Under review as submission to TMLR

Subgraph Permutation Equivariant Networks

Anonymous authors
Paper under double-blind review

Abstract

In this work we develop a new method, named Sub-graph Permutation Equivariant Networks
(SPEN), which provides a framework for building graph neural networks that operate on
sub-graphs, while using permutation equivariant update functions that are also equivariant
to a novel choice of automorphism groups. Message passing neural networks have been
shown to be limited in their expressive power and recent approaches to over come this either
lack scalability or require structural information to be encoded into the feature space. The
general framework presented here overcomes the scalability issues associated with global
permutation equivariance by operating on sub-graphs. In addition, through operating
on sub-graphs the expressive power of higher-dimensional global permutation equivariant
networks is improved; this is due to fact that two non-distinguishable graphs often contain
distinguishable sub-graphs. Furthermore, the proposed framework only requires a choice
of k-hops for creating ego-network sub-graphs and a choice of representation space to be
used for each layer, which makes the method easily applicable across a range of graph
based domains. We experimentally validate the method on a range of graph benchmark
classification tasks, demonstrating either state-of-the-art results or very competitive results
on all benchmarks. Further, we demonstrate that the use of local update functions offers a
significant improvement in GPU memory over global methods.

1 Introduction

Machine learning on graphs has received much interest in recent years with many graph neural network
(GNN) architectures being proposed. One such method, which is widely used, is the general framework of
message passing neural networks (MPNN). These provide both a useful inductive bias and scalability across
a range of domains (Gilmer et al., 2017).

However, Xu et al| (2019); Morris et al.| (2019b)

showed that models based on a message passing ,——— —
framework with permutation invariant aggregation Original Graph Original Graph
functions have expressive power at most that of the

Weisfeiler-Lehman (WL) graph isomorphism test WL indistinguishable

(Weisteiler & Leman, 1968). Therefore, there ex- rﬁrlf?_r??_r@_lf_gf?f

. : . . WL Coloured Graph
ist many non-isomorphic graphs that a model of this p & WL Coloured Graph

form cannot distinguish between. Figure [I] provides
an example of two non-isomorphic graphs which to
a message passing update function are indistinguish-
able.

. . L. . Figure 1: The initial graph on the left is non-isomorphic
Thm' presents an natural -questlon of is it pOSSlble‘ t0 i the graph on the right. Despite this the WL graph
design a GNN that improves the expressive isomorphism test cannot distinguish between the two
power of MPNNs? Many methods have been graphs

proposed to address this question, but most often an

increase in expressivity must be traded off against

scalability. We present the background into existing methods which attempt to tackle this question in
Section

Under review as submission to TMLR

Our approach. We design a framework to create provably more expressive and scalable graph networks.
We achieve this through incorporating symmetry structures in graphs, by considering a graph equivariant
update function which operates over sub-graphs. Our framework, dubbed Subgraph Permutation Equivariant
Networks (SPEN), is developed from the observation that operating on sub-graphs both improves the scalability
and expressive power of higher-dimensional GNNs, whilst unlocking a natural choice of automorphism groups
which further increases the expressive power of the network. Our framework consists of:

1. encoding the graph as a bag of bags of sub-graphs,
2. utilising a k-order permutation equivariant base encoder, and

3. constraining the linear map to be equivariant to the automorphism groups of the bags of sub-graphs.

Sub-graphs each have a symmetry group and our framework captures this in two ways. Each sub-graph has a
permutation symmetry, which is induced by a permutation of the nodes in the graph. In addition, there is a
symmetry across sub-graphs whereby sub-graphs are associated to an automorphism group. We therefore
construct a neural network comprising of layers that are equivariant to both permutations of nodes and the
automorphism groups of sub-graphs. We achieve this by utilising a permutation equivariant base encoder
with feature space constrained by the direct sum of different order permutation representations. Further, we
constrain the linear map comprising each layer to be equivariant to the automorphism groups of the bags of
sub-graphs. This necessitates that sub-graphs belonging to different automorphism groups are processed by a
kernel with different weights, while for sub-graphs belonging to the same automorphism group the kernel
shares weights. This leads to us creating a sub-graph extraction policy which generates a bag of bags of
sub-graphs, where each bag of sub-graphs corresponds to a different sub-graph automorphism group.

Main contributions

1. A general framework for learning on graphs through utilising bags of sub-graphs.
2. A novel choice of automorphism groups with which to constrain the linear map to be equivariant to.
3. A more scalable framework for utilising higher-dimensional permutation equivariant GNNs.

4. A more expressive model than higher-dimensional permutation equivariant GNNs and sub-graph
MPNNSs.

5. A comprehensive theoretical analysis of the proposed framework in terms of both the expressive
power and scalability.

6. An experimental evaluation of the proposed framework under certain parameter choices, demonstrating
noticeable improvements on both real and synthetic data.

2 Background

More expressive graph neural networks (GNNs) exist which can be grouped into three different groups: (1)
those which design higher-dimensional GNNs, (2) those which use positional encodings through pre-coloring
nodes, and (3) those which use sub-graphs/local equivariance. Several architectures have been proposed of
the type (1) which design a high-order GNN equivalent to the hierarchy of k-WL tests (Maron et al. 2018;
2019; [Morris et al., 2019bja; Keriven & Peyrél [2019; |Azizian & Lelargel [2021]). Despite being equivalent to the
k-WL test, and hence having provably strong expressivity; these models lose the advantage of locality and
linear complexity. As such, the scalability of such models poses an issue for their practical use, with Maron
et al.| (2018) showing that the basis space for permutation equivariant models of order k is equal to the 2k‘"
Bell number, which results in a basis space of size 2 for order-1 tensors, 15 for order-2 tensors, 203 for order-3
tensors, and 4140 for order-4 tensors, demonstrating the practical challenge of using higher-dimensional GNNs.
Several architectures have also been proposed of type (2) where authors seek to introduce a pre-coloring or
positional encoding that is permutation invariant. These comprise of pre-coloring nodes based on pre-defined

Under review as submission to TMLR

Bag of size 2 sub-graphs’

3—a4

Bag of size 4 sub-graphs,

3—4

Bag of size 2 sub-graphs,

3—4

Bag of size 2 sub-graphs]

3—a4

Bag of size 3 sub-graphs]

|

D I

Bag of size 4 sub-graphs

Bag of size 4 sub-graphs,

|

-

Bag of size 3 sub-graphs Bag of size 3 sub-graphs

PR

Output Bags Of Sub-graphs

Bag Sub-graphs By
Automorphism Group

Automorphism Equivariant
Linear Map

Output Graph

Input Graph Split Graph Into Sub-graphs Averaging Across Sub-graphs Pool Sub-graphs Representation

(1) (2) (3) (4) (5) (6) @) (8)

Automorphism Equivariant Layer

(a)

Figure 2: (1-2) The first component of our SPEN model comprises of splitting the graph into sub-graphs. For
this we use a k-ego network policy extracting a sub-graph for each node in the input graph. (3) Secondly, we
place sub-graphs into bags, where each bag holds sub-graphs of a specific size. The extracted sub-graphs
are used as fully-connected graphs with zero features for non-edges; this results in each bag of sub-graphs
representing an automorphism group. (4) We then process the bags of sub-graphs with an automorphism
equivariant linear map. This comprises of multiple separate GNNs, with a different network processing each
automorphism group. (5) The resulting output is again a bag of bags of sub-graphs. (6) The sub-graphs are
averaged across the bags to allow information flow between sub-graphs. (7-8) At the end of the model we pool
the bags of sub-graphs to produce an output graph representation. (a) In practise the overall model comprises
of many automorphism equivariant layers mapping between different order permutation representation spaces.
The final layer maps to an order-0 permutation representation space, i.e. a graph level representation space,
which can be pooled to the output graph representation.

substructures (Bouritsas et al.,[2020) or lifting graphs into simplicial- (Bodnar et al., [2021b) or cell complexes
(Bodnar et al., [2021a)). These methods require a pre-computation stage, which in the worst-case finding
substructures of size k in a graph of n nodes is O(n*). Finally sub-graphs/local equivariance of type (3)
have been considered to find more expressive GNNs. Local graph equivariance requires a (linear) map that
satisfies an automorphism equivariance constraint. This is due to the nature of graphs having different local
symmetries on different nodes/edges. This has been considered by [de Haan et al| (2020)) though imposing
an isomorphism/automorphism constraint on edge neighbourhoods and by [Thiede et al.| (2021) by selecting
specific automorphism groups and lifting the graph to these. Although the choice of automorphism group
chosen by [de Haan et al.| (2020) leads to little weight sharing and requires the automorphism constraint to be
parameterized, while that proposed by |Thiede et al.| (2021]) does not guarantee to capture the entire graph
and requires a hard-coded choice of automorphism group. Operating on sub-graphs has been considered as a
means to improve GNNs by dropping nodes (Papp et al., |2021), dropping edges (Rong et all [2019)), utilising
sub-graphs of size k (Cotta et al. 2021, utilising ego-network graphs (Zhao et al., [2021)), and considering the
symmetry of a bag of sub-graphs (Bevilacqua et al., [2021)).

