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Interpretability in machine learning models is important in high-stakes decisions such as whether to order a biopsy based
on a mammographic exam. Mammography poses important challenges that are not present in other computer vision tasks:
datasets are small, confounding information is present and it can be difficult even for a radiologist to decide between
watchful waiting and biopsy based on a mammogram alone. In this work we present a framework for interpretable machine
learning-based mammogtraphy. In addition to predicting whether a lesion is malignant or benign, our work aims to follow
the reasoning processes of radiologists in detecting clinically relevant semantic features of each image, such as the charac-
teristics of the mass margins. The framework includes a novel interpretable neural network algorithm that uses case-based
reasoning for mammography. Our algorithm can incorporate a combination of data with whole image labelling and data with
pixel-wise annotations, leading to better accuracy and interpretability even with a small number of images. Our interpre-
table models are able to highlight the classification-relevant parts of the image, whereas other methods highlight healthy
tissue and confounding information. Our models are decision aids—rather than decision makers—and aim for better overall
human-machine collaboration. We do not observe a loss in mass margin classification accuracy over a black box neural

network trained on the same data.

mammography, which aims to detect breast cancer, a leading

cause of death in the USA'. Conventional machine learning
is currently used for computer-aided detection (that is, lesion ver-
sus no lesion), but future approaches need to be able to assist with
harder tasks to make a greater clinical contribution, for example:
‘should the patient get a biopsy for that lesion?’

Despite the hope of computer-aided radiology for mammogra-
phy, there are serious concerns with current methods, including
confounding. Confounding occurs when the predictive model is
using incorrect information or reasoning to make a decision, even
if the decision is correct. In previous studies, researchers created
models that seemed to perform well on their test sets, yet on further
inspection, based their decisions on confounding information (for
example, type of equipment) rather than medical information®™.
This problem is exacerbated by the fact that there are few publicly
available mammography datasets, so many models are trained on
relatively few cases and the community lacks datasets to externally
validate these models. Furthermore, not all studies incorporate
domain expertise to inform which factors should be included in
the model building phase. To ensure clinical acceptance, an Al tool
will need to provide its reasoning process to its human radiologist
collaborators to be a useful aide in these difficult and high-stakes
decision-making processes™.

The reasoning process of any model would ideally be similar
to that of an actual radiologist, who looks at specific aspects of the
image that are known to be important, based on the physiology of

!! rtificial intelligence is revolutionizing radiology. Consider

how lesions develop within breast tissue. If this reasoning process
were correct, it would lead to a higher chance that: (1) the model
could generalize beyond its finite training set; (2) the model’s rea-
soning process could be useful information for doctors, even if its
prediction is sometimes incorrect; (3) it would be much easier to
troubleshoot or evaluate trustworthiness of the model, as it is not
a black box; (4) the model’s reasoning and reporting process could
align with the structured lexicon that radiologists use to report
results, such as the breast imaging-reporting and data system
(BI-RADS)’ for breast cancer and other similar lexicons from the
American College of Radiology.

Thus, unlike existing black-box systems that aim to replace a
doctor®, we aim to create an interpretable AI algorithm for breast
lesions (abbreviated IAIA-BL) whose explicit reasoning can be
understood and verified by a medical practitioner. Our novel deep
learning architecture enables IAIA-BL to provide an explanation
that shows the underlying decision-making process for each case.
Figure 1c shows an example of how this works: the algorithm high-
lights parts of the image, explains that it considers these parts of
images similar to prototypical cases it has seen before, and provides
a score for the probability of the specific diagnosis (breast mass
with mostly circumscribed margin) for this image as well as the
likelihood of malignancy. IAIA-BL provides the radiologist with
the means not to simply trust the AI but to check its output for
plausibility, and overrule it when necessary. Our approach, with its
inherently interpretable reasoning process, contrasts directly with
previous work that relied on post-hoc explanation techniques to
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Fig. 1| An overview of IAIA-BL compared to other approaches. a, Uninterpretable approaches give no explanations for their output. b, Other interpretable
or explainable approaches might point out which regions are used for decision making, but provide no information about what attributes of the region

are important for classification decisions. ¢, IAIA-BL provides an explanation framework that localizes relevant areas, associates the relevant area with a
specific medical feature and uses only the explained evidence to make a prediction.

explain a trained black-box model, or work that relies on atten-
tion mechanisms to highlight the parts of an input image on which
the model prediction is based. The reasoning process the network
explains to the humans is the reasoning process it is using to under-
stand the image itself.

The main contributions of our paper are as follows:

o We developed the first inherently interpretable machine-
learning-based system for medical imaging that goes beyond
simple attention in its explanations. Our system, IAIA-BL,
makes predictions for mammographic breast masses by com-
paring test mammograms with prototypical images of various
mass margin types.

o We developed a novel training scheme for our IAIA-BL,
which allows it to incorporate past knowledge in the form of
fine-grained expert image annotations. Using only a small
number of finely annotated training data and imposing a novel
fine-annotation loss on those data, IAIA-BL learns medically
relevant prototypes, effectively addresses aspects of confound-
ing issues in medical machine learning models, and sets our
TAJA-BL apart from the ProtoPNet presented in ref. ° and other
past works.

