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Abstract. The increasing societal impact of decisions made with ma-
chine learning (ML) systems requires these decisions to be fair. To fully
address the fairness of an ML system, fairness must be interpreted as
context-dependent and shaped by the societal environment in which this
ML system operates. However, existing group fairness measures do not
consider this context, reducing fairness to equality between groups, ne-
glecting other norms such as equity or need. Therefore, we propose con-
textual fairness, a context-dependent framework for assessing ML fair-
ness with multiple context-specific norms such as equality, equity, and
need. Our approach involves four steps: eliciting fairness norms from
the relevant stakeholders, operationalizing these norms into quantitative
measures, combining these measures into a weighted contextual fairness
score, and analyzing this score at global, between-group, and within-
group levels. We evaluate our approach on the ACS Income dataset
for both binary classification and regression tasks, showing how con-
tertual fairness improves the interpretation of fairness assessment and
mitigation in context. By explicitly incorporating norms in fairness as-
sessment, our approach enables more nuanced evaluations and better
supports practitioners and regulators in considering the societal context.

Keywords: algorithmic fairness - socio-technical systems - fairness as-
sessment - machine learning

1 Introduction

Machine learning (ML) systems increasingly help to make decisions that impact
individuals and society unfairly due to biases in data and models [12,24]. No-
table examples of this are the racial biases exhibited by the COMPAS system |[3]
and facial recognition systems [6]. To address fairness issues during the develop-
ment of ML systems, commonly group fairness measures, such as demographic
parity [19] or equalized odds [18], are used to calculate to which extent an ML
system favors “[af group based on their inherent or acquired characteristics” [24].

Subsequently, mitigation techniques are used to enhance the measured fairness
[26].
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As these group measures typically reduce fairness to equality between groups
(e.g., treating males and females the same) [8], other fairness norms such as eq-
uity or need are neglected, leading to misleading or incomplete fairness assess-
ments [5]. Consequently, deployed ML systems that are deemed fair, in practice,
may treat individuals and groups unfairly, resulting in negative societal impact.
For example, consider a company that prefers internal applicants over external
applicants for new job positions. When this company uses a fair automated hir-
ing system that treats all individuals equally, internal applicants will be treated
unfairly with respect to the company’s preference.

Prior work has shown that to improve fairness assessments, fairness should
be considered in context and from the perspective of all relevant stakeholders,
leading to the consideration of different fairness norms [5, 10, 31]. These norms
arise from the inherent situated values and institutional practices that underpin
fairness, as emphasized by philosophical and socio-technical perspectives [5,17,
31]. Although the importance of context and values for fairness is widely dis-
cussed in the literature, as even different notions of equality-based fairness exist
(e.g., who should be treated equal) [8,14], which has led to frameworks that
assist in selecting suitable equality-based fairness measures for a specific context
[4,14,28]. These frameworks and the fairness measures they incorporate focus
only on equality across groups, leaving other fairness norms unaddressed.

Therefore, we propose contextual fairness, a general framework for assessing
fairness in context with multiple norms (e.g., equality, equity, or need), and show
its implications in a classification and regression scenario. To this end, we use
Forsyth’s taxonomy of fairness norms [13] to provide general formulations for
operationalizing different types of norms. But we acknowledge that to formulate
norms for a specific context, these norms should be elicited through participatory
or policy-driven processes.

In summary, this work has the following contributions:

— We extend fairness measures beyond equality by defining rank-based norms
(e.g., equity, need) for binary classification and regression tasks.

— We propose conteztual fairness as a fairness measure that combines multiple
context-specific norms into a single weighted measure to assess models on
multiple fairness norms.

— The proposed contextual fairness measure allows for assessing fairness at the
global, between-group, and within-group levels, which leads to more detailed
analyses than traditional group measures.

— We empirically show, using the ACS Income dataset [11], how contextual
fairness changes fairness interpretation and reveals limitations in mitigation
techniques with respect to broader contextual norms.

