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Artificial intelligence is revolutionizing radiology. Consider 
mammography, which aims to detect breast cancer, a leading 
cause of death in the USA1. Conventional machine learning 

is currently used for computer-aided detection (that is, lesion ver-
sus no lesion), but future approaches need to be able to assist with 
harder tasks to make a greater clinical contribution, for example: 
‘should the patient get a biopsy for that lesion?’

Despite the hope of computer-aided radiology for mammogra-
phy, there are serious concerns with current methods, including 
confounding. Confounding occurs when the predictive model is 
using incorrect information or reasoning to make a decision, even 
if the decision is correct. In previous studies, researchers created 
models that seemed to perform well on their test sets, yet on further 
inspection, based their decisions on confounding information (for 
example, type of equipment) rather than medical information2–4. 
This problem is exacerbated by the fact that there are few publicly 
available mammography datasets, so many models are trained on 
relatively few cases and the community lacks datasets to externally 
validate these models. Furthermore, not all studies incorporate 
domain expertise to inform which factors should be included in 
the model building phase. To ensure clinical acceptance, an AI tool 
will need to provide its reasoning process to its human radiologist 
collaborators to be a useful aide in these difficult and high-stakes 
decision-making processes5,6.

The reasoning process of any model would ideally be similar 
to that of an actual radiologist, who looks at specific aspects of the 
image that are known to be important, based on the physiology of 

how lesions develop within breast tissue. If this reasoning process 
were correct, it would lead to a higher chance that: (1) the model 
could generalize beyond its finite training set; (2) the model’s rea-
soning process could be useful information for doctors, even if its 
prediction is sometimes incorrect; (3) it would be much easier to 
troubleshoot or evaluate trustworthiness of the model, as it is not 
a black box; (4) the model’s reasoning and reporting process could 
align with the structured lexicon that radiologists use to report 
results, such as the breast imaging-reporting and data system 
(BI-RADS)7 for breast cancer and other similar lexicons from the 
American College of Radiology.

Thus, unlike existing black-box systems that aim to replace a 
doctor8, we aim to create an interpretable AI algorithm for breast 
lesions (abbreviated IAIA-BL) whose explicit reasoning can be 
understood and verified by a medical practitioner. Our novel deep 
learning architecture enables IAIA-BL to provide an explanation 
that shows the underlying decision-making process for each case. 
Figure 1c shows an example of how this works: the algorithm high-
lights parts of the image, explains that it considers these parts of 
images similar to prototypical cases it has seen before, and provides 
a score for the probability of the specific diagnosis (breast mass 
with mostly circumscribed margin) for this image as well as the 
likelihood of malignancy. IAIA-BL provides the radiologist with 
the means not to simply trust the AI but to check its output for 
plausibility, and overrule it when necessary. Our approach, with its 
inherently interpretable reasoning process, contrasts directly with 
previous work that relied on post-hoc explanation techniques to 
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explain a trained black-box model, or work that relies on atten-
tion mechanisms to highlight the parts of an input image on which 
the model prediction is based. The reasoning process the network 
explains to the humans is the reasoning process it is using to under-
stand the image itself.

The main contributions of our paper are as follows:

•	 We developed the first inherently interpretable machine- 
learning-based system for medical imaging that goes beyond 
simple attention in its explanations. Our system, IAIA-BL, 
makes predictions for mammographic breast masses by com-
paring test mammograms with prototypical images of various 
mass margin types.

•	 We developed a novel training scheme for our IAIA-BL, 
which allows it to incorporate past knowledge in the form of 
fine-grained expert image annotations. Using only a small 
number of finely annotated training data and imposing a novel 
fine-annotation loss on those data, IAIA-BL learns medically 
relevant prototypes, effectively addresses aspects of confound-
ing issues in medical machine learning models, and sets our 
IAIA-BL apart from the ProtoPNet presented in ref. 9 and other 
past works.

•	 We developed a framework for machine learning-based mam-
mography interpretation in line with the goals of radiologists: in 
addition to predicting whether a lesion is malignant or benign, 
our work aims to follow the reasoning processes of radiologists 
in detecting specific aspects of each image, such as the charac-
teristics of the mass margins.

Related work
Background on computer-aided detection/diagnosis in mam-
mography. Computer-aided detection systems flag suspicious 
lesions that may prompt the radiologist to recall a patient for addi-
tional imaging. Despite widespread clinical adoption, however, 
an influential study from 2015 found that current systems do not 
improve diagnoses in clinical practice10. More recent deep learn-
ing studies based on large numbers of cases have been reported to 
match or even exceed radiologist performance8,11–14. Going beyond 
lesion detection, computer-aided diagnosis systems provide addi-
tional diagnostic information such as classifying the lesion as 
benign versus malignant15. In this study we seek to advance the 
underlying technology beyond that of previous computer-aided 
diagnosis approaches.