o We developed a framework for machine learning-based mam-
mography interpretation in line with the goals of radiologists: in
addition to predicting whether a lesion is malignant or benign,
our work aims to follow the reasoning processes of radiologists
in detecting specific aspects of each image, such as the charac-
teristics of the mass margins.
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Related work

Background on computer-aided detection/diagnosis in mam-
mography. Computer-aided detection systems flag suspicious
lesions that may prompt the radiologist to recall a patient for addi-
tional imaging. Despite widespread clinical adoption, however,
an influential study from 2015 found that current systems do not
improve diagnoses in clinical practice'’. More recent deep learn-
ing studies based on large numbers of cases have been reported to
match or even exceed radiologist performance®''"'". Going beyond
lesion detection, computer-aided diagnosis systems provide addi-
tional diagnostic information such as classifying the lesion as
benign versus malignant®. In this study we seek to advance the
underlying technology beyond that of previous computer-aided
diagnosis approaches.

Background on interpretable machine learning. In spite of their
promising performance, deep neural networks are difficult to under-
stand by humans. There are two distinct approaches to address this
challenge: (1) designing inherently interpretable networks, whose
reasoning process is constrained to be understandable to humans;
(2) explaining black box neural networks post-hoc by creating
approximations, saliency maps or derivatives. Post-hoc explanations
can be problematic, for instance, saliency maps highlight regions
of the image, but can be unreliable and misleading as they tend to
highlight edges and the highlighted pixels do not show what com-
putations are actually performed'*'®. We avoid post-hoc solutions
in this work. There are several types of approaches in interpretable
machine learning, including case-based reasoning (which we use
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here), forcing the network to use logical conditions within its last lay-
ers (for example, ref. '°) or disentangling the neural network’s latent
space”. Case-based reasoning models in medicine retrieve existing
similar cases to determine how to handle a new case”~**. IAIA-BLs
framework incorporates the architecture of the case-based inherently

interpretable neural network ProtoPNet, described in ref. °.

Confounding and fine annotation. Neural networks models often
use context or confounding information instead of the information
that a human would use to solve the same problem in both medi-
cal” and non-medical applications®. The ability of these networks
to use context or background information is so powerful that net-
works trained on images of only the background outperform net-
works trained on images of only the object to be classified”*. For
high-stakes applications in medicine, model decisions must use rel-
evant medical information rather than context or background infor-
mation. To address this we introduce an attention mechanism, which
redirects model attention to a selected part of the input image. Ways
to direct model attention include data augmentation®-*>*, tech-
niques that combat hand-selected confounders®*, techniques that
combat learned confounders* and an approach in which a human
critic manually approves the attention map during training™. Other
techniques that show model attention but do not aim to change it are
class activation maps™, multiattention CNNs* and recurrent atten-
tion CNNs*. Our model uses an attention mechanism to incorporate
expert annotations by adding a term to the objective function, which
penalizes attention outside of the regions marked as relevant by the
radiologist annotator. Mechanically, the method is most similar to
that in ref. *', but differs in that our class-specific attention mecha-
nism asks for different attention from prototypes of different classes.

Data

Our dataset consists of 1,136 digital screening mammogram images
from 484 patients at Duke University Health System from 2008 to
2018. These conventional mammography images were collected in
compliance with HIPAA under Duke Health IRB Pro00012010 and
waiver of informed consent. The average patient age was 56.1 +12.3
years. The BI-RADS features of mass shape and mass margin were
labelled by one fellowship-trained breast imaging radiologist. The
ground truth for malignancy of each mass is the result of definitive
histopathology diagnosis.

The 1,136 images consisted of the following mass margins: 125
spiculated, 220 indistinct, 41 microlobulated, 579 obscured and 171
circumscribed. We excluded lesions with microlobulated margins
because of the small number of lesions represented. We excluded
lesions with obscured margins as this margin class is not a good
indicator for classifying a lesion as benign or malignant, but instead
usually indicates the need for follow-up imaging. We split each
remaining margin class into 73% training, 12% validation and 15%
testing, ensuring that within each class there was no patient overlap
between the testing set and other sets. All performances are based
on the testing set alone (n="78).

We represent the dataset of n training images x,, with mass-margin

margin margin _mal )}” .
i i=1

(y; )andmalignancy( y")labels,as D = {(x;, y, L Vi

a thirty-image subset D’ C D comes with the radiologist’s (fine)
annotations of where medically relevant information is in that train-
ing image. For a training instance (x;, y,"""®", y™!) € D', we define
a fine-annotation mask m,, such that m; takes the value 0 at those
pixels that are marked as ‘relevant to mass margin identification;
and takes the value 1 at other pixels. Each fine-annotation mask m;,
has the same spatial dimensions (height and width) as x,.

Model
Although ProtoPNet’ works well with bird classification, it could
not be directly extended to mammograms due to the problems with
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confounding, which is made worse by the dearth of data and the dif-
ficulty of the overall problem. IAIA-BL overcomes these obstacles
through its framework, including incorporating fine-grained labels
(Fig. 2), modified modular training and the addition of mult-stage
reasoning wherein the model first determines the mass margin fea-
ture and uses that information to predict malignancy.