2 Background and related work

2.1 Group fairness measures

Binary classification In general, group fairness measures for binary classi-
fication (see Table 1 for notation) rely on the calculation of some probability
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Table 1: Notations.
Notation Description
D ={X4,...,X,}|Dataset of n individuals.
L ={Y1,...,Yn} |The set of target labels for each individual Xj;.
A ={a1,...,an} |The set of attributes used to describe each individual X;.
The set of sensitive attributes used to describe each individual

§={s1,...,8:} X;. Note that S is not necessarily a subset of A.
Xi.a4 Value for attribute a; of individual Xj.
A Prediction of the model M for individual X;. Note that YZ S
M(X;)=Y; {0,1} if M is a binary classification model and Y; € R if M is a
regression model.
Pr (i/z — o|X)) P.robability that the outcome with value v is predicted for indi-
vidual Xj;.
The preferred class for the outcome of the binary classification
Vet model M. When considering binary classification, this is the class

individuals want to be assigned to (e.g., being predicted to get a
loan). We use —Yprer to denote the other class.

A group condition g that is used to define a group of individuals.
Note that we use g to denote any group condition.

The set of individuals for which the group condition g holds. We
use G to denote any group.

g = condition

Gy

Pr(f’ = Yiret|g) [8]. Consequently, the choice of which groups g to consider is
what sets the different group measures apart. For example, consider a setting
with one sensitive attribute s with possible values v; and v5. In this setting, the
group conditions for demographic parity [19] are defined as g; := s = v; and
g2 := 8 = vy. In contrast, for equal opportunity [18] these conditions are defined
as g1 =Y =1As=wv; and g := Y = 1 A s = vy. Additionally, for equalized
odds [18] we must also consider the group conditions g3 :=Y = 0A s = v; and
g =Y =0As=mws.

Regression Most fairness measures are formulated for binary classification [§].
Therefore, these measures consider the model outputs to be binary. In contrast,
for regression, we need to consider continuous outputs [8]. To this end, several
group fairness measures for regression have been proposed, such as statistical
parity for regression and bounded group loss [1]. Statistical parity for regression
is achieved when Pr(Y > v|g) = Pr(Y > v) for all defined groups g and all
v € R. That is, the probability that an individual is predicted a higher value than
v should not depend on which group ¢ this individual belongs to. Alternatively,
bounded group loss states that given a regression model M with a loss function
L, the loss for each defined group G should be below a specified threshold.
Consequently, for a sufficiently low threshold, there is no group for which the
model M performs much worse than the other groups.
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2.2 Fairness norms

In general, group fairness measures aim to measure whether all groups are treated
the same [24]. Therefore, we argue that these measures only consider fairness
as equality. However, being fair and being equal are not necessarily the same.
Depending on the societal context, other fairness norms might be more relevant
[10]. Forsyth identifies five such fairness norms, namely equality, equity, need,
power, and responsibility [13]. Table 2 provides an overview of these norms and
interprets each norm for a binary classification setting. From these descriptions
and interpretations, we notice a difference between the equality norm and the
other norms. The equality norm aims to treat everyone the same. In contrast,
the other norms impose a ranking on the individuals, where individuals that are
ranked higher with respect to the norm should get a higher (or lower) probability
of being predicted the positive class. Therefore, we will refer to these norms as
rank norms.

Table 2: Explanation of fairness norms for decisions [13] and their interpretation
in a binary classification setting.

Norm Explanation Interpretation for binary classification
Equality Everyone should get the same. |Everyone should be predicted Yret.
' People who contribute more More eqult'y for an 1nd1v1'd.ual X; sl}ould
Equity . mean a higher probability Pr(Y; =
should receive more.
Ypref |Xz)
. More need for an individual X; should
Need PeoPle who need it more should mean a higher probability Pr(Yi =
receive more.
Ypref |Xz)
People with more authority, con-|More power for an individual X; should
Power trol, or status should receive|mean a higher probability Pr(Y; =
more. Yoref] X).
.. ..., |People who have more should re- More responsibility for an 1nd1v1§11}al
Responsibility] ceive Joss X; should mean a lower probability
’ PT‘(Y; - Yprelei)~

2.3 Fairness and context

To assess the fairness of an ML system, we should not only consider the input
data and the output predictions, but also the societal context this data describes
and these predictions affect [31,32]. This context entails the social, institutional,
and normative environment in which decisions are made [15, 34]. Important fac-
tors in this are the purpose of the system, the stakeholders involved, and the
embedded values [35].