Background on interpretable machine learning. In spite of their 
promising performance, deep neural networks are difficult to under-
stand by humans. There are two distinct approaches to address this 
challenge: (1) designing inherently interpretable networks, whose 
reasoning process is constrained to be understandable to humans; 
(2) explaining black box neural networks post-hoc by creating 
approximations, saliency maps or derivatives. Post-hoc explanations 
can be problematic, for instance, saliency maps highlight regions 
of the image, but can be unreliable and misleading as they tend to 
highlight edges and the highlighted pixels do not show what com-
putations are actually performed16–18. We avoid post-hoc solutions 
in this work. There are several types of approaches in interpretable 
machine learning, including case-based reasoning (which we use 
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Fig. 1 | An overview of IAIA-BL compared to other approaches. a, Uninterpretable approaches give no explanations for their output. b, Other interpretable 
or explainable approaches might point out which regions are used for decision making, but provide no information about what attributes of the region 
are important for classification decisions. c, IAIA-BL provides an explanation framework that localizes relevant areas, associates the relevant area with a 
specific medical feature and uses only the explained evidence to make a prediction.
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here), forcing the network to use logical conditions within its last lay-
ers (for example, ref. 19) or disentangling the neural network’s latent 
space20. Case-based reasoning models in medicine retrieve existing 
similar cases to determine how to handle a new case21–24. IAIA-BL’s 
framework incorporates the architecture of the case-based inherently 
interpretable neural network ProtoPNet, described in ref. 9.

Confounding and fine annotation. Neural networks models often 
use context or confounding information instead of the information 
that a human would use to solve the same problem in both medi-
cal25 and non-medical applications26. The ability of these networks 
to use context or background information is so powerful that net-
works trained on images of only the background outperform net-
works trained on images of only the object to be classified27,28. For 
high-stakes applications in medicine, model decisions must use rel-
evant medical information rather than context or background infor-
mation. To address this we introduce an attention mechanism, which 
redirects model attention to a selected part of the input image. Ways 
to direct model attention include data augmentation27,29,30, tech-
niques that combat hand-selected confounders25,31, techniques that 
combat learned confounders32 and an approach in which a human 
critic manually approves the attention map during training33. Other 
techniques that show model attention but do not aim to change it are 
class activation maps34, multiattention CNNs35 and recurrent atten-
tion CNNs36. Our model uses an attention mechanism to incorporate 
expert annotations by adding a term to the objective function, which 
penalizes attention outside of the regions marked as relevant by the 
radiologist annotator. Mechanically, the method is most similar to 
that in ref. 31, but differs in that our class-specific attention mecha-
nism asks for different attention from prototypes of different classes.

Data
Our dataset consists of 1,136 digital screening mammogram images 
from 484 patients at Duke University Health System from 2008 to 
2018. These conventional mammography images were collected in 
compliance with HIPAA under Duke Health IRB Pro00012010 and 
waiver of informed consent. The average patient age was 56.1 ± 12.3 
years. The BI-RADS features of mass shape and mass margin were 
labelled by one fellowship-trained breast imaging radiologist. The 
ground truth for malignancy of each mass is the result of definitive 
histopathology diagnosis.

The 1,136 images consisted of the following mass margins: 125 
spiculated, 220 indistinct, 41 microlobulated, 579 obscured and 171 
circumscribed. We excluded lesions with microlobulated margins 
because of the small number of lesions represented. We excluded 
lesions with obscured margins as this margin class is not a good 
indicator for classifying a lesion as benign or malignant, but instead 
usually indicates the need for follow-up imaging. We split each 
remaining margin class into 73% training, 12% validation and 15% 
testing, ensuring that within each class there was no patient overlap 
between the testing set and other sets. All performances are based 
on the testing set alone (n = 78).

We represent the dataset of n training images xi, with mass-margin 
( ymargin

i ) and malignancy ( ymal
i ) labels, as D = {(xi, ymargin

i , ymal
i )}

n
i=1;  

a thirty-image subset D′
⊆ D comes with the radiologist’s (fine) 

annotations of where medically relevant information is in that train-
ing image. For a training instance (xi, ymargin

i , ymal
i ) ∈ D′, we define 

a fine-annotation mask mi, such that mi takes the value 0 at those 
pixels that are marked as ‘relevant to mass margin identification,’ 
and takes the value 1 at other pixels. Each fine-annotation mask mi 
has the same spatial dimensions (height and width) as xi.

Model
Although ProtoPNet9 works well with bird classification, it could 
not be directly extended to mammograms due to the problems with 

confounding, which is made worse by the dearth of data and the dif-
ficulty of the overall problem. IAIA-BL overcomes these obstacles 
through its framework, including incorporating fine-grained labels 
(Fig. 2), modified modular training and the addition of mult-stage 
reasoning wherein the model first determines the mass margin fea-
ture and uses that information to predict malignancy.

The training of IAIA-BL differs from that of ProtoPNet in three 
ways: (1) IAIA-BL was trained with a fine-annotation loss which 
penalizes prototype activations on medically irrelevant regions for 
the subset of data with fine annotations; (2) IAIA-BL considers the 
top 5% of the most activated convolutional patches that are closest 
to each prototype, instead of only the top most activated patch; (3) 
we include an additional fully connected layer to transform mass 
margin score ( ŷmargin) to the malignancy score ( ŷmal), whose train-
ing is isolated from the rest of the network.