The training of IAIA-BL differs from that of ProtoPNet in three
ways: (1) IAIA-BL was trained with a fine-annotation loss which
penalizes prototype activations on medically irrelevant regions for
the subset of data with fine annotations; (2) IAIA-BL considers the
top 5% of the most activated convolutional patches that are closest
to each prototype, instead of only the top most activated patch; (3)
we include an additional fully connected layer to transform mass
margin score (y™8") to the malignancy score ( j/mal), whose train-
ing is isolated from the rest of the network.

Results

Performance metrics. We use the area under receiver operator
characteristic curve (AUROC) for each of the three mass margin
classes as the performance metric for both mass-margin prediction
and malignancy prediction. An image-weighted average of these
AUROCs measures overall performance; 95% confidence intervals
were derived using Delong’s method**.

Cohen’s « shows the agreement between our model’s predictions
and the physician-annotator’s labels for the mass margin prediction
task. We use Cohen’s k to compare our model’s agreement with the
agreements between physicians from past studies®*; 95% confi-
dence intervals were derived using non-parametric bootstrap resa-
mpling with 5,000 samples each equal to the size of the test set.

Interpretability metric. We designed the interpretability metric
activation precision to quantify what proportion of the information
used to classify the mass margin comes from the relevant region as
marked by the radiologist annotator. Using the notations defined in
model training, the activation precision for a single prototype p; on
a single image x, with a mass-margin type y,""®", and comes with a
fine-annotation mask m,, is defined as:

Z (Z [(1 —m;) ©T: (PAMi»j)] ) , (1)

ST (PAM,)

j: class (pj)=y;

where T, is a threshold function that returns the top (1 —7) X 100%
of the input values as 1 and the bottom 7x100% as 0. The pro-
totype activation map (PAM;;) shows where p; is activated on x;
To evaluate activation precision for GradCAM (ref. *) and
GradCAM++ (ref. *°), we calculate as per equation (1) but replace
PAM;; with the normalized gradient map for the correct class; 95%
confidence intervals were derived using non-parametric bootstrap
resampling with 5,000 samples each equal to the size of the test set.
Further information on activation precision can be found in the
Supplementary Information.

Activation precision is a measure of interpretability, in the sense
that the higher the activation precision, the better a prototype
(or a set of prototypes) is at detecting medically relevant features
for mass-margin classification.

Activation precision can be measured both at lesion-scale (that
is, is the activation within the lesion area and not the added context
window?) and at fine-scale (that is, is the activation on the specific
part of the margin marked relevant by the radiologist?).

Mass margin classification. We compare the following models.
IAIA-BL. We used ProtoPNet with VGG-16 pre-trained on
ImageNet as the base architecture trained for 50 epochs because

model training converges between 40 and 50 epochs. The final
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Without fine annotation

With fine annotation

Uses information
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from healthy tissue from lesion

Fig. 2 | Fine-annotation regularization on model attention that penalizes
the model for using confounding information. a, The lesion to be
classified. b, The spicules of the lesion have been marked in green by

a radiologist. ¢, Without fine annotation loss in training, the activation
map highlights confounding information. d, Using fine annotation loss
during training, the activation map highlights relevant information—areas
that contain spicules. The attention is within the area marked by the
radiologist (otherwise it would have been penalized by the fine-annotation
loss function).

model is trained on the combination of the training set and vali-
dation set, and tested on a test set never before seen in training.
See the Supplementary Information for hyperparameter tuning
information. Our model can be fully trained on one P100 GPU
in 50 h.

Original ProtoPNet. The original ProtoPNet (ref. °) architecture
does not use fine annotation loss, and uses max pooling logic where
IAIA-BL uses top-k average pooling logic. This change is equivalent
to changing all uses of AVGPOOL to max in equations (6) and (9);
and changing mink to min in equation (7).

VGG-16 with GradCAM and GradCAM++. We trained a
VGG-16 (ref. *°) model with added parameters to account for
the larger number of parameters in our model. Pre-trained on
ImageNet, it was trained for 250 epochs and the epoch with the
highest test accuracy was selected for comparison. There is no
native way to incorporate our fine annotation into VGG-16.
VGG-16 provides no inherent interpretability or localization.
Using the post-hoc GradCAM (ref. **) and GradCAM++ (ref. *°)
techniques we show localization information and calculate
activation precision.

Results. Treating the radiologist annotations as the ground truth,
results are reported in Table 1. Figure 3 shows ROC curves for all
prediction tasks and all methods. Each mass margin prediction is
explained as in Fig. 4. Extended Data Figs. 1-4 show sample expla-
nations automatically generated by IAIA-BL.

IAIA-BL achieves an AUROC as good or better than the AUROCs
of interpretable ProtoPNet and the analogous black-box model,
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VGG-16. Both ProtoPNet and VGG-16 show much lower activation
precision than IAIA-BL. Both use information from image regions
entirely outside the region that contains the lesion. The baseline
models are not restricted from using confounding information,
and thus do so freely. These models should not be used in practice
for this reason. A visual comparison of activation maps (defined in
ref. %) is shown in Extended Data Fig. 5.

For IAIA-BL without pruning, there is a 0.004 increase in
AUROC for mass margin prediction. For the unpruned IAIA-BL
model (not shown in the table, as it is almost identical to IAIA-BL),
the lesion-scale activation precision of the learned prototypes is 0.93
(95% CI: 0.91, 0.96) and the fine-scale activation precision of the
learned prototypes is 0.41 (95% CI: 0.39, 0.43).

