
HYPER: A Foundation Model for Inductive Link
Prediction with Knowledge Hypergraphs

Xingyue Huang
University of Oxford

Mikhail Galkin
Google Research

Michael M. Bronstein
University of Oxford & AITHYRA

İsmail İlkan Ceylan
University of Oxford

Abstract

Inductive link prediction with knowledge hypergraphs is the task of predicting
missing hyperedges involving completely novel entities (i.e., nodes unseen during
training). Existing methods for inductive link prediction with knowledge hyper-
graphs assume a fixed relational vocabulary and, as a result, cannot generalize
to knowledge hypergraphs with novel relation types (i.e., relations unseen during
training). Inspired by knowledge graph foundation models, we propose HYPER
as a foundation model for link prediction, which can generalize to any knowledge
hypergraph, including novel entities and novel relations. Importantly, HYPER can
learn and transfer across different relation types of varying arities, by encoding
the entities of each hyperedge along with their respective positions in the hyper-
edge. To evaluate HYPER, we construct 16 new inductive datasets from existing
knowledge hypergraphs, covering a diverse range of relation types of varying
arities. Empirically, HYPER consistently outperforms all existing methods in both
node-only and node-and-relation inductive settings, showing strong generalization
to unseen, higher-arity relational structures.

1 Introduction

Bengio ClimateAI Montreal

CIFAR

Sasha

2015

EthicalAI

NeurIPS

Ian

Research

AtConference

Teaches

Figure 1: A knowledge hy-
pergraph with three hyperedges
over distinct relation types.

Generalizing knowledge graphs with relations between any num-
ber of nodes, knowledge hypergraphs offer flexible means of
storing, processing, and managing relational data. Knowl-
edge hypergraphs can encode rich relationships between enti-
ties; e.g., consider a relationship between four entities: “Bengio
has a research project on topic ClimateAI in Montreal funded
by CIFAR”. This relational information can be represented in
a knowledge hypergraph (see Figure 1) via an (ordered) hy-
peredge Research(Bengio,ClimateAI,Montreal,CIFAR), where
Research represents a relation of arity four.

The generality knowledge hypergraphs motivated a body of work
for machine learning with knowledge hypergraphs [18, 9, 33,
41, 21]. One of the most prominent learning tasks is inductive
link prediction with knowledge hypergraphs, where the goal is
to predict missing hyperedges involving completely novel en-
tities [33, 41, 21]. The main shortcoming of existing meth-
ods for inductive link prediction with knowledge hypergraphs is that they cannot generalize to
knowledge hypergraphs with novel relation types. This constitutes the main motivation of our
work: Can we design an effective model architecture for inductive link prediction with knowl-
edge hypergraphs, where the predictions can involve both novel entities and novel relations?

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Bengio ClimateAI Montreal

CIFAR

Sasha

2015

EthicalAI

NeurIPS

Ian

Research

AtConference

Teaches

Gtrain

Samsung LED Las Vegas

LG Display

CTA

2024

Q60D TV

CES

BestBuy

Trading

AtFair

Sells

Ginf

Figure 2: A model is trained on relations like
Research, Teaches, and AtConference, and is ex-
pected to generalize to structurally similar relations
TradingDeal, Sells, and AtBusinessFair at test time.

Example. Consider the knowledge hyper-
graphs depicted in Figure 2: The train-
ing hypergraph Gtrain is over the rela-
tions Research, Teaches, and AtConference,
while the inference graph Ginf is over the
novel relations Trading, Sells, and AtFair.
The task is to predict missing links such
as Sells(Samsung,Best Buy,Q60D TV) in
Ginf. Ideally, the model should learn rela-
tion invariants that map Teaches 7→ Sells,
Research 7→ Trading, and AtConference 7→
AtFair, as these relation types play anal-
ogous structural roles in their respective
graphs, even though their labels and entities
are entirely different. △
Approach. In essence, our study builds on the success of knowledge graph foundation models
(KGFMs) [16, 24], which have shown remarkable performance in link prediction tasks involving both
novel entities and novel relations. However, KGFMs can only perform link prediction using binary
relations, which raises the question of how to translate the success of KGFMs to fully relational data.
To this end, we propose HYPER, a class of knowledge hypergraph foundation models for inductive
link prediction, which can generalize to any knowledge hypergraph. The fundamental idea behind our
approach is to learn properties of relations that are transferable between different types of relations of
varying arity. Consider, for example, the two hyperedges (from Figure 2):

AtConference(Sasha,Montreal, 2015,EthicalAI,NeurIPS),

Research(Bengio,ClimateAI,Montreal,CIFAR),

which “intersect” with each other. The entity Montreal appears in the second position of the first
hyperedge and in the third position of the second hyperedge. Such (pairwise) interactions between
relations can be viewed as fundamental relations to learn from: any model learning from relations
between relations can transfer this knowledge to novel relation types that have similar interactions.

Research

AtConferenceTeaches

(1, 1) (3, 2)

(2, 3)

(3, 4)

(4, 3)

Grel

Figure 3: The relation graph
Grel corresponding to the
knowledge hypergraph Gtrain.

Furthermore, we can encode such relations between relations in
a separate relation graph, which can be used to learn from. We
illustrate this on our running example in Figure 3, where the relations
appear as nodes; the interactions between relations as edges; and
finally, the positions of the interactions as edge weights. In our
setting, a directed edge from relation r1 to r2 with edge label (i, j)
indicates that “The i-th position of r1 and the j-th position of r2
intersect in G”, which captures a fundamental interaction between
r1 and r2. Critically, however, there is no upper bound on the
number of such possible interactions. While there are at most m×n
interactions between an m-ary relation and an n-ary relation, we
cannot impose any bound on the arity of the relations since then the
model would not generalize to all knowledge hypergraphs.

Contributions. Our main contributions can be summarized as follows:

• To the best of our knowledge, HYPER is the first foundation model that allows zero-shot
generalization to knowledge hypergraphs of arbitrary arity with novel nodes and novel
relations at test time.

• We evaluate HYPER on 3 existing benchmark datasets and additionally on 16 new benchmark
datasets with varying proportions of test-time tuples involving unseen relations. HYPER
consistently outperforms existing hypergraph baselines trained end-to-end, particularly when
the proportion of new relations is high.

• To assess the performance of KGFMs on hypergraphs, we reify the knowledge hypergraphs
into KGs and apply KGFMs on them. Remarkably, HYPER, trained on only 2 hypergraphs
and 3KGs, consistently outperforms the popular KGFM model ULTRA trained on 50 KGs.

• We conduct an empirical investigation over the positional interaction encoding scheme
within HYPER, demonstrating the critical role of encoding choices.

2

2 Related Work

Link Prediction with Knowledge Graphs. Early work on KG embeddings [5, 27, 30, 3, 1] and
relational GNNs [26, 31] enabled effective link prediction but remained transductive, relying on stored
entity embeddings. GraIL [28] pioneered node-inductive link prediction via the labeling trick [36],
followed by conditional message-passing architectures such as NBFNet, A*Net, RED-GNN, and
AdaProp [42, 43, 37, 38], which improved expressivity but did not generalize to unseen relations.
More recently, knowledge graph foundation models (KGFMs) such as InGram [22], ULTRA [16], and
TRIX [39] have enabled inductive prediction over both unseen nodes and relations. Extensions such
as KG-ICL [6] and double-equivariant GNNs [17, 40] further emphasize relational generalization,
while MOTIF [20] provides a unifying theoretical framework. While these models mark an important
step toward fully inductive reasoning in knowledge graphs, their design is still fundamentally limited
to binary relations, leaving higher-arity relational structures out of reach.

Link Prediction with Knowledge Hypergraphs. Knowledge hypergraphs extend KGs to higher-
arity relations. Early approaches [32, 9, 1] adapted shallow embeddings from KGs, while later
works developed message-passing architectures tailored to hypergraphs, such as G-MPNN [33],
RD-MPNNs [41], and recently HCNets [21]. While G-MPNN and RD-MPNNs primarily leverage
positional entity information, HCNets additionally introduce conditional message passing, yielding
more expressive and inductive modeling of hypergraphs. However, they remain transductive to
relation, meaning that they are unable to generalize to unseen relations. Our work builds on these
foundations by combining hypergraph message passing with inductive generalization techniques
from recent KGFMs.

Foundation Models on Hypergraphs. Recent work on hypergraph foundation models has focused
primarily on text-attributed hypergraphs. HyperBERT [4] integrates pretrained language models with
hypergraph convolutions, while HyperGene [8] and SPHH [2] develop self-supervised objectives for
hypergraph structures. More recent efforts, including Hyper-FM [11] and IHP [35], introduce multi-
domain pretraining and instruction-guided adaptation. While these represent important progress, they
target node classification and rely heavily on text attributes, leaving open the challenge of inductive
link prediction over higher-arity relations. For further discussion over related work, see Appendix A.

3 Preliminaries

Knowledge Hypergraphs. A knowledge hypergraph G = (V,E,R) consists of a set of nodes V ,
hyperedges E (i.e., facts) of the form e = r(u1, . . . , uk), where r ∈ R is a relation type, and ui ∈ V ,
1 ≤ i ≤ k, are nodes. The arity of a relation r is given by k = ar(r), where ar : R 7→ N>0. For an
hyperedge e, ρ(e) denotes its relation, and e(i) denotes the node at the i-th position of e. We refer to
the knowledge hypergraph with all edges having arity of exactly 2 as a knowledge graph. The set of
edge-position pairs associated with a node v is defined as:

E(v) = {(e, i) | e(i) = v, e ∈ E, 1 ≤ i ≤ ar(ρ(e))}.

The positional neighborhood of a hyperedge e with respect to a position i is:

Ni(e) = {(e(j), j) | j ̸= i, 1 ≤ j ≤ ar(ρ(e))}.

Link Prediction on Hyperedges. Given a knowledge hypergraph G = (V,E,R) and a query
q(u1, . . . , ut−1, ?, ut+1 . . . , uk), the link prediction task involves scoring all possible hyperedges
formed by replacing the placeholder ‘?’ with each node v ∈ V . We denote a k-tuple of nodes by
u = (u1, . . . , uk) and the tuple excluding position t by ũ = (u1, . . . , ut−1, ut+1, . . . , uk). Thus, we
represent a query succinctly as q = (q, ũ, t). In the fully-inductive setting for link prediction (i.e.,
node and relation-inductive link prediction), the goal is to answer queries of the form q = (q, ũ, t)
on an inference hypergraph Ginf = (Vinf, Einf, Rinf), where both the entity set Vinf and the relation set
Rinf are entirely disjoint from those seen during training. The model is trained on a separate training
knowledge hypergraph Gtrain = (Vtrain, Etrain, Rtrain), with Vtrain ∩ Vinf = ∅ and Rtrain ∩Rinf = ∅, and
must learn transferable representations that generalize across both novel entities and unseen relation
types of arbitrary arity. At inference time, each hyperedge e = r(u1, . . . , uk) ∈ Einf corresponds to
a fact involving a relation r ∈ Rinf, and queries involve predicting a missing node at position t within
such a tuple, using the surrounding nodes ũ and relation q = ρ(e). The model must score candidate
completions q(u1, . . . , ut−1, v, ut+1, . . . , uk) for each v ∈ Vinf.

3

r1

r2

r3

Input Hypergraph G

r1

r2r3

(1, 1) (3, 2)

(2, 3)

(3, 4)

(4, 3)

Compute xa,b = EncPI((a, b))

r1

r2r3

x1,1 x3,2

x2,3

x3,4

x4,3

Message Passing on Grel

Relation Encoder on Grel

r1

r2

r3

Entity Encoder on G

Figure 4: Overall framework of HYPER. HYPER first constructs a relation graph Grel based on the
observed positional interactions between the relations. EncPI then computes embeddings for each
position pair, which are refined via message passing over Grel. The resulting relation representations
are then used for message passing over the original knowledge hypergraph G (shown in color).