Results
Performance metrics. We use the area under receiver operator 
characteristic curve (AUROC) for each of the three mass margin 
classes as the performance metric for both mass-margin prediction 
and malignancy prediction. An image-weighted average of these 
AUROCs measures overall performance; 95% confidence intervals 
were derived using Delong’s method37,38.

Cohen’s κ shows the agreement between our model’s predictions 
and the physician-annotator’s labels for the mass margin prediction 
task. We use Cohen’s κ to compare our model’s agreement with the 
agreements between physicians from past studies39–43; 95% confi-
dence intervals were derived using non-parametric bootstrap resa-
mpling with 5,000 samples each equal to the size of the test set.

Interpretability metric. We designed the interpretability metric 
activation precision to quantify what proportion of the information 
used to classify the mass margin comes from the relevant region as 
marked by the radiologist annotator. Using the notations defined in 
model training, the activation precision for a single prototype pj on 
a single image xi with a mass-margin type ymargin

i , and comes with a 
fine-annotation mask mi, is defined as:

∑

j: class (pj)=y margin
i

(

∑
[

(1−mi)⊙ Tτ

(

PAMi,j
)]

∑

Tτ

(

PAMi,j
)

)

, (1)

where Tτ is a threshold function that returns the top (1 − τ) × 100% 
of the input values as 1 and the bottom τ × 100% as 0. The pro-
totype activation map (PAMi,j) shows where pj is activated on xi.  
To evaluate activation precision for GradCAM (ref. 44) and 
GradCAM++ (ref. 45), we calculate as per equation (1) but replace 
PAMi,j with the normalized gradient map for the correct class; 95% 
confidence intervals were derived using non-parametric bootstrap 
resampling with 5,000 samples each equal to the size of the test set. 
Further information on activation precision can be found in the 
Supplementary Information.

Activation precision is a measure of interpretability, in the sense 
that the higher the activation precision, the better a prototype  
(or a set of prototypes) is at detecting medically relevant features  
for mass-margin classification.

Activation precision can be measured both at lesion-scale (that 
is, is the activation within the lesion area and not the added context 
window?) and at fine-scale (that is, is the activation on the specific 
part of the margin marked relevant by the radiologist?).

Mass margin classification. We compare the following models.

IAIA-BL. We used ProtoPNet with VGG-16 pre-trained on 
ImageNet as the base architecture trained for 50 epochs because 
model training converges between 40 and 50 epochs. The final 
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model is trained on the combination of the training set and vali-
dation set, and tested on a test set never before seen in training. 
See the Supplementary Information for hyperparameter tuning 
information. Our model can be fully trained on one P100 GPU 
in 50 h.

Original ProtoPNet. The original ProtoPNet (ref. 9) architecture 
does not use fine annotation loss, and uses max pooling logic where 
IAIA-BL uses top-k average pooling logic. This change is equivalent 
to changing all uses of AVGPOOL to max in equations (6) and (9); 
and changing mink to min in equation (7).

VGG-16 with GradCAM and GradCAM++. We trained a  
VGG-16 (ref. 46) model with added parameters to account for 
the larger number of parameters in our model. Pre-trained on 
ImageNet, it was trained for 250 epochs and the epoch with the 
highest test accuracy was selected for comparison. There is no 
native way to incorporate our fine annotation into VGG-16. 
VGG-16 provides no inherent interpretability or localization. 
Using the post-hoc GradCAM (ref. 44) and GradCAM++ (ref. 45)  
techniques we show localization information and calculate  
activation precision.

Results. Treating the radiologist annotations as the ground truth, 
results are reported in Table 1. Figure 3 shows ROC curves for all 
prediction tasks and all methods. Each mass margin prediction is 
explained as in Fig. 4. Extended Data Figs. 1–4 show sample expla-
nations automatically generated by IAIA-BL.

IAIA-BL achieves an AUROC as good or better than the AUROCs 
of interpretable ProtoPNet and the analogous black-box model, 

VGG-16. Both ProtoPNet and VGG-16 show much lower activation 
precision than IAIA-BL. Both use information from image regions 
entirely outside the region that contains the lesion. The baseline 
models are not restricted from using confounding information,  
and thus do so freely. These models should not be used in practice 
for this reason. A visual comparison of activation maps (defined in 
ref. 9) is shown in Extended Data Fig. 5.

For IAIA-BL without pruning, there is a 0.004 increase in 
AUROC for mass margin prediction. For the unpruned IAIA-BL 
model (not shown in the table, as it is almost identical to IAIA-BL), 
the lesion-scale activation precision of the learned prototypes is 0.93 
(95% CI: 0.91, 0.96) and the fine-scale activation precision of the 
learned prototypes is 0.41 (95% CI: 0.39, 0.43).

Another measure of performance we calculated is the agreement 
in Cohen’s κ between IAIA-BL and our human mass margin annota-
tor on the test set. We found substantial agreement with a κ-value 
of 0.74 (n = 78, 95% CI: 0.60, 0.86)47, further broken down into 
circumscribed at 0.76 (95% CI: 0.58, 0.90), indistinct at 0.69 (95% 
CI: 0.51, 0.84) and spiculated at 0.78 (95% CI: 0.61, 0.93). For this  
task of characterizing the mass margin in mammography, our  
performances were higher than the inter-observer agreement 
between radiologists (for example, 0.61–0.65 in ref. 41, 0.58 in ref. 42  
and 0.48 in ref. 43).

