̄λs )⟩

]
ds

− 2λ

∫ t

nT
E
[
⟨ζ̄λ,ns − θ̄λs , h(θ̄λs ) − h(θ̄λ⌊s⌋)⟩

]
ds

− 2λ

∫ t

nT
E
[
⟨ζ̄λ,ns − θ̄λs , h(θ̄λ⌊s⌋) −H(θ̄λ⌊s⌋, X⌈s⌉)⟩

]
ds

− 2λ

∫ t

nT
E
[
⟨ζ̄λ,ns − θ̄λs , H(θ̄λ⌊s⌋, X⌈s⌉) −Hλ(θ̄λ⌊s⌋, X⌈s⌉)⟩

]
ds. (53)

Furthermore, by applying Proposition 4 to the first term of (53), and by applying Young’s
inequality, i.e., 2ab ≤ a(2b) ≤ LRa

2/2 + 2b2/LR for a, b ≥ 0, to the second and fourth term
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of (53), one obtains that

E
[
|θ̄λt − ζ̄λ,nt |2

]
≤ 2λLR

∫ t

nT
E
[
|ζ̄λ,ns − θ̄λs |2

]
ds

+
λLR

2

∫ t

nT
E
[
|ζ̄λ,ns − θ̄λs |2

]
ds+

∫ t

nT

2λ

LR
E
[
|h(θ̄λs ) − h(θ̄λ⌊s⌋)|

2
]

ds

+

∫ t

nT

(
− 2λE

[
⟨ζ̄λ,ns − θ̄λs , h(θ̄λ⌊s⌋) −H(θ̄λ⌊s⌋, X⌈s⌉)⟩

])
ds

+
λLR

2

∫ t

nT
E
[
|ζ̄λ,ns − θ̄λs |2

]
ds

+

∫ t

nT

2λ

LR
E
[
|H(θ̄λ⌊s⌋, X⌈s⌉) −Hλ,c(θ̄

λ
⌊s⌋, X⌈s⌉)|2

]
ds

= 3λLR

∫ t

nT
E
[
|ζ̄λ,ns − θ̄λs |2

]
ds+

∫ t

nT

(
Aλ,ns +Bλ,n

s +Dλ,n
s

)
ds, (54)

where

Aλ,nt :=
2λ

LR
E
[
|h(θ̄λt ) − h(θ̄λ⌊t⌋)|

2
]

Bλ,n
t := −2λE

[
⟨ζ̄λ,nt − θ̄λt , h(θ̄λ⌊t⌋) −H(θ̄λ⌊t⌋, X⌈t⌉)⟩

]
Dλ,n
t :=

2λ

LR
E
[
|H(θ̄λ⌊t⌋, X⌈t⌉) −Hλ,c(θ̄

λ
⌊t⌋, X⌈t⌉)|2

]
.

In addition, using the definition of θ̄λt and the inequality of (36), we have

|θ̄λt − θ̄λ⌊t⌋|
4 ≤

∣∣∣∣λ∫ t

⌊t⌋
|Hλ,c(θ̄

λ
⌊s⌋, X⌈s⌉)|ds+

√
2λβ−1|Bλ

t −Bλ
⌊t⌋|
∣∣∣∣4

≤ 8λ2
(
λ2|Hλ,c(θ̄

λ
⌊t⌋, X⌈t⌉)|4 + 4β−2|Bλ

t −Bλ
⌊t⌋|

4

)
≤ 8λ2

(
(4d(1 + λ2) + 2η2|θ̄λ⌊t⌋|

2)2 + 4β−2|Bλ
t −Bλ

⌊t⌋|
4

)
≤ 25λ2

(
23d2(1 + λ4) + η4|θ̄λ⌊t⌋|

4 + β−2|Bλ
t −Bλ

⌊t⌋|
4

)
,

which yields that√
E|θ̄λt − θ̄λ⌊t⌋|4 ≤ 25/2

√
16d2 + η4E

[
|θ̄λ⌊t⌋|4

]
+ β−2E

[
|Bλ

t −Bλ
⌊t⌋|4

]
λ

≤ C̃1λ (55)

where Lemma 13 is used for the first inequality, and

C̃1 := 25/2
√

16d2 + η4(E [|θ0|4] +A2/η2) +
3

β2
d2.
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Using Remark 6, Lemma 13 and (55), Aλ,mt can be bounded as follows:

