
Is Unsupervised Performance Estimation Impossible
When Both Covariates and Labels shift?

Anonymous Author(s)
Affiliation
Address
email

Abstract

Accurately estimating and explaining an ML model’s performance on new datasets1

is increasingly critical in reliable ML model deployment. With no labels on the2

new datasets, performance estimation paradigms often assume either covariate shift3

or label shift, and thus lead to poor estimation accuracy when the assumptions4

are broken. Is unsupervised performance monitoring really impossible when both5

covariates and labels shift? In this paper, we give a negative answer. To do so,6

we introduce Sparse Joint Shift (SJS), a new distribution shift model considering7

the shift of labels and a few features. We characterize the mathematical condi-8

tions under which SJS is identifiable. This shows that unsupervised performance9

monitoring is indeed feasible when a few features and labels shift. In addition, we10

propose SEES, an algorithmic framework for performance estimation under SJS.11

Preliminary experiments show the superior estimation performance of SEES over12

existing paradigms. This opens the door to tackling joint shift of both covaraites13

and labels without observing new datasets’ labels.14

1 Introduction15

Encountering new data different from training data is increasingly common during machine learning16

(ML) deployments. For example, geographical locations [4], demographic features [2], and label17

balance [3] are observed to shift between model development and deployment and thus affect the18

model performance. For safe ML applications, it is an important step to estimate and explain how a19

model’s performance changes.20

Estimating and explaining performance shift is challenging for several reasons, however. One major21

challenge is that the data distribution might shift in flexible ways. Another obstacle is that we22

often do not have labels on the new data, especially in ML monitoring applications. Without any23

assumption on the distribution shift, it’s impossible to estimate how well the model would perform on24

the unlabeled new data. Previous work often assumes (i) label shift [5], where feature distributions25

conditional on the labels are fixed, or (ii) covariate shift [10], where label distributions conditional26

on features stay the same. However, we often do not know whether the real data shift is limited to27

label or covariate shift, and naively applying estimation methods designed for one shift may produce28

inaccurate assessments [7]. Moreover, labels and features may shift simultaneously in practice,29

invalidating these common assumptions. Thus, we ask: Is unsupervised performance estimation30

really impossible when both covariates and labels shifts?31

Our contributions: In this paper, we give a negative answer by proposing a new distribution shift32

model, Sparse Joint Shift (SJS), to consider the joint shift of both labels and a few features. SJS33

assumes labels and a few features shift, but the remaining features’ distribution conditional on the34

shifted features and labels is fixed. This unifies and generalizes sparse covariate shift and label shift:35
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(a) Sparse joint shift (SJS)

age sex loc wage churn

30 M CA 100K Yes

45 F WA 150K No

… … … … …

age sex loc wage

25 F CA 100K

57 M WA 200K

… … … …

Source accuracy: 92%

Accuracy shift: -6% Shift reason: loc & churn

(b) Shift estimation and explanation under SJS

Labeled source data Unlabeled target data

SEES

Figure 1: Overview of sparse joint shift (SJS). (a) Both label shift and sparse covariate shift are
SJS, but SJS contains additional shifts as well. (b) illustrates SEES, a framework for performance
shift estimation and explanation under SJS. Given labeled source and unlabeled target data, SEES
exploits the joint shift modeled by SJS to estimate the model performance change and explain which
factors drive the shift. In this example, the goal is to predict churn.

both of them are SJS, but some SJS is not label or sparse covariate shift (Figure 1). Then we provide36

mathematical conditions under which SJS is provably identifiable: if the non-shifted features are37

weakly correlated, then the marginal feature distribution uniquely determines the joint distribution38

under SJS. This makes it possible to quantify the shift and estimate model performance on new data39

without any labels. This makes it possible to quantify the shift and estimate model performance40

on new data without any labels. Furthermore, we propose SEES, an algorithmic paradigm for41

performance shift estimation and explanation under SJS. Preliminary experiments show that SEES42

significantly reduces the performance estimation error compared to existing methods.43

2 Problem Statement: Unsupervised Performance Estimation44

We start by defining unsupervised performance estimation. Suppose we are given a labeled dataset45

Ds ≜ {(xxxs,i, ys,i)}ns
i=1 from some source distribution Ps, an unlabeled dataset Dt ≜ {(xxxt,i)}nt

i=146

from some target distribution Pt, and an ML model f(·) predicting the associated label ∈ [L] given47

any feature vector xxx ∈ Rd. Our goal is to estimate the performance on the target domain. Let48

ℓ(·, ·) denote some performance metric (e.g., the 0-1 loss). Then formally we aim at estimating49

