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ABSTRACT

Recent advances in image-to-video (I2V) generation have enabled the synthesis of
high-quality videos from a single input image. However, a significant limitation
emerges with this single-image conditioning: models struggle to maintain appear-
ance consistency for unseen regions, like the back of a garment. Because they lack
complete information, the models are forced to hallucinate these missing views,
a process that frequently introduces visual artifacts and inconsistencies. Con-
sequently, this issue hinders their adoption in applications such as e-commerce,
where visual fidelity to the actual garment is critical. In this paper, we propose the
Multiview Enhanced Image-to-Video Generation Model (MVI2V), which solves
this issue by introducing other multi-views of a person or garments as extra refer-
ence images to enhance the generation process. Specifically, MVI2V introduces
an additional, structurally identical forward stream dedicated to processing the
reference images. This transforms the original single- or dual-stream architecture
into a dual- or triple-stream one, respectively. Cross-stream fusion is facilitated by
the self-attention mechanism, which enables bidirectional information flow among
tokens of different types. Regarding the training strategy, we incorporate an in-
painting sub-task that randomly masks the region of the person in the conditioning
image, thereby compelling the model to rely more heavily on guidance from the
reference images. To facilitate efficient model learning, we have meticulously de-
signed a data curation pipeline. This pipeline selectively filters videos exhibiting
large-angle variations of the subject, and then systematically extracts a compre-
hensive set of multi-view reference images for each video. Extensive experiments
on both Wan2.1 I2V and our in-house 12V model show that our MVI2V model can
accurately reference multi-views images of a person or garment images, while si-
multaneously preserving the foundational I2V generation capabilities of the orig-
inal model, and validate the effectiveness of the proposed network architecture,
training strategy, and dataset curation pipeline. Code will be released to advance
the related research.

1 INTRODUCTION

Recently, significant progress in denoising diffusion models(DDM) has greatly enhanced the gen-
eration ability of videos from text descriptions (Yang et al., [2024} [Polyak et al.| [2024; [Kong et al.,
2024). Among the diverse applications of diffusion models, Image-to-Video (I2V) generation has
emerged as a particularly promising and actively researched direction. This task aims to animate a
static image based on user-provided prompts, offering an effective balance between controllability
and creative flexibility. As such, it has found widespread use in entertainment, social media, and
personalized content creation.

In this paper, we focus on the human-centric application of 12V, which takes a human image as
input and animates the person according to user-provided text prompts. Unfortunately, in demanding
scenarios such as e-commerce, where visual fidelity and appearance consistency with actual subjects
or garments are critical, it is insufficient for the model to generate videos with only one conditioning
image. The model is forced to hallucinate the appearance of unseen regions of the subject and
garment from the first image. A straightforward solution to this is to incorporate additional input
views into the model.
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Figure 1: Our MVI2V multi-view generation ressults compared with Wan2.1-I12V baseline.

However, it is non-trivial to achieve the desired functionality from scratch. The primary challenge
is the scarcity of human-centric videos featuring dynamic body reorientations, as such data occu-
pies the long tail of the overall distribution. Such limited data makes it highly challenging to train
a generalizable multi-view image-to-video generation model from scratch. Therefore, we opt to
extend existing powerful image-to-video generation models and finetune them on a targeted multi-
view dataset. Specifically, MVI2V extends the original model with an additional forward stream,
structurally identical to the primary one for video tokens, to process multi-view reference images
and enable bidirectional information flow between reference image tokens and video tokens via
self-attention in each transformer block. In this way, video tokens can gather information about
the unseen garment appearance from the multi-view image tokens. We named this architecture
as Multiview Enhanced Image-to-Video Generation Model (MVI2V). MVI2V is general and robust,
readily adaptable to existing popular video diffusion backbones, including single-stream based mod-
els 2024} [Kong et all [2024) and dual-stream based models (Polyak et all [2024; [Wang
2025).

We also constructed a specialized data pipeline to filter out multi-view targeted dataset to accelerate
model training. Starting from a large video pool, this pipeline sequentially filters for single-person
videos and then for those featuring large angles of subject rotation. Furthermore, we formulated
a multi-view reference frame extraction strategy. It identifies five comprehensive views, including
frontal and back perspectives. Concurrently, the top and bottom garments are segmented from the
frontal and back views to augment the dataset of garment reference images. We found that this data
curation pipeline substantially improves both the model’s learning efficiency and its final reference
capability.

