
Is All Learning (Natural) Gradient Descent?

Lucas Shoji1, Kenta Suzuki2, Leo Kozachkov3,4,*

1Department of Physics, MIT
2Department of Mathematics, MIT

3Thomas J. Watson Research Center, IBM Research
4Department of Brain and Cognitive Sciences, MIT

*Corresponding Author
leokoz8@[ibm.com,mit.edu]

Abstract

This paper shows that a wide class of effective learning rules—those that improve
a scalar performance measure over a given time window—can be rewritten as natural
gradient descent with respect to a suitably defined loss function and metric. Specifically,
we show that parameter updates within this class of learning rules can be expressed as the
product of a symmetric positive definite matrix (i.e., a metric) and the negative gradient
of a loss function.

We also demonstrate that these metrics have a canonical form and identify several
optimal ones, including the metric that achieves the minimum possible condition number.
The proofs of the main results are straightforward, relying only on elementary linear
algebra and calculus, and are applicable to continuous-time, discrete-time, stochastic, and
higher-order learning rules, as well as loss functions that explicitly depend on time.

1 Introduction
Finding biologically plausible learning rules for ecologically-relevant tasks is a major goal in
neuroscience [1, 2], just as identifying effective training rules for large-scale neural networks is
in machine learning and artificial intelligence. This paper does not offer either. Instead, we
demonstrate that if such rules are found, then under fairly mild assumptions (i.e., continuous
or small updates), they can be written in a very specific form: the product of a symmetric,
positive definite matrix and the negative gradient of a loss function.

It is well-known that if a learning rule updates parameters by following the negative gradient
of a loss function, the loss decreases along the parameter trajectories [3, 4]. However, many
learning rules do not fit this “pure” gradient descent form. Indeed, there are compelling
reasons to believe that the brain’s learning rules cannot be expressed as pure gradient descent
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Figure 1: A) Contour lines of a loss function (darker colors = lower loss). Parameters update in the
direction of g. If this update decreases the loss, and if the step-size is small, g is equivalent to steepest
descent with a non-Euclidean metric, M(θ). In this case, the angle ψ between g and the negative
gradient is acute. Ellipse: ϵ-ball in this metric. B) Steepest descent with the Euclidean metric. Circle:
ϵ-ball in this metric.
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[1, 5, 6]. Fortunately, there are many ways to decrease a loss function beyond traditional
gradient descent. One notable class of algorithms, which we focus on in this paper, is natural
gradient descent [7].

In natural gradient algorithms, parameter updates are written as the product of a symmetric
positive definite matrix and the negative gradient. If a learning rule can be expressed in this
form, it is considered “effective” because it guarantees improvement of a scalar performance
measure over time (assuming small step sizes). Given the flexibility of choosing the positive
definite matrix, one can ask the converse question: if a learning rule is effective, can it be
written as natural gradient descent? We show that for a wide class of effective learning rules
this is indeed the case. For example, our results hold for all effective continuous-time learning
rules. This leads us to conjecture that any sequence of updates which improves a scalar measure
of performance can be written in natural gradient form.

Formal Setting We consider a set of D real numbers θ ∈ RD which parameterize the func-
tion of a system. In the case of biology, these numbers can represent biophysical variables such
as synaptic diffusion constants or receptor densities [2]. In the case of artificial neural net-
works, these numbers can represent synaptic weights between units. We analyze two common
methods for updating θ towards the goal of improving performance on a task (or set of tasks):
continuous-time evolution and discrete-time updates. In the former, θ evolves continuously
according to a flow

dθ

dt
= g(θ, t) (1)

where g(θ, t) is a potentially nonlinear, time-dependent function. At this stage, we impose no
restrictions on this function (e.g., smoothness). In discrete-time updates, changes to θ occur
at discrete time intervals

θt+1 = θt + η g(θt, t) (2)

where η > 0 is a learning rate parameter. This setting is general enough to capture supervised
learning, self-supervised learning, as well as in-context learning (where t may be identified
with layers in a neural network). Also note that (1) and (2) include techniques which rely on
defining higher-order derivatives of θ, such as accelerated gradient methods [8]. In this case,
one can arrive back at the form of (1) and (2) by expanding the state space 1.