Although there are many papers on computer vision with appli-
cations to mammography, few papers attempt to classify masses by 
margin type. We found only one study48, which reports an accuracy 
of mass margin prediction at 70.6% and includes more margin types 
than we do, but their provided results are not separated into differ-
ent margin classes and therefore we cannot directly compare with 
them. Moreover, that study used digitized mammography images 
from the DDSM database, further reducing comparability. Their 
model is not publicly available.

Malignancy prediction. IAIA-BL converts unnormalized mass 
margin scores ( ŷmargin) to malignancy scores ( ŷmal

i ) with the follow-
ing concise linear model learned in training stage B:

ŷmal
i = −16 ŷ circumscribed

i − 10 ŷ indistinct
i + 6 ŷ spiculated

i ,with (2)

Prob(malignancy ) = σ((ŷmal
i − 155)/100), (3)

where σ(t) is the logistic sigmoid function.
This model is consistent with medical knowledge: a high spicu-

lated score results in a high probability of malignancy, whereas high 
circumscribed or indistinct margin scores indicate a benign lesion. 
Each mass margin score is explained in Fig. 4.

Although IAIA-BL is constrained to using only the results 
of the mass margin outputs to predict malignancy (rather than 
extra information that may be contained within the raw pixels of 
the image), IAIA-BL predicts mass malignancy with an AUROC 
of 0.84 (n = 75, 95% CI: 0.74, 0.94). These results are inter-
pretable in that they only use the mass margin scores to make  
their predictions.

We remark that the prediction of whether a mass has 5% or 
95% probability of being malignant would not alter the clinical 
management, as all lesions with >2% probability of malignancy 
would be recommended to undergo breast biopsy. There are a 
variety of malignancy performance values reported in the litera-
ture, though not necessarily from the same population as ours, 
which means the results are not directly comparable. Some stud-
ies have reported better performance in predicting malignancy 
from BI-RADS features49–51. If our dataset were larger, and if we 
had non-imaging features such as patient age, it could potentially 
boost performance.

d
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Uses information
from healthy tissue

Uses information
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Annotate

Fig. 2 | Fine-annotation regularization on model attention that penalizes 
the model for using confounding information. a, The lesion to be 
classified. b, The spicules of the lesion have been marked in green by 
a radiologist. c, Without fine annotation loss in training, the activation 
map highlights confounding information. d, Using fine annotation loss 
during training, the activation map highlights relevant information—areas 
that contain spicules. The attention is within the area marked by the 
radiologist (otherwise it would have been penalized by the fine-annotation 
loss function).
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Radiologist estimate. During data collection, we asked radiologists 
to estimate the probability that the lesion will be malignant. There 
are several caveats for this estimate: radiologists do not perform 
this task in standard practice, instead they only provide a categori-
cal recommendation for biopsy; the annotations were completed as 
part of a separate study that used consumer-grade monitors with-
out the necessary specifications or calibrations of medical-grade 

displays. Nonetheless, these estimates represent the radiologist’s 
best guess when given even more information than the model is 
provided. The radiologists predicted mass malignancy on the test 
set with AUROC of 0.91 (n = 75, 95% CI: 0.85, 0.97). These radi-
ologists are from Duke Hospital and thus represent an extremely 
high quality of care for patients. Using this as a reference standard, 
IAIA-BL is approximately 7% in AUROC away from the physicians.

Table 1 | Mass-margin classification test results

Model

VGG-16 (ref. 46) VGG-16 (ref. 46)

IAIA-BL ProtoPNet (ref. 9) with GradCAM (ref. 44) with GradCAM++ (ref. 45)

Performance (AUROC)

Mass margin classification 0.951 [0.905, 0.996] 0.911a [0.848, 0.974] 0.947a [0.898, 0.996] 0.947a [0.898, 0.996]

 Spiculated versus all 0.96a [0.90, 1.00] 0.97 [0.93, 1.00] 0.95a [0.89, 1.00] 0.95a [0.89, 1.00]

 Indistinct versus all 0.93a [0.88, 0.99] 0.87a [0.78, 0.94] 0.94 [0.89, 0.99] 0.94 [0.89, 0.99]

 Circumscribed versus all 0.97 [0.94, 1.00] 0.93a [0.87, 1.00] 0.95a [0.91, 1.00] 0.95a [0.91, 1.00]

Cohen’s κ 0.74 [0.60, 0.86] 0.64a [0.49, 0.78] 0.74 [0.60, 0.87] 0.74 [0.60, 0.87]

Interpretability

Fine-scale act. prec. 0.41 [0.39, 0.45] 0.24 [0.17, 0.31] 0.21 [0.05, 0.43]b 0.24 [0.08, 0.45]b

Lesion-scale act. prec. 0.94 [0.92, 0.97] 0.51 [0.34, 0.68] 0.45 [0.37, 0.54]b 0.53 [0.44, 0.61]b