3 Subgraph Permutation Equivariant Networks (SPEN)

In this section, we introduce the SPEN framework. It consists of (1) Subgraph selection, (2) Natural
permutation equivariant graph neural network. This section presents the core concepts of the model which
contribute to the improved expressivity. In addition, we present a more general overview of the architectural
details of the SPEN framework in Appendix

3.1 Definitions

In this work we consider graphs as concrete graphs and utilise sub-concrete graphs in our framework. The
sub-graphs are extracted as k-ego network sub-graphs. Further, we use a base GNN model that is equivariant
to permutations of nodes in the sub-graphs. We also place an automorphism constraint over the linear map

Under review as submission to TMLR

that processes bags of sub-graphs. Further definitions are provided in Appendix with the key definitions
required to understand our framework presented here.

Definition 3.1. A Concrete Graph G is a finite set of nodes V(G) C N and a set of edges £(G) C V(G) xV(G).

The set of node ids may be non-contiguous and we make use of this here as we extract overlapping sub-graphs
and perform the graph update function on this bag of sub-graphs. The natural numbers of the nodes are
essential for representing the graphs in a computer, but hold no actual information about the underlying
graph. Therefore, the same underlying graph can be given in may forms by a permutation of the ordering of
the natural numbers of the nodes. Throughout the paper we refer to concrete graphs as graphs to minimise
notation.

Definition 3.2. In tensor format the values of G are encoded in a tensor A € RIV(G)IxIV(G)Ixd

The node features are encoded along the diagonal and edge features encoded in off-diagonal positions.

Definition 3.3. A sub-Concrete Graph H is created by taking a node i € V(G), and extracting the nodes
j € V(G) and edges (i,7) C V(G) x V(G), according to some sub-graph selection policy.

In this work we consider the sub-graph selection policy as a k-ego-network policy. For brevity we refer to
sub-concrete graphs as sub-graphs throughout the paper.

Definition 3.4. A k-FEgo Network of a node is its k-hop neighbourhood with induced connectivity.

Definition 3.5. A Graph isomorphism, ¢ : G — G’ is a bijection between the vertex sets of two graphs G
and G’, such that two vertices u and v are adjacent in G if and only if ¢(u) and ¢(v) are adjacent in G’. This
mapping is edge preserving, i.e. satisfies for all (i,5) € V(G) x V(G):

(i,4) € £(G) <= (8(i), ¢(j)) € E(G").

An isomorphism from the graph to itself is known as an automorphism.

Definition 3.6. A group representation p of the group G is a homomorphism p : G — GL(V) of G to the
group of automorphisms of V' (Fulton & Harris| [2013]). A group representation associates to each g € G an
invertible matrix p(g) € R™*™. This can be understood as specifying how the group acts as a transformation
on the input.

Definition 3.7. A feature space is a vector space V with a group representation rho acting on it. The choice
of group representations on the input and output vector spaces of a linear map constrains the possible forms
the linear map can take.

Definition 3.8. A tensor representation can be built up from some base group representations p(g) through
the tensor operations dual (x), direct sum (@), and tensor product (®). This allows for tensor representations
to be constructed that are of increasing size and complexity.

Definition 3.9. A kernel constraint is taken to mean a restriction of the space a kernel or linear map can
take between two vector spaces. The symmetric subspace of the representation is the space of solutions to
the constraint Vg € G : p(g)v = v, which provides the space of permissible kernels.

In this paper we are interested in the symmetries of the symmetric group S,,. This constraint can be solved
for different order tensor representations (Maron et al., 2018 Finzi et al,|2021). We present the space of
linear layers mapping from k-order representations to k’-order representations in Figure

3.2 Sub-graph Selection Policy

Sub-graphs can be extracted from a graph in a number of ways, by removing nodes, by removing edges,
extracting connectivity graphs at nodes, or extracting connectivity graphs at edges to name a few. In this work
we focus on k-ego network sub-graphs. These are sub-graphs extracted by considering the k-hop connectivity
of the graph at a selected node and extracting the induced connectivity. The sub-graph selection policy of
k-ego networks therefore extracts a sub-graph for each node in the original graph.

Under review as submission to TMLR

po—>pPo P1L—>pP1 P2 P2

Po—pP1 Po— P2 P17 P2
N

pP1L—pPo P2—P0 P2 P1

Figure 3: Bases for mappings to and from different order permutation representations, where py is a k-order
representation. Each color in a basis indicates a different parameter. pg — pg is a mapping from a 0-order
representation to a 0-order representation, i.e. a graph level label to graph level label, and has 1 learnable
parameter. p; — p; is a mapping from a 1-order representation to a 1l-order representation, i.e. a node
level label to node level label, and has 2 learnable parameters, one mapping node features to themselves
and the other mapping node features to other nodes. Further, there are mappings between different order
representation spaces and higher order representation spaces.

In this work we process graphs as bags of sub-graphs. In general the size of the sub-graphs, m, extracted for
a graph are not all of the same size, and thus m varies from sub-graph to sub-graph. We therefore go further
than representing each graph as a bag of sub-graphs and represent each graph as a bag of bags of sub-graphs,
where each bag of sub-graphs hold sub-graphs of the same size m. The graph is therefore represented as
the bag of bags of sub-graphs Sg = {{{{H{,..., H:}}, ..., {{HF, ..., H*}}}}, for sub-graphs H, with bags of
sub-graphs which are each of size a, ..., ¢ containing sub-graphs of sizes i, .., k respectively.

3.3 Natural Permutation Equivariant Graph Network Architecture

The input data represented as a bag of bags of sub-graphs has a symmetry group of both the individual
sub-graphs and of the bags of sub-graphs. We construct a graph neural network that is equivariant to this
symmetry. This can be broken down into three parts: (1) the sub-graphs, (2) the bag of bags of sub-graphs,
and (3) the bags of sub-graphs.

3.3.1 Sub-graphs

Each sub-graph has a symmetry group that is given by permutation of the order of nodes in the graph. This
group is denoted S, for a graph of n nodes. The group S, acts on on the graph via (o A)ij = As-13)0-1(j)-
Sub-graphs, H, therefore have a symmetry group S,, < S, and we are interested in constructing graph
neural network layers equivariant to this symmetry group. The graph is an order-2 tensor and the action
of the permutation group can be generalised to differing order tensors. For example, the set of nodes in a
graph is an order-1 tensor. For the case of a linear mapping from order-2 permutation representations to
order-2 permutation representations, the basis space was shown to comprise of 15 elements by
. Similarly, the constraint imposed by equivariance to the group of permutations can be solved for
different order representation spaces and we provide an example of all mappings between representation
spaces from order 0-2 in Figure [3] We are not restricted to selecting a single input-output order permutation
representation space and can construct permutation equivariant linear maps between multiple representations
separately through the direct sum . For example the direct sum of order 1 and 2 representations is given by

P1 D p2.

