

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ACHIEVING FAIRNESS-UTILITY TRADE-OFF THROUGH DECOUPLING DIRECT AND INDIRECT BIAS

Anonymous authors

Paper under double-blind review

ABSTRACT

Fairness in regression is crucial in high-stakes domains such as healthcare, finance, and criminal justice, where biased predictions can perpetuate unequal treatment. Bias arises both directly, when sensitive attributes explicitly affect predictions, and indirectly, when correlated predictors act as proxies. Existing fairness-aware regression methods typically address only one type of bias or suffer from reduced predictive performance, especially in case of multivariate sensitive attributes. We introduce a fairness framework that adapts subspace decomposition techniques from envelope regression. The predictor space is decomposed into four orthogonal components: response-specific variation, sensitive variation, shared variation, and residual noise. By penalizing only the sensitive component, our approach offers interpretable control over the fairness-utility trade-off. Unlike black-box methods, it yields interpretable estimators with provable efficiency gains. We validate the framework through simulations and real-world experiments, demonstrating improved fairness and predictive accuracy compared to prior methods. Our results highlight predictor-space decomposition as a principled tool for building fair, efficient, and interpretable regression models.

1 INTRODUCTION

Machine learning is increasingly deployed in high-stakes domains such as healthcare, finance, and criminal justice (Das et al., 2021; Bogen & Rieke, 2018; Kourou et al., 2015; De Fauw et al., 2018; Raji & Buolamwini, 2019; Buolamwini & Gebru, 2018), where unfair predictions can reinforce or amplify social inequities. Ensuring fairness in predictive models is therefore essential. In regression, unfairness arises through two channels: (i) *direct bias*, when sensitive attributes (e.g., race, gender) directly affect predictions, and (ii) *indirect bias*, when correlated predictors act as proxies (Barocas et al., 2023; Calmon et al., 2017; Feldman et al., 2015). Most existing methods mitigate only one form of bias, rely on restrictive assumptions, or sacrifice predictive accuracy.

Naively removing sensitive variables fails to eliminate indirect bias and obscures how unfair influence enters the model. More sophisticated strategies - pre-processing, in-processing, and post-processing (Calders et al., 2013; Johnson et al., 2016; Komiyama et al., 2018; Berk et al., 2021; Agarwal et al., 2019)- have been developed, but primarily in the classification setting. Fair regression with continuous outcomes remains comparatively underexplored (Komiyama et al., 2018; Scutari et al., 2022), especially in the presence of multiple sensitive attributes and complex interactions. Existing regression-based approaches typically rely on constrained optimization or ad hoc penalization. These methods lack a principled decomposition of the predictor space to distinguish direct from indirect bias and do not exploit opportunities for statistical efficiency.

We address these gaps with the *Fair Envelope Regression Model* (FERM) framework. FERM leverages envelope regression to decompose the predictor space into four orthogonal components: (i) response-only, (ii) sensitive-only, (iii) shared response-sensitive, and (iv) residual. Penalizing only the sensitive components provides interpretable control over the fairness-utility trade-off, allowing practitioners to impose fairness constraints without discarding predictive signal. The envelope structure further improves estimation efficiency, yielding more stable estimates than existing fairness-aware baselines. We provide theoretical guarantees on consistency and efficiency, provide expressions detailing how fairness-utility trade-off is achieved, and validate FERM through simu-

054 lations and real-world data. Across settings, FERM consistently achieves superior fairness-utility
 055 trade-offs compared to prior methods.
 056

057 **OUR CONTRIBUTIONS**
 058

- 059 1. **Subspace Decomposition:** We propose FERM, a fairness-aware envelope regression
 060 framework that decomposes predictors into response-only, sensitive-only, shared, and
 061 residual components, enabling transparent attribution of sensitive influence.
 062 2. **Fairness-Utility Trade-off:** By applying a ridge penalty only to sensitive subspaces,
 063 FERM provides a tunable mechanism that interpolates between unconstrained accuracy
 064 and full fairness.
 065 3. **Efficiency and Theory:** FERM leverages the envelope structure to reduce asymptotic vari-
 066 ance relative to the ordinary least squares (OLS) estimates, yielding more stable estimates,
 067 with formal guarantees of consistency and efficiency. We also provide a closed-form char-
 068 acterization of the fairness–utility trade-off.
 069 4. **Empirical Validation:** Simulations and real-world experiments show that FERM achieves
 070 improved fairness-utility trade-offs compared to prior regression-based methods.