The first five rows measure prediction performance, whereas the lower two rows measure interpretability performance. The table shows that IAIA-BL’s test AUROC performance with respect to all tasks 
is approximately as good as the best of the baselines. IAIA-BL’s main advantage (interpretability) is shown in the bottom two rows of the table, where there is a drop in fine activation precision (act. prec.) 
for original ProtoPNet and VGG-16 as compared with IAIA-BL. VGG-16 has no inherent interpretability but post-hoc GradCAM and GradCAM++ provide localization information on which we measure 
activation precision. The best value is in bold. aValues not significantly below the best by Delong’s test with p<0.05. bAs this technique is post-hoc, there is no guarantee that the generated explanation 
matches the model’s decision making.
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Fig. 3 | ROC curves of IAIA-BL compared with baselines. a, Circumscribed class versus other margin classes. b, Indistinct class versus other margin 
classes. c, Spiculated class versus other margin classes. d, Malignant versus benign lesions.
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Unrestricted end-to-end VGG-16. The uninterpretable VGG-16 
baseline given the same image data, but not restricted to predicting 
on only mass margin results, achieves an AUROC of 0.87 (n = 75, 
95% CI: 0.82, 0.93). Again, it is possible that VGG-16 uses indi-
rect information like breast density or confounding factors such as 
mammography equipment type.

We compared selected AI mammography techniques to 
IAIA-BL in Table 2. We cannot compare with papers focused on 
detection because our technique works on diagnosis of an already 
detected lesion8,13.

Discussion
The high performance of uninterpretable models that seem to be 
leveraging mainly confounding information is a point of concern 
when incorporating models into clinical practice. Although a radi-
ologist may not choose to view an explanation for every predic-
tion, interpretable models still provide value over uninterpretable 
models. As we know that AI systems fail4, we designed a system 
that can alert a radiologist to faulty reasoning at the time the pre-
diction is made instead of only after the consequences of mispre-
diction have been realized. The global interpretability (namely, 
the set of prototypes) allows the trained model to be fine-tuned 

by domain experts through pruning of prototypes that do not  
correspond to medically relevant features. The explanations pro-
vided can also be used for debugging a model and for retrospective 
analysis of model failures.

Our technique could be expanded with little change to include 
other BI-RADS features (for example, mass shape). The technique 
might be able to be expanded to microcalcification clusters—the 
other main type of breast lesions—but there are more categories of 
calcification morphologies and the different types of cluster distri-
butions can translate into lesions with extreme differences in scale, 
which might pose interesting technical challenges. The underlying 
logic of the technique could be extended to digital breast tomosyn-
thesis by representing a prototype as either a two-dimensional part 
of a reconstructed slice image, or as a three-dimensional portion of 
a tomosynthesis volume.

Future work with this model might include reader studies in 
which we measure any improvements in accuracy and radiologists 
report their trust in our system. Given the increased benefit of other 
AI assistance to less-experienced readers52,53, it might be valuable 
to compare the benefit of this system with both sub-specialists and 
community radiologists who might be called on to do this work 
only occasionally. This work might help to extend the quality of care 
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Fig. 4 | Case-based explanations generated by IAIA-BL. Top: This spiculated (spic.) lesion is correctly classified as spiculated. Bottom: This circumscribed 
(circ.) lesion is correctly classified as circumscribed. a, Test images. b, Activation of prototype on test images. c, Most relevant part of prototype. d, Learned 
prototypical lesion. e, Prototype self-activation. f, Contribution to class score.
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that patients receive at Duke (with highly trained Duke radiologists) 
to patients that do not have access to this level of care.

The fine annotation techniques we developed to reduce the use of 
confounding information can be extended to other computer vision 
applications. The fine annotation technique could also be used on 
datasets with known confounders to see how effectively it reduces 
(or reveals) use of the confounders in its classification decisions.

Conclusion
Our work shows that we are able to create interpretable mass mar-
gin prediction models with equal or higher performance to their 
uninterpretable counterparts. Using only a small dataset, we were 
able to provide an interpretable network that performs comparably 
with radiologists on mass margin classification and malignancy pre-
diction. The gradient stabilization improvement to the ProtoPNet 
training can be added into any future use of its codebase.

Methods
Data augmentation. Given the small training set, we performed data 
augmentation such that each training image was randomly flipped, rotated and 
underwent random cropping with a crop size of 80% of the image’s original size. 
Each class was augmented to have 5,000 images for the training set.

Framework. Models need to be collaborators in the medical decision-making 
process to be useful. In mammography, the initial clinical decision is expressed as 
a BI-RADS category of 1 to 5, corresponding to the recommendation of whether 
the patient needs a biopsy7,54. An inscrutable model predicting whether a lesion is 
malignant or benign is not useful as a decision aid, as a biopsy is recommended 
for every lesion with a greater than 2% chance of malignancy (BI-RADS 4 and 
5). To alter clinical management, an interpretable model is needed to describe its 
reasoning process for why the patient should or should not receive a biopsy rather 
than provide an inscrutable prediction of malignancy.