Another measure of performance we calculated is the agreement
in Cohen’s k between IATIA-BL and our human mass margin annota-
tor on the test set. We found substantial agreement with a x-value
of 0.74 (n=78, 95% CI: 0.60, 0.86)", further broken down into
circumscribed at 0.76 (95% CI: 0.58, 0.90), indistinct at 0.69 (95%
CI: 0.51, 0.84) and spiculated at 0.78 (95% CI: 0.61, 0.93). For this
task of characterizing the mass margin in mammography, our
performances were higher than the inter-observer agreement
between radiologists (for example, 0.61-0.65 in ref. *, 0.58 in ref. **
and 0.48 in ref. ).

Although there are many papers on computer vision with appli-
cations to mammography, few papers attempt to classify masses by
margin type. We found only one study*, which reports an accuracy
of mass margin prediction at 70.6% and includes more margin types
than we do, but their provided results are not separated into differ-
ent margin classes and therefore we cannot directly compare with
them. Moreover, that study used digitized mammography images
from the DDSM database, further reducing comparability. Their
model is not publicly available.

Malignancy prediction. IAIA-BL converts unnormalized mass
margin scores (y"*#") to malignancy scores ( ﬁimal) with the follow-
ing concise linear model learned in training stage B:

~mal __

7} - —16 )A/icircumscribed —10 )A/iindistinct 16 yiSPiCUIa‘ed, with (2)

Prob(malignancy ) = ((5™ — 155)/100), 3)

where o(f) is the logistic sigmoid function.

This model is consistent with medical knowledge: a high spicu-
lated score results in a high probability of malignancy, whereas high
circumscribed or indistinct margin scores indicate a benign lesion.
Each mass margin score is explained in Fig. 4.

Although IAIA-BL is constrained to using only the results
of the mass margin outputs to predict malignancy (rather than
extra information that may be contained within the raw pixels of
the image), IATIA-BL predicts mass malignancy with an AUROC
of 0.84 (n=75, 95% CI: 0.74, 0.94). These results are inter-
pretable in that they only use the mass margin scores to make
their predictions.

We remark that the prediction of whether a mass has 5% or
95% probability of being malignant would not alter the clinical
management, as all lesions with >2% probability of malignancy
would be recommended to undergo breast biopsy. There are a
variety of malignancy performance values reported in the litera-
ture, though not necessarily from the same population as ours,
which means the results are not directly comparable. Some stud-
ies have reported better performance in predicting malignancy
from BI-RADS features*-*'. If our dataset were larger, and if we
had non-imaging features such as patient age, it could potentially
boost performance.
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Table 1| Mass-margin classification test results

Model
VGG-16 (ref. *©) VGG-16 (ref. *©)
IAIA-BL ProtoPNet (ref. °) with GradCAM (ref. *4) with GradCAM++ (ref. %)

Performance (AUROC)

Mass margin classification 0.951[0.905, 0.996] 0.9112[0.848, 0.974] 0.9472[0.898, 0.996] 0.9472[0.898, 0.996]
Spiculated versus all 0.962[0.90, 1.00] 0.97 [0.93,1.00] 0.952[0.89, 1.00] 0.952[0.89, 1.00]
Indistinct versus all 0.932[0.88, 0.99] 0.872[0.78,0.94] 0.94 [0.89, 0.99] 0.94 [0.89, 0.99]
Circumscribed versus all 0.97 [0.94,1.00] 0.932[0.87,1.00] 0.952[0.91,1.00] 0.952[0.91,1.00]

Cohen's k 0.74 [0.60, 0.86] 0.642[0.49, 0.78] 0.74 [0.60, 0.87] 0.74 [0.60, 0.87]

Interpretability

Fine-scale act. prec. 0.41[0.39, 0.45] 0.24[0.17,0.31] 0.21[0.05, 0.437° 0.24 [0.08, 0.45]°

Lesion-scale act. prec. 0.94[0.92,0.97] 0.51[0.34, 0.68] 0.45[0.37,0.541° 0.53[0.44,0.611°

The first five rows measure prediction performance, whereas the lower two rows measure interpretability performance. The table shows that IAIA-BL's test AUROC performance with respect to all tasks
is approximately as good as the best of the baselines. IAIA-BL's main advantage (interpretability) is shown in the bottom two rows of the table, where there is a drop in fine activation precision (act. prec.)
for original ProtoPNet and VGG-16 as compared with IAIA-BL. VGG-16 has no inherent interpretability but post-hoc GradCAM and GradCAM++ provide localization information on which we measure
activation precision. The best value is in bold. ?Values not significantly below the best by Delong's test with p<0.05. *As this technique is post-hoc, there is no guarantee that the generated explanation

matches the model's decision making.
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Fig. 3 | ROC curves of IAIA-BL compared with baselines. a, Circumscribed class versus other margin classes. b, Indistinct class versus other margin
classes. ¢, Spiculated class versus other margin classes. d, Malignant versus benign lesions.