4 HYPER: A Knowledge Hypergraph Foundation Model

We now present HYPER, a general framework for learning foundation models over knowledge
hypergraphs. Given a knowledge hypergraph G = (V,E,R) and a query q = (q, ũ, t), HYPER
computes link prediction scores through the following steps:

1. Encoding the relations: Relations are encoded in three steps:
(a) Relation graph: Build a relation graph Grel where each node corresponds to a relation r ∈ R,

and edges capture observed positional interactions between relations.
(b) Encoding positional interactions: Use an encoder EncPI to embed each interacting position

pair (a, b) from Grel into fundamental relation representations.
(c) Encoding the relations: Perform conditional message passing [21] over Grel using funda-

mental relation representations to obtain relation embeddings for all r ∈ R.
2. Entity encoder: Use learned relation representations to conduct conditional message passing over

the original knowledge hypergraph G and obtain link probability via decoder Dec.

The overall framework is illustrated in Figure 4. We also report the detailed complexity analysis for
each components in Appendix F, and the detailed definitions of the models in Appendix K.

Relation graph. Given a knowledge hypergraph G = (V,E,R), we construct the relation graph
Grel = (Vrel, Erel, Rrel). The set of nodes is given as Vrel = R, i.e., each node in Grel corresponds to
a relation type in the knowledge hypergraph G. The relation types Rrel are defined as all ordered
pairs (a, b) for {1 ≤ a, b ≤ kmax}, where kmax = max {ar(r) | r ∈ R} denotes the maximum arity
among the observed relations. The edge set Erel captures positional interactions between relation
types: for each pair of hyperedges e1, e2 ∈ E with relation types r1 = ρ(e1) and r2 = ρ(e2), if there
exists a shared entity v appearing in position i in e1 and position j in e2, we add a directed edge
(r1, r2) with relation type (i, j) to Erel. These positional interactions can be computed efficiently via
sparse matrix multiplication (see Appendix C) and are invariant over the renaming of relations.

Encoding positional interactions. Unlike knowledge graphs, where each fact involves two entities
and naturally leads to four types of fundamental relations (head-to-head, head-to-tail, tail-to-head,
and tail-to-tail) as introduced in Galkin et al. [16], knowledge hypergraphs allow facts with arbitrary
arity. This introduces a key challenge: How to build a foundation model that can adapt to unseen
knowledge hypergraphs with varying and arbitrarily large arities?

The natural extension of the concept of fundamental relations from KGs to knowledge hypergraphs
results in mn types of positional interactions between an hyperedge of arity m and an hyperedge of
arity n. Each of such interaction is characterized by a pair (a, b), where a and b denote the entity
positions involved in the relation. As a consequence, a foundation model for knowledge hypergraphs
must be capable of encoding positional interactions in a way that generalizes across different arities.

A naive solution would be to associate a separate embedding to each (a, b) pair. However, such an
approach does not generalize to unseen arities, as it would require pre-training embeddings for all
possible (a, b) combinations. To address this, we propose a shared, compositional position interaction

4

encoding scheme. Specifically, given a positional interaction labeled (a, b), we define a positional
interaction encoder EncPI : N>0 × N>0 → Rd, which maps a pair of argument positions to a dense
vector representation of d dimensions. To be effective in inductive settings, we require the encoder
EncPI to satisfy the following requirements:

1. Extrapolation. The encoder should generalize to unseen positions and combinations, allowing
the model to operate on arities and interaction patterns not present during training.

2. Injectivity. Distinct position pairs (a, b) and (a′, b′) should map to distinct embeddings to
preserve the identifiability of positional interactions:

∀a, b, a′, b′ ∈ N>0, (a, b) ̸= (a′, b′) =⇒ EncPI((a, b)) ̸= EncPI((a
′, b′)).

When applied to knowledge graphs, our method recovers standard encoding patterns employed in
many KGFMs [16, 22, 39, 20]. In particular, head-to-tail, head-to-head, tail-to-tail, and tail-to-head
correspond to EncPI((1, 2)), EncPI((1, 1)), EncPI((2, 2)), and EncPI((2, 1)), respectively.

Relation encoder. HYPER uses Hypergraph Conditional Networks(HCNets) [21] as relation en-
coder over Grel to encode relations for its strong inductive performance, support for bidirectional
message passing, and easy extensibility to higher-order relational patterns [20]. We take EncPI((a, b))
as the messages when message-passing over relation graph with positional encoding (a, b).

Entity Encoder. Similarly to the relation encoder, HYPER uses a variant of HCNet to encode the
entities. HYPER iteratively updates the node representations h(ℓ)

v|q as h(0)
v|q = INIT(v, q), and

h
(ℓ+1)
v|q = UP

(
h
(ℓ)
v|q, AGG

(
{{MSGρ(e)

(
{(h(ℓ)

w|q, j) |(w, j) ∈ Ni(e)},h(T)
ρ(e)|q, q

)
|(e, i) ∈ E(v)}}

))
.

where INIT, UP, AGG, and MSGr are differentiable initialization, update, aggregation, and relation-
specific message functions, respectively, with INIT satisfying generalized targets node distinguisha-
bility [21]. After L layers of message passing, we obtain the final entity encoding h

(L)
v|q . A final unary

decoder Dec : Rd(L) → [0, 1] predicts the score for completing the missing position t in the query q.

5 Experiments

Setups. We conduct our experiments under two different experiment settings.

• End-to-end inference. We compare HYPER, trained directly on the training split of each
dataset, against hypergraph baselines: G-MPNN [33] and HCNet [21]. These models rely
on stored relation embeddings and thus cannot generalize to unseen relations.

• Zero-shot inference. We compare HYPER variants against knowledge graph foun-
dation models, specifically ULTRA† [16], pretrained on increasingly large corpora
(3KG/4KG/50KG) and applied to reified hypergraphs (shown in Appendix D). For HYPER,
we consider three pretrained variants: HYPER(3KG), on KG datasets (FB15k-237 [29],
WN18RR [7], and Codex Medium [25]); HYPER(4HG), on hypergraph datasets (JF17K [32],
Wikipeople [18], FB-AUTO [9], and M-FB15K [9]); and HYPER(3KG+2HG), on a mixture
of both KG and hypergraphs (FB15k-237, WN18RR, Codex Medium, JF17K, Wikipeople).

Dataset construction. To evaluate the transferability and generalization capabilities of HYPER, we
follow the methodology proposed in InGram [22] to construct new datasets with varying proportions
of unseen relations. We derive these datasets from three hypergraph datasets: JF17K [32] (JF),
Wikipeople [18] (WP), and M-FB15K [9] (MFB) and one hyper-relational KG: WD50K [14] (WD).
For each source dataset, we create four variants with different percentages of test tuples containing
previously unseen relations: 25%, 50%, 75%, and 100%. We present all the details in Appendix B.

We also conduct experiments over node-inductive knowledge hypergraph datasets in Appendix G,
ablations study over positional interaction in Appendix H, and additional experiments over knowledge
graphs in Appendix I. We report Mean Reciprocal Rank (MRR) and provide averaged results
for three runs for the end-to-end experiments. The code for experiments is provided in https:
//github.com/HxyScotthuang/HYPER. See computation resources used in Appendix E and
further experimental details in Appendix K.

5

https://github.com/HxyScotthuang/HYPER
https://github.com/HxyScotthuang/HYPER

Table 1: MRR results on node and relation inductive knowledge hypergraph datasets. Superscript †
means the model is applied over the reification of hypergraphs.

Method JF MFB WP WD

25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100

End-to-End Inference

G-MPNN 0.006 0.003 0.001 0.002 0.002 0.004 0.007 0.003 0.005 0.002 0.001 0.000 0.001 0.001 0.001 0.001
HCNet 0.011 0.009 0.069 0.028 0.033 0.026 0.016 0.082 0.104 0.050 0.019 0.003 0.086 0.043 0.015 0.007
HYPER 0.202 0.468 0.207 0.198 0.332 0.200 0.135 0.222 0.159 0.143 0.139 0.202 0.215 0.205 0.172 0.205

Zero-shot Inference

ULTRA†(3KG) 0.119 0.304 0.109 0.091 0.209 0.153 0.062 0.222 0.040 0.070 0.067 0.071 0.171 0.201 0.149 0.176
ULTRA†(4KG) 0.099 0.325 0.102 0.132 0.343 0.215 0.111 0.274 0.047 0.091 0.089 0.086 0.094 0.141 0.054 0.075
ULTRA†(50KG) 0.147 0.407 0.126 0.111 0.310 0.218 0.100 0.262 0.045 0.071 0.045 0.065 0.062 0.124 0.104 0.150
HYPER(3KG) 0.148 0.297 0.112 0.130 0.248 0.191 0.039 0.276 0.143 0.147 0.186 0.221 0.167 0.158 0.123 0.146
HYPER(4HG) 0.187 0.377 0.188 0.181 0.349 0.244 0.139 0.278 0.075 0.068 0.086 0.168 0.087 0.158 0.057 0.165
HYPER(3KG+2HG) 0.216 0.455 0.213 0.173 0.363 0.250 0.140 0.299 0.132 0.152 0.192 0.222 0.223 0.200 0.154 0.182

Overall performances of HYPER. We report model performance across each dataset in Table 1.
Note that HYPER and its variants drastically outperform HCNet in node and relation-inductive
settings. HCNet relies on learnable embeddings for each relation type and struggles with unseen
relations, leading to sharp performance drops under inductive settings. In contrast, HYPER leverages
a pretrained relation encoder, enabling strong generalization even with entirely unseen relations.

Impact on the ratio of known relations. We experiment with multiple relation-split settings that
vary the proportion of test triplets involving unseen relations, ranging from 25% to 100%. While
node-inductive baselines such as HCNet and G-MPNN already perform poorly under low relational
shift (e.g., 25%), their performance degrades substantially as the proportion of unseen relations
increases (e.g., 100%), reflecting the difficulty of generalizing to novel relation types. In contrast,
HYPER maintains consistently strong performance across all splits, demonstrating its robustness and
ability to generalize effectively under an increased proportion of unseen relations.

HYPER vs. ULTRA on reified knowledge hypergraph. Across all datasets, HYPER consistently
outperforms KGFMs like ULTRA† on reified hypergraphs. While KGFMs can in principle generalize
to binary relations, reified hypergraphs form atypical structures, e.g., tripartite graphs with auxiliary
edge nodes, is not commonly seen in pretraining corpora. Notably, ULTRA†(50KG), trained on 50
knowledge graphs, performs only marginally better than the version trained on just 3, and remains
substantially behind HYPER(3KG + 2HG). This shows that simply adding more training KGs cannot
compensate for the lack of explicit hypergraph modeling: reification allows applying KGFMs
syntactically but it leads to much weaker generalization.

Impact of different pretraining datasets. The composition of pretraining data has a noticeable
impact on generalization. While HYPER(4HG), pretrained on hypergraph datasets, performs strongly
on JF and MFB, both of which contain a large proportion of higher-arity relations, it struggles
on WP, which primarily consists of binary edges. Conversely, WP benefits more from pretraining
on binary relational graphs, as seen with HYPER(3KG). The best overall performance comes from
HYPER(3KG + 2HG), which combines both binary and hypergraph pretraining sources. This suggests
that pretraining on diverse relation structures improves generalization across tasks with varying arities.