Due to the construction of a sub-graph the sub-graphs inherit node ids from the original graph. Therefore, a
permutation of the order of the nodes in the original graph corresponds to an equivalent permutation of the

Under review as submission to TMLR

ordering of the nodes in the sub-graphs. In addition, as the permutation action on the graph does not change
the underlying connectivity, the sub-graphs exacted are individually unchanged up-to some isomorphism.
Therefore, a permutation of the graph only permutes the ordering at which the sub-graphs are extracted.

3.3.2 The Bag of Bags of Sub-graphs

We have defined the group action on sub-graphs as that of the group S, and associated to the feature space
of a sub-graph a vector space constrained by the representation p,,. Given that graphs do not in general
have the same connectivity for each node the sub-graphs extracted differ in size. Therefore, we have different
feature spaces for different sub-graph sizes, i.e. pi, (H®) # pl,(H7). A linear layer acting on sub-graphs can
therefore operate differently on different sub-graphs. A linear layer mapping from feature space p,, to feature
space pl, can thus have for each sub-graph H a (linear) map Kg : pp(H) — pl,(H). However, given two
isomorphic sub-graphs H and H’ are the same graph up-to some bijective mapping, we want Ky and Kpy
to process the feature spaces in an equivalent manner. This condition is called naturality (de Haan et al.,
2020) and states that a linear map Kp : pp,(H) — pl,,(H) for every sub-graph isomorphism ¢ : H — H’
must satisfy the following condition:

P (¢) o Ky = Kps o p(e). (1)

This constraint (Equation says that if we first transition from the input feature space p(H) to the equivalent
input feature space p/(H) via an isomorphism transformation p(¢) and then apply Ky we get the same
thing as first applying K and then transitioning from the output feature space p'(H) to p/(H’) via the
isomorphism transformation p(¢). Since p(¢) is invertible, if we choose Ky for some H then we have
determined Ky for any isomorphic H' by K = p'(¢) o Kg o p(¢)~t. For any automorphism ¢ : H — H,
we get an equivariance constraint p'(¢) o Ky = Ky o p(¢). Thus, a layer in the model must have for each
isomorphism class a map Ky that is equivariant to automorphisms. Our sub-graph selection policy extracts
a bag of bags of sub-graphs, S¢ = {{{{S}, ..., S:}}, ..., {{S¥, ..., S¥}}}}, with bags of sub-graphs containing
sub-graphs of the same size. Therefore, each bag of sub-graphs forms an isomorphism class and we are
required to have a map Ky for each bag of sub-graphs. We therefore have a choice of automorphism group
with which to constrain the linear map to be equivariant to provided by our sub-graph selection policy.

3.3.3 Bags of Sub-graphs

The order of sub-graphs in each bag of sub-graphs is arbitrary and changes if the input graph is permuted.
It would therefore be undesirable for the output prediction to be dependent upon this arbitrary ordering.
This is overcome in the choice of aggregation function used to share information between sub-graphs. At the
end of a linear layer in our model each node and edge in the graph can be represented multiple times, i.e. it
occurs in multiple sub-graphs. We therefore average these features across sub-graphs and in doing this ensure
the output is invariant to the ordering of sub-graphs in each bag.

3.4 Related Work
We have largely discussed the related methods to our work in Section [2| Despite this, we provide a more

extensive explanation of some other methods in Appendix and demonstrate how some of these methods
can be implemented within our framework in Appendix [A74]

4 Analysis of Expressivity and Scalability

In this section we study both the expressive power of our architecture by its ability to provably separate
non-isomorphic graphs and the scalability by its ability to process larger graphs that its predecessor.

Under review as submission to TMLR

4.1 WL Test and Expressive Power

The Weisfeiler-Lehman (WL) test (Weisfeiler & Leman, [1968) is a graph isomorphism test commonly used as
a measure of expressivity in GNNs. This is due to the similarity between the iterative color refinement of the
WL test and the message passing layers of a GNN. The WL test is a necessary but insufficient condition,
which is not able to distinguish between all non-isomorphic graphs. The WL test was extended to the k-WL
test, which provides increasingly more powerful tests that operate on k-tuples of nodes.

WL analogue for sub-graphs. One component of our model is the idea of operating on sub-graphs
rather than the entire graph, more specifically our architecture operates on ego-network sub-graphs. We
therefore seek to formalise our intuition that operating on sub-graphs will improve the expressive power of
the base model. We present a color-refinement variant of the WL isomorphism test that operates on a bag of
sub-graphs.

Definition 4.1. The sub-graph-WL test utilises a color refinement of cffsl = HASH(c], 5, 5, C}) where
HASH(-) is an injective function, ./\Cf g is the node neighbourhood of v within the ego-network sub-graph S,
and C! is the multiset of v’s colors across sub-graphs.

Theorem 4.2. Sub-graph- WL is strictly more powerful than 16/2-WL.

In Appendix [A22] we prove Theorem [£.2] This yields the result that even for a simple 1-WL expressive
function in the GNN, such as message passing, the model is immediately more expressive than 1&2-WL.

Comparing SPEN to the WL test. We have already shown that when considering a graph update
function that operates on a bag of k-ego network sub-graphs, even if the update function itself has limited
expressivity, it is more expressive than 1&2-WL. SPEN utilises a natural permutation equivariant update
function through operating on a bag of bags of sub-graphs. The naturality constraint of our model states
that each automorphism group of sub-graphs should be processed by a different (linear) map. In addition, we
utilise higher-dimensional GNNs. Both of these choices are expected to increase the expressive power of our
model.

Proposition 4.3. For two non-isomorphic graphs G' and G? sub-graph-WL can successfully distinguish
them if (1) they can be distinguished as non-isomorphic from the multisets of sub-graphs and (2) HASH(-) is
discriminative enough that HASH(c!, o1, N 1, CY) # HASH(c!, g2, N} g2, C}) .

This implies that despite the sub-graph policy increasing the expressive power of the model, it is still
limited by the ability of the equivalent to the HASH(-) function’s ability to discriminate between the bags of
sub-graphs. The naturality constraint of our model processing each automorphism group with a different
higher-dimensional GNN is therefore expected to increase the expressive power of our model over sub-graph
methods utilising a MPNN.

Theorem 4.4. SPEN is strictly more powerful than sub-graph MPNN.

We empirically prove Theorem similarly to Bouritsas et al.| (2020); /de Haan et al.| (2020)). We use a neural
network with random weights on a graph and compute a graph embedding. We say the neural network finds
two graphs to be different if the graph embeddings differ by an ¢; norm of more than ¢ = 10~3 of the mean
{5 norms of the embeddings of the graphs in the set. The network is said to be most expressive if it only
finds non-isomorphic graphs to be different. We test this by considering a set of 100 random non-isomorphic
non-regular graphs, a set of 100 non-isomorphic graphs, a set of 15 non-isomorphic strongly regular graphsE
and a set of 100 isomorphic graphs. Table [1| shows that a simple invariant message passing (GCN) as well as
a simple invariant message passing model operating on sub-graphs (SGCN) are unable to distinguish between
regular and strongly regular graphs. Further, it is shown that PPGN (Maron et al.l 2019) can distinguish
regular graphs but not strongly regular graphs, although a variant of PPGN that uses high order tensors
should also be able to distinguish strongly regular graphs. On the other hand, our SPEN model is able to
distinguish strongly regular graphs. Therefore, our model is able to distinguish non-isomorphic graphs that a
sub-graph MPNN cannot and is strictly more powerful.

1See http://users.cecs.anu.edu.au/~bdm/data/graphs.html!

http://users.cecs.anu.edu.au/~bdm/data/graphs.html

Under review as submission to TMLR

Table 1: Rate of pairs of graphs in the set of graphs found to be dissimilar in expressiveness experiment.
An ideal method only find isomorphic graphs dissimilar. A score of 1 implies the model can find all graphs
dissimilar, while 0 implies the model finds no graphs dissimilar.