∆ ≜ E(xxx,y)∼Pt
[ℓ(f(xxx), y)]. This is challenging as we do not observe labels on the target domain.50

3 SJS: A Tractable Unification of Label Shift and Sparse Covariate Shift51

Without labels on the target domains, the joint distribution of target labels and features is not52

identifiable, rendering unsupervised performance estimation arbitrarily unreliable in the worse case.53

To mitigate nonidentifiability, it’s necessary to make additional assumptions. The most popular54

assumptions in literature are label shift [5] and covariate shift [9]. Label shift assumes that only label55

distribution may change, but the feature distribution given a label remains, i.e., ps(xxx|y) = pt(xxx|y).56

On the other hand, covariate shift assumes that feature distribution can shift, but the label distribution57

given the features is fixed, i.e., ps(y|xxx) = pt(y|xxx). However, those assumptions disallow simultaneous58

changes of both features and labels, which often happen in real-world data [4, 8, 11]. To enable joint59

feature and label estimation which is tractable, we introduce a subclass of joint distribution shift,60

Sparse Joint Shift (SJS), as follows.61

Definition 1 (Sparse Joint Shift (SJS)). Suppose for an integer m ≤ d and an index set I ⊂ [d] with62

size at most m (i.e., |I| ≤ m), ps(xxxIc |xxxI , y) = pt(xxxIc |xxxI , y). Then we say the source and target pair63

(ps, pt) is under m-Sparse Joint Shift, or m-SJS. Here, Ic ≜ [d]− I . We call I the shift index set.64

Roughly speaking, SJS allows both labels and a few features to shift, but assumes the remaining65

features’ conditional distribution to stay the same. Next, we will study when this assumption allows66

tractable performance shift estimation.67
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3.1 When is sparse joint shift identifiable?68

Note that when m = d, m-SJS simply becomes general joint distribution shift, which is unidentifiable.69

Thus, it is worthy understanding when m-SJS resolves the identifiability issue. To do so, let us first70

formally introduce the notation of identifiability.71

Definition 2 (Identifiable). Suppose the source-target tuple (ps, pt) is under m-SJS. (ps, pt) is72

identifiable if and only if for any alternative distribution pa(xxx, y), if pa(xxx) = pt(xxx) and ∃J ⊂73

[d], |J | ≤ m, such that pa(xxxJ c |xxxJ , y) = ps(xxxJ c |xxxJ , y), then pa(xxx, y) = pt(xxx, y).74

The following statement shows when (ps, pt) is identifiable.75

Theorem 1. Suppose (ps, pt) is under m-SJS. Assume for any set J ⊂ [d], |J | ≤ m and any76

fixed x̄xx ∈ X , the probability density (or mass) functions {ps(xxxJc∩Ic ,xxxJ∪I = x̄xxJ∪I , y = i)}Li=1 are77

linearly independent. Then (ps, pt) is identifiable.78

This statement sheds light on why uniquely identifying the target distribution without target label is79

feasible under sparse joint shift. Roughly speaking, m-SJS requires that given the shifted features80

and labels, the remaining features’ distribution remains the same on both domains. If those remaining81

features are different enough (linear independence), they can uniquely determine the distribution of82

the shifted features and labels. We stress that the linear independence is necessary: if it does not hold,83

then for any m, we can always find some source-target pair (ps, pt) which is not identifiable. Linear84

independence implicitly requires sparsity: if m > d/2, then Jc ∩ Ic can be empty and the linear85

independence does not hold. In other words, the sparsity is necessary for the shift to be identifiable.86

3.2 How does SJS relate to label shift and covariate shift?87

A natural question is how does SJS relates to standard label shift and covariate shift. To answer this,88

let us first introduce label and sparse covariate shift formally.89

Definition 3. The source and target (ps, pt) is under Label Shift iff ps(xxx|y) = pt(xxx|y), and under90

m-Sparse Covariate Shift iff ps(xxxIc , y|xxxI) = pt(xxxIc , y|xxxI) for some index set I with size m < d.91

Now we are ready to answer the above question.92

Theorem 2. If (ps, pt) is under label shift, then it is also under 0-SJS. If (ps, pt) is under m-sparse93

covariate shift, then it is also under m-SJS. In addition, there exists (ps, pt) under m-SJS such that94

it is under neither label shift or covariate shift.95

There are several takeaways. First, label shift implies SJS without additional requirements. In fact,96

as certain distribution pairs are under SJS but not label shift, SJS is strictly more general than label97

shift. Second, SJS also includes sparse covariate shift. When m = d, SJS completely unifies both98

label shift and covariate shift, though it is not identifiable. Identifiable SJS, on the other hand, unifies99

label shift and sparse covariate shift. Finally, SJS also allows shifts not covered by label shift and100

covaraite shift: the correlation between label and (a set of) features can be shifted.101