Effective Learning Rules Do Not Require Monotonic Improvement We assume that
each θ can be associated with a system which performs some task. For example, suppose θ
contains the weights of a neural network after training. This neural network can then be
evaluated based on its performance on some task. We define an effective learning rule as one
which leads to the improvement of a scalar performance measure over some time window. We
will use the loss L to measure performance, so that “improvement” means the loss decreases
after time m has elapsed

L(t+m) < L(t). (3)

Note that this definition does not require monotonic improvement in the performance measure.
In particular, (3) allows for temporary setbacks, i.e., dL/dt > 0, so long as the setbacks do
not outweigh the progress on average. This includes, for example, learning rules that take
“one step backwards, two step forwards”. Note also that although the loss does not decrease
monotonically along trajectories of (1), the average loss Lavg does, because

Lavg := 1
m

∫ t+m

t

L(s) ds =⇒
•

Lavg = L(t+m) − L(t)
m

< 0

where the inequality was obtained by using assumption (3). The same argument can be applied
to discrete-time updates. In this case, the average loss continually improves, because

Lavg(t) = 1
m

t+m−1∑
τ=t

L(τ) =⇒ Lavg(t+ 1) − Lavg(t) = L(t+m) − L(t)
m

< 0.

1E.g., for second-order methods, define the extended state space
[
v θ

]
, where v := θ̇.
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Therefore, for the remainder of the paper we will assume without loss of generality that the loss
function L does monotonically decrease. Also note that while the average loss is a particularly
convenient measure of asymptotic improvement, we can in fact consider much more general
measures that guarantee asymptotic improvement of a performance measure without continual
improvement–for example, by considering a sequence of Lyapunov functions as done by Ahmadi
and Parrilo [9]. Finally, while we only consider differentiable loss functions in this paper,
analogous results hold for non-differentiable losses using suitable replacements for the gradient
of the loss [10].

direction of steepest descent
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Figure 2: Natural gradient descent minimizes a loss function (dashed contours) by evolving
the parameters θ in the direction of steepest descent in a non-Euclidean space. This space, a
D-dimensional manifold with metric M(θ, t), is visualized as a surface embedded in a higher
dimensional Euclidean space. We demonstrate that a wide class of learning rules that decreases
the loss function (not necessarily monotonically) fits this framework. In this context, the
dynamics of both θ and M are determined by the learning rule and the loss function.

(Natural) Gradient Descent Gradient descent is a prototypical algorithm for decreasing
a loss function. However it is by no means the only algorithm which does so. An important
generalization of gradient descent is natural gradient descent [7]

•

θ = −M−1 (θ, t) ∇θL (4)

where M(θ, t) is some symmetric positive definite matrix2. To see that natural gradient descent
indeed decreases the loss L in continuous-time, suppose that θ is not at a stationary point, i.e.,
∥∇θL∥ > 0. Then,

•

L = ∇θL⊤ •

θ = −∇θL⊤M−1(θ, t) ∇θL ≤ −∥∇θL(s)∥2

λmax(M) < 0, (5)

where λmax(M) > 0 denotes the largest eigenvalue of M . The first equality follows from the
chain rule, the second equality follows from substituting in (4), and the inequality is obtained
by using the Rayleigh quotient [11]. The above conclusion also holds in discrete-time, for
sufficiently small learning rate η.

There are two interesting connections between natural gradient descent and gradient de-
scent. The first is that in the special case when M = I, natural gradient descent reduces to
gradient descent. The second connection is that both gradient descent and natural gradient
descent perform steepest descent: the negative gradient is the direction of steepest descent
in Euclidean space, whereas the negative natural gradient denotes the direction of steepest
descent in some non-Euclidean space. In particular, in a space where unit lengths at point θ
satisfy

a⊤M(θ, t) a = 1.

add figure reference Natural gradients underlie many techniques in machine learning and opti-
mization [12–18], control theory [17, 19–21], and, more recently, have enjoyed renewed interest
in neuroscience [1, 5, 22].