Model Random Regular Str. Regular Isom.

GCN 1 0 0 0
SGCN 1 0 0 0
PPGN 1 0.97 0 0
SPEN 1 0.98 0.97 0

4.2 Scalability

Global permutation equivariant models of the form found by Maron et al.| (2018) operate over the entire
graph. They therefore scale with O(n?), for graphs with n nodes. Our method operates on k-ego network
sub-graphs where a sub-graph is produced for each node in the original graph. Our method therefore scales
with O(nm?), where m is the number of nodes in the k-ego network sub-graph. It is therefore clear that if
n = m, theoretically, our method scales more poorly than global permutation equivariant models, although
this would imply the graph is fully-connected and every sub-graph is identical. In this situation extracting
sub-graphs is irrelevant and only 1 sub-graph is required (the entire graph) and hence if n = m our method
scales with that of global permutation equivariant models. The more interesting situation, which forms
the majority of graphs, is when n # m. When m < n our method scales more closely with methods that
scale linearly with the size of the graph and it is for this type of data that our method offers a significant
improvement in scalability over global permutation equivariant models.

We empirically show how SPEN and global permutation equivariant methods scale depending on the size of
n and m by analysing the GPU memory usage of both models across a range of random regular graphs. We
utilise random regular graphs for the scalability test as it allows for precise control over the size of the overall
graph and sub-graphs. We compare the GPU memory usage of both models across a range of graph sizes
with a sub-graph size of m = 3, 6,and 9. Through analysing the graphs in the TUDataset, which we make
use of when experimenting on graph benchmarks, we note that the average sub-graph sizes range between 3
and 10 (see Table , justifying the choice of sub-graphs in the scalability tests. Figure |4] shows that the
Global Permutation Equivariant Network (GPEN) cannot scale beyond graphs with 500 nodes. On the other
hand, our method (SPEN) scales to larger graphs of over an order of magnitude larger. In the situation
where m = 3 GPEN can process graphs of size up to 500 nodes, while our SPEN can process graphs of size
up to 10,000 nodes using less GPU memory.

@ 25 oo
(G)
0 207
o —e— SPEN m=3
§15- —e— SPEN m=6
> —e— SPEN m=9
g 107 ..e.- GPEN
g 5| " 1 TITAN RTX Limit
=
© 01
10t 102 103 104
Graph Size

Figure 4: Computational cost of global permutation equivariant model (GPEN) and our (SPEN) model with a
very similar number of model parameters for varying average size graphs. For this test we constructed random
regular graphs of varying size using the NetworkX package (Hagberg et al., [2008). For SPEN sub-graphs
were constructed using a 1-hop ego network policy. As is demonstrated by the log-axis, SPEN can process
graphs an order of magnitude larger than global methods.

Under review as submission to TMLR

001 19 pug IST ST IsT IsT ey 1sog
0CFLSy TE€FeS. CIFFes GTIFLE8 CTEFRTL L6FSCTL S 9FE €6 NAdS
QTFI'ES 9€FE9L 9TFCe® TIFYER 9FTF99L T9F089 6FFCT6 (1g0g| |8 10 enboeaog) (0HA) (D) NND-SSA
TEFLTS LEFOGL 9 TFOP8 PIFIER €FF0LL 9CFE89 T'9FLT6 (e1z0g| | T8 10 Teupog) NID
0€FeTS TEFIGL VN TTFSTS TEFGIL VN VN (qTZ0T | T8 3 Teupod) NIS
9'¢F9TE 0TTF8IL VN 0CFGE] 0GFITL LSTVL9 GLFTT6 ME Te 30 SesHINOg) A-NSD
€EFEPS € EF8LL VN eTFTE’ 0CTF99L TLFTS9 G LFI06 020 | Te 30 sesyumogq) o-NSH
CIFETSC 0CFTL 6TIF0€R FIFLT® OTFLIL QTTFS99 9TTFF68 (0z0z |18 %0 weep op) (NDD) NON'T
9'¢FC0¢ SCFEL FIFET® 6TIF0I8 9CTLIL 0LF6'79 T'STF68 6102/ | T8 30 wore\) €A NOJJ
6'LFLFY €FTFee, €IFSI8 T1TFCI8 0CTioL CLFLT9 T LT6'SS 6102/ | T2 30 wore\) ga NOJJ

TET0S 6F7T9CL 6ITSIS TIFCes LFTFTLL ¢'9TFZ99 L'STG06 6102/ | T8 10 UoIe) TA NOJJ

G'6¥ &7 VN z9L o) 609 1°98 (46102 | T8 30 SLTON) NND €-5-T
QTFETE TSFIGL VN LIFLTS 8TFTIL 0LF979 9SGTFF68 e 30 1Y) NID
VEFLSY CGF0TL CIFREL LTFETL GCTF99L 6'9FC'8G 0°EIT6ES R10¢/ | Te 10 woIe\) NOI

VN VN PeTeeL TTFEIL VN 0LF90L TLFITI6 (810g| | e 30 10pUON]) NDD

VN VN VN VN 18 VN VN 810¢/ | T8 10 Su X)) [00JBIq
COFSHF 90F0L9 €0FE08 GOFE08 GOFLGL 9TFT09 LTFVL8 (g10g| |weyyeuemysip 2y Sepreuex) IO

VN VN 06 89/ VN VN T°9L L10g| |sprepowoy] 23 Aysaouowtts) DOH
VITGEE TITFI6 VN 0TF99¢ 9TFETI VN VN (910g| [Ao13moT, 23 poomyy) NNOA
QTFTCHy €TFIL VN L1FE9L G'TFGL LGFET9 TTFO68 (9102| | T2 99 110doIN) NDOSJ
6'0F8LY 60F00L VN COFFvL 60FGGL GTF98E LTFSGS (810g| | T8 10 Sweyz) NNOAD

SHMSY
€1 L6T 968 8'6% 1°6€ GG 6'L1 # opou 3ae
¢ z z z 4 z z sosse[d
00ST 0001 LTTY 0TT¥ €111 Ve 881 ozs
IN-GAINI g-9dINI 60TIDN IIDN SNIZLOYd DLd HVIOAN joseyR(]

‘'snurw 1o snjd ' Se UoAI3 ueowW o}

PpUNOIR UOIJRIADP PIEPUR)S S} YHIM I9999q oI8 SINSol Ueow I98I1eT "Spoyjewt Surures] deap I9j0o pue [opowl NHJS INO usamiaq uostreduro)) :g o[qer,

Under review as submission to TMLR

5 Experiments

5.1 Graph Benchmarks

We perform experiments with our method to back up the theoretical analysis and answer three main questions:
(1) Does our method out perform the the base graph neural network used in terms of validation accuracy?
(2) Does our approach achieve better performance on real graph benchmarks than current state-of-the-art
methods in terms of validation accuracy? (3) Does the method scale better than the base graph neural
network used in real benchmark tasks?

Datasets. We tested our method on a series of 7 different real-world graph classification problems from
the TUDatasets benchmark of (Yanardag & Vishwanathan, |2015). Five of these datasets originate from
bioinformatics, while the other two come from social networks. It is noteworthy to point out some interesting
features of each dataset. We note that both MUTAG and PTC are very small datasets, with MUTAG only
having 18 graphs in the test set when using a 10% testing split. Further, the Proteins dataset has the largest
graphs with an average number of nodes in each graph of 39. Also, NCI1 and NCI109 are the largest datasets
having over 4000 graphs each, which one would expect to lead to less spurious results. Finally, IMDB-B
and IMDB-M generally have smaller graphs, with IMDB-M only having an average number of 13 nodes in
each graph. The small size of graphs coupled with having 3 classes appears to make IMBD-M a challenging
problem.