Despite employing the MVI2V model and the meticulously curated dataset, we observe that the
model can still ”learn a shortcut” during training: it can generate a temporally consistent video
while completely ignoring the reference frames, although the resulting appearance will not match
them. This is because that for a pre-trained 12V model, the conditioning first frame already pro-
vides a strong prior for the subject’s appearance. This tendency impedes the model’s ability to learn
from the new reference images. To counteract this, we introduce an auxiliary inpainting subtask.
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By randomly masking out the person’s region in the conditioning first frame, this strategy compels
the model to reconstruct the subject’s appearance by leveraging the information from soely refer-
ence images. Our experiments demonstrate that this simple approach further enhances the model’s
capability to adhere to the reference images.

In summary, our contributions are outlined below:

* We propose the first training framework that integrates the MVI2V architecture and an
inpainting sub-task to augment existing image-to-video generation models with multi-view
reference support. This framework is readily adaptable to both single-stream and dual-
stream-based backbones.

* Our carefully designed dataset collection pipeline is effective to enhance the training effi-
cency for this specailized task.

» Experiments ablates the effectiveness of our proposed MVI2V model, inpainting subtask
and dataset curation pipeline.

2 RELATED WORK

2.1 VIDEO GENERATION MODELS

The success of Diffusion Models in image generation (Rombach et al.l 2021} |Ho et al., [2020) has
spurred their exploration in the video domain (Lin et al.| [2024a; |Yang et al., 2024} [Kong et al.,
2024} [Wang et al.l 2025; |Gao et al., [2025)). Video Diffusion Models (VDMs) was the first work
among them to achieve this by extending the 2D U-Net architectures of image generation models
into 3D U-Net for video synthesis. Other works (Zhou et al., 2022} (Gong et al.| 2024} |Wang et al.,
2023)) introduce 1D temporal attention to reduce computation overhead. The advent of the Diffu-
sion Transformer (DiT, (Peebles & Xiel 2022)) introduced the Transformer architecture (Vaswani
et al.|2017) into diffusion models, leading to substantial improvements in generation quality. Con-
sequently, modern video generation models now widely employ the DiT architecture for modeling
both visual appearance and temporal dynamics.

Modern powerful DiT-based open-source or commercial video generation models typically process
multi-modal inputs, such as video and text, in two primary ways. The first approach, which we refer
to as single-stream, models video tokens through a single set of parameters and interacts with text
tokens through cross attention mechanism (e.g. MovieGen (Polyak et al.|[2024)) and Wan2.1 (Wang
et al., [2025)). The second is a dual-stream approach based on the Multimodal Diffusion Trans-
former (MMDIT), which processes video and text with separate parameters, and merges them during
self-attention mechanism (e.g. CogvideoX (Yang et al., 2024)), HunyuanVideo (Kong et al., 2024)
and SeeDance (Gao et al.,|2025))). In practice, both methods achieve excellent results in video-text
alignment and generation realism.

2.2 IMAGE-TO-VIDEO GENERATION

Most existing image-to-video (I2V) methods adapt pre-trained text-to-video (T2V) models to accept
both image and text inputs, typically by fine-tuning on image-video pairs to inherit original model’s
generative ability and accelerate convergence. A common technique is to concatenate the initial
frame’s latent and mask with the noisy video latent in the channel dimension (Kong et al., 2024;
Wang et al., |2025; Gao et al., [2025; Yang et al.,[2024)). Wan2.1 (Wang et al., [2025)) further enhances
this by injecting global semantics from the frame’s CLIP embedding via cross-attention. Despite
these advances, all such single-frame conditioned methods fail to guarantee multi-view appearance
consistency with actual garments. Our MVI2V overcomes this limitation by introducing a dedicated
forward stream for processing multiple reference images, thereby enabling the generation of videos
consistent with input multi-view reference images.

3 PRELIMINARY

Flow matching models (Liu et al.| 2022} Lipman et al.| [2022) provide a theoretically grounded
framework for learning continuous-time generative processes in diffusion models, and have demon-
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Figure 2: Multiview enhanced image-to-video generation training framework.

strated strong capabilities in visual generation. It circumvents iterative velocity prediction, enabling

stable training via ordinary differential equations (ODEs) while maintaining equivalence to maxi-

mum likelihood objectives. In general practice, the probability path usually exists in a latent space,

not in a pixel space, to reduce computation and speed up training. During training, the video tensor

is first compressed by a video encoder £ into latent space as x;. Given a randomly sampled noise

xo ~ N(0,7) and a timestep ¢ € [0, 1], an intermediate latent z; = tx1 + (1 — t)xo is obtained as
dry __

the training input. The ground truth v; is vy = 3+ = 71 — xo.