Aλ,nt ≤
2λL2

h

LR
E
[
(1 + |θ̄λt | + |θ̄λ⌊t⌋)

2l|θ̄λt − θ̄λ⌊t⌋|
2
]

≤
2λL2

h

LR

√
E
[
(1 + |θ̄λt | + |θ̄λ⌊t⌋)4l

]√
E
[
|θ̄λt − θ̄λ⌊t⌋|4

]
≤

2λL2
h

LR
32l
√

(1 + E
[
|θ̄λt |4l

]
+ E

[
|θ̄λ⌊t⌋|4l

]
)

√
E
[
|θ̄λt − θ̄λ⌊t⌋|4

]
≤ C̄1λ

2 (56)

where C̄1 =
2L2

h9
l

LR

√
1 + 2E

[
|θ̄λ0 |4l

]
+ 2A2l

η2
C̃1. To estimate Bλ,n

t , we observe that

Bλ,n
t = −2λE

[
⟨ζ̄λ,nt − θ̄λ⌊t⌋, h(θ̄λ⌊t⌋) −H(θ̄λ⌊t⌋, X⌈t⌉)⟩

]
− 2λE

[
⟨θ̄λ⌊t⌋ − θ̄λt , h(θ̄λ⌊t⌋) −H(θ̄λ⌊t⌋, X⌈t⌉)⟩

]
≤ −2λE

[
E
[
⟨ζ̄λ,nt − θ̄λ⌊t⌋, h(θ̄λ⌊t⌋) −H(θ̄λ⌊t⌋, X⌈t⌉)⟩

∣∣∣∣ζ̄λ,nt , θ̄λ⌊t⌋

]]
− 2λE

[
⟨θ̄λ⌊t⌋ − θ̄λt , h(θ̄λ⌊t⌋) −H(θ̄λ⌊t⌋, X⌈t⌉)⟩

]
≤ −2λE

[
⟨λ
∫ t

⌊t⌋
Hλ(θ̄λ⌊s⌋, X⌈s⌉)ds−

√
2λ

β
Bλ
t−⌊t⌋, h(θ̄λ⌊t⌋) −H(θ̄λ⌊t⌋, X⌈t⌉)⟩

]
,

where we have used that H is an unbiased estimator of h, i.e., H(θ,X0) = h(x) for all
x ∈ Rm, to obtain the last inequality. Moreover, using Remark 22 and Lemma 13, we have

Bλ,n
t ≤ −2λ2E

[
⟨Hλ(θ̄λ⌊t⌋, X⌈t⌉), h(θ̄λ⌊t⌋) −H(θ̄λ⌊t⌋, X⌈t⌉)⟩

]
≤ 2λ2E

[
⟨|Hλ(θ̄λ⌊t⌋, X⌈t⌉)|, |h(θ̄λ⌊t⌋)| + |H(θ̄λ⌊t⌋, X⌈t⌉)|⟩

]
≤ 4λ2E

[
|Hλ(θ̄λ⌊t⌋, X⌈t⌉)|2

]
≤ 12

(
E
[
|KG(X0)|2(1 + E

[
|θ̄λ⌊t⌋|

2q
]
)
]

+ d+ η2E
[
|θ̄λ⌊t⌋|

4r+2
])
λ2

≤ C̄2λ
2, , (57)

where the constant C̄2 is given by

C̄2 = 12

√
E [|KG(X0)|2]

(
1 + E [|θ0|2q] +

Aq
η2

)
+ d+ η2

(
E [|θ0|4r+2] +

A2r+1

η2

)
.