Methods in comparison. We compare to a wide range of alternative methods, including sub-graph based
methods, higher-dimensional GNN methods, and automorphism equivariant methods. We focus specifically
on IGN (Maron et all 2018)) as this method uses an order-2 permutation equivariant tensor representation
space for the linear map and is therefore the most similar to our base GNN model. Bevilacqua et al.| (2021)
test their DSS-GNN on multiple different sub-graph policies and here we compare to the method utilising
k-hop ego networks as this is the most similar variant to our method.

Implementation and experimental details. We utilise a 1-hop ego network sub-graph policy for all of the
experiments. Further, we use a base GNN model that maps between p; & p2 permutation equivariant tensor
representation space, with the final layer mapping to a pg permutation equivariant tensor representation
space. We constrain out model to be equivariant to the automorphism groups of the bags of sub-graphs. For
MUTAG, PTC, NCI1, and NCI109 we directly constrain the model to the automorphism groups of the bags
of sub-graphs. For PROTEINS, IMDB-B, and IMDB-M there exists some bags of sub-graphs which comprise
of a single sub-graph. As this would lead to no weight sharing between these sub-graphs and and any other
sub-graphs we parameterize the automorphism constraint to bunch bags of sub-graphs which contain few
sub-graphs. Further implementation and experimental details can be found in Appendix

Table 2| compares our LPEGN model to a range of other methods on benchmark graph classification tasks
from TUDatasets (Morris et all [2020). Comparing out method (SPEN) to a higher-dimensional global
permutation equivariant (IGN) demonstrates that our method outperforms the base GNN model on all but
one dataset. The one dataset that our model did not outperform the base GNN model was the PROTEINS
dataset, which is one of the datasets we were required to parameterize the automorphism constraint and this
result may suggest our choice of parameterization for this dataset was not optimal. Table [2] also highlights
that our method achieves a new state-of-the-art result on the MUTAG, PTC, and NCI1 dataset, and is
the second strongest on NCI109. Further, our method performs competitively across all datasets. We note
that SPEN achieves a poor ranking score on the Proteins datasets, although the classification accuracy of
the model is competitive with leading results and only falls slightly short of the bulk of other methods.
Finally, on all datasets where we did not parameterize the automorphism constraint we achieve either a new
state-of-the-art or a very close second. This suggests our framework is more expressive while maintaining
good flexibility to learn on graph classification tasks. The model does not achieve a new state-of-the-art
on datasets where we parameterized the automorphism constraint, although does perform competitively,
suggesting our choice of parameterization could be sub-optimal and a better one may exist.

Figure 5| demonstrates that the improved scalability of our methods on regular graphs carries over onto
graphs on real-world benchmarks. This demonstrates that our method offers a significant improvement in
scalability over global permutation equivariant models.

10

Under review as submission to TMLR

5 o ey e ————
_@ ————— 1 TITAN RTX Memory Limit
0207 o GPEN
215 SPEN
515
S 10]
=
2 51
©} o

0 ! ! !
MUTAG PTC PROTEINS

Average Number of Graph Nodes

Figure 5: Computational cost of a global permutation equivariant model (GPEN) and our method (SPEN)
with a very similar number of model parameters and batch size for datasets with varying average size graphs
from the TUDatasets. For SPEN sub-graphs were constructed using a 1-hop ego network policy.

6 Future Work

From Table [2]it is clear that IMDB-M is a dataset for which our method has weaker performance. As stated
in Section [A6.2] between hidden layers in our network, for the experiments in this paper, we only make
use of order 1 and 2 representations. As it was shown by Maron et al.| (2019) that increasing the order
of the permutation representation increases the expressivity in line with the k-WL test, the expressivity
of our method could be improved through the consideration of higher order permutation representations.
Further, we demonstrate state-of-the-art results when we do not parameterize the automorphism constraint
and exploring alternative parameterizations of this constraint could lead to improved results.

7 Conclusion

We present a graph neural network framework for building models that operate on k-ego network sub-graphs
that respects both the permutation symmetries of individual sub-graphs and is equivariant to the automorphism
groups across bags of sub-graphs. The choice of sub-graph policy leads to a novel choice of automorphism
groups for the bags of sub-graphs. The framework is more scalable than global higher-dimensional GNNs
through the use of sub-graphs and we have both theoretically and experimentally demonstrated this. We
have shown that SPEN is provably more expressive than the base higher-dimensional permutation equivariant
GNN and sub-graph MPNNs through the choice sub-graph selection policy, permutation equivariant base
GNN, and automorphism equivariant kernel constraint. We have provided theoretical analysis demonstrating
the expressivity of the framework. Finally, we have shown that SPEN performs competitively across multiple
graph classification benchmarks, achieving state-of-the-art on numerous datasets. We believe that our
framework is a step forward in the development of graph neural networks, demonstrating theoretically
provable expressivity, scalability, and experimentally achieving state-of-the-art on benchmark datasets.

11

Under review as submission to TMLR

References

Marjan Albooyeh, Daniele Bertolini, and Siamak Ravanbakhsh. Incidence networks for geometric deep
learning. arXiv preprint arXiv:1905.11460, 2019.

James Atwood and Don Towsley. Diffusion-convolutional neural networks. In Advances in neural information
processing systems, pp. 1993-2001, 2016.

Waiss Azizian and Marc Lelarge. Expressive power of invariant and equivariant graph neural networks. In
International Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=
1xHgXYN4bwl.

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath Bala-
murugan, Michael M Bronstein, and Haggai Maron. Equivariant subgraph aggregation networks. arXiv
preprint arXiv:2110.02910, 2021.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yu Guang Wang, Pietro Lio, Guido Montufar, and Michael
Bronstein. Weisfeiler and Lehman go cellular: CW networks. arXiv preprint arXiv:2106.12575, 2021a.

Cristian Bodnar, Fabrizio Frasca, Yu Guang Wang, Nina Otter, Guido Montfar, Pietro Lio, and Michael
Bronstein. Weisfeiler and Lehman go topological: Message passing simplicial networks. arXiv preprint
arXiw:2103.03212, 2021b.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improving graph neural
network expressivity via subgraph isomorphism counting. arXiv preprint arXiv:2006.09252, 2020.

Leonardo Cotta, Christopher Morris, and Bruno Ribeiro. Reconstruction for powerful graph representations.
Advances in Neural Information Processing Systems, 34, 2021.

Pim de Haan, Taco S Cohen, and Max Welling. Natural graph networks. In H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33,
pp. 3636-3646. Curran Associates, Inc., 2020. URL lhttps://proceedings.neurips.cc/paper/2020/
file/2517756c5a9bebac007fe9bb7fb92611-Paper. pdf.

Marc Finzi, Max Welling, and Andrew Gordon Wilson. A practical method for constructing equivariant
multilayer perceptrons for arbitrary matrix groups. arXiv preprint arXiv:2104.09459, 2021.

William Fulton and Joe Harris. Representation theory: a first course, volume 129. Springer Science &
Business Media, 2013.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural Message
Passing for Quantum Chemistry. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pp. 1263-1272, 2017.

Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics, and function using
networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United States), 2008.

Jason Hartford, Devon Graham, Kevin Leyton-Brown, and Siamak Ravanbakhsh. Deep models of interactions
across sets. In International Conference on Machine Learning, pp. 1909-1918. PMLR, 2018.

Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks. Advances in
Neural Information Processing Systems, 32:7092-7101, 2019.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

Risi Kondor and Shubhendu Trivedi. On the generalization of equivariance and convolution in neural networks
to the action of compact groups. In Proceedings of the International Conference on Machine Learning, pp.
2747-2755, 2018.

12

https://openreview.net/forum?id=lxHgXYN4bwl
https://openreview.net/forum?id=lxHgXYN4bwl
https://proceedings.neurips.cc/paper/2020/file/2517756c5a9be6ac007fe9bb7fb92611-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/2517756c5a9be6ac007fe9bb7fb92611-Paper.pdf

Under review as submission to TMLR

Risi Kondor, Hy Truong Son, Horace Pan, Brandon Anderson, and Shubhendu Trivedi. Covariant composi-
tional networks for learning graphs. arXiv preprint arXiv:1801.02144, 2018.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph networks.
In International Conference on Learning Representations, 2018.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph networks. In
H. Wallach and H. Larochelle and A. Beygelzimer and F. d'Alché-Buc and E. Fox and R. Garnett (ed.),
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019. URL https:
//proceedings.neurips.cc/paper/2019/file/bb04af0f7ecace4aae62035497dal387-Paper . pdf.

Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weisfeiler and Leman go sparse: Towards scalable
higher-order graph embeddings. arXiv preprint arXiv:1904.01543, 2019a.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav Rattan,
and Martin Grohe. Weisfeiler and Leman go neural: Higher-order graph neural networks. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 33, pp. 4602-4609, 2019b.

Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion Neumann.
Tudataset: A collection of benchmark datasets for learning with graphs. ICML Graph Representation
Learning and Beyond (GRL+) Workshop, 2020.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural networks for
graphs. In International conference on machine learning, pp. 2014—2023, 2016.

P&l Andréas Papp, Karolis Martinkus, Lukas Faber, and Roger Wattenhofer. DropGNN: random dropouts
increase the expressiveness of graph neural networks. Advances in Neural Information Processing Systems,
34, 2021.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. DropEdge: Towards deep graph convolutional
networks on node classification. arXiv preprint arXiv:1907.10903, 2019.

Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned filters in convolutional neural networks
on graphs. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3693-3702,
2017.

FErik Henning Thiede, Wenda Zhou, and Risi Kondor. Autobahn: Automorphism-based graph neural nets.
arXiw preprint arXiv:2103.01710, 2021.

Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra which
appears therein. NTI, Series, 2(9):12-16, 1968.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In
International Conference on Learning Representations, 2019. URL https://openreview.net/forum?id=
ryGs61A5Kml

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 1365-1374, 2015.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hierarchical
graph representation learning with differentiable pooling. In Advances in neural information processing
systems, pp. 4800-4810, 2018.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning architecture
for graph classification. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any GNN with
local structure awareness. arXiv preprint arXiv:2110.03753, 2021.

13

https://proceedings.neurips.cc/paper/2019/file/bb04af0f7ecaee4aae62035497da1387-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bb04af0f7ecaee4aae62035497da1387-Paper.pdf
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km

Under review as submission to TMLR

A Appendix

A.1 Mathematical Background

A.1.1 Group Theory

Definition A.1. A group is a set G with a binary operation o satisfying the following laws:
(G0) (Closure law): For all g,h € G, goh € G.

(G1) (Associative law): go (hok) = (goh)ok for all g,h, k € G.

(G2) (Identity law): There exists e € G such that goe=cog =g for all g € G.

(G3) (Inverse law): For all g € G, there exists h € G with goh =hog=ce.

A.1.2 Category Theory

This section does not provide a complete overview of category theory, nor even a full introduction, but aims
to provide a sufficient level of understanding to aid the reader with further sections of the paper, where
we believe presenting the comparison between models from a category theory perspective makes more clear
the distinctions between them. A category, C, consists of a set of objects, Ob(C), and a set of morphisms
(structure-preserving mappings) or arrows, f : A — B, A, B € Ob(C). There is a binary operation on
morphisms called composition. Each object has an identity morphism. Categories can be constructed from
given ones by constructing a subcategory, in which each object, morphism, and identity is from the original
category, or by building upon a category, where objects, morphisms, and identities are inherited from the
original category. A functor is a mapping from one category to another that preserves the categorical structure.
For two categories C and D a functor F' : C — D maps each object A € Ob(C) to an object F(A) € Ob(D)
and maps each morphism f: A — B in C to a morphism F(f) : F(A) — F(B) in D.

Definition A.2. A groupoid is a category in which each morphism is invertible. A groupoid where there is
only one object is usually a group.

A.2 WL Variants and Proofs for Section [4]

Definition A.3. (Vertex coloring). A vertex coloring is a function mapping a graph and one of its nodes to
a "color" from a fixed color palette.

Generally, a vertex coloring is a function ¢ : V — C, (G,v) + ¢&, where V is the set of all possible tuples of
the form (G,v) with G = (V, E) the set of all finite graphs and v € V.

Definition A.4. (Vertex color refinement). Let ¢, d be two vertex colorings. We say that d refines ¢ when for
all graphs G = (Vg, EY), H = (V¥ EH) and all vertices v € V¢, u € V we have that ¢§ = d = c¢{ = cH.
We write d C c.

When working with a specific graph pair G', G2, the refinement d of ¢ is written d Egi,g2 ¢, when, in
particular, it holds that Vv € 17 ,Uu € VG2, d§r = d&? = G = G,

The 1-WL test represents a graph as a multiset (or histogram) of colors associated with its nodes. This
coloring induces a partitioning of the nodes into color classes, where two nodes belong to the same partition
is and only if they have the same coloring. The algorithm starts from some initial coloring and iteratively
updates the coloring, leading to at each step, where the algorithm does not terminate, a finer-grained node
partitioning. Each of these iterations is a refinement step, since, if ¢ indicates the coloring computed at
iteration ¢ then the subsequent coloring at iteration ¢ + 1 is given by ¢!*! Cg g ¢!

Definition A.5. (Sub-graph-1-WL (Zhao et al. [2021))). Sub-graph-1-WL generalises the 1-WL test by
replacing the color refinement step c/™t = HASH(Star(v)) with ¢/™* = HASH(G'[N(v)]), Vv € V. Where
G[Nk(v)] is the k-hop egonet.

We start by proving that sub-graph-WL is at least as expressive as 1-WL. For this we first characterise our

sub-graph-WL to make the comparison between a refinement strategy for a bag of sub-graphs and those
which operate on graphs.

14

Under review as submission to TMLR

Definition A.6. (Sub-graph-WL node refinement). For a graph G = (V, E) we denote S as a bag of
sub-graphs generated by taking the k-hop ego net of each node v € V. The color refinement for node v at
time step ¢ > 0, Cy, is given by the set of node colors across the sub-graphs, denoted as {{c!, ;}}mesq-

Lemma A.7. b C a. That for all graphs G* = (V' E') and G* = (V2, E?) and all nodes v € V', w € V?
that by, = by = Gy = Ay -

Proof. For such a node refinement policy, inclusive of node refinement across sub-graphs, |Bevilacqua et al.
(2021)) show that, for b the node coloring from a sub-graph-WL refinement and a the node coloring from a
WL refinement, b C a. It then follows that for all graphs G! = (V1, E') and G? = (V2, E?) and all nodes
ve VL we V?that by, = by = ay = ay.

Lemma A.8. Sub-graph-WL is at least as powerful as sub-graph-1-WL in distinguishing non-isomorphic
graphs.

Proof. We denote a colorings by the sub-graph-1-WL algorithm, b colorings on each sub-graph by the
sub-graph-WL algorithm, and ¢ coloring on each node within a sub-graph by the sub-graph-WL algorithm.
We also denote S*, S? as the bags of sub-graphs from G!, G? respectively. If |S| # |S?| then the two
graphs are trivially distinguished by sub-graph-WL. In the case where |S!| = |S?| we seek to show that if
sub-graph-1-WL identifies non-isomorphic graphs then so does sub-graph-WL.

First recall that sub-graph-1-WL at time step ¢t deems two graphs non-isomorphic if the following two are
assigned two different multisets of node colors:

{{ayJv e V'}} # ({ay,lw e V1),

while sub-graph-WL deems them non-isomorphic when the following two are assigned two different multisets
of subgraph colors:

[s # (s D).

If it is given that sub-graph-1-WL distinguishes between two graphs at iteration 7', then by Lemma [A77]
bT C a”. In addition, Bevilacqua et al. (2021) prove that for such a coloring at 7' a sub-graph refinement
policy such as sub-graph-WL is refined by the coloring generated at T'4 1 on any pair of sub-graphs:
VH,,Hy € ST U S% T+ C Hi,Ha bT. The proof follows from the definition of the refinement step in an
algorithm for a bag of sub-graphs, namely, the inclusion of a term which refines over the multiset of node
colors across sub-graphs implies that if CI' = C then b = b1. This gives that if sub-graph-1-WL can
distinguish between two graphs at time step T then the sub-graph refinement policy yields distinct colors to
any pair of sub-graphs. Therefore, sub-graph-WL can distinguish between two graphs that sub-graph-1-WL
can and is at least as expressive.