Therefore, to fully understand what makes a decision fair, it is important to
consider and understand the societal context. However, as others have argued,
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this is currently not the standard. Notably, Binns states that fairness often de-
pends on contextual factors not encoded in the data, and that by ignoring these
factors, it is hard to have fair outcomes in a specific context [5]. Additionally,
Selbst et al. state that existing fairness measures abstract away the societal con-
text of an ML system, leading to notions of fairness that do not reflect what is
fair in context [31]. Similarly, Green and Hu argue that the usage of abstract
universal fairness measures ignores contextual social norms, thereby failing to
address the social, political, and moral aspects of fairness [17].

To incorporate the societal context of a specific ML system for addressing
fairness, contextual values can be translated into context-specific fairness norms
by using requirement elicitation techniques [10, 29, 30]. To address all contextual
perspectives on fairness techniques that consider all stakeholders, such as value-
sensitive design [16] or participatory design [37], should be preferred. One key
aspect of such elicitation techniques is that they involve methods to address
conflicts and trade-offs between the perspectives of different stakeholders [10].

Although the mentioned works discuss the importance of context and the
translation of contextual values into norms, their focus is not on formally op-
erationalizing these norms to measure the fairness of an ML system. Moreover,
existing fairness measures and toolkits primarily implement group-based mea-
sures focusing on equality [5], which do not consider the societal context and
only rely on the input and outputs of an ML model [31]. Therefore, methods for
operationalizing fairness assessment in contexts with multiple different norms
are lacking.

3 A contextual approach to assessing ML group fairness

Our approach to assessing the fairness of an ML system follows four steps: (1)
elicit context-specific norms, (2) operationalize them as quantitative measures,
(3) combine these into a contextual fairness score, and (4) analyse this score at
three levels, namely global fairness, between-group fairness, and within-group
fairness. Figure 1 shows these steps in relation to the ML pipeline [2].

3.1 Formulating norms

To formulate which fairness norms are applicable in a specific context, the elic-
itation techniques discussed in Section 2.3 are used. Note that applying such
techniques correctly is not straightforward and requires careful consideration of
the context and who the stakeholders are. However, for our purposes, we are only
interested in the results of using such techniques, namely a carefully created list
of fairness norms for a specific societal context. For example, if we consider an
automated hiring system, these norms could be as follows:

— All applicants must be treated the same regardless of race or gender.
— Internal applicants should be preferred over external applicants.
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Fig. 1: Our approach (in blue) for assessing fairness in the ML pipeline.

Deployed
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3.2 Contextual fairness

To calculate a fairness score for a specific model, we operationalize the formulated
norms by defining a function for each norm. We differentiate between functions
for the equality norm and the rank norms as discussed in Section 2.2. We continue
by providing general formulations for these functions for binary classification
and regression that can be applied in context. Subsequently, we combine these
operationalized norms to calculate a single conteztual fairness score.

Operationalizing norms for binary classification For binary classification
(see Table 1 for notation), we define the equality norm as follows:

Definition 1 (Equality norm for binary classification). Given a binary
classification model M, a data set D, and a preferred class Yprer. We calculate a
score for the equality norm of a model as:

_ ZXiGD |M(XZ) - Ypref|

Nrequality (D) n

That is, to calculate the equality norm, we count the number of predictions
that are not equal to the preferred class and normalize this by dividing by n.
Note that whilst counting the number of predictions not equal to the majority
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class might seem more intuitive, it leads to misleading interpretations when the
preferred and majority classes differ.