3.3 How to estimate an ML model’s performance under identifiable SJS?102

Now we are ready to present SEES (sparsity-aware performance estimation), an algorithmic frame-103

work for performance estimation under SJS. It consists of two steps. First, it learns an importance104

weight function ŵ(xxx, y) to approximate the density ratio w(xxx, y) ≜ pt(xxx, y)/ps(xxx, y). Next, the105

performance is estimated by reweighting the accuracy on the source domain by the importance106

weights, i.e., 1
ns

∑ns

i=1 ŵ(xxx
s,i, ys,i)ℓ(xxxs,i, ys,i). Note that if ŵ(xxx, y) matches the true importance107

weight w(xxx, y) exactly, the proposed estimation is an unbiased estimation of the true performance.108

The estimated ŵ(xxx, y) is the solution to the following sparsity-aware optimization framework109

min
w(xxx,y)∈W

D(pt(xxx), p̂t(xxx))

s.t. p̂t(xxx) =
L∑

y=1

w(xxx, y) · ps(xxx, y), and w(xxx, y) depends on at most m features of xxx.
(3.1)

Here, D(·, ·) is some distance metric that measures the difference between two density functions. We110

minimize the distance between the induced feature density p̂t(xxx) and the target feature density pt(xxx).111

3



Figure 2: Squared ℓ2 estimation error of various methods on the COVID-19 dataset under different
data shifts. Overall, SEES is the only method that consistently produces accurate estimation across
all shifts and significantly improves estimation performance over existing methods under SJS.

The minimization is not over joint label and feature distributions since target labels are not available.112

The induced feature density function can be easily derived from source density function and the113

weight function, encoded in the first constraint. m-SJS is enforced by the second constraint: m-SJS114

means given m features and labels, the distributions of remaining features are fixed across source115

and the induced domain, which holds if and only if their density ratio w(xxx, y) only depends on those116

m features. W represents the set of all feasible weight functions. Different parameterization can117

be easily realized by adopting different W . Assume access to density functions ps(xxx, y) and pt(xxx),118

and a weight function set W containing the true weight w∗(xxx, y) ≜ pt(xxx,y)
ps(xxx,y)

. One can easily show119

the above optimization returns the true weight function w∗(xxx, y) for identifiable m-SJS. In practice,120

one can replace ps(xxx, y) and pt(xxx) with their empirical estimation, and use standard distance metrics121

(such as KL-divergence or ℓ2 norm) to instantiate D(·, ·).122

4 Preliminary Experiments123

In this section, we provide preliminary experiments to study the performance of SEES.Our goal124

is to (i) justify whether SEES estimates model performance accurately when SJS occurs, and (ii)125

understand how robust the performance of SEES is given various performance shifts.126

ML models, Datasets and baselines. We use a gradient boosting tree model as the ML model, and127

focus on a case study on the COVID-19 dataset [1]. This dataset contains demographic features (such128

as age and gender) and symptom features (for example, fever, cough, and sore throat) of patients129

collected by the Israel government. The goal is to predict if a patient test positive or negative for130

COVID-19. We then evaluate performance of SEES when label shift, covariate shift (by varying the131

feature age), and sparse joint shift (by varying both label and feature age) occur. Compared baselines132

includes BBSE [5] for label shift, KLIEP [10], and DLU [6] for covariate shift.133

Analysis. As shown in Figure 2, estimation error achieved by SEES is significantly smaller than134

all compared baselines when both feature age and label shift (i.e., the sparse joint shift). In addition,135

SEES is the only approach robust to different shifts. In fact, when labels shift, KLIEP and DLU lead136

to large estimation errors. When covariates shift, a poor estimation performance is induced by BBSE.137

This is because all existing baselines require that either labels or covariates shift. On the other hand,138

SEES is able to produce reliable performance estimation under different data shift models.139

5 Conclusion140

In this paper, we propose Sparse Joint Shift (SJS), a new distribution shift model that considers141

both label and covariate shifts. We show how SJS unifies and generalizes existing distribution shift142

models and remains identifiable under reasonable assumptions. We develop SEES, an algorithmic143

framework for unsupervised model performance estimation under SJS. Many problems remain open.144

A natural next step is how to improve estimation performance under SJS when a small number of145

target labels can be queried. Developing ML models robust to different SJS is also an open question.146
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