2Technically, this is natural gradient flow. We will use the term descent to refer to both continuous and
discrete updates.
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2 Main Results
2.1 Continuous-Time Learning Rules
To streamline the notation, we define y as the negative gradient of L and the update vector
g(θ, t), defined in (1), as g. This allows us to express the monotonic decrease of the loss function
more concisely as y⊤g > 0. Our goal is to find a symmetric positive definite matrix M that
maps g to y, which ensures that g can be written in the natural gradient form

Mg = y ⇐⇒ g = −M−1 ∇θL.

Towards this goal, consider the matrix

M = 1
y⊤g

yy⊤ +
D−1∑
i=1

uiu
⊤
i . (6)

Here, the vectors ui are chosen to span the subspace orthogonal to g, denoted by g⊥ := {v ∈
Rn : v⊤g = 0}. As desired, M maps the update vector g to the negative gradient direction y.
By construction, M is symmetric and positive definite. Indeed, for any non-zero vector x we
have

x⊤Mx = 1
y⊤g

(
x⊤y

)2 +
D−1∑
i=1

(
x⊤ui

)2
> 0.

The inequality holds because x cannot be simultaneously orthogonal to both y and all the ui,
as this would contradict the assumption that y⊤g > 0. Later on, for a special family of metrics,
we will derive the full spectrum of M .

Canonical form of the Metric We will now show that any symmetric, positive definite
matrix M such that Mg = y, with g⊤y > 0, is of the form given in (6).

Proof. Let M satisfy the requirements given above. Define

M ′ := M − 1
y⊤g

yy⊤

which is a symmetric matrix. We claim that for any nonzero u ∈ g⊥,

u⊤M ′u > 0.

If so, since the matrix is symmetric and an “orthogonal” eigendecomposition exists, it follows
that M ′ is of the form

∑D−1
i=1 uiu

⊤
i for some basis {ui} of g⊥, proving the canonical form. To

show this, first note that
M ′g = Mg − 1

y⊤g
yy⊤g = 0. (7)

Now take an arbitrary nonzero u ∈ g⊥. Consider the projection of u to y⊥ along g

u′ = u− y⊤u
y⊤g

g,

which is nonzero and orthogonal to y.3 Together with (7) we see

u⊤M ′u = (u′)⊤M ′u′ = (u′)⊤Mu′ > 0,

concluding our proof.
3This projection is well-defined by the assumption of effective learning, i.e., that y⊤g > 0.
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One-Parameter Family of Metrics Although the matrix M in (6) is positive definite, it
will be useful later to have an explicit expression for the eigenvalues of M , for example, in
terms of the angle between y and g. While this is challenging for a general M , we observe that
a one-parameter family of valid metrics M can be written as

M = 1
y⊤g

yy⊤ + α

D−1∑
i=1

uiu
⊤
i = 1

y⊤g
yy⊤ + α

(
I − gg⊤

g⊤g

)
(8)

where α > 0 can depend on y and g, and u⊤
i uj = δij . These are exactly the matrices M

which acts as the scalar α on the orthogonal complement of the span of g and y. We show in
appendix A that the full spectrum of M can be derived for this family of metrics, as a function
of α.

Optimal Metrics We further show in appendix A that the one-parameter family (8) contains
several globally “optimal” metrics. In particular, we prove that among all possible metrics, not
just within this one-parameter family, the metric Mopt which achieves the smallest condition
number is given by setting α = y⊤y

g⊤y
in (8). The spectrum of Mopt can be written in terms of

the angle between y and g, which we call ψ ∈ (−π
2 ,

π
2 ), as follows:

λmax /min(Mopt) = ||y||
||g||

[
1

cos (ψ) ± |tan (ψ)|
]

λd(Mopt) = ||y||
||g||

1
cos (ψ)

(9)

where 1 < d < D. See Figure 3 for a plot of these curves. The condition number κ of the
optimal metric Mopt has a particularly simple form as a function of ψ

κ(Mopt) = λmax(Mopt)
λmin(Mopt)

= 1 + | sin (ψ) |
1 − | sin (ψ) | .