Our AI approach includes an explicit reasoning system that resembles that of 
a practicing radiologist. Existing interpretability techniques for mammography 
include localization as in Fig. 1b, but there is no explanation of why an area is 
selected, what attributes of the region are used for classification or which parts 
of the training set these associations are learned from. In a non-medical image 
analogy, although localization may provide a good interpretation for whether or 
not an image contains a vase (perhaps by highlighting the vase), it does not provide 
a good interpretation for classification of the vase pattern as Roman versus Asian 
antiquity (highlighting the vase pattern provides no further insight). Many recently 
published AI mammography algorithms are still entirely uninterpretable, as in 
Fig. 1a (ref. 8). Our method is designed to analyse lesions in a way that mimics 
how a radiologist would approach image interpretation (as in Fig. 1c), it first finds 
medically relevant features (in this case the mass margin) then uses those features 
to determine the possibility of malignancy. Such a model may be integrated 
into a clinical support system for classifying breast lesions, as it can point to 
mammogram regions that resemble prototypical signs of cancerous growth (for 
example, spiculated mass margin) and thereby assist doctors in making diagnoses.

Model architecture. Extended Data Fig. 6 gives an overview of our model 
architecture.

Given a region of interest x in a mammogram, our IAIA-BL model first extracts 
useful features f(x) for mass-margin classification, using a series of convolutional 
layers f from a VGG-16 network46 pre-trained on ImageNet. The output f(x) is size 
14 × 14 × c, where c is the number of channel; l ∈ {(1, 1), ... , (1, 14), (2, 1), ... , (14, 14)} 
indexes each of the 1 × 1 × c patches f(x)l across the spatial dimensions.

Following the convolutional layers f is prototype layer g. As in ProtoPNet9, the 
prototype layer contains m prototypes P = {pj}mj=1 learned from the training set. 
Each prototype is size 1 × 1 × c. As a prototype has the same c but a smaller spatial 
dimension than the convolutional feature maps f(x), we can interpret the prototype 
as representing a prototypical activation pattern of its class and we can visualize the 
prototype as a patch of the training image it appears in.

Given convolutional feature maps f(x), the prototype layer g calculates the 
similarity score sj between x and each pj. It first computes the distance between 
pj and each of the l1 × 1 spatial patches of convolutional feature map f(x) by: 
dj,l =∥ pj − f(x)l∥

2
2, and converts distances to similarities:

sj,l = log
dj,l + 1
dj,l + ϵ

. (4)

This provides a set of similarity scores {sj,l}(14,14)
l=(1,1) that can be arranged spatially 

into a similarity map [sj,l](14,14)l=(1,1) that compares the input image and each pj.  
The overall sj is calculated using top-k average pooling (as in ref. 55):

sj = avg
(

topk
(

{sj,l}(14,14)
l=(1,1)

))

. (5)

Conceptually, this means that if x has spicules along the mass margin, its 
convolutional feature maps f(x) will have patches f(x)l that represent the spicules 
from the input image. These patches will be close (in ℓ2 distance in the latent 
space) to one or more pj that represent spicules on the mass margin. Consequently, 
sj,l will be large between those spiculated prototypes and patches.

In IAIA-BL we initialize the model with m = 15. We prune duplicate prototypes 
and the final IAIA-BL model presented has four prototypes for a circumscribed 
mass margin, three for an indistinct mass margin and four for a spiculated mass 
margin. We set c to 512 in our experiments.

IAIA-BL ends with two fully connected layers. The first fully connected layer 
h1 multiplies the vector of similarity scores [s1, ... , sm] by a weight matrix to produce 
three output scores: ŷcircumscribed, ŷindistinct and ŷspiculated, one for each margin 
type. These are (afterwards) normalized using a softmax function to generate the 
probabilities that the mass margin in the input image belongs to each of the three 
mass-margin types. The second fully connected layer h2 then combines the vector of 
(unnormalized) mass-margin scores ŷmargin

= [ŷcircumscribed, ŷindistinct, ŷspiculated] into 
a final score of malignancy ŷmal, which is passed into a logistic sigmoid function to 
produce a probability that the input image has a malignant breast cancer.

Fine annotations. When starting to build an interpretable model for breast lesion 
classification, we naively applied the case-based reasoning ProtoPNet architecture 
to medical images. Although the model seemed to be learning medically relevant 
features due to its high validation accuracy, the model made predictions using 
regions of the image that did not correspond to the medical information; in other 

Table 2 | Comparison of selected AI mammography techniques to IAIA-BL

IAIA-BL Ref. 13 Ref. 48 Ref. 56

Inherently interpretable model  
(not post-hoc)

✓ ✓ ✓

Provides global interpretability  
(on model)

✓ ✓

Provides local interpretability  
(on each case)

✓ ✓ ✓

Explanation is guaranteed to match 
model reasoning

✓

Incorporate domain-specific 
terminology

✓ ✓ ✓

Provides similar prototypes for 
comparison

✓

Can incorporate fine annotation ✓

Can be trained on data with mixed 
labeling

✓ ✓
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words, the model used confounding information rather than medically relevant 
information. This is consistent with observations made by other groups of the 
dangers of confounding in medical imaging25. For non-medical image classification 
tasks, a typical approach might be to increase the size of the training set; however, 
as discussed above, one major barrier to implementation of AI in the medical field 
is the limited availability of annotated data6.