6 Conclusion

In this work, we introduced HYPER, the first foundation model for inductive link prediction over
knowledge hypergraphs with arbitrary arity, capable of generalizing to both unseen entities and
unseen relations. By leveraging a positional interaction encoder and a relation graph constructed
from structural interactions between relation types, HYPER effectively computes relation invariants
across diverse relational contexts. Through extensive experiments, we demonstrate that HYPER
consistently outperforms state-of-the-art knowledge hypergraph baselines and KGFMs applied to
reified hypergraphs, demonstrating its strong generalization across varied domains and relational
structures. One limitation of HYPER lies in its computational complexity of relation arity: the number
of positional interactions grows quadratically with the arity of each hyperedge. This may lead to
overhead when processing hyperedges with extremely high arity. Future work may explore scalable
approximations to mitigate the cost.

6

References
[1] R. Abboud, İ. İ. Ceylan, T. Lukasiewicz, and T. Salvatori. Boxe: A box embedding model for

knowledge base completion. In NeurIPS, 2020.

[2] A. Abubaker, T. Maehara, M. Nimishakavi, and V. Plachouras. Self-supervised pretraining for
heterogeneous hypergraph neural networks. arXiv preprint arXiv:2311.11368, 2023.

[3] I. Balazevic, C. Allen, and T. Hospedales. Tucker: Tensor factorization for knowledge graph
completion. In EMNLP-IJCNLP, 2019.

[4] A. Bazaga, P. Liò, and G. Micklem. Hyperbert: Mixing hypergraph-aware layers with language
models for node classification on text-attributed hypergraphs. In EMNLP, 2024.

[5] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko. Translating embeddings
for modeling multi-relational data. In NIPS, 2013.

[6] Y. Cui, Z. Sun, and W. Hu. A prompt-based knowledge graph foundation model for universal
in-context reasoning. In NeurIPS, 2024.

[7] T. Dettmers, M. Pasquale, S. Pontus, and S. Riedel. Convolutional 2D knowledge graph
embeddings. In AAAI, 2018.

[8] B. Du, C. Yuan, R. Barton, T. Neiman, and H. Tong. Hypergraph pre-training with graph neural
networks. arXiv preprint arXiv:2105.10862, 2021.

[9] B. Fatemi, P. Taslakian, D. Vazquez, and D. Poole. Knowledge hypergraphs: Prediction beyond
binary relations. In IJCAI, 2020.

[10] Y. Feng, H. You, Z. Zhang, R. Ji, and Y. Gao. Hypergraph neural networks. In AAAI, 2018.

[11] Y. Feng, S. Liu, X. Han, S. Du, Z. Wu, H. Hu, and Y. Gao. Hypergraph foundation model. arXiv
preprint arXiv:2503.01203, 2025.

[12] M. Fey and J. E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR
Workshop on Representation Learning on Graphs and Manifolds, 2019.

[13] L. A. Galárraga, C. Teflioudi, K. Hose, and F. Suchanek. AMIE: Association rule mining under
incomplete evidence in ontological knowledge bases. In WWW, 2013.

[14] M. Galkin, P. Trivedi, G. Maheshwari, R. Usbeck, and J. Lehmann. Message passing for
hyper-relational knowledge graphs. In EMNLP, 2020.

[15] M. Galkin, E. Denis, J. Wu, and W. L. Hamilton. Nodepiece: Compositional and parameter-
efficient representations of large knowledge graphs. In ICLR, 2022.

[16] M. Galkin, X. Yuan, H. Mostafa, J. Tang, and Z. Zhu. Towards foundation models for knowledge
graph reasoning. In ICLR, 2024.

[17] J. Gao, Y. Zhou, J. Zhou, and B. Ribeiro. Double equivariance for inductive link prediction for
both new nodes and new relation types. In arXiv, 2023.

[18] S. Guan, X. Jin, J. Guo, Y. Wang, and X. Cheng. Link prediction on n-ary relational data based
on relatedness evaluation. IEEE Transactions on Knowledge and Data Engineering, 2021.

[19] X. Huang, M. R. Orth, İ. İ. Ceylan, and P. Barceló. A theory of link prediction via relational
weisfeiler-leman on knowledge graphs. In NeurIPS, 2023.

[20] X. Huang, P. Barceló, M. M. Bronstein, İsmail İlkan Ceylan, M. Galkin, J. L. Reutter, and M. R.
Orth. How expressive are knowledge graph foundation models? In ICML, 2025.

[21] X. Huang, M. A. R. Orth, P. Barceló, M. M. Bronstein, and İ. İ. Ceylan. Link prediction with
relational hypergraphs. TMLR, 2025.

[22] J. Lee, C. Chung, and J. J. Whang. Ingram: Inductive knowledge graph embedding via relation
graphs. In ICML, 2023.

7

[23] S. Liu, B. Grau, I. Horrocks, and E. Kostylev. Indigo: Gnn-based inductive knowledge graph
completion using pair-wise encoding. In NeurIPS, 2021.

[24] H. Mao, Z. Chen, W. Tang, J. Zhao, Y. Ma, T. Zhao, N. Shah, M. Galkin, and J. Tang. Position:
Graph foundation models are already here. In ICML, 2024.

[25] T. Safavi and D. Koutra. CoDEx: A Comprehensive Knowledge Graph Completion Benchmark.
In EMNLP, 2020.

[26] M. S. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, I. Titov, and M. Welling. Modeling
relational data with graph convolutional networks. In ESWC, 2018.

[27] Z. Sun, Z.-H. Deng, J.-Y. Nie, and J. Tang. Rotate: Knowledge graph embedding by relational
rotation in complex space. In ICLR, 2019.

[28] K. K. Teru, E. G. Denis, and W. L. Hamilton. Inductive relation prediction by subgraph
reasoning. In ICML, 2020.

[29] K. Toutanova and D. Chen. Observed versus latent features for knowledge base and text
inference. In Workshop on Continuous Vector Space Models and their Compositionality, 2015.

[30] T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and G. Bouchard. Complex embeddings for
simple link prediction. In ICML, pages 2071–2080. PMLR, 2016.

[31] S. Vashishth, S. Sanyal, V. Nitin, and P. Talukdar. Composition-based multi-relational graph
convolutional networks. In ICLR, 2020.

[32] J. Wen, J. Li, Y. Mao, S. Chen, and R. Zhang. On the representation and embedding of
knowledge bases beyond binary relations. In IJCAI, 2016.

[33] N. Yadati. Neural message passing for multi-relational ordered and recursive hypergraphs. In
NeurIPS, 2020.

[34] N. Yadati, M. Nimishakavi, P. Yadav, V. Nitin, A. Louis, and P. Talukdar. Hypergcn: A new
method for training graph convolutional networks on hypergraphs. In NeurIPS, 2019.

[35] M. Yang, Z. Liu, L. Yang, X. Liu, C. Wang, H. Peng, and P. S. Yu. Instruction-based hypergraph
pretraining. In SIGIR, 2024.

[36] M. Zhang, P. Li, Y. Xia, K. Wang, and L. Jin. Labeling trick: A theory of using graph neural
networks for multi-node representation learning. In NeurIPS, 2021.

[37] Y. Zhang and Q. Yao. Knowledge graph reasoning with relational digraph. In WebConf, 2022.

[38] Y. Zhang, Z. Zhou, Q. Yao, X. Chu, and B. Han. Adaprop: Learning adaptive propagation for
graph neural network based knowledge graph reasoning. In KDD, 2023.

[39] Y. Zhang, B. Bevilacqua, M. Galkin, and B. Ribeiro. TRIX: A more expressive model for
zero-shot domain transfer in knowledge graphs. In LoG, 2024.

[40] J. Zhou, B. Bevilacqua, and B. Ribeiro. A multi-task perspective for link prediction with new
relation types and nodes. In NeurIPS GLFrontiers, 2023.

[41] X. Zhou, B. Hui, I. Zeira, H. Wu, and L. Tian. Dynamic relation learning for link prediction in
knowledge hypergraphs. In Appl Intell, 2023.

[42] Z. Zhu, Z. Zhang, L.-P. Xhonneux, and J. Tang. Neural bellman-ford networks: A general graph
neural network framework for link prediction. In NeurIPS, 2021.

[43] Z. Zhu, X. Yuan, M. Galkin, S. Xhonneux, M. Zhang, M. Gazeau, and J. Tang. A*net: A
scalable path-based reasoning approach for knowledge graphs. In NeurIPS, 2023.

8

A Extended Related Works

Link Prediction with Knowledge Graphs. Link prediction in knowledge graphs (KGs) has been
extensively explored. Early knowledge graph embedding methods [5, 27, 30, 3, 1] are limited to
the transductive setup: these methods do not generalize to unseen entities or to unseen relations.
Multi-relational graph neural networks (GNNs) such as RGCN [26] and CompGCN [31] similarly
rely on stored entity embeddings, remaining inherently transductive. To overcome these limitations,
Teru et al. [28] introduced GraIL, a pioneering method enabling node-inductive link prediction,
which is later shown to be a form of the labeling trick [36]. Subsequently, architectures such as
NBFNet [42], A*Net [43], RED-GNN [37], and AdaProp [38] leveraged conditional message passing,
significantly enhancing expressivity and performance [19]. However, these methods are not inductive
on relations, as they assume a fixed relational vocabulary. KGFMs are specifically tailored for
inductive predictions on both unseen nodes and relations. InGram [22] and ULTRA [16] introduced
new KGFM frameworks. Following these, TRIX [39] introduced recursive updating of entity and
relation embeddings with provably improved expressiveness over ULTRA. KG-ICL [6] employed in-
context learning with unified tokenization for entities and relations. Additionally, double-equivariant
GNNs, like ISDEA [17] and MTDEA [40], emphasized relational equivariance, enhancing robustness
to unseen relations. Huang et al. [20] proposed MOTIF as a general KGFM framework and formally
studied the expressive power of KGFMs. All of these methods are confined to KGs with binary
relations, and they do not naturally apply to higher-arity relations.

Link Prediction with Knowledge Hypergraphs. Knowledge hypergraphs generalize traditional KGs
to handle higher-arity relational data. Initial research [32, 9, 1] leveraged shallow embedding models
adapted from KG embedding frameworks. Later approaches extended graph neural networks to
knowledge hypergraphs. G-MPNN [33] and RD-MPNNs [41] introduced relational message passing
mechanisms explicitly designed for hypergraph settings, incorporating positional entity information
critical for high-arity relations. Huang et al. [21] proposed HCNets as a conditional message-passing
approach tailored for inductive hypergraph link prediction and conducted an expressivity analysis.
While these methods can handle knowledge hypergraphs, they are not inductive on relations: none of
these methods can generalize to unseen relations. Our work on HYPER builds on these foundations by
combining the strengths of conditional message passing on knowledge hypergraphs with the powerful
inductive generalization techniques explored in recent KGFMs [16, 22, 20] to effectively generalize
to knowledge hypergraphs within unseen nodes and relations.

Foundation Models on Hypergraphs. Existing foundation models on hypergraphs are tailored to
text-attributed hypergraphs. HyperBERT [4] integrates pretrained language models with hypergraph
convolution for node classification, while HyperGene [8] and SPHH [2] propose self-supervised ob-
jectives tailored to local and global hypergraph structures. More recent works such as Hyper-FM [11]
and IHP [35] introduce multi-domain pretraining and instruction-guided adaptation, respectively,
marking the first steps toward generalizable hypergraph models. These methods rely heavily on text
attributes for generalization and are predominantly tailored to node classification tasks; they do not
support link prediction over knowledge hypergraphs with unseen relations at test time.