Note that 1/κ(Mopt) ∈ (0, 1], and can be naturally viewed as a measure of similarity between
g and y. We also show in appendix A that, among all possible metrics, the one with the
minimum possible λmax(M) is asymptotically approached as α → 0. It can be shown that this
minimum is given by

λmax(M) > ∥y∥
∥g∥

1
cos (ψ) ,

Similarly, the metric with the maximum possible λmin(M) is approached asymptotically when
α → ∞. This maximum is given by

λmin(M) < ∥y∥
∥g∥ cos (ψ) ,

These results will be particularly useful later on, particularly when analyzing discrete-time
learning rules in section 2.2.

Metric Asymptotics It is clear from (6) that the metric M will “blow-up” if the negative
gradient y becomes orthogonal to the parameter update g. This is expected because, in this
case, learning does not occur (dL/dt = 0). Furthermore, in this case we would have that

y⊤g = g⊤Mg = 0,

which contradicts the positive-definiteness of M . This can be confirmed by inspecting the
eigenvalues of the metric M given in (9) and Figure 3. One sees that as the angle ψ between
y and g approaches π/2 or −π/2, the smallest eigenvalue of the metric goes to zero, causing
M to lose its positive definiteness, while the remaining eigenvalues tend to infinity.
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Figure 3: A) Eigenvalues of the optimal metric Mopt as a function of the angle ψ between
vectors y and g, with the norm ratio ∥y∥/∥g∥ fixed at unity. Refer to Eq. (9) in the main
text. B) Spectrum of Mopt for stable linear time-invariant dynamics over time. C) Lyapunov
function (loss) corresponding to the dynamics in (B), demonstrating a monotonic decrease. D)
Spectrum of Mopt for a small multi-layer network trained with a biologically plausible learning
rule (feedback alignment) to classify MNIST digits. E) Training loss of feedback alignment as a
function of training steps, showing that while the instantaneous loss is not strictly monotonic,
the average loss decreases over time.

Time-Varying Loss So far, we have only considered loss functions L(θ) which do not depend
explicitly on the time t. However, there are many cases of interest where the loss can be thought
of as changing in time, for example in online convex optimization [23]. In this case, we can
show that effective learning implies an extended parameter vector may be written as natural
gradient descent on the time-varying loss L(θ, t). We define this new extended vector as v, and
its time-derivative as v̇

v :=
[
θ t

]⊤ =⇒ •
v =

[
•

θ 1
]⊤

Then, the total derivative of the time-varying loss, as θ evolves in time is given by

•

L = ∂L
∂θ

⊤ •

θ + ∂L
∂t

= ∂L
∂v

⊤
•
v < 0

Thus, we may conclude that updates to the extended variable v perform natural gradient
descent on the time-varying loss L

•
v = −M−1 ∂L

∂v

where M is constructed as before, with y = −∂L
∂v and g = v̇.

2.2 Discrete-Time Learning Rules
Consider a discrete-time learning rule which decreases a loss function L at every step

θt+1 = θt + η g(θt, t) and L(θt+1) − L(θt) < 0. (10)

In this section we will show that (10) implies that the updates g can always be written in the
form of a positive definite matrix multiplied by the discrete gradient, which we define below.
We will also show that for smooth loss functions L and sufficiently small η, it is possible to

6



construct at every time t a symmetric positive definite matrix M (in general different from the
M considered above) such that

g(θt) = −M−1 ∇θL(θt).

To prove this, we recall Taylor’s Theorem [4, 24], and the definition of a Discrete Gradient
[25, 26].

Theorem 1 (Taylor’s Theorem). Suppose that L : RD → R is a twice continuously differen-
tiable function, and that p ∈ RD. Then there exists some λ ∈ (0, 1) such that

L(x+ p) = L(x) + p⊤∇L(x) + 1
2p

⊤ ∇2L (x+ λp) p. (11)

It is important to note that (11) is an equality, and not an approximation (although it can
certainly be used to generate an excellent approximation of the difference between L(x + p)
and L(x) when the norm of p is small and L is smooth).

Definition 1 (Discrete Gradient). Suppose that L : RD → R is a differentiable function, and
that p ∈ RD. Then ∇̄L : RD × RD → RD is a discrete gradient of L if it is continuous and{

p⊤∇̄L(x, x+ p) = L(x+ p) − L(x)
∇̄L(x, x) = ∇L(x).