To extract more information from our dataset, we collected a small set of 
pixel-level (fine) annotations from our radiology team, which permitted better 
generalization using a smaller number of images; that is, fine annotation on only 
30 images of our limited data set (1,136 annotated mammographic images from 
484 patients with lesions) enabled high-quality reasoning and prediction. This 
novel approach can reduce the confounding in deep learning by leveraging both 
relatively abundant coarsely annotated data and a small amount of finely annotated 
data. Most fine-grained classification algorithms either assume the availability 
of fine-grained part labels for all input data and use them, or those fine-grained 
labels are completely ignored. Our approach provides a middle ground by using 
both data with and without fine-grained annotations, which takes full advantage 
of the information available. This approach is also practical in the sense that 
for real-world problems, annotated data are relatively less abundant and more 
expensive to obtain.

We designed a new training paradigm that incorporates this additional expert 
annotation information on a subset of the existing patient cases. A radiologist 
(F.R.S) annotated the area of a lesion image that indicates the mass margin for 
that lesion as in Fig. 2b, with the most prominent and defining features marked 
by circles and the rest of the lesion margin highlighted by simple lines. The 
model incorporates the radiologist-supplied fine annotations by regularizing the 
activation of the prototypes over the image. It penalizes a prototype for activating 
anywhere on an image not of its class, or for activating outside the region of the 
image marked relevant by the radiologist. Figure 2c shows an attention map that 
highlights confounding information and would be heavily penalized. Figure 
2d shows an attention map that highlights relevant information. By directing 
the network to the most relevant parts of the image, we set a strong prior on 
the network for where the useful information is centered in the image. As these 
annotations are expensive to obtain, we designed the method to be able to use a 
small number of these finely annotated cases and a larger number of less expensive 
coarsely annotated cases. We include a training loss term in the objective as 
described in the methods. When using this, our performance and explanation 
both improve.

Model training. We represent the dataset of n xi, with ymargin
i  and ymal

i  labels, 
as D = {(xi , ymargin

i , ymal
i )}

n
i=1. A thirty-image subset D′ ⊆ D comes with the 

radiologist’s (fine) annotations of where medically relevant information is in that 
training image. For a training instance (xi , ymargin

i , ymal
i ) ∈ D′, we define mi such 

that mi takes the value 0 at those pixels that are marked as ‘relevant to mass margin 
identification’, and 1 at other pixels. Each mi has the same spatial dimensions 
(height and width) as xi.

The training of IAIA-BL has four stages: (A1) training of the convolutional 
layers f and the prototype layer g; (A2) projection of prototypes; (A3) training of 
the first fully connected layer h1 for predicting mass-margin types; and (B) training 
of the second fully connected layer h2 for predicting malignancy probability. Stages 
A1, A2 and A3 are repeated until the training loss for predicting mass-margin 
types converges, after which we move to Stage B.

Stage A1. In the first training stage we aim to learn meaningful convolutional 
features. In particular, we want convolutional features that represent a particular 
mass-margin type to be clustered around a prototype of that particular 
mass-margin type, and to be far away from a prototype of other mass-margin 
types. As in Chen and colleagues9, we jointly optimize the parameters θf of f,  
and p1, ... , pm of g, while keeping the two fully connected layers h1 and h2 fixed.  
We minimize the following training loss:

minθf ,p1 ,...,pmCrsEnt + λcClst + λsSep + λfFine, (6)

where the cross-entropy term (CrsEnt) penalizes misclassification of mass-margin 
types on the training data; it also ensures that the learned convolutional features 
and the learned prototypes are relevant for predicting mass-margin types.

Differing from Chen and colleagues9 by the use of mink instead of min, the 
cluster (Clst) and separation (Sep) costs are defined by:

Clst = 1
n

n
∑

i=1
min

j: class (pj)=y margin
i

(γ) ,

Sep = − 1
n

n
∑

i=1
min

j: class (pj) ̸=y margin
i

(γ) , with

γ =
1
k
∑

minkz∈patches(f(xi))
(

∥ z − pj∥22
)

(7)

where mink gives the k smallest squared distances. Empirically, we found that 
IAIA-BL trained with the relaxed cluster and separation costs outperforms the 

one trained with the original (that is, k = 1) cluster and separation costs of Chen 
and co-workers9 on the task of margin classification, possibly because the relaxed 
cluster and separation costs (along with the top-k average pooling) allow the 
gradient of the loss function to back-propagate through k convolutional patches—
instead of just one patch—during training. Consequently, the gradient will be 
less sensitive and more robust to changes in the location of the most activated 
convolutional patch by each prototype.