Radiologist estimate. During data collection, we asked radiologists
to estimate the probability that the lesion will be malignant. There
are several caveats for this estimate: radiologists do not perform
this task in standard practice, instead they only provide a categori-
cal recommendation for biopsy; the annotations were completed as
part of a separate study that used consumer-grade monitors with-
out the necessary specifications or calibrations of medical-grade

displays. Nonetheless, these estimates represent the radiologist’s
best guess when given even more information than the model is
provided. The radiologists predicted mass malignancy on the test
set with AUROC of 0.91 (n=75, 95% CI: 0.85, 0.97). These radi-
ologists are from Duke Hospital and thus represent an extremely
high quality of care for patients. Using this as a reference standard,
IAIA-BL is approximately 7% in AUROC away from the physicians.
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Fig. 4 | Case-based explanations generated by IAIA-BL. Top: This spiculated (spic.) lesion is correctly classified as spiculated. Bottom: This circumscribed
(circ.) lesion is correctly classified as circumscribed. a, Test images. b, Activation of prototype on test images. ¢, Most relevant part of prototype. d, Learned

prototypical lesion. e, Prototype self-activation. f, Contribution to class score.

Unrestricted end-to-end VGG-16. The uninterpretable VGG-16
baseline given the same image data, but not restricted to predicting
on only mass margin results, achieves an AUROC of 0.87 (n=75,
95% CI: 0.82, 0.93). Again, it is possible that VGG-16 uses indi-
rect information like breast density or confounding factors such as
mammography equipment type.

We compared selected Al mammography techniques to
IATA-BL in Table 2. We cannot compare with papers focused on
detection because our technique works on diagnosis of an already
detected lesion®".

Discussion

The high performance of uninterpretable models that seem to be
leveraging mainly confounding information is a point of concern
when incorporating models into clinical practice. Although a radi-
ologist may not choose to view an explanation for every predic-
tion, interpretable models still provide value over uninterpretable
models. As we know that AI systems fail’, we designed a system
that can alert a radiologist to faulty reasoning at the time the pre-
diction is made instead of only after the consequences of mispre-
diction have been realized. The global interpretability (namely,
the set of prototypes) allows the trained model to be fine-tuned
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by domain experts through pruning of prototypes that do not
correspond to medically relevant features. The explanations pro-
vided can also be used for debugging a model and for retrospective
analysis of model failures.

Our technique could be expanded with little change to include
other BI-RADS features (for example, mass shape). The technique
might be able to be expanded to microcalcification clusters—the
other main type of breast lesions—but there are more categories of
calcification morphologies and the different types of cluster distri-
butions can translate into lesions with extreme differences in scale,
which might pose interesting technical challenges. The underlying
logic of the technique could be extended to digital breast tomosyn-
thesis by representing a prototype as either a two-dimensional part
of a reconstructed slice image, or as a three-dimensional portion of
a tomosynthesis volume.

Future work with this model might include reader studies in
which we measure any improvements in accuracy and radiologists
report their trust in our system. Given the increased benefit of other
AT assistance to less-experienced readers®>”, it might be valuable
to compare the benefit of this system with both sub-specialists and
community radiologists who might be called on to do this work
only occasionally. This work might help to extend the quality of care
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Table 2 | Comparison of selected Al mammography techniques to IAIA-BL

IAIA-BL Ref. Ref. %8 Ref. ¢
Inherently interpretable model v v v
(not post-hoc)
Provides global interpretability 4 v
(on model)
Provides local interpretability v v v
(on each case)
Explanation is guaranteed to match v
model reasoning
Incorporate domain-specific 4 v v
terminology
Provides similar prototypes for 4
comparison
Can incorporate fine annotation v
Can be trained on data with mixed v v
labeling

that patients receive at Duke (with highly trained Duke radiologists)
to patients that do not have access to this level of care.

The fine annotation techniques we developed to reduce the use of
confounding information can be extended to other computer vision
applications. The fine annotation technique could also be used on
datasets with known confounders to see how effectively it reduces
(or reveals) use of the confounders in its classification decisions.

Conclusion

Our work shows that we are able to create interpretable mass mar-
gin prediction models with equal or higher performance to their
uninterpretable counterparts. Using only a small dataset, we were
able to provide an interpretable network that performs comparably
with radiologists on mass margin classification and malignancy pre-
diction. The gradient stabilization improvement to the ProtoPNet
training can be added into any future use of its codebase.

Methods

Data augmentation. Given the small training set, we performed data
augmentation such that each training image was randomly flipped, rotated and
underwent random cropping with a crop size of 80% of the image’s original size.
Each class was augmented to have 5,000 images for the training set.

Framework. Models need to be collaborators in the medical decision-making
process to be useful. In mammography, the initial clinical decision is expressed as
a BI-RADS category of 1 to 5, corresponding to the recommendation of whether
the patient needs a biopsy”**. An inscrutable model predicting whether a lesion is
malignant or benign is not useful as a decision aid, as a biopsy is reccommended
for every lesion with a greater than 2% chance of malignancy (BI-RADS 4 and
5). To alter clinical management, an interpretable model is needed to describe its
reasoning process for why the patient should or should not receive a biopsy rather
than provide an inscrutable prediction of malignancy.