This provides the necessary detail for the proof of Theorem To prove that sub-graph-WL is strictly more
powerful than 1&2-WL we could instead prove that sub-graph-1-WL is strictly more powerful than 1&2-WL
and then by Lemma [A-§] the proof that sub-graph-WL is strictly more powerful than 1&2-WL is complete.
In fact, |Zhao et al.| (2021)) prove that sub-graph-1-WL is strictly more powerful than 1&2-WL by presenting
a pair of non-ismorphic graphs that sub-graph-1-WL distinguishes but 1-WL cannot. Therefore, we can
conclude that our sub-graph-WL is strictly more powerful than 1&2-WL.

A.3 Previous Methods

A.3.1 Global Equivariant Graph Networks

Global Permutation Equivariance. Global permutation equivariant models have been considered by
Hartford et al.|(2018]);|Maron et al.| (2018} 2019);|Albooyeh et al. (2019), with|Maron et al.|(2018]) demonstrating
that for order-2 layers there are 15 operations that span the full basis for an permutation equivariant linear
layer. These 15 basis elements are shown in Figure [3] with each basis element given by a different color in the

15

Under review as submission to TMLR

map from representation ps — py. Despite these methods, when solved for the entire basis space, having
expressivity as good as the k-WL test, they operate on the entire graph. Operating on the entire graph
features limits the scalability of the methods. In addition to poor scalability, global permutation appears to
be a strong constraint to place upon the model. In the instance where the graph is flattened and an MLP is
used to update node and edge features the model would have n? trainable parameters, where n is the number
of nodes. On the other hand, a permutation equivariant update has only 15 trainable parameters and in
general 15 < n?.

Viewing a global permutation equivariant graph network from a category theory perspective there is one
object with a collection of arrows representing the elements of the group. Here the arrows or morphisms
go both from and to this same single object. The feature space is a functor which maps from a group
representation to a vector space. For a global permutation equivariant model the same map is used for every
graph.

g1

()
~ G
g2 AN_e

Symmetric Group

Global Naturality Global natural graph networks (GNGN) consider the condition of naturality, (de Haan
et al., [2020). GNGNSs require that for each isomorphism class of graphs there is a map that is equivariant
to automorphisms. This naturality constraint is given by the condition p/'(¢) o Kg = Kgr o p(¢), which
must hold for every graph isomorphism ¢ : G — G’ and linear map Kg. While the global permutation
equivariance constraint requires that all graphs be processed with the same map, global naturality allows for
different, non-isomorphic, graphs to be processed by different maps and as such is a generalisation of global
permutation equivariance. As is the case for global permutation equivariant models, GNGNs scale poorly as
the constraint is placed over the entire graph and linear layers require global computations on the graphs.

Viewing a GNGN from a category theory perspective there is a different object for each concrete graph,
which form a groupoid. Then, there is a mosphism or arrow for each graph isomorphism. These can either be
automorphisms, if the arrow maps to itself, or isomorphisms if the arrow maps to a different object. The
feature spaces are functors which map from this graph category to the category of vector spaces. The GNG
layer is a natural transformation between such functors consisting of a different map for each non-isomorphic
graph.

Qe
co »

7
Gy

Groupoid of Concrete Graphs

J

A.3.2 Local Equivariant Graph Networks

Local equivariant models have started to receive attention following the successes of global equivariant models
and local invariant models. The class of models that are based on the WL test are not in general locally
permutation equivariant in that they still use a message passing model with permutation invariant update
function. Despite this, many of these models inject permutation equivariant information into the feature
space, which improves the expressivity of the models (Bouritsas et al., [2020; [Morris et al., [2019a}; [Bodnar
et al., [2021bjfal). The information to be injected into the feature space is predetermined in these models by a
choice of what structural or topological information to use, whereas our model uses representations of the
permutation group, making it a very general model that still guarantees expressivity.

16

Under review as submission to TMLR

In contrast to utilising results from the WL test covariant compositional networks (CCN) look at permutation
equivariant functions, but they do not consider the entire basis space as was considered in Maron et al.| (2018)
and instead consider four equivariant operations (Kondor et al., |2018). This means that the permutation
equivariant linear layers are not as expressive as those used in the global permutation equivariant layers.
Furthermore, in a CCN the node neighbourhood and feature dimensions grow with each layer, which can be
problematic for larger graphs and limits their scalability. Another local equivariant model is that of local
natural graph networks (LNGN) (de Haan et al.,2020). An LNGN uses a message passing framework, but
instead of using a permutation invariant aggregation function, it specifies the constraint that node features
transform under isomophisms of the node neighbourhood and that a different message passing kernel is used
on non-isomorphic edges. In practice this leads to little weight sharing in graphs that are quite heterogeneous
and as such the layer is re-interpreted such that a message from node p to node g, kyqvp, is given by a function
k(Gpq, vp) of the edge neighbourhood Gpq and feature value v, at p.

Viewing a LNGN from a category theoretic perspective there is a groupoid of node neighbourhoods where
morphisms are isomorphisms between node neighbourhoods and a groupoid of edge neighbourhoods where
morphisms are ismorphisms between edge neighbourhoods. In addition, there is a functor mapping from edge
neighbourhoods to the node neighbourhood of the start node and a functor mapping similarly but to the tail
node of the edge neighbourhood. The node feature spaces are functors mapping from the category of node
neighbourhoods to the category of vector spaces. Further, composition of two functors creates a mapping from
edge neighbourhoods to the category of vector spaces. A LNG kernel is a natural transformation between
these functors.

N §)
G Y
ey

Groupoid of Node Neighbourhoods

|

J

¢ <_Q{)

(}El S —

Gy
Groupoid of Edge Neighbourhoods

A.4 Implementing other models within our framework

In the datasets used, for graph classification benchmark tasks, the input to the model is a graph with
node and edge features, this can be represented as 2°¢ order permutation representation, so the input
representation would be j = 2. The convolution can then map from this representation, p;, to multiple
different representation spaces, pg @ p1 @ --- @ p;. Subsequent convolutions can then map from these
multiple permutation representations, pg ® p1 @ - -+ @ p;, to multiple different permutation representations,
Po D p1 D -+ D p;. The choice of representations used can be made depending on a trade off between
expressivity and computational cost, as lower order representation spaces have less expressivity, but also
lower computational cost.

Local Natural Graph Networks (LNGNs) (de Haan et al.l [2020)) take the input feature space and embed
this into an invariant scalar feature of the edge neighbourhood graph. This is the same as using specific
choice k-hop sub-graph creation and permutation representation space for the sub-graph convolution. In the
case of LNGNs the choice would be k = 1 and mapping the input feature space to representation py creating

17

Under review as submission to TMLR

a permutation invariant feature space. Then any graph neural network with invariant features can be used,
in the paper the choice made is to use a GCN (Kipf & Welling} 2016), which can also be covered by our
framework. Here the choice would again be to use k = 1 when creating the subgroups and using a subgraph
convolution with representation spaces pg — po.

Global Equivariant Graph Networks (EGNs) (Maron et all [2018) use a choice of k = n, for n-node
graphs when creating the sub graphs, which corresponds to not selecting a sub graph and instead operating
over the entire graph. They then use the representation space ps — p2 mapping from a graph feature space
to a graph feature space.

Local Permutation Equivariant Graph Networks (LPEGN) (Ours) In our paper we choose to use
k = 1 throughout to keep inline with the vast majority of previous work on graph neural networks, but we
use a representation space of p; @ pa — p1 @ p2 in the hidden layers of the model and we note that this was
simply a choice that seemed a simple case to present as a comparison with previous work in the benchmark
classification task.