The fine-annotation loss, which is new to this paper, penalizes prototype 
activations on medically irrelevant regions of radiologist-annotated training 
mammograms (see Fig. 2). The fine-annotation loss is defined by:

Fine =

∑

i∈D′





∑

j: class (pj)=y margin
i

∥ mi ⊙ PAMi,j∥2 +
∑

j: class (pj) ̸=y margin
i

∥ PAMi,j∥2





(8)

where prototype activation map PAMi,j for pj over xi is computed by bilinearly 
upsampling the similarity map [sj,l](14,14)l=(1,1) to yield the the same dimensions (height 
and width) as the fine-annotation mask. This promotes the learning of prototypes 
that stay away from any features that could appear in classes that are not the 
prototypes’s designated classes, so that the prototypes of a particular class represent 
distinguishing features of that class.

To incorporate the training data with fine annotations into model training, 
we construct batches with 75 training examples from D with lesion-scale 
annotations and ten training examples from D′ with fine-scale annotations. The 
fine-annotation loss on a lesion-scale annotation penalizes activation outside of the 
area marked as the lesion, whereas the fine-annotation loss on a finely annotated 
image penalizes activation outside of the region ‘relevant to the mass margin class’, 
as marked by the radiologist.

The prototype layer was initialized randomly using the uniform distribution 
over a unit hypercube (as the convolutional features from the last convolutional 
layer all lie between 0 and 1). In our experiments, λc = 0.8, λs = 0.08 and λf = 0.001.

Stage A2. As in work of Chen and colleagues9, we project pj onto the nearest 
convolutional feature patch from the training set D, of the same class as pj.

Stage A3. In this stage, we fine-tune the first fully connected layer h1 to further 
increase the accuracy in predicting mass-margin types. We fix θf and p1, ... ,pm, 
and minimize the following training objective with respect to θh1 of the first fully 
connected layer h1:

minθh1
1
n

n
∑

i=1
CrsEnt(h1 ◦ g ◦ f(xi), ymargin

i ). (9)

The first time we enter stage A3, we initialize connections in fully connected 
layer h1 to a value of 1 for prototypes that are positive for that mass margin,  
–1 otherwise.

Stage B. In this stage, we train the second fully connected layer h2 for predicting 
malignancy probability, using a logistic regression model whose input is the 
(unnormalized) mass-margin scores produced by the first fully connect layer h1, 
and whose output is the malignancy score. To prevent the malignancy information 
from biasing the mass margin classification, we train the model in a modular style 
and it is not trained completely end-to-end in any stage, that is, there is no return 
to Stage A from Stage B.

Reporting Summary
Further information on research design is available in the Nature Research Reporting 
Summary linked to this article.

Data availability
The imaging data are not publicly available because they contain confidential 
information that may compromise patient privacy as well as the ethical or 
regulatory policies of our institution. Data will be made available on reasonable 
request, for non-commercial research purposes, to those who contact J.L. (joseph.
lo@duke.edu). Data usage agreements may be required. Source Data are provided 
with this paper.

Code availability
Code is available on GitHub at https://github.com/alinajadebarnett/iaiabl. Two 
licenses are offered: an MIT license for non-commercial use and a custom license. 
The doi for the initial code release is https://doi.org/10.5281/zenodo.5565592.
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Extended Data Fig. 1 | An automatically generated explanation of mass margin classification for a circumscribed lesion. This circumscribed lesion is 
correctly identified as circumscribed. The first two most activated prototypes are drawn from the same image, but are associated with different regions of 
that image.
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Extended Data Fig. 2 | An automatically generated explanation of mass margin classification for an indistinct lesion. This indistinct lesion is correctly 
identified as indistinct. The indistinct portion of the lesion margin (right side) activates the indistinct prototype and the circumscribed portion of the lesion 
margin (left side) activates the circumscribed prototypes.
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Extended Data Fig. 3 | An automatically generated explanation of mass margin classification for a spiculated lesion. This spiculated lesion is correctly 
identified as spiculated.
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Extended Data Fig. 4 | An automatically generated explanation of mass margin classification for an incorrectly classified lesion. This spiculated lesion 
is incorrectly identified as circumscribed. The explanation highlights only the circumscribed portion of the mass margin (top), but does not detect the 
spiculated portion (bottom).
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Extended Data Fig. 5 | A comparison of explanations. We compare explanations from two common saliency methods (GradCAM [44] and GradCAM++ 
[45]) to a class activation visualization derived from our method. The explanations from IAIA-BL are more likely to highlight the lesion and less likely 
to highlight the surrounding healthy tissue. This is shown quantitatively by the activation precision metric. The single image visualization is a dramatic 
simplification of the full explanation that is generated by IAIA-BL. The IAIA-BL and ProtoPNet class activation visualizations shown in this figure are 
generated by taking the average of prototype activation maps for all prototypes of the correct class.
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Extended Data Fig. 6 | The architecture of the IAIA-BL prototype network. Test image x feeds into convolutional layers f. Each patch of f(x)l is compared 
to each learned prototype pi by calculating the squared distance between the patch and the prototype. The similarity map shows the closest (most 
‘activated,’ that is, smallest L2 distance) patches in red and the furthest patches in blue, overlaid on the test image. Similarity score si is calculated from the 
corresponding similarity map. The similarity scores s feed into fully connected layer h1, outputting margin logits ŷmargin. Margin logits ŷmin feed into fully 
connected layer h2, outputting malignancy logit ymal.
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