(12)

Discrete-Time Metric As in the analysis of continuous-time learning rules above, we define
the negative discrete gradient as

ȳ := −∇̄L(θt, θt+1). (13)
Note that (10) and (12) together imply that updates of the parameter vector θ will correlate
with ȳ

η g⊤ȳ = − [L(θt+1) − L(θt)] > 0.
Using this observation, we define the discrete analog of the metric (6) as

M̄ := ȳȳ⊤

ȳ⊤g
+
D−1∑
i=1

uiu
⊤
i (14)

where as before, the vectors ui are chosen to span the subspace orthogonal to g, denoted by
g⊥ := {v ∈ Rn : v⊤g = 0}. We can see from this definition of M̄ that

M̄g = ȳ and M̄ = M̄⊤ ≻ 0.

This implies, via (10), that the parameter updates can be written in the form of a positive
definite matrix multiplied by the discrete gradient, as claimed

θt+1 = θt − ηM̄−1 ∇̄L (θt, θt+1) . (15)

Although (15) bears a resemblance to the natural gradient descent rule, they are not identical.
This is because the discrete gradient does not always correspond to the gradient of a specific
loss function. In the following section, we explore the conditions under which (15) can be
considered a “true” natural gradient descent. In order to do this, we introduce a new discrete
gradient, derived from the Hessian of the loss function.

Small Learning Rate Regime Motivated by Taylor’s Theorem, we now introduce the
following particular discrete gradient

∇̄L(x, x+ p) := ∇L(x) + 1
2∇2L(x+ λp) p (16)

where λ ∈ (0, 1) is derived from (11). It can be easily verified that the discrete gradient
conditions (12) hold. Taking p = η g(θt), we see that for ȳ as in (13),

ȳ = −∇L(θt) − η

2∇2L(θt + ληg) g = −∇L(θt) − ηHg

7



where
H := 1

2∇2L(θt + ληg).

Note that for this particular choice of discrete gradient, we also have that

ȳ → y as η → 0.

Since (15) can be re-written as θt+1 − θt = ηM
−1
y, from (16) we obtain

M̄

(
θt+1 − θt

η

)
= ȳ = −∇L(θt) −H

(
θt+1 − θt

)
.

Adding the Hessian term to both sides, we have[
M̄ + ηH

](θt+1 − θt
η

)
= −∇L(θt). (17)

Equation (17) is almost in the desired natural gradient form. In order to put it in exactly
natural gradient form, we would like the matrix M̄ + H to be positive definite. We will now
show that this can be done by choosing η sufficiently small. In the case where the loss function
L is convex, M̄ +H is always positive definite. We therefore only deal with the case when the
loss L is non-convex, so that H has a negative minimum eigenvalue. That is, we assume

∃ h > 0 such that λmin(H) = −h.

Using the results of section 2.1 on picking a metric with an easily calculable minimum eigen-
value, and the fact [11] that

λmin(M̄ + ηH) ≥ λmin(M̄) + ηλmin(H)

we can ensure that λmin(M̄ + ηH) > 0 by choosing η to be sufficiently small:

η <
1
h

∥ȳ∥
∥g∥ cos(ψ̄)

where ψ̄ is the angle between the discrete gradient ȳ and the update vector g, and is always
between −π/2 and π/2. If η satisfies this inequality, then we can invert the M̄ + ηH term,
yielding

θt+1 − θt
η

= −
[
M̄ + ηH

]−1∇L(θt) (18)

which is precisely a discrete-time natural gradient update rule.

Limit as Learning Rate Goes to Zero (η → 0) Using the fact that

M̄ → M and ηH → 0 as η → 0,

we obtain that the limit of (18) as η → 0 is

θ̇ = −M−1 ∇L(θ).

Stochastic Learning Rules When the discrete learning rule is stochastic, there is a prob-
ability distribution over θt+1 given a known θt. In this case, the average update will be given
as

η⟨g(θt)⟩ = ⟨θt+1 − θt⟩ = ⟨θt+1⟩ − θt.

Effective learning on average for a given loss L, up to the generality of integrating this in time,
can be defined as any learning rule that yields

⟨L(θt+1) − L(θt)⟩ < 0.