Moreover, Dλ,n
t can be estimated as follows, from Remark 21 and Lemma 13,

Dλ,n
t ≤ 18λ2

LR

[
8E
[
|KG(X0)|4

]
(1 + E

[
|θ̄λ⌊t⌋|

4q
]
) + d+ η2E

[
|θ̄λ⌊t⌋|

4r+2
] ]

≤ C̄3λ
2, (58)
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where the independence of θ̄λ⌊s⌋ and X⌈s⌉ is used, and C̄3 is given by

C̄3 =
18

LR

[
8E
[
|KG(X0)|4

]
(1 + E

[
|θ̄λ0 |4q

]
+A2q/η

2) + d+ η2(E
[
|θ̄λ0 |4r+2

]
+A2r+1/η

2)

]
.

Substituting (56), (57), and (58) into (53), one can derive

E
[
|θ̄λt − ζ̄λ,nt |2

]
≤ 3λLR

∫ t

nT
E
[
|θ̄λs − ζ̄λ,ns |2

]
ds+

∫ t

nT
(C̄1 + C̄2 + C̄3)λ

2ds

≤ 3λLR

∫ t

nT
E
[
|θ̄λs − ζ̄λ,ns |2

]
ds+ (C̄1 + C̄2 + C̄3)λ <∞

where the second inequality follows from the fact that (t − nT ) ≤ T ≤ 1
λ and the use of

Gronwall’s inequality gives

E|θ̄λt − ζ̄λ,nt |2 ≤ e3LR(C̄1 + C̄2 + C̄3)λ.

Proof of Lemma 19. Recall that Zλt = ζ̄λ,0t . For t ∈ (nT, (n+ 1)T ], n ∈ N0, we can write

W1

(
L(ζ̄λ,nt ),L(Zλt )

)
≤

n∑
k=1

W1

(
L(ζ̄λ,kt ),L(ζ̄λ,k−1

t )
)

≤
n∑
k=1

w1,2

(
L(ζ̄λ,kt ),L(ζ̄λ,k−1

t )
)
, (59)

where we have used the fact W1(µ, ν) ≤ w1,2(µ, ν) for µ, ν ∈ PV2(Rd) for the second in-
equality. Using Lemma 17 and λ(t− kT ) ≥ n− k, we further calculate

w1,2

(
L(ζ̄λ,kt ),L(ζ̄λ,k−1

t )
)

≤ ĉe−C0λ(t−kT )w1,2

(
L(θ̄λkT ),L(ζ̄λ,k−1

kT )
)

≤ ĉe−C0(n−k)w1,2

(
L(θ̄λkT ),L(ζ̄λ,k−1

kT )
)

≤ ĉe−C0(n−k)W2

(
L(θ̄λkT ),L(ζ̄λ,k−1

kT )
)√

E
[∣∣∣1 + V2(θ̄λkT ) + V2(ζ̄

λ,k−1
kT )

∣∣∣2]
≤ ĉe−C0(n−k)W2

(
L(θ̄λkT ),L(ζ̄λ,k−1

kT )
)(

1 +
√

E[V4(θ̄λkT )] +

√
E[V4(ζ̄

λ,k−1
kT )]

)
≤

√
λĉe−C0(n−k)

√
e3LR(C̄1 + C̄2 + C̄3)

(
1 +

√
2E|θ0|4 + 2 + 2

A2

η2

+

√
2E|θ0|4 + 2 + 2

A2

η2
+
c̃(4)

c̄(4)

)
(60)
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where Lemma 15, 18 and 16 are used for the last inequality. By substituting (60) into (59),
we obtain

W1

(
L
(
ζ̄λ,nt

)
,L
(
Zλt

))
≤

√
λĉ
√
e3LR(C̄1 + C̄2 + C̄3)

[
1 +

√
2E|θ0|4 + 2 + 2

A2

η2

+

√
2E|θ0|4 + 2 + 2

A2

η2
+
c̃(4)

c̄(4)

] n∑
k=1

e−C0(n−k)

≤ z1
√
λ,

where

z1 =
ĉ

1 − exp(−C0)

√
e3LR(C̄1 + C̄2 + C̄3)

×
[
1 +

√
2E|θ0|4 + 2 + 2

A2

η2
+

√
2E|θ0|4 + 2 + 2

A2

η2
+
c̃(4)

c̄(4)

]
.