Our Al approach includes an explicit reasoning system that resembles that of
a practicing radiologist. Existing interpretability techniques for mammography
include localization as in Fig. 1b, but there is no explanation of why an area is
selected, what attributes of the region are used for classification or which parts
of the training set these associations are learned from. In a non-medical image
analogy, although localization may provide a good interpretation for whether or
not an image contains a vase (perhaps by highlighting the vase), it does not provide
a good interpretation for classification of the vase pattern as Roman versus Asian
antiquity (highlighting the vase pattern provides no further insight). Many recently
published AT mammography algorithms are still entirely uninterpretable, as in
Fig. 1a (ref. ). Our method is designed to analyse lesions in a way that mimics
how a radiologist would approach image interpretation (as in Fig. 1c), it first finds
medically relevant features (in this case the mass margin) then uses those features
to determine the possibility of malignancy. Such a model may be integrated
into a clinical support system for classifying breast lesions, as it can point to
mammogram regions that resemble prototypical signs of cancerous growth (for
example, spiculated mass margin) and thereby assist doctors in making diagnoses.
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Model architecture. Extended Data Fig. 6 gives an overview of our model
architecture.

Given a region of interest x in a mammogram, our IAIA-BL model first extracts
useful features f(x) for mass-margin classification, using a series of convolutional
layers f from a VGG-16 network® pre-trained on ImageNet. The output f(x) is size
14X 14 X ¢, where ¢ is the number of channel; [€{(1,1),...,(1,14),(2,1),..., (14, 14)}
indexes each of the 1 X1 X ¢ patches f(x), across the spatial dimensions.

Following the convolutional layers fis prototype layer g. As in ProtoPNet’, the
prototype layer contains m prototypes P = {p; }j"’: | learned from the training set.

Each prototype is size 1 X 1X c. As a prototype has the same ¢ but a smaller spatial
dimension than the convolutional feature maps f(x), we can interpret the prototype
as representing a prototypical activation pattern of its class and we can visualize the
prototype as a patch of the training image it appears in.

Given convolutional feature maps f(x), the prototype layer g calculates the
similarity score s; between x and each p;. It first computes the distance between
p; and each of the /1 X 1 spatial patches of convolutional feature map f(x) by:
d;; =|| p; — f(x),]|3, and converts distances to similarities:

djy[ +1
djy[ + e’

4)

s;1 = log

(14,14)
I=(1,1)
that compares the input image and each p;.

This provides a set of similarity scores {s;;}

(14,14)
I=(1,1)
The overall s; is calculated using top-k average pooling (as in ref. *°):

sj = avg (tOPk ({Sjvl}z(z(’llj‘l)))) ’ v

that can be arranged spatially

into a similarity map [s;]

Conceptually, this means that if x has spicules along the mass margin, its
convolutional feature maps f(x) will have patches f(x), that represent the spicules
from the input image. These patches will be close (in ¢, distance in the latent
space) to one or more p; that represent spicules on the mass margin. Consequently,
s;; will be large between those spiculated prototypes and patches.

In IAIA-BL we initialize the model with m =15. We prune duplicate prototypes
and the final TAIA-BL model presented has four prototypes for a circumscribed
mass margin, three for an indistinct mass margin and four for a spiculated mass
margin. We set ¢ to 512 in our experiments.

IAIA-BL ends with two fully connected layers. The first fully connected layer
h, multiplies the vector of similarity scores [s, ...,s,,] by a weight matrix to produce
three output scores: jeireumseribed - gindistinet 5y q gspiculated o6 for each margin
type. These are (afterwards) normalized using a softmax function to generate the
probabilities that the mass margin in the input image belongs to each of the three
mass-margin types. The second fully connected layer h, then combines the vector of
(unnormalized) mass—margin scores ?margin _ [}f)drcumscribed’ yindistinct’ }A,spiculated] into
a final score of malignancy 7™, which is passed into a logistic sigmoid function to
produce a probability that the input image has a malignant breast cancer.

Fine annotations. When starting to build an interpretable model for breast lesion
classification, we naively applied the case-based reasoning ProtoPNet architecture
to medical images. Although the model seemed to be learning medically relevant
features due to its high validation accuracy, the model made predictions using
regions of the image that did not correspond to the medical information; in other
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words, the model used confounding information rather than medically relevant
information. This is consistent with observations made by other groups of the
dangers of confounding in medical imaging”. For non-medical image classification
tasks, a typical approach might be to increase the size of the training set; however,
as discussed above, one major barrier to implementation of Al in the medical field
is the limited availability of annotated data®.

To extract more information from our dataset, we collected a small set of
pixel-level (fine) annotations from our radiology team, which permitted better
generalization using a smaller number of images; that is, fine annotation on only
30 images of our limited data set (1,136 annotated mammographic images from
484 patients with lesions) enabled high-quality reasoning and prediction. This
novel approach can reduce the confounding in deep learning by leveraging both
relatively abundant coarsely annotated data and a small amount of finely annotated
data. Most fine-grained classification algorithms either assume the availability
of fine-grained part labels for all input data and use them, or those fine-grained
labels are completely ignored. Our approach provides a middle ground by using
both data with and without fine-grained annotations, which takes full advantage
of the information available. This approach is also practical in the sense that
for real-world problems, annotated data are relatively less abundant and more
expensive to obtain.