To operationalize a rank norm, we operationalize the underlying principle
of these norms, namely that individuals who are ranked higher with respect
to the norm should have a higher (or lower) probability of being predicted the
preferred class. To this end, we rank all individuals in two ways. First, based on
a norm-specific function Vi (X;) : A — R that is defined for each context (e.g.,
hours worked per week for equity). Next, all individuals are ranked based on
their predicted probability for the preferred class Ypref. We use the (normalized)
Kendall tau ranking distance [21] to calculate a score from these two rankings,
i.e., we count the pairs of individuals where the individual with a higher value
for V4, does not have a higher probability of being predicted the preferred class.
We, more formally, define rank norms as follows:

Definition 2 (Rank norm for binary classification). Given a dataset D, a
binary classification model M, and a norm value function V,,., we calculate the
rank norm as:

Nrmnk(D) = ﬁ Z Z

X;€D X;eD\{X,}

L Vir(Xy) > Vir(Xy) A Pr(M(Xi) = Yprefl Xi) < Pr(M(X;) = Ypref X;)
0 otherwise

Operationalizing norms for regression We now define the functions for
operationalizing equality and rank norms in a regression setting. To this end, we
use the same principles that underpin our definitions for binary classification.
Therefore, we define the equality norm as follows:

Definition 3 (Equality norm for regression). Given a regression model M,
a dataset D, a mazimal prediction Yiq = max{M(X;),...,M(X,)} and a
minimal prediction Y, = min{M (X1),..., M(X,)}. We calculate a score for
the equality norm of a model as:

ZX«;GD |M(Xz) - Ymaz|
Nrequality(D) = n X |Y v ‘

That is, assuming that a higher output is more preferable, we calculate the nor-
malized average absolute difference between each individual and the maximum
output Y.x. In contexts where a lower output would be preferable, we should
use Yyin instead of Yiax.

For operationalizing rank norms for regression, we rank individuals using the
norm-specific function V;,; and the model’s output for each individual, giving the
following definition:
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Definition 4 (Rank norm for regression). Given a dataset D, a regression
model M, and a norm value function V,,, we calculate the rank norm as:

Nrromk(D) - ﬁ Z Z

X,€D X;€D\{X;}

1 Vnr(Xz) > Vm”(Xj) A M(XZ) < M(XJ)
0 otherwise ’

Combining operationalized norms for contextual fairness After opera-
tionalizing each norm, we need to combine these operationalized norms to cal-
culate the contextual fairness of a model. We define this as follows:

Definition 5 (Contextual fairness). Given a model M, a dataset D, and k
operationalized norms Nry, ..., Nry with corresponding weights w1, ..., wy that
sum to 1 (i.e., Zle w; = 1). We calculate the contextual fairness as follows:

contextual fairness,;(D) = wiNri(D) + ...+ wg Nri(D).

That is, we calculate the weighted combination of all operationalized norms.
These weights allow us to give more importance to some norms and less to
others depending on the context.

Since each operationalized norm is defined as a summation over all individ-
uals, contextual fairness can be expressed as a weighted sum of norm scores for
each individual in the dataset, as follows:

contextual fairnessy; (D) = Z wiNry, (X;) + ... + wgNrg, (X;).
X;eD

Additionally, this formulation allows for computing fairness scores for a partic-
ular group G:

contextual fairnessy;(G) = Z wiNry, (X;) + ... + weNrg, (X;).
X, eG

Finally, note that if we have a set of ¢ groups {G1,...,G;} that partition the
dataset D, then the sum of their contextual fairness scores equals the global
contextual fairness score.

3.3 Fairness analysis

The definitions given for contextual fairness allow for a fairness analysis on three
different levels, namely by analyzing the global score, the difference in scores
between groups, and the distribution of the score within a group.
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The global contextual fairness (see Definition 5) gives a general indication
of how unfair a model is. However, a higher conteztual fairness score does not
necessarily mean a model is more unfair than a model with a lower contextual
fairness score. For example, consider two ML models, A and B. Suppose model
A has a contezrtual fairness score of 0.5. However, both men and women con-
tribute equally to this score, i.e., both make up 0.25 of this score. Now suppose,
model B has a contextual fairness score of 0.3, but only men contribute to this
score. Although model B appears to be more fair if we only analyze the global
contextual fairness of the models, when considering how this score is distributed,
model A appears to be more fair.