Proof of Lemma 20. We begin by observing that, for t ∈ (nT, (n+ 1)T ], n ∈ N0,

W2

(
L(ζ̄λ,kt ),L(ζ̄λ,k−1

t )
)

≤
√

2w1,2

(
L
(
ζ̄λ,kt

)
,L
(
ζ̄λ,k−1
t

))
≤ λ1/4e−C0(n−k)/2

[
ĉ
√
e3LR(C̄1 + C̄2 + C̄3)

×
(

1 +

√
2E|θ0|4 + 2 + 2

A2

η2

+

√
2E|θ0|4 + 2 + 2

A2

η2
+
c̃(4)

c̄(4)

)]1/2
,

where the first inequality holds due to (19), and the second inequality follows from (60).
Consequently, we derive

W2

(
L(ζ̄λ,nt ),L(Zλt

)
) ≤

n∑
k=1

W2

(
L
(
ζ̄λ,kt

)
,L(ζ̄λ,k−1

t )
)

≤ λ1/4
[
ĉ
√
e3LR(C̄1 + C̄2 + C̄3)

(
1 +

√
2E|θ0|4 + 2 + 2

A2

η2

+

√
2E|θ0|4 + 2 + 2

A2

η2
+
c̃(4)

c̄(4)

)]1/2 n∑
k=1

e−C0(n−k)/2

≤ λ1/4z2

where

z2 =

√
(1 − exp(−C0))z1
1 − exp(−C0/2)

.

44



Polygonal Unadjusted Langevin Algorithms

C. Table of Constants

Table 9 displays full expressions for constants which appear in the main results of this paper.
In addition, Table 10 shows all main constants and their dependency on key parameters
such as d, β, and the moments of KG(X0).
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Table 9: Explicit expressions for main constants.

Symbol Full Expression

M max

{
M0, 1,

4d
(2−η)η

, 2
√
d

η(2−η)
,
22p−2p(2p−1)d

ηβ

}

D̃k

2k−1

[
(2
√
M)k(E[KG(X0)](1 +Mq) + d+ 2ηM2r+1)k/2

+(8d+ 2η2M2)k
]
, k = 1, · · · , 8(2r + 1)

Ap

η2M2p +M2p
∑p

k=1

p
k

 D̃k

+22p−3p(2p− 1)

(
2dM2p−2

β

∑p−1
k=0

p
k

 D̃k + 2
β

(
2
β

)p−1

dp(2p− 1)!!

)
,

for p = 1, · · · , 8(2r + 1)

Mp

√
1
3
+ 4B/(3A) + 4d/(3Aβ) + 4(p− 2)/(3Aβ)

c(p) Ap
4
, p = 1, · · · , 8(2r + 1)

c̃(p) 3
4
Apvp(Mp), p = 1, · · · , 8(2r + 1)

C̄1

L222ρ+5/232l

LR
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√
(1 + 2E|θ̄λ0 |4l + 2A2l

η2 )

×
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16d2 + η4(E|θ0|4 +A2/η2) +
3
β2 d
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√
E|KG(X0)|2

(
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Aq
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)
+ d+ η2

(
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ĉ See Lemma 17.

C0 See Lemma 17.
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Table 10: Main constants and their dependency to key parameters

Constant Key parameters

d β Moments of X0

A - - O(E[KG(X0)])

B - - O(E[KG(X0)q+2])

R - - O(E[|X0|ρ])

a - - O
(
E[|X0|ρ(q−1)]

)
Ap poly(d) O

(
d
β

)
O

(
E[KG(X0)

p
2 ]
)

C0 poly
(

d
β

)
poly

(
d
β

)
E
[
poly(KG(X0)

q+1
2

]
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