For image-to-video generation, the model is trained to predict the velocity, given the input prompt
Ctz¢ and the first frame c;,,,4. Therefore, the loss function is formulated as the mean squared error
between the model output and vy,

[w(ze, Crat, Cimg, 6 6) — v |2

L= EmOaxlvctmtacimgyt

In this paper, we extend the task to multiview enhanced image-to-video generation. Therefore, the
model is conditioned on extra reference images c,.y and the training loss is reformulated as:

L= Ezy e,

|u($t7 Ctxt, Ci7ng7 Cref7 t; 0) - Ut| |2

Ctmt-,cimg7c'ref7t

4 METHODOLOGY

4.1 METHOD OVERVIEW

MVI2V enables video generation from multi-view references by enhancing the powerful, pre-
existing 12V models with an extra forward stream specifically for processing reference images,
which is compatible with dominant video diffusion model backbones such as single-stream and
dual-stream structures. To support this task, we also developed a data construction pipeline to cu-
rate a high-quality, training-efficient dataset of multi-view video-image pairs. In the following part
of this section, we first introduce the training details including network architecture and inpainting
subtask in Sec.[4.2] Then, we describe the dataset construction pipeline in Sec.[d.3]

4.2 MULTIVIEW ENHANCED IMAGE-TO-VIDEO GENERATION

To ensure multi-view consistent garment appearance in the generated videos, we condition our
model on a new type of input: clean multi-view reference images. These images are fundamentally
different from the other two inputs in distinct ways. Unlike semantic text prompts, they provide
direct visual information. For noisy video tokens, they are linear interpolations of noise and clean



Under review as a conference paper at ICLR 2026

I. Large Angle Variations Filtering.

= (=] 4 e
ulé e 3 :
Not Single Person ' @ [E] Filter Strategy
Single Y 3 R > threshold, reserve V' Training
Video  —> o = Human > | ! 1 ™ Videos
4 » ‘\A/,,.,"‘ e e K . 3‘
N a

Pool Videos R < threshold, discard X

. Singel Person
No Person

v Video

Not Full Bod:
o Caleulate Angle Cover Range R

Body Angle Reconstruction

Single Person Video Filtering

11. Diverse Reference Frames Selection.

] L]
NV Find Closet Front/Back Frame
a

Front Back

-"

Front uppe&lower cloth

2 Gemini - Sa2Va
° ed t-shi
Apply Kmean (K=3) l - ™| ' "
A W e s
o 3 Back uppe&lower cloth
Viewl  View2  View3 [ Back upper&lower cloth desc.
Back
Angle Set Training Reference Frames Training Reference Images

Figure 3: Our targeted data collection pipeline.

video latent, represent intermediate points along the flow-matching trajectory, and thus contain a
mix of signal and noise. In contrast, clean reference frames are more similar to the endpoint of this
trajectory, embodying purely clear visual information. Therefore, we treat these reference images as
a unique modality in this paper.

We seek a general way to incorporate the new modality and facilitate information exchange with
the other two modalities. Following MMDIiT, we introduce a dedicated forward stream to process
the reference images and employ self-attention to fuse its features with those from other modalities.
In the following, we illustrate the architectural modifications based on Wan2.1 I2V backbone as a
concrete example, which is shown in Figure 2] We leave the modification details on our in-house
12V backbone (dual stream) in Appendix [B]

MVI2V Network Architecture. A typical transformer block of Wan2.1 consists of 3 primary mod-
ulated components: self-attention, cross-attention, and feedforward network (FFN). The forward
process can be formulated as:

x1 = SelfAttention(z; Mg, W)
xo = CrossAttention(z1, ciot ® Cimg; Mo, We)
z3 = FFN(22; Mp, Wr)

where Mg, Mo, MF is the collection of modulation parameters, including scale, shift, gate for self-
attention, cross-attention, and feedforward layers, respectively. Wg and W are the collections of
linear projection parameters to project tokens into query, key, value, and output in self-attention
and cross-attention operations. And Wy is the parameters of FFEN. z is the input video tokens,
and ¢z, Cimg are the conditional text embeddings and CLIP embeddings of the first image. In this
formulation, we omit the internal residual connections for simplicity.