071 The remainder of this paper is organized as follows. Section 2 reviews related work on fairness in
 072 regression. Section 3 provides background on envelope regression methodology and related fair-
 073 ness approaches. Section 4 introduces the FERM framework, with theoretical results presented in
 074 Section 5. Section 6 evaluates the proposed method through a series of simulations and real-world
 075 datasets, benchmarking FERM against existing fairness-aware regression techniques such as Fair
 076 Ridge Regression Model (FRRM) (Scutari et al., 2022). Finally, Section 7 discusses limitations and
 077 outlines directions for future research.
 078

079 **2 RELATED WORK**
 080

081 Developing predictors that exhibit independence from protected attributes, often formalized through
 082 notions such as statistical parity, has been a central theme in algorithmic fairness research. Existing
 083 approaches can broadly be categorized into *in-processing*, *pre-processing*, and *post-processing*
 084 strategies, with the majority of work focusing on classification rather than regression. Below we
 085 review the most relevant directions for fairness in regression.
 086

087 **Moment-based and linear regression approaches.** Early works such as Calders et al. (2013),
 088 Johnson et al. (2016), and Komiyama et al. (2018) enforce restricted independence through moment
 089 constraints, typically ensuring that predictions are uncorrelated with sensitive attributes. These
 090 methods are designed primarily for least squares regression and can handle both continuous and
 091 categorical attributes. Komiyama et al. (2018) in particular introduced a quadratic optimization
 092 framework that bounds the relative proportion of variance explained by sensitive attributes, offering
 093 explicit user control of fairness levels and theoretical optimality guarantees.
 094

095 **In-processing with fairness constraints.** Fairness penalties have also been embedded directly
 096 into the regression objective. Berk et al. (2021) proposed convex formulations incorporating both
 097 individual and group fairness notions. Similarly, Pérez-Suay et al. (2017) enforced zero corre-
 098 lation in reproducing kernel Hilbert spaces (RKHS), though their method is largely restricted to least
 099 squares settings. More recently, Scutari et al. (2022) introduced a fairness-aware regression model
 100 with ridge penalties on sensitive attributes, yielding mathematically simple formulations, partially
 101 closed-form solutions, and extensions to generalized and kernelized regression.
 102

103 **Post-processing and minimax analyses.** Post-processing strategies have been explored to en-
 104 force fairness after model training. For example, Chzhen et al. (2020) used Wasserstein barycenters,
 105 while Zhao (2021) derived tight lower bounds on the fairness–accuracy trade-off. Du et al. (2022)
 106 accounted for sample selection bias, and Taturyan et al. (2024) and Divol & Gaucher (2024) de-
 107 veloped post-processing and unawareness-based methods that achieve demographic parity without
 108 requiring sensitive attributes at inference, an appealing property for privacy-constrained settings.
 109 Minimax analyses have further characterized optimal risks under fairness constraints (Chzhen &

108 Schreuder, 2022; Fukuchi & Sakuma, 2023), highlighting fundamental trade-offs as a function of
 109 feature dimension and group counts.
 110

111 **Kernel and probabilistic approaches.** Several works extend fairness constraints to nonlinear set-
 112 tings. Kernel-based methods for equalized odds and mean-parity were introduced by Perez-Suay
 113 et al. (2023) and Wei et al. (2023), providing closed-form solutions in RKHS. Probabilistic mod-
 114 els enforcing statistical independence were explored by Kamishima et al. (2012) and Fukuchi et al.
 115 (2015), though these often suffer from computational inefficiency and lack statistical guarantees.
 116 Finally, Agarwal et al. (2019) generalized the reductions-based minimax optimization framework of
 117 Agarwal et al. (2018) to regression, offering flexible in-processing methods with fairness constraints.