Therefore, we need to consider how the score is distributed between different
groups. Preferably, we want the contextual fairness to be distributed equally
over the groups. In this case, all groups are treated the same. To allow for a fair
comparison between groups of different sizes, we scale the score for each group
as follows:

Definition 6 (Scaled contextual fairness). Given a dataset D, and a parti-
tion of D into t groups {G1,...,G:}, we calculate the scaled contextual fairness
score for each group G; as follows:

scaled contextual fairness,;(G;) =
conteztual fairness(G;)/|G;]
EGje{Gl,...,Gt} conteztual fairness(G;)/|Gl

conteztual fairness(D).

Note, this score is defined such that for a partition of groups, the sum of the
scaled contextual fairness scores still sums to the global contextual fairness score.

Lastly, we also need to consider how the score for a group is distributed within
the group. Do all individuals contribute equally to the score, or are there a few
individuals who contribute substantially more than the others in the group.

By combining these three analysis steps, we make a detailed analysis of the
fairness of an ML model. Both in terms of the magnitude and distribution of the
score over and within the different groups.

4 Evaluation

We evaluate contextual fairness in a hypothetical loan approval scenario where
a bank uses an ML model to predict applicants’ income'. This prediction is then
used in deciding whether an individual’s loan request is approved. Our evaluation
considers both a binary classification and a regression variant of this scenario. For
each experiment, we analyze how the fairness analysis with contextual fairness
differs from a baseline analysis using a group-based equality measure.

Models are trained on the 2016 California ACS Income dataset [11], which
includes ten demographic and socioeconomic attributes, with yearly income as

! Code available at https://github.com/pimkerkhoven /contextualfairness
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the target attribute. For classification, income is binarized into a 450k and a
—50k class, with +50k being the preferred class. We treat sex as the sensitive
attribute resulting in two groups, namely male (m) and female (f). We split the
data into a training set (80%) and testing set (20%) and use this data to train
logistic regression (classification) and linear regression (regression) models from
Scikit-learn? [25].

4.1 Classification setting

For the classification setting, we use equalized odds [18] as the baseline. For the
described scenario, equalized odds is achieved when the following two equalities
hold:

Pr(Y = +50k[sex = m A Y = +50k) = Pr(Y = +50k|sex = fAY = +50k)
Pr(Y = +50k|sex = m A Y = —50k) = Pr(Y = +50k|sex = fAY = —50k)

We consider three different cases, namely one with only an equality norm for
contextual fairness, one with a changed context with more contextual norms,
and one where we apply a mitigation technique to the trained model.

Only equality In this experiment, we assume only the equality norm applies
in the system’s context. Therefore, to showcase the analysis process described in
Section 3.3, we compare the baseline with a contextual fairness score that only
uses the equality norm.

Baseline: Figure 2a shows that females are disadvantaged compared to males
in terms of equalized odds.

Contextual fairness: Figures 2b and 2c capture the same disparity but also quan-
tify the global unfairness and show how it is distributed within groups.
Takeaway: Even with a single equality norm, contextual fairness provides for a
more detailed analysis than equalized odds alone. By being able to analyze the
in-group distribution of fairness, we can potentially address the inequalities at
the individual level as well.

Changing contexts and multiple norms In the previous experiment, we
considered a context in which only the equality norm was applicable as a fairness
norm. For this experiment, we assume that the context changed and multiple
fairness norms apply. Although in a real-world scenario these norms should be
elicited in an elaborate process (see Section 3.1), for our hypothetical scenario,
we assume the following norms apply that we weigh equally for the contextual
fairness score:

— Everybody should get the same prediction (equality).

2 https:/ /scikit-learn.org/



Assessing machine learning fairness with multiple contextual norms 11

contextual fairness(D)=0.643 %1077

Lo 10
Sex Sex
Male Male
81 Difference: 0.137 B Female 08 E Female

o
%

>

0.6

(Y =Yoreglg)

)4 10

contextual fairness(G)

Pr(Y
e
o
~
g

Difference: 0.018
0.2 Difference: 0.067 02 0.5

Difference: 0.038 0.225

0.183
0.0 0.0

+50k — 50k +50k ~50k 50K e ale. + 50K male, ~50Kgmate 50K
Income category Income category

male.t
Sex and income category

(a) Equalized odds. (b) Between-group contez- (c) In-group contextual fair-
tual fairness. ness.