As shown in the DiT block part of Fig[2l we extend each operation with an extra forward stream
and parameters for the additional reference image tokens. These two modalities only interact at
self-attention operation. This modified architecture is formulated as follows:
z1,y1 = SelfAttention(z & c¢,cp; Mg, Mg, W, W)

zo = CrossAttention(z1, cigt ® Cimg; Mo, We)

yo = CrossAttention(y:, ¢izt ® Cimg; M, W)

T3 = FFN([L‘Q, MF, WF)

ys = FFN(y2; Mp, W)
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where Mg, M{,, My, W§, W, W, are the additional parameters to process multi-view reference
images specifically.

To accelerate convergence, a straightforward approach is to initialize the additional parameters by
duplicating the weights of the pretrained one. However, this method doubles the number of trainable
parameters, significantly increasing computational overhead and memory footprint. Therefore, we
propose a more parameter-efficient strategy employing Low-Rank Adaptation (LoRA) (Hu et al.|
2021)). Instead of full parameter replication, we augment each original weight matrix with low-rank
matrices as follows:

W!; = WS + OzAsBS
W(/;« =We + aAcBe
Wll;v = WF + OéAFBF

where « is the scaling factor for the LoRA weights. The matrices Ay and B are the down-
projection and up-projection matrices, respectively, for the LoRA layers applied to different compo-
nents of the model. This parameter-efficient approach significantly reduces the number of trainable
parameters.

Inpainting Subtask. Extending a pretrained Image-to-Video (I2V) model to incorporate multi-view
references poses a significant challenge: the conditioning first frame already provides a strong ap-
pearance prior. This strong prior may cause the model to simply disregard the multi-view reference
images and generate the video based solely on the conditioning frame. This presents a data con-
struction challenge, as reference images must provide novel viewpoints distinct from the first frame
to encourage the model to learn complementary features. This necessity inherently limits the range
of applicable training data.

To address this and improve data utilization, we propose a simple yet effective strategy: randomly
masking the human region in the conditioning frame during training. This forces the model to
learn the subject’s appearance exclusively from the reference images, thereby decoupling it from
the conditioning frame’s identity. Experiments validate that this approach significantly enhances the
model’s ability to synthesize subjects based on reference images.

4.3 DATASET CONSTRUCTION

Figure [3| shows the overall data collection pipeline. We begin by filtering a large video pool using
a human detection model (Yang et al., |2023)). We discard videos that contain no people, multiple
people, or only part of one person, retaining only single-person videos with a sufficiently large
subject.

Large Angle Variations Filtering. For each left video clip, we estimate the per-frame body orien-
tation angles using a human reconstruction model (Kanazawa et al.l [2018). Clips with an angular
cover range greater than a predefined threshold are selected for training, while others are filtered out.

Diverse Reference Frames Selection. Our reference frame selection is a two-step procedure. First,
recognizing that frontal and back views provide the most comprehensive information on clothing
appearance, we identify the two frames closest to these canonical views. Second, to ensure viewpoint
diversity, we apply k-means clustering (k=3) to all orientation angles in the clip and select the three
frames closest to the resulting cluster centroids.

Cloth Segment. Finally, to address the data scarcity of the flattened map, we employ the gem-
ini (Team et al.| [2024) and Sa2va (Yuan et al., [2025)) model to segment the upper and lower gar-
ments from the frontal and back reference frames, respectively. These segmented regions are then
incorporated as additional reference frames for training. In the final dataset, each video is associated
with nine reference images: two frontal/back views, three clustered multi-view images, and four
segmented garment images.
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Figure 4: Qualitative comparisons with conventional image-to-video baselines using garment (a) or
person (b) images as reference.

5 EXPERIMENTS

5.1 BASELINES AND METRICS

Baselines. To comprehensively validate the effectiveness of our proposed architectural modifica-
tions, we conduct experiments on both single-stream and dual-stream baselines. For the single-
stream model, we adopt Wan2.1 (I2V-14B-720P) as the baseline. For the dual-stream model, we
utilize an in-house 15B image-to-video generation model as the baseline. This model features a
hybrid dual-stream/single-stream architecture, similar to Flux 2024). We extend their single-
stream blocks and dual-stream blocks into dual-stream blocks and triplet-stream blocks according to
Sec[] resulting in our MVI2V-Wan2.1 and MVI2V-In-House model, respectively. Furthermore, an
naive approach to incorporate multi-view reference images is to directly concatenate reference to-
kens with the video tokens. The combined sequence is then processed through Transformer blocks,
after which only the video tokens are isolated for decoding. We term this method Token-Concat. To
compare this naive structure against our MVI2V architecture, we implemented Token-Concat on the
Wan2.1 model and compare it with our MVI2V-Wan2.1 model.