A.5 Architectural Details of the SPEN Framework

The main figure outlining the model concept is provided in Figure |2l The first stage in the model is to split
the input graph into a bag of sub-graphs. To do this we utilise a k-ego network policy, where for each node
in the input graph we extract the neighbouring nodes and the induced connectivity of these nodes up to
k-hop away from the initial node. This induced connectivity sub-graph is then extracted and becomes one of
the sub-graphs within the bag. This process is repeated for each node in the input graph, creating a bag of
sub-graphs. This can be seen in step (2) in Figure

At this point the input graph is represented as a bag of sub-graphs. The next step in the model is to split
these into there corresponding automorphism groups. As these are sub-graphs with permutation symmetry
the automorphism groups are defined as

Aut(H) = {o € S,|A7 = A}, (2)

where A is the adjacency matrix of H and o is a permutation action on the sub-graph. Due to the choice of
sub-graph selection policy, where the induced connectivity is extracted, we can consider missing edges in
the sub-graph as zero feature edges. This is the same approach as would be taken in |[Maron et al.| (2018)
and all approaches which operated on a dense adjacency matrix of the graph. Therefore, each sub-graph
automorphism group is fully determined by the size of the sub-graph, namely the number of nodes in the
sub-graph. Then each sub-graph is placed in a bag of sub-graphs such that each sub-graph within the bag
belongs to the same automorphism group. These two steps of finding the sub-graphs and placing into bags of
sub-graphs such that each bag corresponds to a single automorphism group can be combined into one step.
This is achieved by placing the sub-graphs into the correct automorphism group bag of sub-graphs as each
sub-graph is extracted. This can be seen as moving to step (3) in Figure

Now the input graph is represented by multiple bags of sub-graphs, each bag corresponding to a different
automorphism group. Next we considered step (3) in Figure [2 As our model operated on sub-graphs we
use a graph neural network architecture. Here we choose to use permutation equivariant neural networks
and utilise a general approach for operating on higher-order objects. A general recipe for building group
equivariant neural networks was provided in |Kondor & Trivedi (2018]). Following this formalism, we treat
any object that transforms under a group action as a function on the group. In the case of an object which
transforms under a 0-order permutation this would correspond to a single node, and an example of this would
be a graph after being pooled. Here, in the case of a single feature dimension, there is just a single weight
and this is an uninteresting case where there is actually nothing to permute. An object which transforms
under a 1-order permutation is a set and an object which transforms under a 2-order permutation is a graph.
This concept can be extended to objects which transform under higher order permutations. In addition, we
can map between different order permutations. Enforcing permutation equivariance within a neural network
layer mapping between an input and output object which we require to transform under a permutation group
action places a restriction over the weights in the model. It is possible to find bases for a mapping between

18

Under review as submission to TMLR

Table 3: Different range of graph sizes and sub-graph sizes for each dataset considered from TUDatasets.

Dataset MUTAG PTC PROTEINS NCI1 NCI109 IMDB-B IMDB-M
Graph Sizes 10-28 2-109 4-620 3-111 4-111 12-136 7-89
Sub-graph Sizes 2-5 2-5 1-26 2-5 1-6 1-135 1-88
Mean Sub-graph Size 3.2 3.0 4.7 3.2 3.2 9.8 10.1

different objects transforming under different order permutation transformations, which provides the number
of permissible weights for a single feature dimension neural network. We provide an example of some of these
bases functions in Figure 3] Here we use the notation p; to represent an object which transforms under an
i-order permutation transformation. Following this, we use the notation p; — p; to denote a mapping between
an object transforming under an i-order permutation transformation and an object transforming under an
j-order permutation transformation. We have used the notation p due to this being the common notation to
use for representations in group theory. Kondor & Trivedi| (2018) defined the group convolution and made
the connection to Fourier analysis, where the function is decomposed into irreducible representations. These
irreducible representations can be combined using the direct sum to create other group representations, for
example p; = p, B pp- Here we are making use of permutation representations to restrict the space of the
linear update function such that we use the bases shown in Figure [3] and hence the use of p.

Now that we have the general recipe for constructing higher order permutation equivariant graph neural
networks, we consider the specifics of the linear update function used within our model. In our model we
construct a graph neural network which comprises of mappings between objects which transform under
different order permutation transformations. Our model uses a different set of weights to perform the linear
update mapping for each automorphism group. This can be viewed as building a separate graph neural
network for each automorphism group; despite this, the choice of mappings, i.e. the feature dimension
and order of objects, is kept the same for each automorphism group. This different set of weights which
performs the linear mapping within the graph network is symbolised in Figure [3| by showing three GNNs for
automorphism groups A2, A3, A4, for this example graph. This explains the linear map (4) which produces
the outputs (5) in the figure.

At this point the key concepts of the model are explained, namely the splitting of the graph into sub-graphs
which are stored in separate bags for each automorphism group, the core GNN update functions which
comprise of higher-order permutation update functions, and the automorphism constraint placed over the
model via the enforced weight sharing in the model. Following this, there is an averaging of node and edge
features across the sub-graphs. This comprises the linear update function of the model and a choice of
non-linearity can be used, in our experiments we used the ELU non-linearity. The entire model is composed
by stacking multiple of these layers, and in the case of a graph classification task adding a pooling layer. In
the notation of our framework a set or graph pooling layer is a map from an object which transforms under a
1 or 2-order permutation transformation to a 0-order permutation transformation respectively.

A.6 Implementation Details and Datasets
A.6.1 TUDatasets

We present the range of graph sizes and sub-graph sizes when utilising a 1-ego network sub-graph extraction
policy in Table

A.6.2 Model Architecture

We consider the input graphs as an input feature space that is an order 2 representation. For each local
permutation equivariant linear layer we use order 1 and 2 representations as the feature spaces. This
allows for projection down from graph to node feature spaces through the basis for ps — p1, projection
up from node to graph feature spaces through the basis for p; — p2, and mappings across the same order

19

Under review as submission to TMLR

representations through ps — py and p; — p1. The final local permutation equivariant linear layer maps to
order 0 representations through ps — pg and p; — pg for the task of graph level classification. In addition to
the graph layers, we also add 3 MLP layers to the end of the model.

Despite these specific choices which were made to provide a baseline of our method for comparison to existing
methods the framework we present is much more general and different representation spaces can be chosen.
Therefore, different permutation representation spaces, p1 @ p2 @ - - - @ p;, can be chosen for different layers in
the model and a different k value can be chosen when creating the sub-graphs.

A.6.3 Implementation details

For all experiments we used a 1-hop ego networks as this provides the most scalable version of our method.
We trained the model for 50 epochs on all datasets using the Adam optimizer. We considered the evaluation
procedure as was conducted in (Bevilacqua et al.| [2021; [Xu et al.| 2019; [Yanardag & Vishwanathan, |2015;
Niepert et al.,[2016)). Specifically, we conducted 10-fold cross validation and reported the average and standard
deviation of validation accuracies across the 10 folds. For all datasets we use 6 automorphism equivariant
layers with base GNN utilising p; @ p2 representation space.

20

	Introduction
	Background
	Subgraph Permutation Equivariant Networks (SPEN)
	Definitions
	Sub-graph Selection Policy
	Natural Permutation Equivariant Graph Network Architecture
	Sub-graphs
	The Bag of Bags of Sub-graphs
	Bags of Sub-graphs

	Related Work

	Analysis of Expressivity and Scalability
	WL Test and Expressive Power
	Scalability

	Experiments
	Graph Benchmarks

	Future Work
	Conclusion
	Appendix
	Mathematical Background
	Group Theory
	Category Theory

	WL Variants and Proofs for Section 4
	Previous Methods
	Global Equivariant Graph Networks
	Local Equivariant Graph Networks

	Implementing other models within our framework
	Architectural Details of the SPEN Framework
	Implementation Details and Datasets
	TUDatasets
	Model Architecture
	Implementation details