B Dataset Generation Details

B.1 Generating Datasets for Node and Relation-inductive Link Prediction

To evaluate our models in an inductive setting, we created multiple dataset variants with different
proportions of unseen relations. Our dataset generation process, following InGram [22], is detailed in
Algorithm 1. This process creates training and inference hypergraphs with controlled percentages of
unseen relations in the test set.

The parameter ptri controls the percentage of test tuples containing unseen relations. For example,
when ptri = 0.25, approximately 25% of the tuples in the inference hypergraph contain relations not
seen during training. This allows us to systematically evaluate how models perform under increasingly
challenging inductive scenarios.

After generating the inference hypergraph, we split it into three disjoint sets: auxiliary (for training),
validation, and test sets with a ratio of 3:1:1. For a fair comparison, these sets are fixed and provided
to all models.

9

Algorithm 1 Generating Datasets for Node and Relation-inductive Link Prediction
Require: Source knowledge hypergraph G = (V,E,R), number of training entities ntrain, number

of inference entities ntest, relation percentage prel, tuple percentage ptri, seed value
Ensure: Training knowledge hypergraph Gtrain = (Vtrain, Etrain, Rtrain) and Inference knowledge

hypergraph Ginf = (Vinf, Einf, Rinf)
1: G← Giant connected component of G
2: Randomly split R into Rtrain and Rinf such that |Rtrain| : |Rinf| = (1− prel) : prel
3: Uniformly sample ntrain entities from V and form Vtrain by taking the sampled entities and their

neighbors
4: Etrain := {r(v1, v2, . . . , vn)|vi ∈ Vtrain, r ∈ Rtrain, r(v1, v2, . . . , vn) ∈ E}
5: Etrain ← Hyperedges in the giant connected component of Etrain
6: Vtrain ← Entities involved in Etrain
7: Rtrain ← Relations involved in Etrain
8: Let G′ be the subgraph of G where the entities in Vtrain are removed
9: In G′, uniformly sample ntest entities and form Vinf by taking the sampled entities and their

neighbors
10: Einf := X ∪ Y such that |X| : |Y | = (1 − ptri) : ptri where X := {r(v1, v2, . . . , vn)|vi ∈

Vinf, r ∈ Rtrain, r(v1, v2, . . . , vn) ∈ E} and Y := {r(v1, v2, . . . , vn)|vi ∈ Vinf, r ∈
Rinf, r(v1, v2, . . . , vn) ∈ E}

11: Einf ← Hyperedges in the giant connected component of Einf
12: Vinf ← Entities involved in Einf
13: Rinf ← Relations involved in Einf
14: Split Einf into auxiliary, validation, and test sets with a ratio of 3:1:1

B.2 Dataset Statistics

Table 2 and Table 3 summarize the statistics of our constructed datasets and the hyperparameters
used to generate them, respectively. Additionally, Table 4 presents the arity distribution across these
datasets. Together, these tables illustrate that our benchmarks vary significantly in terms of arity,
density, and number of relation types, ensuring a diverse and comprehensive evaluation setting.

Table 2: Statistics of datasets for inductive hypergraph completion. Max arity is shown for training
graph and inference graph, respectively.

Dataset Train Inference Test Max Arity
|V | |R| |E| |V | |R| |E| |V | |R| |E|

JF-25 2,616 41 3,371 1,159 36 1,056 209 15 103 5/4
JF-50 2,859 53 3,524 1,102 37 1,292 157 5 109 5
JF-75 3,129 67 4,287 1,488 38 1,697 225 11 131 5
JF-100 2,123 48 2,449 1,696 35 2,159 52 5 25 5

WP-25 6,378 128 7,453 2,784 66 4,794 830 19 959 6/4
WP-50 7,586 155 9,536 3,608 87 4,390 531 29 413 7/6
WP-75 7,787 118 9,271 4,737 101 6,221 629 27 459 6
WP-100 7,787 118 9,271 4,891 63 7,516 275 15 155 6

WD-25 4,533 239 5,482 3,008 191 3,106 250 37 148 22/5
WD-50 3,796 162 4,147 2,303 188 2,353 145 30 91 19/6
WD-75 6,518 243 6,305 5,194 244 5,831 547 57 385 22/5
WD-100 6,798 237 7,271 3,576 105 3,951 385 29 282 19/4

MFB-25 1,266 11 8,182 1,929 12 2,802 146 7 87 3/5
MFB-50 1,415 11 8,409 1,528 13 2,426 472 10 486 3/5
MFB-75 2,225 15 5,271 1,363 16 4,008 675 11 803 3/4
MFB-100 2,013 19 11,658 2,406 5 4,514 808 5 904 3/5

10

Table 3: Hyperparameters used to create fully inductive knowledge hypergraph datasets.

HP JF-25 JF-50 JF-75 JF-100 WP-25 WP-50 WP-75 WP-100
ntrain 1000 1000 1200 1200 900 800 1000 1000
ntest 900 800 1200 1200 800 1000 1000 1000
prel 0.4 0.5 0.4 0.5 0.4 0.3 0.5 0.5
ptri 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

HP WD-25 WD-50 WD-75 WD-100 MFB-25 MFB-50 MFB-75 MFB-100
ntrain 700 1000 10000 10000 100 100 80 120
ntest 1200 1000 8000 8000 95 85 80 100
prel 0.25 0.5 0.5 0.5 0.5 0.6 0.5 0.5
ptri 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

C Sparse Matrix Multiplication for Computing Positional Interaction

In this section, we describe the procedure to generalize sparse matrix multiplication to efficiently
construct knowledge hypergraphs from hyperedges of arbitrary arity. Unlike knowledge graphs [16],
where only two positions (head and tail) exist per relation, resulting in only 4 fundamental relations
(head-to-head, head-to-tail, tail-to-head, tail-to-tail), knowledge hypergraphs involve k positions per
hyperedges, leading to k2 types of possible positional interactions in total.

Given a knowledge hypergraph G = (V,E,R) with n = |V | nodes, m = |R| relations, and
maximum arity k, we start by representing the knowledge hypergraph via sparse tensors: the edge
index E ∈ Nk×|E| and corresponding edge types r ∈ N|E|. Each column of E lists the k participating
nodes for a hyperedge, with each edge associated with its relation type.

To encode positional interactions between relations, we perform sparse matrix multiplication in the
following steps:

1. For each position a ∈ {1, · · · , k}, we construct sparse matrices Ea ∈ Rn×m where each
nonzero entry indicates the presence of an entity at position a for a given relation type.

2. For each pair of positions (a, b) ∈ {1, · · · , k} × {1, · · · , k}, we compute a sparse matrix
multiplication:

Aa2b = spmm(E⊤
a ,Eb) ∈ Rm×m.

Here, (Aa2b)i,j is nonzero if there exists an entity that simultaneously plays position a in a
hyperedge of relation i and position b in a hyperedge of relation j.

This operation systematically captures all intersections between hyperedges that share at least one
common node, generalized across different positions.

D Details in Reification

To apply the models designed for KGs on knowledge hypergraphs, we transform an input knowl-
edge hypergraph G = (V,E,R) into a KG via a reification process, similar to the one proposed
in Fatemi et al. [9]. Specifically, for each hyperedge r(u1, . . . , uk) ∈ E, we introduce a node
edge_id /∈ V in the KG to represent the hyperedge itself. We then generate binary edges
of the form hasEntityi(edge_id, ui) for each i ∈ [k] to capture the positions of the entities
in the relation. Finally, we add the original relation r as a node to the KG and add an edge
hasRelationType(edge_id, r). For instance, Figure 5 shows the reified KG of our running ex-
ample in Figure 1. This reification procedure encodes the full higher-order structure of the original
knowledge hypergraph into a KG.

Link Prediction over Reified Knowledge Hypergraphs. Given a high-arity query of the form
q(u1, . . . , ut−1, ?, ut+1, . . . , uk) over the original knowledge hypergraph, we perform link prediction
in the reified KG by encoding the query as a subgraph which is used to augment the testing knowledge
graph. Concretely, we add a new node edge_id and binary triples hasEntityi(edge_id, ui)

11

Bengio
ClimateAI

Montreal
CIFAR

Sasha 2015 EthicalAI
NeurIPS

Ian

e1 e2 e3

Research AtConference Teaches

1 2 3 4

hasRelationType

1

2

3 4 5

hasRelationType

1 23

hasRelationType

Figure 5: Reified KG corresponding to the knowledge hypergraph Gtrain from Fig 1, where i abbrevi-
ates hasEntityi.

for all i ̸= t, as well as a triple hasRelationType(edge_id, q). The prediction task is then
reduced to a standard tail prediction problem: ranking all candidate entities v ∈ V for the fact
hasEntityt(edge_id, v). We evaluate the model performance using standard ranking metrics over
the original entity vocabulary. We use superscript (†) to denote models evaluated under this regime.

E Computational Resources

All the pretraining experiments is carried out on a single NVIDIA H100 80GB, and the rest of the
experiments are carried out using a NVIDIA A10 24GB. Pretraining of HYPER over a single H100
with parameter specified in Appendix K takes 4 days, while fine-tuning and end-to-end training
typically require less than 3 hours.

HYPER is implemented primarily using PyTorch and PyTorch Geometric [12], with its core hyper-
graph message passing implemented via a custom-built Triton kernel1. This optimization approx-
imately halves the training time and reduces memory consumption by a factor of five on average.
Instead of explicitly materializing all hyperedge messages, as is done in PyTorch Geometric, we
directly write neighboring features to the corresponding memory locations during aggregation. While
the naive materialization approach incurs O(k|E|) memory complexity, where k denotes the maxi-
mum arity and |E| the number of hyperedges, our Triton-based approach achieves O(|V |) memory
complexity, depending only on the number of nodes, which enables efficient and scalable training of
HYPER models.

F Complexity Analysis of HYPER

In this section, we analyze the computational complexity of HYPER. Let G = (V,E,R) denote
the input knowledge hypergraph, where n = |V |, m = |E|, and |R| are the number of entities,
hyperedges, and relation types, respectively. Let k be the maximum arity of R, d the hidden
dimension, and T the number of message-passing layers in the relation encoder, and denote L as the
number of message-passing layers in the entity encoder.

F.1 Relation Graph Construction

The complexity of generating the relation graph in HYPER arises from computing pairwise positional
interactions between relation types across hyperedges of arbitrary arity. Unlike knowledge graphs,
where each relation involves exactly two fixed positions (head and tail), knowledge hypergraphs
induce up to k2 positional interaction types for a maximum arity k. For each position a ∈ {1, . . . , k},
we construct sparse matrices Ea ∈ Rn×m that index entities by their position and relation type.
Then, for every pair (a, b), we perform a sparse matrix multiplication: spmm(E⊤

a ,Eb). Each such
multiplication has a worst-case complexity of O(nnz(E⊤

a) · nnz(Eb)), where nnz(·) denotes the

1https://github.com/triton-lang/triton

12

number of nonzero entries. Since there are k2 position pairs, the total time complexity of constructing
the relation graph becomes

O(k2 ·max
{a,b}
{nnz(E⊤

a) · nnz(Eb)}).

In practice, this is significantly accelerated by sparse tensor and batching across position pairs.
Without sparse matrix multiplication, the naive construction would require iterating over all hyperedge
pairs, resulting in O(k2|E|2) complexity, which is infeasible for large-scale datasets.

Additionally, for the positional interaction encoders, we associate a positional encoding vector
EncPI((a, b)) ∈ Rd. This construction requires O(k2d) time and space to compute and store.

F.2 Relation Encoder

The relation encoder in HYPER performs T layers of message passing over the relation graph
Grel = (Vrel, Erel, Rrel), as constructed before.