To evaluate multi-view reference capability, we construct a new benchmark tailored for this task.
Specifically, we manually collected multi-view images of the same subject from e-commerce web-
sites. For each set of images, one view serves as the conditioning first frame, while the others serve
as reference images. Our benchmark comprises 130 instances with multi-view person images as ref-
erence, and 85 instances with garment images as reference, totaling 205 test samples. The evaluation
metrics are categraized into the following three types:

Garment Consistency. We assess garment consistency between the generated video frames and the

reference images using GPT (2023)) and DINO (Caron et al,[2021). For GPT-based
metrics, inspired by VQAScore 2024b)), we provide detailed instructions and rubrics
to guide the GPT to grade the generated videos across garment consistency dimension. For the

DINO-based metric, we compute the cosine similarity of DINO features between each generated
frame and reference images as the garment consistency score. We apply the two scoring strate-
gies to the multi-view person and garment evaluation sets, respectively, yields four distinct metrics
GPTpersony GPTgarmenta DINOpersona DINOgarment-
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Table 1: Quantitative comparison with image-to-video baselines on our multi-view benchmark.

Model Garment Consistency Video Quality Text-Motion Alignment
odel
Subject Background Motion
GPTperson  GPTgarment  DINOperson  DINOgarment GPT
Consistency  Consistency ~ Smoothness

Wan2.1 0.752 0.409 0.667 0.582 0.916 0.928 0.986 0.812
MVI2V-Wan2.1 0.862 0.585 0.728 0.656 0.927 0.938 0.988 0.879
In-House 0.692 0.416 0.700 0.601 0.926 0.934 0.993 0.935
MVI2V-In-House 0.868 0.607 0.776 0.633 0.930 0.934 0.993 0.880

Table 2: Ablation results. The ’+’ symbol denotes the addition of a core component to the configu-
ration of the preceding row.

Model Ablation Item Garment Consistency Video Quality Text-Motion Alignment
MVI2V Dataset  Inpainting Subject Background Motion
; GPTperson  GPTgarment DINOperson  DINOgarment i GPT
Architecture ~ Strategy  Subtask [¢ y  C

Wan2.1 X X X 0.752 0.409 0.667 0.582 0916 0.928 0.986 0.812
+MVI2V Architecture v X X 0.784 0.470 0.744 0.631 0.905 0.923 0.982 0.787
+ Dataset Strategy v v X 0.853 0.562 0.743 0.638 0.916 0.932 0.986 0.857
+ Inpainting Subtask (Ours) v v v 0.862 0.585 0.728 0.656 0.927 0.938 0.988 0.879
Token-Concat X v v 0.797 0.512 0.715 0.620 0.905 0.923 0.982 0.867

Video Quality. Consistent with previous work, we evaluate the “Subject Consistency”, “Back-
ground Consistency”, and “Motion Smoothness” metrics in VBench (Zheng et al.|[2025) to conduct
how the two major challenges — temporal consistency and smoothness — are addressed.

Text-Motion Alignment. We also use GPT based VQAScore to quantify the alignment of subject’s
motion with the input prompt.

5.2 QUALITATIVE AND QUANTITATIVE EVALUATION

Figure [4] presents a qualitative comparison between our MVI2V variants and their 12V baseline.
When the subject’s pose aligns with the viewpoint of the reference image, our method successfully
leverages its texture details to reconstruct an appearance consistent with the actual garment. In con-
trast, the baseline methods either generate simplistic solid colors or inpaint incorrect, hallucinated
details. We provide more qualitative comparisons in Appendix [F}

The quantitative results, presented in Table [I] are consistent with our qualitative findings. Our
method demonstrates significant improvements over the baseline in garment consistency, as mea-
sured by both GPT and DINO based metrics. Furthermore, the high-quality training data, produced
by our carefully designed collection pipeline, also leads to notable gains in other metrics on video
quality and text-motion alignment dimensions.