Fig. 2: Results for equalized odds and contextual fairness when considering only
the equality norm.

— People who work more hours should earn more (equity), i.e., Vequity(Xi) =
X,.worked hours per week.

— People with a lower education level should earn more (need), i.e., Vieed (X;) =
—X,.education level.

Baseline: As we use the same model as above, Figure 3a displays the same
disparity between males and females as above.

Contextual fairness: Figures 3b and 3c show that by changing the context the
contextual fairness score is affected compared to the previous experiment.
Takeaway: The outcome for equalized odds remains the same across different
contexts. In contrast, the contextual fairness score is affected by the changing
context. This highlights that in contexts where fairness is not solely defined by
the equality norm, equality-based measures cannot fully capture the fairness of
a model. Rather, more context-sensitive evaluations are essential for assessing
model fairness.

Mitigating unfairness To improve the fairness of an ML system, we apply
mitigation techniques to reduce the measured unfairness. To showcase this, we
apply Fairlearn’s correlation remover [36] to the model used in the previous
experiment. We analyze the effect of this mitigation on equalized odds and con-
textual fairness in the same context as the previous experiment.

Baseline: Figure 4a shows that the mitigation reduced the disparities between
males and females in both income groups compared to Figure 3a.

Contextual fairness: Compared to Figures 3b and 3c, Figures 4b and 4c¢ do not
show that the mitigation technique reduced the unfairness. Rather, the unfair-
ness appears to have increased, as both the global score and the between-group
differences increased.
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Fig. 3: Results for equalized odds and contextual fairness when considering mul-
tiple contextual fairness norms.

Takeaway: A mitigation technique that reduces unfairness with respect to equal-
ized odds does not necessarily do this for contextual fairness. This indicates that
mitigation techniques should also take the context into account.

0 0 contextual fairness(D)=0.556 10-5
Sex Sex JT T T
- Male - Male T
0.8 B Female 0.8 B Female
Difference: 0.040
A g 2
=06 §o0
S =
I = 5 +£ |
? 0.4 %04
& £
8
Difference: 0.030 1
02 Difference: 0.038 02
Difference: 0.017 T -
ol L 1 1 1
0.0 - E 0.0 E - -
+50k | " —50k +30k | . —50k male 50K cemale, +30Knale, ~50Komale, 50k
ncome category ncome category o and income eotegory
(a) Equalized odds. (b) Between-group contez- (c) In-group contextual fair-
tual fairness. ness.

Fig. 4: Results for equalized odds and contextual fairness after applying a miti-
gation technique.

4.2 Regression setting

We now consider the regression setting of our scenario, i.e., instead of predicting
the income class (+50k or —50k), we predict income directly. As equalized odds
does not apply in this setting, we use bounded group loss [1], with a bound of
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1.2 as the baseline. We consider the same context as the last two experiments.
However, we operationalize the formulated norms for regression.

Baseline: Figure ba shows that males are treated unfairly as their loss exceeds
the bound.

Contextual fairness: In contrast, Figures 5b and 5c¢ show that females are treated
unfairly in this context.

Takeaway: Similar to the classification experiments, this experiment shows that
context matters for assessing who is treated unfairly. Furthermore, we had to
change the baseline measure to a measure that handles regression, changing how
we should interpret this baseline. In contrast, by adapting how we operationalize
the norms to the regression setting, we could still use contextual fairness.

contextual fairness(D)=0.487 %1075
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tual fairness. ness.

Fig. 5: Results for bounded group loss and contextual fairness for the regression
setting.