There are at most k2 position pairs per pair of relation types, where k is the maximum arity, so the
total number of edges is bounded by

|Erel| = O(|R|2k2).

In each message passing layer, each relation node aggregates messages from up to |R|2k2 neighbors,
with each edge contributing a message via the corresponding positional interaction embedding
xa,b = EncPI((a, b)) ∈ Rd. Each node then applies an update with cost O(d2). Thus, the total
complexity of the relation encoder over T layers is

O
(
T (|R|2k2d+ |R|d2)

)
.

F.3 Entity Encoder

After obtaining relation embeddings from the relation encoder, HYPER applies L layers of conditional
message passing over the original knowledge hypergraph G = (V,E,R) using HCNet [21]. In each
layer, every entity v ∈ V aggregates messages from its incident hyperedges e ∈ E(v), where each
hyperedge contributes a query-conditioned message, takingO(L(k|E|d), that incorporates its relation
embedding h

(T)
ρ(e)|q ∈ Rd, followed by a relation-specific MLP, which takes O(L|R|d2). Each entity

then updates its representation through a neural update function with cost O(d2).
The total complexity of the entity encoder over L layers is thus

O(L(k|E|d+ |V |d2 + |R|d2)).

G Node Inductive Link Prediction over Knowledge Hypergraphs

Settings. To further assess the applicability of node-inductive link prediction with knowledge
hypergraphs, we experiment on three existing datasets: JF-IND, WP-IND, and MFB-IND [33].We
compare our models with several existing approaches for inductive link prediction on knowledge
hypergraphs. These include HGNN [10] and HyperGCN [34], which were originally designed for
simple hypergraphs and adapted to knowledge hypergraphs by ignoring relations [33].

We also compare with G-MPNN [33] and RD-MPNN [41], which were modified for inductive
settings by replacing learned entity embeddings with a uniform vector, and HCNet [21]. We
also include the zero-shot performance of standard KGFM on the reification of hypergraphs
ULTRA†(3KG/4KG/50KG).

Results and discussion. Table 5 presents the performance of all models across the node-inductive
datasets. We continue to observe that HYPER significantly outperforms prior node-inductive baselines
such as HCNet, G-MPNN, and RD-MPNN. Among HYPER variants, even without fine-tuning,
pretrained HYPER models achieve strong results. Fine-tuned HYPER further improves performance,
achieving the best MRR on JF-IND and WP-IND, and competitive results on MFB-IND compared
with HYPER trained end-to-end. Notably, HYPER consistently outperforms ULTRA, which struggles
to generalize to the distinct structure of reified hypergraphs. These results confirm HYPER’s robust
generalization across a variety of datasets.

13

H Impact of Positional Interaction Encoders

Table 6: Averaged zero-shot perfor-
mance of HYPER(3KG + 2HG) with
different positional interaction en-
coders.

Total Avg
Model (19 hypergraphs)

MRR Hits@3
All-one 0.236 0.262
Random 0.213 0.239

Magnitude 0.227 0.251
Sinusoidal 0.285 0.281

To evaluate the importance of design choices in the positional
interaction encoder EncPI, we compare HYPER to three al-
ternatives EncPI equipping with different positional encoding
schemes: (i) all-one encoding (pa = 1d), which collapses
all positions and violates injectivity; (ii) random encoding
(pa ∼ N (0, Id)), which lacks structure and hinders general-
ization; and (iii) magnitude encoding (pa = a1d), which is
unbounded and thus unsuitable for MLPs. In contrast, HYPER
uses sinusoidal encoding, which is both injective and bounded,
enabling effective extrapolation and robust zero-shot perfor-
mance. As shown in Table 6, sinusoidal encoding yields the
best overall performance across 19 hypergraphs, significantly
outperforming other schemes in both MRR and Hits@3. This
highlights the critical property of injectivity and extrapolation
of EncPI in achieving robust zero-shot generalization.

I Additional Experiments on Knowledge Graphs

In addition to the knowledge hypergraph inductive settings, we also evaluate our models on inductive
knowledge graph link prediction tasks where both nodes and relations can be unseen during training
(Q6). This setting presents the most challenging scenario as it requires models to generalize to entirely
new knowledge domains with both unseen entities and relation types. We also include inductive
node-only knowledge graph link prediction to further strengthen our point.

Datasets. For inductive on both nodes and relations task, we includes 13 datasets in INGRAM [22]:
FB-25, FB-50, FB-75, FB-100, WK-25, WK-50, WK-75, WK-100, NL-0, NL-25, NL-50, NL-75,
NL-100; and 10 datasets in MTDEA [40]: MT1 tax, MT1 health, MT2 org, MT2 sci, MT3 art, MT3
infra, MT4 sci, MT4 health, Metafram, FBNELL. We also include inductive link prediction on nodes
only experiments, containing 12 datasets from GraIL [28]: WN-v1, WN-v2, WN-v3, WN-v4, FB-v1,
FB-v2, FB-v3, FB-v4, NL-v1, NL-v2, NL-v3, NL-v4; 4 datasets from INDIGO [23]: HM 1k, HM
3k, HM 5k, HM Indigo; and 2 datasets from Nodepiece [15]: ILPC Small, ILPC Large.

Baseline. We included the zero-shot version of all the models and also include an existing knowledge
graph foundation model as baseline, ULTRA [16], shown in Table 7, Table 8. Notably, following
standard convention, for every triplet r(u, v) in a knowledge graph, we also include its inverse triplet
r−1(v, u), where r−1 denotes a newly introduced relation symbol representing the inverse of r for
ULTRA. However, HYPER does not need this procedure as the entity encoder employs a variant of
HCNet [21], which uses bi-directional message-passing and automatically considers the message
from the inverse direction.

Results and Discussion. We observe that HYPER achieves comparable performance to ULTRA in
zero-shot inductive link prediction on knowledge graphs. Across both node-only and node-and-
relation inductive benchmarks, HYPER performs on par with ULTRA, and often outperforms it on
datasets with higher relational diversity or structure. These results demonstrate that the architectural
inductive bias of HYPER, originally designed for knowledge hypergraphs, also transfers well to
standard knowledge graphs, without compromising generalization ability.

J Broader Impact

This work proposes a foundation model for inductive reasoning over knowledge hypergraphs, which
may benefit applications in scientific discovery, query answering, and recommendation systems
by improving generalization across relational contexts. However, the same capabilities could also
be misused for generating or reinforcing biased or spurious inferences when applied to real-world
knowledge bases that contain noise, imbalance, or socially sensitive information. Future applications
should therefore include safeguards for interpretability and error auditing, especially in domains with
fairness or safety considerations.

14

K Further Experimental Details

In this section, we provide detailed experimental configurations and dataset statistics. In particular,
Table 9 summarizes the training corpora used for each model variant across knowledge graph and
knowledge hypergraph settings. Tables 10 and 11 present arity distributions and structural statistics for
the node-inductive datasets, while Table 12 reports the corresponding statistics for pretraining datasets.
For inductive link prediction involving unseen entities and relations, we provide comprehensive
dataset breakdowns in Tables 13 and 14.

We also include the complete performance tables together with standard deviation for the node-
inductive and node-relation inductive settings shown in Tables 15 and 16, respectively. Table 17
lists all hyperparameter choices used for pretraining, fine-tuning, and end-to-end training of HYPER.
Finally, Table 18 specifies the dataset-specific training schedules for each experimental regime.

K.1 Evaluations

We adopt filtered ranking protocol: for each query q(u1, · · · , uk) where k = ar(q) and for each
position t ≤ k, we replace the t-th position by all other entities such that the resulting hyperedges
does not appear in training, validation, or testing knowledge hypergraphs.

K.2 Hyperparameter Details for Baselines

For G-MPNNs, we adopt the best-performing hyperparameters from the original codebase. Specifi-
cally, we set the input dimension d = 64, hidden dimension h = 150, and dropout rate to 0.5. We use
a training batch size b = 128, evaluation batch size B = 4, and negative sampling ratio nr = 10. The
learning rate is set to 0.0005, and models are trained for up to 5000 epochs with validation evaluated
every 5 epochs. Aggregation is performed using the max.

For HCNet, we use a 6-layer encoder with an input dimension of 64 and a hidden dimension of 64
for all layers. We adopt sum as the aggregation function and enable shortcut connections to facilitate
training. Optimization is performed using AdamW with a learning rate of 5 × 10−4. Training is
conducted with a batch size of 8, using the same number of epochs and batches per epoch as HYPER,
with validation performed every 100 steps. The model is trained with 256 adversarial negatives
sampled per positive example, and strict negative sampling is enforced to prevent overlap with true
triples.

K.3 Architecture Choices of HYPER

Both the relation and entity encoders in HYPER follow the design based on HCNets [21], with a
minor variant on the relation-specific message functions.

Positional Interactions. In practice, we implement EncPI as a two-layer multilayer perceptron
(MLP) over concatenated sinusoidal encodings of the input positions. Let pa,pb ∈ Rd denote the
sinusoidal positional encodings of positions a and b, respectively. Then, the embedding corresponding
to the interaction (a, b) is computed as xa,b = MLP([pa ∥pb]), where MLP denotes a shared two-
layer feedforward network with ReLU activations. This produces a dense embedding that captures
the interaction between the two positions. Empirically, we find that this instantiation of EncPI enables
strong generalization across knowledge hypergraphs with varying arities and relational structures.

Relation Encoder. The relation encoder applies an HCNet over the constructed relation graph
(Vrel, Erel, Rrel). Here, each node r ∈ Vrel represents a relation type in G, and an edge captures
the induced interactions among relations. For each relation r ∈ Vrel, HCNet iteratively updates its
representation h

(t)
r|q as:

h
(0)
r|q = INITrel(r, q),

h
(t+1)
r|q = UPrel

(
h
(t)
r|q, AGGrel

(
{{MSGρ(e)

(
{(h(t)

r′|q, j) | (r
′, j) ∈ Nreli(e)}, q

)
| (e, i) ∈ Erel(r)}}

))
,

where Erel(r) is the set of edge-position pairs incident to r, andNreli(e) is the positional neighborhood
of hyperedge e at position i. After T layers, we obtain the final relation encoding h

(T)
r|q . Here, INITrel,

15

UPrel, AGGrel, and MSGρ(e) are differentiable initialization, update, aggregation, and fundamental
relation-specific message functions, respectively. The initialization function INITrel is designed to
satisfy generalized target node distinguishability as formalized in Huang et al. [21].

Empirically, we initialize the query node q ∈ Vrel with an all-one vector and all other relation nodes
with zero vectors.

In the experiments, we adopt the fundamental relation-specific message function MSGrfund using the
fundamental relation embedding ra,b. Specifically, given a set of neighbor features {(h(ℓ)

w|q, j) |
(w, j) ∈ Nreli(e)} for hyperedge e and center position i, the message is computed as:

MSGra,b

(
{(h(t)

w|q, j) | (w, j) ∈ Nreli(e)}
)
=

⊙
j ̸=i

(
α(t)h

(t)
e(j)|q + (1− α(t))pj

)⊙ xa,b,

where ⊙ is the elemental-wise multiplication, α(ℓ) is a learnable scalar, pj is the sinusoidal positional
encoding at position j, and xa,b is the fundamental relation embedding computed as described earlier.

Entity Encoder. In the context of the entity encoder, we apply a separate HCNet over the original
knowledge hypergraph G = (V,E,R). Each node v ∈ V aggregates information from its incident
hyperedges, incorporating the relation embeddings h(T)

r|q obtained from the relation encoder.