We designed a new training paradigm that incorporates this additional expert
annotation information on a subset of the existing patient cases. A radiologist
(FR.S) annotated the area of a lesion image that indicates the mass margin for
that lesion as in Fig. 2b, with the most prominent and defining features marked
by circles and the rest of the lesion margin highlighted by simple lines. The
model incorporates the radiologist-supplied fine annotations by regularizing the
activation of the prototypes over the image. It penalizes a prototype for activating
anywhere on an image not of its class, or for activating outside the region of the
image marked relevant by the radiologist. Figure 2c shows an attention map that
highlights confounding information and would be heavily penalized. Figure
2d shows an attention map that highlights relevant information. By directing
the network to the most relevant parts of the image, we set a strong prior on
the network for where the useful information is centered in the image. As these
annotations are expensive to obtain, we designed the method to be able to use a
small number of these finely annotated cases and a larger number of less expensive
coarsely annotated cases. We include a training loss term in the objective as
described in the methods. When using this, our performance and explanation
both improve.

Model training. We represent the dataset of  x, with y"*#" and y™ labels,

as D = {(x;, y""&", ym )}:‘= |- A thirty-image subset D’ C D comes with the
radiologists (fine) annotations of where medically relevant information is in that
training image. For a training instance (x;, y,"*"®", y™! ) € D', we define m, such
that m, takes the value 0 at those pixels that are marked as ‘relevant to mass margin
identification, and 1 at other pixels. Each m, has the same spatial dimensions
(height and width) as x;.

The training of IAIA-BL has four stages: (A1) training of the convolutional
layers fand the prototype layer g; (A2) projection of prototypes; (A3) training of
the first fully connected layer h, for predicting mass-margin types; and (B) training
of the second fully connected layer h, for predicting malignancy probability. Stages
A1, A2 and A3 are repeated until the training loss for predicting mass-margin
types converges, after which we move to Stage B.

Stage A1. In the first training stage we aim to learn meaningful convolutional
features. In particular, we want convolutional features that represent a particular
mass-margin type to be clustered around a prototype of that particular
mass-margin type, and to be far away from a prototype of other mass-margin
types. As in Chen and colleagues’, we jointly optimize the parameters 0, of f,
and p,, ..., p,, of g, while keeping the two fully connected layers h, and h, fixed.
We minimize the following training loss:

ming,p,, p, CrsEnt + 4.Clst + A;Sep + A/Fine, (6)

where the cross-entropy term (CrsEnt) penalizes misclassification of mass-margin
types on the training data; it also ensures that the learned convolutional features
and the learned prototypes are relevant for predicting mass-margin types.

Differing from Chen and colleagues’ by the use of mink instead of min, the
cluster (Clst) and separation (Sep) costs are defined by:

n
— 1 B
Clst=5% . min . 0

i=1 j: class (p;) =y,

n
Sep=—1%" min @)
i=1j: class (p;) #y,"""

(), with

ry = %Zminkzel)atchﬂ(/(xf)) (” Z— p,l”%)

where mink gives the k smallest squared distances. Empirically, we found that
TAIA-BL trained with the relaxed cluster and separation costs outperforms the
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one trained with the original (that is, k=1) cluster and separation costs of Chen
and co-workers’ on the task of margin classification, possibly because the relaxed
cluster and separation costs (along with the top-k average pooling) allow the
gradient of the loss function to back-propagate through k convolutional patches—
instead of just one patch—during training. Consequently, the gradient will be
less sensitive and more robust to changes in the location of the most activated
convolutional patch by each prototype.

The fine-annotation loss, which is new to this paper, penalizes prototype
activations on medically irrelevant regions of radiologist-annotated training
mammograms (see Fig. 2). The fine-annotation loss is defined by:

Fine =
(8)

> | m; © PAM;, + >
J: class (py) =y, i class (py) oy,

I PAM;; |,
ieD’/

where prototype activation map PAM;; for p; over X, is computed by bilinearly
i
and width) as the fine-annotation mask. This promotes the learning of prototypes
that stay away from any features that could appear in classes that are not the
prototypes’s designated classes, so that the prototypes of a particular class represent
distinguishing features of that class.

To incorporate the training data with fine annotations into model training,
we construct batches with 75 training examples from D with lesion-scale
annotations and ten training examples from D’ with fine-scale annotations. The
fine-annotation loss on a lesion-scale annotation penalizes activation outside of the
area marked as the lesion, whereas the fine-annotation loss on a finely annotated
image penalizes activation outside of the region ‘relevant to the mass margin class,
as marked by the radiologist.

The prototype layer was initialized randomly using the uniform distribution
over a unit hypercube (as the convolutional features from the last convolutional
layer all lie between 0 and 1). In our experiments, 4.=0.8, 4,=0.08 and 4,=0.001.

upsampling the similarity map [s;;] to yield the the same dimensions (height

Stage A2. As in work of Chen and colleagues’, we project p; onto the nearest
convolutional feature patch from the training set D, of the same class as p;.

Stage A3. In this stage, we fine-tune the first fully connected layer h, to further
increase the accuracy in predicting mass-margin types. We fix 6,and p,,....,p,.»
and minimize the following training objective with respect to 8, of the first fully
connected layer h,:

1 . margin
ming, . Z CrsEnt(hy o go f(x;), ;"o ). 9)
i=1

The first time we enter stage A3, we initialize connections in fully connected
layer h, to a value of 1 for prototypes that are positive for that mass margin,
-1 otherwise.