Similar to the deterministic case, we can define

M̄ = ⟨ȳ⟩⟨ȳ⟩⊤

⟨g⟩⊤⟨ȳ⟩ +
D−1∑
i=1

uiu
⊤
i

8



where ȳ is the negative discrete gradient defined previously and vectors ui span the subspace
orthogonal to ⟨g⟩. This yields

M̄⟨g⟩ = −∇L(θt) − η⟨Hg⟩.

We want the matrix
M := M̄ + η

⟨Hg⟩⟨Hg⟩⊤

⟨Hg⟩⊤⟨g⟩ (19)

to be positive definite to allow the average learning rule to be expressed as natural gradient
descent,

⟨g⟩ = M−1∇L(θt). (20)
Similar to the deterministic case, this will always hold for small enough η. This is because the
second term in (19) can be made arbitrarily small as η → 0.

3 Applications
3.1 Numerical Experiments
We provide two numerical experiments supporting the theory developed above. In the first,
we show that a stable linear time-invariant (LTI) dynamical system, which in general cannot
be written as the gradient of a scalar function, can be written in the natural gradient form. In
the second, we show that a popular biologically-plausible alternative to propagation, Feedback
Alignment, can also be written as a natural gradient descent.

Linear Time-Invariant Dynamics We consider the stable LTI system
•

θ = g(θ, t) = Aθ (21)

where A is an asymmetric matrix with eigenvalues strictly in the left-hand side of the complex
plane. Because A is asymmetric, the dynamics (21) cannot be written as the gradient of a scalar
function (because this would imply the Hessian, A, is symmetric). Of course, it is well-know
that the trajectories of (21) do decrease the Lyapunov function

L(θ) = θ⊤Pθ where PA+A⊤P = −Q

with Q = Q⊤, P = P⊤ ≻ 0 [27]. In simulations, we set Q = I and solved for P by using the
SciPy [28] function scipy.linalg.solve continuous lyapunov. In this case, we have that

y = −∇θL = −2Pθ

and the metric M can be calculated according to our results, putting the dynamics (21) in the
natural gradient form

•

θ = −M−1(θ) ∇θL
Figure 3 shows the results.

Biologically Plausible Learning (Feedback Alignment) Feedback alignment (FA) is
a biologically plausible alternative to backpropagation (BP) [6] with strong performance on
benchmarks and favorable scaling for large networks [29, 30]. FA uses a random, fixed backward
connectivity structure instead of BP’s symmetric weights. We train a simple linear network
on MNIST, and FA, as expected, improves performance. We also derive the metric M that
relates the updates of BP to FA. The results can be found in Figure 3.

4 Discussion
Contributions and Related Work It is known that if a continuous-time dynamical system
has a strict Lyapunov function, the system can be described by a symmetric positive definite
matrix multiplied by the negative gradient of the Lyapunov function [26, 31]. In our case, the
loss function acts as the Lyapunov function for learning dynamics.
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Our work extends the results of McLachlan et al. [26] to both continuous-time and discrete-
time (both deterministic and stochastic) systems, even when the loss does not decrease mono-
tonically and is potentially time-varying. We prove that the class of metrics considered in
McLachlan et al. [26] and Bárta et al. [31] is canonical–it is the only class of valid metrics. We
derive a one-parameter family of metrics for which the spectrum can be calculated exactly. We
show that the “optimal” metric (in terms of having the smallest condition number) over all
possible metrics exists within this one-parameter family. This proves to be especially useful in
the analysis of discrete-time learning rules.

Conceptually, our findings help clarify discussions about learning rules by showing that
effective learning rules, including biological ones, belong to the class of natural gradient al-
gorithms. This applies in both continuous and discrete time, supporting the idea that the
gradient is fundamental to all learning processes.

Limitations & Future Work We conjecture that any sequence of parameter updates lead-
ing to overall improvement in a loss function (even if not monotonically) can be reformulated
as natural gradient descent for some appropriately chosen loss function and metric. Future
work will focus on broadening the scope of the results presented here, aiming to prove this
conjecture in full generality.

Acknowledgements
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A Optimal Metric

Eigenvalues of One-Parameter Family For convenience, we begin by setting α = γ y
⊤y
y⊤g

,
for some γ > 0.