Given a query q = (q, ũ, t), where ũ = (u1, . . . , uk) denotes the entities in the hyperedge and t is
the target position, each node v ∈ V receives an initial representation defined as:

h
(0)
v|q =

∑
i̸=t

1v=ui
· (pi + zq),

where pi ∈ Rd is the positional encoding at position i, and zq ∈ Rd is a learned embedding for the
query relation q.

HYPER then iteratively updates the node representations h(ℓ)
v|q as:

h
(0)
v|q = INIT(v, q),

h
(ℓ+1)
v|q = UP

(
h
(ℓ)
v|q, AGG

(
{{MSGρ(e)

(
{(h(ℓ)

w|q, j) |(w, j) ∈ Ni(e)},h(T)
ρ(e)|q, q

)
|(e, i) ∈ E(v)}}

))
.

where INIT, UP, AGG, and MSGr are differentiable initialization, update, aggregation, and relation-
specific message functions, respectively, with INIT satisfying generalized targets node distinguisha-
bility [21]. After L layers of message passing, we obtain the final entity encoding h

(L)
v|q . A final unary

decoder Dec : Rd(L) → [0, 1] predicts the score for completing the missing position t in the query q.

Empirically, we select the relation-specific message function MSGρ(e) to be

MSGr

(
{(h(ℓ)

w|q, j) | (w, j) ∈ Ni(e)}
)
=

⊙
j ̸=i

(
α(ℓ)h

(ℓ)
e(j)|q + (1− α(ℓ))pj

)⊙MLP(ℓ)(h
(T)
ρ(e)|q),

where additionally MLP(ℓ) is a 2-layer MLP with ReLU to transform the relation representation most
suitable for each specific layer during message passing.

Update. We use summation as the aggregation operator for both relation and entity nodes. Each
node updates its representation via a two-layer MLP applied to the concatenation of its current state
and the aggregated message:

h
(ℓ+1)
v|q = MLP(ℓ)

(
[h

(ℓ)
v|q ∥AGGREGATE(ℓ)

v|q]
)
,

where AGGREGATE(ℓ)
v|q denotes the sum of incoming messages to node v under query q at layer ℓ,

and ∥ represents vector concatenation.

16

Other. We also apply layer normalization and shortcut connections after aggregation and before the
ReLU activation in both encoders.

K.4 Training Objective

Following prior work [21], we train HYPER under the partial completeness assumption [13], where
each k-ary fact q(u1, . . . , uk) is used to generate training samples by randomly masking one position
1 ≤ t ≤ k. Given a query q = (q, ũ, t), we model the conditional probability of entity v ∈ V filling
the missing position as p(v|q) = σ(Dec(h(L)

v|q)), where Dec is a two-layer MLP and σ denotes the
sigmoid activation. We optimize the following self-adversarial negative sampling loss [27]:

L(v|q) = − log p(v|q)−
n∑

i=1

wi,α log(1− p(v′i|q)),

where v′i are corrupted negative samples, n is the number of negatives per query, α being the
adversarial temperature, and wi,α are the importance weights defined by

wi,α = Softmax

(
log(1− p(v′i|q))

α

)
.

To mitigate overfitting, we exclude edges that directly connect query node pairs during training. The
best model checkpoint is selected based on validation performance. Following the implementation of
ULTRA [16], for pertaining over multiple knowledge graph and knowledge hypergraphs, for each
batch, we sample from one of the pretrained (hyper)graphs with probability proportional to the
number of edges it contains.

17

Table 4: Arity distribution across node-relation inductive datasets.

Dataset Arity Training Graph Inference Graph Training % Inference %

JF-25

2 1585 266 47.02% 25.19%
3 1441 670 42.75% 63.45%
4 326 120 9.67% 11.36%
≥5 19 0 0.56% 0.00%

JF-50

2 1942 321 55.11% 24.85%
3 1297 692 36.80% 53.56%
4 285 279 8.09% 21.59%
≥5 0 0 0.00% 0.00%

JF-75

2 2641 824 61.60% 48.56%
3 848 846 19.78% 49.85%
4 779 27 18.17% 1.59%
≥5 19 0 0.44% 0.00%

JF-100

2 1349 1637 55.08% 75.82%
3 570 283 23.27% 13.11%
4 511 159 20.87% 7.36%
≥5 19 80 0.78% 3.71%

WD-25

2 4,331 2,799 79.00% 90.12%
3 612 162 11.16% 5.22%
4 463 144 8.45% 4.64%
≥5 76 1 1.39% 0.03%

WP-50

2 7709 4355 80.84% 99.20%
3 1106 28 11.60% 0.64%
4 667 3 6.99% 0.07%
≥5 54 4 0.57% 0.09%

WP-75

2 6471 6121 69.80% 98.39%
3 1725 82 18.61% 1.32%
4 1026 15 11.07% 0.24%
≥5 49 3 0.53% 0.05%

WP-100

2 6471 7413 69.80% 98.63%
3 1725 91 18.61% 1.21%
4 1026 6 11.07% 0.08%
≥5 49 6 0.53% 0.08%

WD-25

2 3,680 1,941 87.60% 93.81%
3 211 114 5.02% 5.51%
4 279 12 6.64% 0.58%
≥5 31 2 0.74% 0.10%

WD-50

2 3,238 2,127 78.08% 90.40%
3 417 86 10.06% 3.65%
4 438 136 10.56% 5.78%
≥5 54 4 1.30% 0.17%

WD-75

2 4,900 5,669 77.72% 97.22%
3 769 139 12.20% 2.38%
4 548 22 8.69% 0.38%
≥5 88 1 1.40% 0.02%

WD-100

2 5,858 3,631 80.57% 91.90%
3 906 186 12.46% 4.71%
4 397 134 5.46% 3.39%
≥5 110 0 1.51% 0.00%

MFB-25

2 137 1555 1.67% 55.50%
3 8045 831 98.33% 29.66%
4 0 0 0.00% 0.00%
≥5 0 416 0.00% 14.85%

MFB-50

2 149 1400 1.77% 57.71%
3 8260 756 98.23% 31.16%
4 0 0 0.00% 0.00%
≥5 0 270 0.00% 11.13%

MFB-75

2 2774 368 52.63% 9.18%
3 2497 3639 47.37% 90.79%
4 0 1 0.00% 0.02%
≥5 0 0 0.00% 0.00%

MFB-100

2 726 3234 6.23% 71.64%
3 10932 370 93.77% 8.20%
4 0 0 0.00% 0.00%
≥5 0 910 0.00% 20.16%

18

Table 5: MRR results on node-inductive datasets. Superscript † means the model is applied over the
reification of hypergraphs.

Method JF-IND WP-IND MFB-IND
End-to-End Inference

HGNN 0.102 0.072 0.121
HyperGCN 0.099 0.075 0.118
G-MPNN 0.219 0.177 0.124
RD-MPNN 0.402 0.304 0.122
HCNet 0.435 0.414 0.368
HYPER(end2end) 0.422 0.435 0.427

Zero-shot Inference

ULTRA†(3KG) 0.173 0.101 0.054
ULTRA†(4KG) 0.286 0.183 0.163
ULTRA†(50KG) 0.346 0.286 0.149
HYPER(3KG) 0.263 0.259 0.184
HYPER(4HG) 0.403 0.375 0.497
HYPER(3KG + 2HG) 0.459 0.415 0.404

Finetuned Inference
HYPER(3KG + 2HG) 0.463 0.446 0.455

Table 7: Zero-shot experiment results on node and relation inductive knowledge graph datasets

Method FB-25 FB-50 FB-75 FB-100 WK-25 WK-50 WK-75 WK-100

MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10

ULTRA(3KG) 0.388 0.640 0.338 0.543 0.403 0.604 0.449 0.642 0.316 0.532 0.166 0.324 0.365 0.537 0.164 0.286

HYPER(3KG) 0.372 0.614 0.313 0.513 0.373 0.568 0.412 0.598 0.276 0.410 0.145 0.281 0.334 0.460 0.171 0.271
HYPER(4HG) 0.277 0.538 0.225 0.427 0.287 0.503 0.336 0.567 0.215 0.422 0.117 0.245 0.280 0.491 0.125 0.247
HYPER(3KG + 2HG) 0.382 0.635 0.326 0.535 0.389 0.598 0.434 0.632 0.281 0.428 0.158 0.280 0.365 0.522 0.160 0.280

Method NL-25 NL-50 NL-75 NL-100 MT1-tax MT1-health MT2-org MT2-sci

MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10

ULTRA(3G) 0.395 0.569 0.407 0.570 0.368 0.547 0.471 0.651 0.224 0.305 0.298 0.374 0.095 0.159 0.258 0.354

HYPER(3KG) 0.321 0.550 0.350 0.520 0.320 0.483 0.415 0.627 0.234 0.306 0.361 0.431 0.088 0.142 0.256 0.339
HYPER(4HG) 0.214 0.431 0.226 0.480 0.252 0.455 0.333 0.618 0.200 0.274 0.266 0.358 0.063 0.116 0.195 0.320
HYPER(3KG + 2HG) 0.360 0.558 0.376 0.547 0.342 0.540 0.473 0.685 0.204 0.396 0.222 0.399 0.087 0.149 0.258 0.428

Method MT3-art MT3-infra MT4-sci MT4-health Metafam FBNELL NL-0 Average

MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10

ULTRA(3KG) 0.259 0.402 0.619 0.755 0.274 0.449 0.624 0.737 0.238 0.644 0.485 0.652 0.342 0.523 0.345 0.513

HYPER(3KG) 0.257 0.402 0.562 0.695 0.259 0.415 0.547 0.723 0.395 0.804 0.447 0.617 0.312 0.501 0.318 0.492
HYPER(4HG) 0.152 0.265 0.363 0.451 0.232 0.412 0.380 0.556 0.191 0.606 0.320 0.537 0.171 0.393 0.228 0.419
HYPER(3KG + 2HG) 0.270 0.425 0.573 0.716 0.270 0.441 0.560 0.724 0.457 0.875 0.450 0.639 0.334 0.526 0.336 0.520

19

Table 8: Zero-shot experiment results on node inductive knowledge graph datasets. The best result
for each dataset is in bold.

Method WN-v1 WN-v2 WN-v3 WN-v4 FB-v1 FB-v2

MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10

ULTRA(3KG) 0.648 0.768 0.663 0.765 0.376 0.476 0.611 0.705 0.498 0.656 0.512 0.700

HYPER(3KG) 0.703 0.799 0.681 0.788 0.400 0.522 0.644 0.721 0.450 0.622 0.474 0.668
HYPER(4HG) 0.530 0.720 0.533 0.691 0.287 0.392 0.514 0.652 0.263 0.476 0.308 0.527
HYPER(3KG + 2HG) 0.702 0.782 0.686 0.785 0.385 0.503 0.640 0.710 0.454 0.648 0.480 0.695

Method FB-v3 FB-v4 NL-v1 NL-v2 NL-v3 NL-v4

MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10

ULTRA(3KG) 0.491 0.654 0.486 0.677 0.785 0.913 0.526 0.707 0.515 0.702 0.479 0.712

HYPER(3KG) 0.460 0.627 0.460 0.653 0.619 0.868 0.514 0.719 0.510 0.692 0.468 0.697
HYPER(4HG) 0.276 0.482 0.280 0.504 0.516 0.863 0.345 0.639 0.340 0.610 0.269 0.582
HYPER(3KG + 2HG) 0.466 0.648 0.460 0.663 0.570 0.719 0.521 0.741 0.509 0.705 0.501 0.728

Method ILPC Small ILPC Large HM 1k HM 3k HM 5k HM Indigo

MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10

ULTRA(3KG) 0.302 0.443 0.290 0.424 0.059 0.092 0.037 0.077 0.034 0.071 0.440 0.648

HYPER(3KG) 0.291 0.438 0.293 0.412 0.046 0.092 0.036 0.073 0.033 0.069 0.437 0.644
HYPER(4HG) 0.169 0.347 0.183 0.327 0.027 0.075 0.024 0.064 0.024 0.058 0.298 0.484
HYPER(3KG + 2HG) 0.296 0.448 0.289 0.417 0.043 0.106 0.037 0.092 0.034 0.086 0.401 0.614

Table 9: Training datasets for model variants

Model Knowledge Hypergraph Knowledge Graph

JF17K FB-AUTO Wikipeople MFB15K FB15k-237 WN18RR CodEx Medium NELL995 Others(46G)

ULTRA(3G) ✓ ✓ ✓
ULTRA(4G) ✓ ✓ ✓ ✓
ULTRA(50G) ✓ ✓ ✓ ✓ ✓

HYPER(3KG) ✓ ✓ ✓
HYPER(4HG) ✓ ✓ ✓ ✓
HYPER(3KG + 2HG) ✓ ✓ ✓ ✓ ✓

HYPER(end2end) Trained directly on target dataset’s training graphHCNet

Table 10: Arity distribution across node inductive datasets.