5.3 ABLATION STUDY

We evaluate the incremental addition of the Typle 3. Quantitative results on the original
three core components of MVI2V: (1) the vBench I2V benchmark.
MVI2V architecture, (2) our data collection

strategy, and (3) the inpainting subtask, build- | ' Subject ~ Background ~ Motion
ing upon the Wan2.1 baseline. The quantita- Consistency Consistency ~ Smoothness
tive results are shown in Tab. 2} First, inte-  wan2.1 0.938 0.969 0.980
grating the MVI2V architecture alone improves  yrviov.wan2 1 0.953 0.969 0.987
garment consistency but shghtly compromises - 0.965 0,964 0.994
video quality and text-motion alignment. Once

MVI2V-In-House 0.959 0.958 0.993

our data strategy and inpainting task are also
included, almost all metrics steadily increase. Moreover, replacing the MVI2V architecture with
Token-Concat leads to a significant performance drop, which underscores the superiority of our
network design in handling multi-view image inputs.

Figure [5]illustrates the qualitative results of our ablation study. It is observed that, compared to the
baseline, employing MVI2V architecture alone is insufficient for the model to adhere to reference
images. With the addition of our proposed data collection strategy, the model gains some reference
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Figure 5: Qualitative ablation results using garment (a) or person (b) images as reference. Our
method behaves better on texture inconsistencies (a) or loss (b) problems.

capability, but still suffer from texture inconsistencies or loss. Finally, by incorporating the inpaint-
ing sub-task, the model’s referencing ability is maximized, successfully generating videos where the
garment appearance is consistent with the reference image. Alternatively, replacing MVI2V archi-
tecture with the Token-Concat architecture grants some referencing ability, but introduces incorrect
clothing geometry and noticeable motion artifacts due to the mixed modeling of the two modalities.

5.4 PRESERVATION OF FOUNDATIONAL I2V CAPABILITIES

Our MVI2V models can also function as an oput Generated Frame Sequence
12V model, retaining the capability for single-
image to video generation. To validate this, we . e, =
evaluated their 12V performance on the origi-
nal Vbench benchmark. Table [3] compares the
Vbench metrics of the MVI2V models with
its baseline version. The extended models
show comparable performance across all met- — “blee vitoin
rics. This indicates that our MVI2V training

process does not compromise the original I2V Figure 6: Image-to-Video generation results of

capabilities. Figure [6] shows one visualization our MVI2V-Wan2.1 model
of single-image to video generation result of ’ '

our MVI2V-Wan2.1 model.

[’n
4

MVI2V-Wan2.1
i
)
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6 CONCLUSION

In this paper, we introduce the task of multi-view guided image-to-video (I2V) generation and pro-
pose a comprehensive framework to train a competent model. Starting from a pretrained 12V model,
we extend its architecture and incorporate an inpainting-based training strategy to facilitate efficient
learning. We also devise an effective data curation pipeline tailored for this task. Given reference
images of a person or a garment from various viewpoints, our model can generate dynamic person
videos of the subject with a consistent multi-view appearance.
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Figure 7: In-house 12V model architecture incorporating MVI2V.

We incorporated the MVI2V method into our in-house mage-to-video generation model by trans-
forming its dual-stream design into a tri-stream architecture. This was achieved by adding a refer-
ence token stream, whose modules were initialized with weights from the video token stream. The
resulting structure is illustrated in Figure
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C IMPLEMENTATION DETAILS

Training Details. During each training iteration, we randomly sample three reference frames and
apply the inpainting sub-task with a 20% probability. For the newly added LoRA layers, the scaling
factor o is set to 1 and the lora rank is set to 64. We train the model for 2000 steps using the Adam
optimizer (8; = 0.9, B2 = 0.999) Kingma & Ba/(2014) with a learning rate of 1e-5 and a batch size
of 64. All video frames are resized to a resolution of 1280x720 (720P), while all reference images
are resized to 720x720.