Lemma 1. The eigenvalues of

M = yy⊤

y⊤g
+ γ

y⊤y
y⊤g

(
I − gg⊤

g⊤g

)
(22)

are
λmax /min(M) = ∥y∥

2∥g∥ cos(ψ)

(
(1 + γ) ±

√
(1 + γ)2 − 4γ cos2 (ψ)

)
,

with multiplicity one each, and
∥y∥

∥g∥ cos(ψ)γ

with multiplicity D − 2.

Proof. Note that
M = ∥y∥

∥g∥ cos (ψ)

(
ŷŷ⊤ + γ(I − ĝĝ⊤)

)
.

Thus it suffices to compute the eigenvalues of

A0 := ŷŷ⊤ − γĝĝ⊤.

Then for v = ŷ + ζĝ, we have

A0v =
(
ŷ − cos(ψ)γĝ

)
+ ζ

(
cos(ψ)ŷ − γĝ

)
=

(
1 + ζ cos (ψ)

)
ŷ −

(
cos(ψ)γ + ζγ

)
ĝ.

This is a multiple of v exactly when

ζ
(
1 + ζ cos (ψ)

)
= −

(
cos(ψ)γ + ζγ

)
,

which gives cos(ψ)ζ2 + (1 + γ)ζ + γ cos (ψ) = 0, i.e.,

ζ = 1
2 cos(ψ)

(
− (γ + 1) ±

√
(γ + 1)2 − 4γ cos2 (ψ)

)
.
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Thus the corresponding eigenvalue of A0 is

λmax /min(A0) = 1 + ζ cos (ψ) = 1
2

(
1 − γ ±

√
(γ + 1)2 − 4γ cos2 (ψ)

)
.

They correspond to the eigenvalues

λmax /min(M) = ∥y∥
2∥g∥ cos (ψ)

(
1 + γ ±

√
(γ + 1)2 − 4γ cos2 (ψ)

)
.

Optimal Condition Number for One-Parameter Family The condition number for M
as in (22) is

κ(M) = 1 + γ +
√

(γ + 1)2 − 4γ cos2 (ψ)
1 + γ −

√
(γ + 1)2 − 4γ cos2 (ψ)

=
(
1 + γ +

√
(γ + 1)2 − 4γ cos2 (ψ)

)2

4γ cos2 (ψ) .

so√
κ(M) = 1 + γ +

√
(γ + 1)2 − 4γ cos2 (ψ)
2√

γ cos (ψ) = γ1/2 + γ−1/2 +
√

(γ1/2 + γ−1/2)2 − 4 cos2 (ψ)
2 cos (ψ) .

Now let cos(ψ)z = γ1/2 + γ−1/2, which is some variable z ≥ 2/ cos(ψ). We are trying to
minimize √

κ(M) = z +
√
z2 − 4
2 .

This is a monotonically increasing function of z so is minimized at z = 2/ cos(ψ). This
corresponds to γ = 1.

Optimal Condition Number for all Metrics Let us prove a lemma:

Lemma 2. Suppose v0, v1 are vectors. The following are equivalent:

1. for any B a symmetric matrix, v⊤
0 Bv0 = v⊤

1 Bv1; and

2. v0 = ±v1.

Proof. One direction is obvious. For the non-obvious direction, let B = (bij)Di,j=1 where bij =
bji. Let v0 = (x1, . . . , xD)⊤ and v1 = (y1, . . . , yD)⊤. Then we have the equation

D∑
i,j=1

bijxixj =
D∑

i,j=1
bijyiyj .

Thus we conclude that xixj = yiyj for any two indices i and j. When i = j this implies
xi = ±yi, but these signs must all be the same using all the other equations.

As a consequence, we can prove the following variant:

Lemma 3. Suppose v0 and v1 are vectors, and g is a non-zero vector. The following are
equivalent:

1. for any symmetric matrix B such that Bg = 0, the equality v⊤
0 Bv0 = v⊤

1 Bv1 holds; and

2. there exists an α ∈ R such that v0 = ±v1 + αg.