Dataset Arity Training Graph Inference Graph Training % Inference %

JF-IND

2 264 9 4.28% 2.93%
3 4586 216 74.36% 70.36%
4 1317 82 21.36% 26.71%
≥5 0 0 0.00% 0.00%

WP-IND

2 0 0 0.00% 0.00%
3 3375 476 81.54% 86.39%
4 764 75 18.46% 13.61%
≥5 0 0 0.00% 0.00%

MFB-IND

2 0 0 0.00% 0.00%
3 336733 7527 100.00% 100.00%
4 0 0 0.00% 0.00%
≥5 0 0 0.00% 0.00%

20

Table 11: Dataset statistics of inductive link prediction task with knowledge hypergraph.

Statistic JF-IND WP-IND MFB-IND
seen vertices 4,685 4,463 3,283
train hyperedges 6,167 4,139 336,733
unseen vertices 100 100 500
relations 31 32 12
max arity 4 4 3

Table 12: Dataset statistics of pretrained knowledge hypergraphs and knowledge graphs with respec-
tive arity.

Dataset FB-AUTO WikiPeople JF17K MFB15K FB15k237 WN18RR CoDEx-M

|V | 3,410 47,765 29,177 10,314 14541 40943 17050
|R| 8 707 327 71 237 11 51
train 6,778 305,725 61,104 415,375 272115 86835 185584
valid 2,255 38,223 15,275 39,348 17535 3034 10310
test 2,180 38,281 24,915 38,797 20466 3134 10311
max arity 5 9 6 5 2 2 2

arity= 2 3,786 337,914 56,322 82,247 310,116 93,003 206,205
arity= 3 0 25,820 34,550 400,027 0 0 0
arity= 4 215 15,188 9,509 26 0 0 0
arity≥ 5 7,212 3,307 2,267 11,220 0 0 0

Table 13: Dataset statistics for inductive on both node and relation link prediction datasets. Triples
are the number of edges given at training, validation, or test graphs, respectively, whereas Valid and
Test denote triples to be predicted in the validation and test graphs.

Dataset Training Graph Validation Graph Test Graph

Entities Rels Triples Entities Rels Triples Valid Entities Rels Triples Test

FB-25 5190 163 91571 4097 216 17147 5716 4097 216 17147 5716
FB-50 5190 153 85375 4445 205 11636 3879 4445 205 11636 3879
FB-75 4659 134 62809 2792 186 9316 3106 2792 186 9316 3106
FB-100 4659 134 62809 2624 77 6987 2329 2624 77 6987 2329
WK-25 12659 47 41873 3228 74 3391 1130 3228 74 3391 1131
WK-50 12022 72 82481 9328 93 9672 3224 9328 93 9672 3225
WK-75 6853 52 28741 2722 65 3430 1143 2722 65 3430 1144
WK-100 9784 67 49875 12136 37 13487 4496 12136 37 13487 4496
NL-0 1814 134 7796 2026 112 2287 763 2026 112 2287 763
NL-25 4396 106 17578 2146 120 2230 743 2146 120 2230 744
NL-50 4396 106 17578 2335 119 2576 859 2335 119 2576 859
NL-75 2607 96 11058 1578 116 1818 606 1578 116 1818 607
NL-100 1258 55 7832 1709 53 2378 793 1709 53 2378 793
Metafam 1316 28 13821 1316 28 13821 590 656 28 7257 184
FBNELL 4636 100 10275 4636 100 10275 1055 4752 183 10685 597

Wiki MT1 tax 10000 10 17178 10000 10 17178 1908 10000 9 16526 1834
Wiki MT1 health 10000 7 14371 10000 7 14371 1596 10000 7 14110 1566
Wiki MT2 org 10000 10 23233 10000 10 23233 2581 10000 11 21976 2441
Wiki MT2 sci 10000 16 16471 10000 16 16471 1830 10000 16 14852 1650
Wiki MT3 art 10000 45 27262 10000 45 27262 3026 10000 45 28023 3113
Wiki MT3 infra 10000 24 21990 10000 24 21990 2443 10000 27 21646 2405
Wiki MT4 sci 10000 42 12576 10000 42 12576 1397 10000 42 12516 1388
Wiki MT4 health 10000 21 15539 10000 21 15539 1725 10000 20 15337 1703

21

Table 14: Dataset statistics for inductive-e link prediction datasets. Triples are the number of edges
given at training, validation, or test graphs, respectively, whereas Valid and Test denote triples to be
predicted in the validation and test graphs.

Dataset Rels Training Graph Validation Graph Test Graph

Entities Triples Entities Triples Valid Entities Triples Test

FB-v1 180 1594 4245 1594 4245 489 1093 1993 411
FB-v2 200 2608 9739 2608 9739 1166 1660 4145 947
FB-v3 215 3668 17986 3668 17986 2194 2501 7406 1731
FB-v4 219 4707 27203 4707 27203 3352 3051 11714 2840
WN-v1 9 2746 5410 2746 5410 630 922 1618 373
WN-v2 10 6954 15262 6954 15262 1838 2757 4011 852
WN-v3 11 12078 25901 12078 25901 3097 5084 6327 1143
WN-v4 9 3861 7940 3861 7940 934 7084 12334 2823
NL-v1 14 3103 4687 3103 4687 414 225 833 201
NL-v2 88 2564 8219 2564 8219 922 2086 4586 935
NL-v3 142 4647 16393 4647 16393 1851 3566 8048 1620
NL-v4 76 2092 7546 2092 7546 876 2795 7073 1447
ILPC Small 48 10230 78616 6653 20960 2908 6653 20960 2902
ILPC Large 65 46626 202446 29246 77044 10179 29246 77044 10184
HM 1k 11 36237 93364 36311 93364 1771 9899 18638 476
HM 3k 11 32118 71097 32250 71097 1201 19218 38285 1349
HM 5k 11 28601 57601 28744 57601 900 23792 48425 2124
HM Indigo 229 12721 121601 12797 121601 14121 14775 250195 14904

22

Table 15: Experiment result on node and relation inductive knowledge hypergraph datasets.

Method JF-25 JF-50 JF-75 JF-100

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

G-MPNN 0.006 0.004 0.004 0.007 0.003 0.000 0.000 0.003 0.001 0.000 0.000 0.000 0.002 0.000 0.000 0.000
HCNet 0.011 0.004 0.007 0.011 0.009 0.000 0.000 0.024 0.069 0.038 0.072 0.125 0.028 0.000 0.018 0.054

HYPER(end2end) 0.202
±.003

0.117
±.002

0.226
±.006

0.346
±.005

0.468
±.004

0.358
±.007

0.540
±.002

0.653
±.003

0.207
±.005

0.125
±.004

0.226
±.006

0.357
±.003

0.198
±.008

0.107
±.002

0.161
±.004

0.411
±.003

ULTRA†(3KG)(0-shot) 0.119 0.000 0.166 0.399 0.304 0.143 0.427 0.629 0.109 0.038 0.116 0.241 0.091 0.036 0.054 0.232
ULTRA†(4KG)(0-shot) 0.099 0.016 0.078 0.343 0.325 0.188 0.382 0.648 0.102 0.038 0.085 0.251 0.132 0.089 0.107 0.214
ULTRA†(50KG)(0-shot) 0.147 0.071 0.145 0.368 0.407 0.285 0.513 0.605 0.126 0.082 0.154 0.207 0.111 0.089 0.125 0.161

HYPER(3KG)(0-shot) 0.148 0.071 0.152 0.318 0.297 0.212 0.336 0.460 0.112 0.041 0.132 0.254 0.130 0.018 0.107 0.375
HYPER(4HG)(0-shot) 0.187 0.095 0.219 0.360 0.377 0.239 0.476 0.608 0.188 0.110 0.204 0.370 0.181 0.089 0.161 0.464
HYPER(3KG + 2HG)(0-shot) 0.216 0.122 0.233 0.413 0.455 0.325 0.556 0.664 0.213 0.122 0.231 0.367 0.173 0.071 0.179 0.446

HYPER(3KG + 2HG)(finetuned) 0.217
±.001

0.131
±.002

0.226
±.004

0.389
±.006

0.456
±.003

0.331
±.005

0.554
±.002

0.672
±.001

0.209
±.004

0.119
±.006

0.238
±.003

0.361
±.007

0.176
±.005

0.089
±.003

0.161
±.008

0.393
±.002

Method WP-25 WP-50 WP-75 WP-100

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

G-MPNN 0.005 0.003 0.005 0.006 0.002 0.001 0.000 0.002 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.001
HCNet 0.104 0.048 0.114 0.230 0.050 0.025 0.059 0.087 0.019 0.010 0.020 0.032 0.003 0.000 0.000 0.003

HYPER(end2end) 0.159
±.003

0.071
±.004

0.172
±.005

0.358
±.006

0.143
±.002

0.082
±.003

0.157
±.004

0.260
±.007

0.139
±.003

0.072
±.001

0.129
±.005

0.294
±.006

0.202
±.002

0.106
±.003

0.190
±.004

0.418
±.007

ULTRA†(3KG)(0-shot) 0.040 0.010 0.044 0.108 0.070 0.034 0.082 0.150 0.067 0.026 0.068 0.160 0.071 0.039 0.077 0.148
ULTRA†(4KG)(0-shot) 0.047 0.004 0.054 0.145 0.091 0.044 0.107 0.176 0.089 0.038 0.086 0.229 0.086 0.051 0.093 0.161
ULTRA†(50KG)(0-shot) 0.045 0.011 0.044 0.151 0.071 0.040 0.080 0.133 0.045 0.021 0.050 0.101 0.065 0.035 0.074 0.151

HYPER(3KG)(0-shot) 0.143 0.057 0.138 0.349 0.147 0.073 0.159 0.327 0.186 0.097 0.186 0.391 0.221 0.106 0.241 0.498
HYPER(4HG)(0-shot) 0.075 0.033 0.094 0.186 0.068 0.056 0.080 0.081 0.086 0.066 0.107 0.114 0.168 0.080 0.190 0.360
HYPER(3KG + 2HG)(0-shot) 0.132 0.058 0.151 0.296 0.152 0.086 0.178 0.295 0.192 0.107 0.201 0.384 0.222 0.132 0.209 0.453