Dataset. We build our multi-view training dataset from an in-house collection of 1.23M e-commerce
garment videos, following the process shown in Fig[3] This initial pool was first filtered to retain only
single-person videos, reducing the count to 830K. Subsequently, we applied the large-angle rotation
filter, which further narrowed the dataset down to 230K videos. From each of these remaining
videos, we extract nine types of reference images as described in

D METRICS

Garment Consistency. We assess the garment consistency between the generated video frames and
the reference images using two distinct models, i.e., a Vision-Language Model (VLM) and DINO.
For the VLM-based metric, we adopt the VQAScore methodology, which calculates the generation
probability of a target answer. Specifically, we compute the probability of the answer "YES” by
applying the softmax function to the logits of the top candidate tokens returned by the model. Let
Lygs be the logit for the token "YES” and Tindidates b€ the set of top candidate tokens, the score is
formulated as:

» » exp(Lygs)
p("YES”) =
( ) Zh € Teandidaes 5P ( Lti )

(D

If ”YES” is not among the top candidate tokens, its probability is taken as 0. We provide detailed
instructions for this task in Listing[T] To ensure fairness, we re-grade each video 5 times and take the
average probability as the final score (GPTqrment). For the DINO-based metric, we compute the
DINO feature similarity between each generated frame and the reference image. The maximum sim-
ilarity score across all frames is then taken as the final garment consistency score for the video. We
apply the two scoring strategies to the multi-view person and garment evaluation sets, respectively,
yields a total of four distinct metrics GPTpersons GPTyarment, DIN Operson, DINOgarment-

Video Quality. Consistent with previous work, we evaluate video quality with VBench|Zheng et al.
(2025). VBench introduces a set of metrics that comprehensively evaluate the videos from both
quality and semantic perspectives. We use the “Subject Consistency”, “Background Consistency”,
and “Motion Smoothness” from VBench to evaluate how the two major challenges — temporal con-

sistency and smoothness — are addressed.

Text-Motion Alignment. Similar to the VLM-based metric for the garment consistency, we use
GPT to evaluate text-motion alignment. For each video, We provide detailed instructions (see List-
ing[2) to guide the GPT to judge whether the depicted action is consistent with the motion described
in the text prompt.
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# Role
You are an expert visual inspector AI.

# Task
Your task is to determine if the clothing worn by the person in the provided video is an exact match to the
clothing shown in the provided reference images. You should compare carefully at the color and texture.

# Inputs

— A set of reference images showing a garment from multiple views (front, back, etc.).

- A single video showing a person wearing a garment.

# Rules for Verification

1. =xxAppearance Match:+* The clothing in the video (including its color, pattern, logos, and design) must be

identical to the clothing in the reference images.
2. =*xOrientation Match:** The garment must be worn correctly. The side identified as the front in the
reference images must be on the person’s front in the video, and the back must be on the person’s back.

.

Output Instruction

— If AND ONLY IF both rules are strictly met, respond with a single word: YES
— Otherwise, respond with a single word: NO

- Do not provide any explanation, context, or any other text.

Listing 1: Instructions for the VLM-based garment consistency evaluation.

# Role
You are an expert AI video-text alignment analyst.

# Task
Your task is to determine if the actions performed by the person in the provided video generally align with
the description in the provided text.

Inputs
A text prompt used to generate a video.
- A video generated from the text prompt.

(S

# Rules for Verification

1. *xGeneral Action Match:+* The core actions described in the text must be recognizably present in the video
. An exact, one-to-one match is not required, but the overall action should be similar.

2. xxConsistency:x* The actions in the video must not fundamentally contradict the description in the text.

# Output Instruction

- If AND ONLY IF all rules are met, respond with a single word: YES
- Otherwise, respond with a single word: NO

- Do not provide any explanation, context, or any other text.

Listing 2: Instructions for the VLM-based text-motion alignment evaluation.

Input

. mask out

human region

Original Masked Front Back
First Frame First Frame Reference Reference

Generated Frame Sequence

Figure 8: An example of generated results for the inpainting sub-task.

E EFFECTIVENESS OF THE INPAINTING SUBTASK

To evaluate the effectiveness of the inpainting sub-task introduced during training, we conducted
inference experiments where the human region in the conditioning first frame was masked. The
qualitative results are presented in Figure 8] As the figure illustrates, even though the subject’s
appearance is completely obscured in the first frame, our model successfully reconstructs the ap-
pearance of the garment by leveraging the provided reference images. This result validates that
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the inpainting sub-task is effective in forcing the model to rely on reference views for appearance
synthesis, decoupling it from the conditioning frame.

F MORE QUALITATIVE RESULTS

This section provides additional qualitative comparisons against the Wan2.1 12V model. Figure [9]
showcases results generated from garment reference images, while Figure [I0] demonstrates perfor-
mance using person reference images.
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Figure 9: Results generated using garment reference images.
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Figure 10: Results generated using person reference images.
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