Proof. Again, one direction is obvious. For the non-obvious direction, we see consider the
projection of v0 and v1 to g⊥ along g:

v′
0 = v0 − g⊤v0

g⊤g
g, v′

1 = v1 − g⊤v1

g⊤g
g.

Then we see that (v′
0)⊤Bv′

0 = (v′
1)⊤Bv′

1 for all symmetric matrices B on g⊥. Now using
Lemma 2 we see that v′

0 = ±v′
1.
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Proposition 1. Let M be a positive definite matrix such that Mg = y where y⊤g > 0. Let
ψ be the angle between g and y. Then the minimum value for κ(M), achieved by (22) when
γ = 1, is

1 + | sin (ψ) |
1 − | sin (ψ) | .

Proof. We know that M = 1
y⊤g

yy⊤ + M ′ for some symmetric positive definite matrix M ′ on
g⊥. Let M ′ be a matrix attaining the minimum κ(M). Consider the perturbation of M ′ by
some symmetric matrix B such that Bg = 0. Then perturbation theory tells us

λmax /min(M + ϵB) = λmax /min(M) + v⊤
max /minBvmax /minϵ+O(ϵ2)

where vmax /min are eigenvectors of M with eigenvalue λmax /min normalized to have norm 1.
Thus

λmax(M + ϵB)
λmin(M + ϵB) = λmax(M) + v⊤

maxBvmaxϵ

λmin(M) + v⊤
minBvminϵ

+O(ϵ2).

Since M ′ is in particular a local minimum,

λmax(M) · v⊤
minBvmin = λmin(M) · v⊤

maxBvmax.

By Lemma 3 this implies that vmax, vmin, and g are linearly dependent. Hence by applying M ,
we see that so is vmax, vmin, and y. So we can restrict ourself to this two-dimensional subspace
spanned by vmax and vmin. But then the same argument as before shows optimality.

Optimal Maximum and Minimum Metric Eigenvalues We show that a lower bound
(resp., upper bound) for λmin(M) (resp., λmax(M)) for matrices M satisfying the conditions
of Proposition 1 and show that they are never achieved but are asymptotically achieved.
Proposition 2. Let M be a symmetric positive definite matrix such that Mg = y where
y⊤g > 0. Let ψ be the angle between g and y. Then λmin(M) < ∥y∥

∥g∥ cos(ψ). Moreover, the
supremum is asymptotically approached by (22) as γ → ∞.
Proof. Recall that

λmin(M) = min
v ̸=0

v⊤Mv

v⊤v
, (23)

and moreover the minimum is reached by eigenvectors with eigenvalue λmin. Thus

λmin(M) ≤ g⊤Mg

g⊤g
= g⊤y
g⊤g

= ∥y∥
∥g∥ cos (ψ) .

Moreover, equality is not reached since g is not an eigenvector of M . Finally, the minimum
eigenvalue of (22) as γ → ∞ is, by Lemma 1,

lim
γ→∞

∥y∥
2∥g∥ cos(ψ)

(
(1 + γ) −

√
(1 + γ)2 − 4γ cos2 (ψ)

)
= ∥y∥

∥g∥ cos (ψ) .

Proposition 3. Let M be a symmetric positive definite matrix such that Mg = y where
y⊤g > 0. Let ψ be the angle between g and y. Then λmax(M) > ∥y∥

∥g∥ cos(ψ) . Moreover, the
infimum is asymptotically approached by (22) as γ → 0.
Proof. Recall that (e.g., by using (23) and observing that λmax(M) = λmin(M−1)−1)

λmax(M) = max
v ̸=0

v⊤v
v⊤M−1v

,

and moreover the minimum is reached by the eigenvectors with eigenvalue λmax. Thus

λmax(M) ≤ y⊤y
y⊤M−1y

= y⊤y
y⊤g

= ∥y∥
∥g∥ cos (ψ) .

Moreover, equality is not reached since y is not an eigenvector of M . Finally, the maximum
eigenvalue of (22) as γ → 0 is, by Lemma 1,

lim
γ→0

∥y∥
2∥g∥ cos(ψ)

(
(1 + γ) +

√
(1 + γ)2 − 4γ cos2 (ψ)

)
= ∥y∥

∥g∥ cos (ψ) .
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