Stage B. In this stage, we train the second fully connected layer h, for predicting
malignancy probability, using a logistic regression model whose input is the
(unnormalized) mass-margin scores produced by the first fully connect layer h,,
and whose output is the malignancy score. To prevent the malignancy information
from biasing the mass margin classification, we train the model in a modular style
and it is not trained completely end-to-end in any stage, that is, there is no return
to Stage A from Stage B.

Reporting Summary
Further information on research design is available in the Nature Research Reporting
Summary linked to this article.

Data availability

The imaging data are not publicly available because they contain confidential
information that may compromise patient privacy as well as the ethical or
regulatory policies of our institution. Data will be made available on reasonable
request, for non-commercial research purposes, to those who contact J.L. (joseph.
lo@duke.edu). Data usage agreements may be required. Source Data are provided
with this paper.

Code availability

Code is available on GitHub at https://github.com/alinajadebarnett/iaiabl. Two
licenses are offered: an MIT license for non-commercial use and a custom license.
The doi for the initial code release is https://doi.org/10.5281/zenodo.5565592.
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5, 4 « 0.7313 _ 1.817

circumscribed circumscribed

This circumscribed lesion is classified as circumscribed.
Extended Data Fig. 1| An automatically generated explanation of mass margin classification for a circumscribed lesion. This circumscribed lesion is

correctly identified as circumscribed. The first two most activated prototypes are drawn from the same image, but are associated with different regions of
that image.
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circumscribed
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circumscribed

This indistinct lesion is classified as indistinct.

Extended Data Fig. 2 | An automatically generated explanation of mass margin classification for an indistinct lesion. This indistinct lesion is correctly
identified as indistinct. The indistinct portion of the lesion margin (right side) activates the indistinct prototype and the circumscribed portion of the lesion

margin (left side) activates the circumscribed prototypes.
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This spiculated lesion is classified as spiculated.

Extended Data Fig. 3 | An automatically generated explanation of mass margin classification for a spiculated lesion. This spiculated lesion is correctly
identified as spiculated.
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This spiculated lesion is classified as circumscribed.

Extended Data Fig. 4 | An automatically generated explanation of mass margin classification for an incorrectly classified lesion. This spiculated lesion
is incorrectly identified as circumscribed. The explanation highlights only the circumscribed portion of the mass margin (top), but does not detect the

spiculated portion (bottom).
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IAIA-BL class activation ProtoPNet GradCAM GradCAM++

Original Image

Circusmcribed
example

Indistinct
example

Spiculated
example

Extended Data Fig. 5 | A comparison of explanations. We compare explanations from two common saliency methods (GradCAM [44] and GradCAM++
[45]) to a class activation visualization derived from our method. The explanations from IAIA-BL are more likely to highlight the lesion and less likely

to highlight the surrounding healthy tissue. This is shown quantitatively by the activation precision metric. The single image visualization is a dramatic
simplification of the full explanation that is generated by IAIA-BL. The IAIA-BL and ProtoPNet class activation visualizations shown in this figure are
generated by taking the average of prototype activation maps for all prototypes of the correct class.
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Extended Data Fig. 6 | The architecture of the IAIA-BL prototype network. Test image x feeds into convolutional layers f. Each patch of f(x), is compared
to each learned prototype p; by calculating the squared distance between the patch and the prototype. The similarity map shows the closest (most
‘activated, that is, smallest L2 distance) patches in red and the furthest patches in blue, overlaid on the test image. Similarity score s; is calculated from the
corresponding similarity map. The similarity scores s feed into fully connected layer h, outputting margin logits y™2&". Margin logits §™" feed into fully
connected layer h,, outputting malignancy logit y™'.
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Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Jod 0O 0O od o g
XXX X X XX X XKX

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Data were collected using custom Perl and Python scripts.
Data analysis We used Python3, Jupyter notebooks and PyTorch to create and analyze models. The full list of libraries with version numbers is included in
the code repository.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability
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The imaging data are not publicly available because they contain confidential information that may compromise patient privacy as well as the ethical or regulatory
policies of our institution. These data will be made available to individuals who contact the author Joseph Lo (joseph.lo@duke.edu) with reasonable requests for
non-commercial research. Data usage agreements may be required.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculation was performed. We used all available annotated mass cases, 1136 images across 484 patients. The test-validation-
train split is standard for a small dataset in machine learning.
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Data exclusions  Images were excluded if a biopsy clip was visible in the image because a biopsy clip could provide lesion localization information.
Replication We trained both our models and baseline models using different random seeds, and found the same findings.

Randomization  We randomly assigned images to the test, train or validation set, such that the class balance was the same in each of the test, train and
validation sets. We ensured that within each class there was no patient overlap between the test set and other sets.

Blinding Blinding wasn't relevant to our study because it was a retrospective study.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies [] chip-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data
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Dual use research of concern

Human research participants

Policy information about studies involving human research participants

Population characteristics We did not differentiate patients by age, gender, genotypic information or previous treatment. The average patient age was
56.1+/- 12.3 years.

Recruitment Patients who received biopsies at Duke Hospital and Duke Hospital systems between 2008 and 2018 were selected. The
relevant self-selection bias here is (1) which patients choose to receive regular mammographic scans, and (2) which patients
do so at Duke and Duke Hospital systems.

Ethics oversight Duke Health IRB

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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