5 Discussion

Our approach relies on norm elicitation techniques and processes, such as value-
sensitive design, leading to a list of contextual norms that can be operationalized
to calculate a contextual fairness score. We argue that this is a valid approach
as these techniques have been used in practice to formulate various norms [33].
Although there is no guarantee that the formulated norms accurately reflect fair-
ness in context, these norms can still prove useful. As incorrect norms elicited
from the context through a systematic and transparent process provide an ac-
countable motivation to argue against when contesting these norms [10].
Furthermore, we assume that norms are computable from the data at hand.
However, not every formulated norm is necessarily computable, and in such cases,
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it should be evaluated if contertual fairness can be applied. We argue that, in
such cases, this would also be the case for group-based fairness measures.

In this work, we focus on five possible fairness norms in line with Forsyth’s
framework [13]. However, other takes on fairness do exist, such as Rawls’ [27], and
may be equally valid. Regardless of the framework used, different perspectives on
fairness should be discussed in the elicitation process, such that the formulated
fairness norms are well motivated and accurately reflect the real-world values of
stakeholders.

Our definition of contextual fairness uses a linear combination of different
operationalized norms. Although this is a good first step towards using multiple
norms for assessing fairness in context, it is inherently limited by this linearity.
As this linearity cannot capture conditional or hierarchical relationships between
norms, for example, when we want equity except in cases of need. Therefore,
future work is needed to explore more expressive aggregations of norms.

ML models are not only developed with tabular data, but also with other
data modalities, such as text or image data [23]. For such data types, defining
norm value functions becomes non-trivial, e.g., defining equity based on pixels
is not as straightforward as equating equity to someone’s income. Therefore,
currently contextual fairness is mostly appropriate for tabular data. Additionally,
the calculation of rank norms relies on a pairwise comparison of all individuals
in the dataset. This may pose scalability issues for large datasets, which could
potentially be mitigated with approximation techniques.

The current analysis of contextual fairness only considers the weighted score
over all norms. Therefore, which norms contribute the most to the unfairness is
obscured. Allowing for a more elaborate analysis that breaks down the weighted
score into the various norms would lead to a more detailed discussion of how fair
a model is.

Finally, for the experiments in Section 4, we only considered one sensitive at-
tribute. However, people at the intersection of multiple sensitive attributes (e.g.,
black women) are often treated disproportionately unfairly [9,22]. Therefore,
considering multiple sensitive attributes would improve the fairness analyses.
Note that, as the number of groups grows exponentially with the number of at-
tributes, this would require some method for selecting which groups should be
included in the analyses [7, 20].

6 Concluding remarks

We proposed contextual fairness, a fairness measure that assesses the fairness
of an ML system with multiple norms elicited from the societal context of this
system. We provided definitions for operationalizing the elicited norms for binary
classification and regression tasks. Our evaluation showed that by considering the
global, between-group, and within-group scores contextual fairness allows for a
more detailed fairness analysis. In addition, by incorporating multiple contextual
norms, fairness assessments with contextual fairness better reflect the societal
context in which an ML system operates than in its absence.
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However, these fairness assessments are not neutral: depending on which
norms are elicited, different groups appear disadvantaged and different interven-
tions seem justified. This already shows in the simple scenario we used for eval-
uating contextual fairness. Compared to existing fairness measures, contextual
fairness makes the assumptions underpinning fairness assessment more explicit.
This way contextual fairness offers a more structured approach for practitioners
and regulators to deliberate on which fairness norms should guide evaluation in
a given context. When using contextual fairness in practice, three key factors
should be considered.

Firstly, when developing ML systems, fairness is not the only factor that
should be considered. Other aspects, for example, performance, privacy, or ro-
bustness, must also be considered. When considering these aspects, the fairest
system is not necessarily the best system with respect to all aspects. Therefore,
a deliberate trade-off considering all relevant aspects must be made.

Secondly, the limitations discussed in Section 5 should be taken into account.
Before applying contextual fairness in scenarios with, for example, non-linear
norms, large datasets, or non-tabular data, the norm operationalization defini-
tions should be extended to support such cases.

Lastly, societal contexts are never static, and importantly, the outputs of an
ML system will affect the system’s context, regardless of how fair these outputs
are. Therefore, formulating and operationalizing norms with contextual fairness
is an ongoing process. Regular checks should be performed to evaluate if the
defined contextual fairness score still matches the context it is defined for.
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