HYPER(3KG + 2HG)(finetuned) 0.169
±.003

0.078
±.002

0.164
±.004

0.399
±.005

0.171
±.001

0.103
±.006

0.201
±.002

0.306
±.007

0.194
±.003

0.112
±.004

0.199
±.002

0.375
±.005

0.210
±.006

0.116
±.003

0.206
±.004

0.424
±.002

Method WD-25 WD-50 WD-75 WD-100

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

G-MPNN 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.001 0.000 0.000 0.001
HCNet 0.086 0.050 0.096 0.136 0.043 0.027 0.044 0.060 0.015 0.006 0.023 0.030 0.007 0.004 0.005 0.007

HYPER(end2end) 0.215
±.002

0.132
±.006

0.225
±.005

0.394
±.004

0.205
±.007

0.153
±.003

0.219
±.006

0.317
±.002

0.172
±.003

0.105
±.004

0.194
±.003

0.298
±.007

0.205
±.002

0.139
±.008

0.226
±.004

0.342
±.005

ULTRA†(3KG)(0-shot) 0.171 0.096 0.175 0.351 0.201 0.137 0.208 0.339 0.149 0.088 0.157 0.266 0.176 0.118 0.186 0.298
ULTRA†(4KG)(0-shot) 0.094 0.073 0.096 0.142 0.141 0.104 0.148 0.224 0.054 0.043 0.061 0.076 0.075 0.063 0.081 0.102
ULTRA†(50KG)(0-shot) 0.062 0.063 0.063 0.063 0.124 0.115 0.131 0.148 0.104 0.073 0.120 0.170 0.150 0.114 0.167 0.233

HYPER(3KG)(0-shot) 0.167 0.010 0.172 0.331 0.158 0.104 0.175 0.295 0.123 0.005 0.142 0.255 0.146 0.077 0.168 0.281
HYPER(4HG)(0-shot) 0.087 0.076 0.093 0.103 0.158 0.142 0.164 0.197 0.057 0.051 0.062 0.064 0.165 0.139 0.177 0.233
HYPER(3KG + 2HG)(0-shot) 0.223 0.156 0.225 0.404 0.200 0.148 0.208 0.317 0.154 0.093 0.168 0.275 0.182 0.133 0.177 0.286

HYPER(3KG + 2HG)(finetuned) 0.225
±.003

0.146
±.005

0.245
±.004

0.397
±.006

0.234
±.002

0.186
±.007

0.230
±.003

0.355
±.001

0.166
±.005

0.101
±.003

0.189
±.006

0.294
±.004

0.210
±.002

0.140
±.008

0.235
±.003

0.351
±.005

Method MFB-25 MFB-50 MFB-75 MFB-100

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

G-MPNN 0.002 0.000 0.000 0.004 0.004 0.001 0.003 0.007 0.007 0.003 0.004 0.010 0.003 0.000 0.002 0.005
HCNet 0.033 0.008 0.008 0.108 0.026 0.013 0.022 0.041 0.016 0.007 0.009 0.021 0.082 0.028 0.085 0.227

HYPER(end2end) 0.332
±.005

0.221
±.004

0.388
±.003

0.533
±.002

0.200
±.006

0.105
±.004

0.251
±.007

0.374
±.005

0.135
±.003

0.070
±.006

0.143
±.002

0.255
±.008

0.222
±.001

0.169
±.005

0.228
±.004

0.317
±.003

ULTRA†(3KG)(0-shot) 0.209 0.071 0.304 0.504 0.153 0.055 0.189 0.377 0.062 0.011 0.025 0.182 0.222 0.104 0.284 0.433
ULTRA†(4KG)(0-shot) 0.343 0.242 0.388 0.542 0.215 0.122 0.249 0.398 0.111 0.060 0.106 0.230 0.274 0.187 0.314 0.435
ULTRA†(50KG)(0-shot) 0.310 0.217 0.371 0.479 0.218 0.134 0.261 0.369 0.100 0.056 0.086 0.219 0.262 0.185 0.309 0.416

HYPER(3KG)(0-shot) 0.248 0.167 0.283 0.396 0.191 0.123 0.216 0.296 0.039 0.016 0.029 0.073 0.276 0.198 0.311 0.416
HYPER(4HG)(0-shot) 0.349 0.258 0.400 0.546 0.244 0.169 0.286 0.382 0.139 0.082 0.140 0.244 0.278 0.195 0.316 0.441
HYPER(3KG + 2HG)(0-shot) 0.363 0.263 0.417 0.550 0.250 0.167 0.287 0.393 0.140 0.077 0.140 0.260 0.299 0.214 0.339 0.449

HYPER(3KG + 2HG)(finetuned) 0.347
±.004

0.229
±.006

0.408
±.003

0.533
±.002

0.243
±.005

0.163
±.006

0.286
±.007

0.391
±.004

0.158
±.002

0.088
±.005

0.161
±.003

0.302
±.006

0.275
±.002

0.197
±.008

0.290
±.003

0.452
±.004

23

Table 16: Experiment result on node-inductive knowledge hypergraph datasets.

Method JF-IND WP-IND MFB-IND

MRR H@1 H@3 MRR H@1 H@3 MRR H@1 H@3

HGNN 0.102 0.086 0.128 0.072 0.045 0.112 0.121 0.076 0.114
HyperGCN 0.099 0.088 0.133 0.075 0.049 0.111 0.118 0.074 0.117
G-MPNN 0.219 0.155 0.236 0.177 0.108 0.191 0.124 0.071 0.123
RD-MPNN 0.402 0.308 0.453 0.304 0.238 0.328 0.122 0.082 0.125
HCNet 0.435 0.357 0.495 0.414 0.352 0.451 0.368 0.223 0.417

HYPER(end2end) 0.422
±.004

0.320
±.006

0.483
±.007

0.435
±.005

0.367
±.004

0.471
±.006

0.427
±.003

0.290
±.005

0.499
±.004

ULTRA†(3KG)(0-shot) 0.173 0.043 0.220 0.101 0.000 0.041 0.054 0.003 0.026
ULTRA†(4KG)(0-shot) 0.286 0.171 0.322 0.183 0.029 0.250 0.163 0.069 0.165
ULTRA†(50KG)(0-shot) 0.346 0.255 0.381 0.286 0.218 0.295 0.149 0.056 0.135

HYPER(3KG)(0-shot) 0.263 0.177 0.281 0.259 0.176 0.307 0.184 0.123 0.196
HYPER(4HG)(0-shot) 0.403 0.277 0.501 0.375 0.297 0.410 0.497 0.351 0.582
HYPER(3KG + 2HG)(0-shot) 0.459 0.365 0.515 0.415 0.338 0.454 0.404 0.267 0.480

HYPER(3KG + 2HG)(finetuned) 0.463
±.002

0.373
±.003

0.517
±.008

0.446
±.008

0.379
±.009

0.482
±.007

0.455
±.003

0.318
±.007

0.530
±.005

Table 17: HYPER hyper-parameters for pretraining, fine-tuning, and end-to-end training.

Hyperparameter HYPER

Positional Interaction Encoder

Layers 2
Hidden dimension 64

Dropout 0
Activation ReLU

Relation Encoder

Layers T 6
Hidden dimension 64

Dropout 0
Activation ReLU

Norm LayerNorm

Entity Encoder

Layers L 6
Hidden dimension 64

Dec 2-layer MLP
Dropout 0

Activation ReLU
Norm LayerNorm

Pre-training

Optimizer AdamW
Learning rate 0.0005
Training steps 30,000

Adversarial temperature 1
Negatives 512
Batch size 32

Fine-tuning

Optimizer AdamW
Learning rate 0.0005

Adversarial temperature 1
Negatives 256
Batch size 8

End-to-End

Optimizer AdamW
Learning rate 0.0005

Adversarial temperature 1
Negatives 256
Batch size 8

24

Table 18: Hyperparameters for fine-tuning and training end-to-end for HYPER.

Datasets Finetune End-to-End
Epoch Batch per Epoch Epoch Batch per Epoch

JF 25-100 3 full 10 full
WP 25-100 3 full 10 full
MFB 25-100 3 full 10 full
WD 25-100 3 full 10 full

JF-IND 1 full 20 full
WP-IND 1 full 20 full
MFB-IND 1 2000 4 10000

FB 25-100 3 full 10 full
WK 25-100 3 full 10 full
NL 0-100 3 full 10 full
MT1-MT4 3 full 10 full
Metafam, FBNELL 3 full 10 full

FB v1-v4 1 full 10 full
WN v1-v4 1 full 10 full
NL v1-v4 3 full 10 full
ILPC Small 3 full 10 full
ILPC Large 1 1000 10 1000
HM 1k-5k, Indigo 1 100 10 1000

25

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claim is to introduce the first foundation model over knowledge
hypergraphs, showing the necessity of introducing dedicated model for it. The paper
describes the architectures on link prediction with knowledge hypergraphs, showing its
promising results on many well-established benchmarks and newly generated data slices to
enable inductive (on node and relation) learning.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have made the limitation clear in Section 6

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

26

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [No]
Justification: This paper does not state any theoretical assumptions and results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided full reproducible code in the provided code base, along with
newly generated datasets and existing dataset.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

27

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provide open access to the data and code, both in the form of
supplementary materials as well as the anonymous github link.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide comprehensive training and evaluation details in both the main
text and Appendix K.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report 1-sigma standard deviation of the fine-tuned and end-to-end training
results in Table 15 and Table 16.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

28

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All computational resources details are provided in Appendix E. Other experi-
mental details are provided in Appendix K. Specifically, model configurations, including
batch sizes and optimizer settings, are provided in Tables 17 and 18.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research adheres to the NeurIPS Code of Ethics. We use only publicly
available datasets with permissible licenses, properly credit all external assets, and ensure
that our models are developed and evaluated in a fair, transparent, and reproducible manner.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have include the broader impacts section in Appendix J, where we thor-
oughly discuss the potential positive and negative societal impacts of this work.

29

https://neurips.cc/public/EthicsGuidelines

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: Our released models are designed for link prediction over structured knowledge
graphs and hypergraphs, and do not support open-ended generation or retrieval tasks that are
commonly associated with high-risk misuse (e.g., language generation, image synthesis).
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We use publicly available datasets and models whose licenses permit academic
use. Specifically, all relevant datasets considered in this paper are sourced from widely
used benchmark repositories under permissible licenses. For pretrained baselines such as
ULTRA, we cite the original work [16] and only use publicly released checkpoints. All asset
sources are credited in the main text and/or appendix, and we comply with their respective
licensing terms.
Guidelines:

30

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We release the newly constructed 16 datasets, together with the model check-
points and code in the corresponding well-documented codebase, both via anonymized URL
and anonymized Zip files.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowd sourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

31

paperswithcode.com/datasets

Answer: [NA]
Justification: This paper does not involve crowd sourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This paper is about knowledge hypergraph foundation models, which did not
relied on LLM to encode prediction but rather considered pure structural properties.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

32

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Preliminaries
	Hyper: A Knowledge Hypergraph Foundation Model
	Experiments
	Conclusion
	Extended Related Works
	Dataset Generation Details
	Generating Datasets for Node and Relation-inductive Link Prediction
	Dataset Statistics

	Sparse Matrix Multiplication for Computing Positional Interaction
	Details in Reification
	Computational Resources
	Complexity Analysis of Hyper
	Relation Graph Construction
	Relation Encoder
	Entity Encoder

	Node Inductive Link Prediction over Knowledge Hypergraphs
	Impact of Positional Interaction Encoders
	Additional Experiments on Knowledge Graphs
	Broader Impact
	Further Experimental Details
	Evaluations
	Hyperparameter Details for Baselines
	Architecture Choices of Hyper
	Training Objective