118 Despite this broad literature, most fairness-aware regression methods lack a principled mechanism
 119 to disentangle *direct* and *indirect* effects of sensitive attributes. Existing approaches typically rely
 120 on constrained optimization or penalization, but do not exploit subspace decompositions that could
 121 yield both interpretability and efficiency gains. Our work addresses this gap by introducing a
 122 fairness-aware envelope regression framework that provides a transparent decomposition of pre-
 123 dictor space, a tunable fairness-utility trade-off, and improved estimation precision.
 124

125 3 PRELIMINARIES

127 We begin by introducing the key notation used throughout the paper. Let the random tuple (X, S, Y)
 128 belong to the space $\mathbb{R}^{d_X} \times \mathcal{S} \times \mathbb{R}$, where $X \in \mathbb{R}^{d_X}$ denotes the non-sensitive feature, $Y \in \mathbb{R}$ is the
 129 response, and $S \in \mathcal{S} \subseteq \mathbb{R}^{d_S}$ represents the sensitive attribute, which can be scalar or vector-valued.
 130 Let n denote the number of observations in the dataset $\{(X_i, S_i, Y_i)\}_{i=1}^n$. A fairness-aware algo-
 131 rithm aims to provide an estimator $\hat{Y}(X, S)$ for Y , based on the input (X, S) , while satisfying prede-
 132 fined fairness criteria. For convenience, we define the following matrices, representing the n samples
 133 stacked by rows: $\mathbf{X} = [X_1 \cdots X_n]^T \in \mathbb{R}^{n \times d_X}$ for non-sensitive feature, $\mathbf{Y} = [Y_1 \cdots Y_n]^T \in \mathbb{R}^{n \times 1}$
 134 for the response variable, and $\mathbf{S} = [S_1 \cdots S_n]^T \in \mathbb{R}^{n \times d_S}$ for the sensitive attributes. [We throughout](#)
 135 [assume that \$S, X\$ and \$Y\$ are centered \(zero mean\).](#)

137 3.1 FAIRNESS CRITERIA IN REGRESSION WITH MULTIVARIATE SENSITIVE ATTRIBUTES

139 Fairness in regression is typically enforced by requiring statistical independence between predic-
 140 tions \hat{Y} and sensitive attributes S . Two common operationalizations are: (1) *Uncorrelatedness*:
 141 $\text{Cov}(\hat{Y}, S) = 0$, ensuring linear independence; (2) *Bounded explanatory power*: limiting the vari-
 142 ance in \hat{Y} explained by S , often via an R^2 (cf. Eq. (2)) measure (Komiyama et al., 2018; Scutari
 143 et al., 2022). We adopt the R^2 criterion, which is especially well-suited for multivariate S . It ag-
 144gregates their joint contribution into a single interpretable quantity, avoiding multiple pairwise con-
 145 straints and providing a direct knob for tuning fairness. For completeness, Appendix C.3 shows how
 146 our framework can incorporate alternative notions, such as equality of opportunity, by redefining the
 147 fairness subspace and penalty. Du et al. (2022) review regression fairness notions and confirm that
 148 R^2 (with partial correlations as an alternative) is among the most widely adopted.

149 3.2 PREVIOUS WORKS

151 Existing approaches to fairness in regression models often aim to reduce the association between \mathbf{X}
 152 and \mathbf{S} by introducing auxiliary de-correlation steps. Notably, Komiyama et al. (2018) proposed a
 153 multivariate linear regression to model the relationship between predictors and sensitive attributes,
 154 and use residuals as decorrelated predictors in the subsequent step as follows:

$$155 \quad \mathbf{X} = \mathbf{S}\mathbf{B} + \mathbf{U}, \tag{1}$$

157 The ordinary least squares (OLS) solution and the residuals are computed as

$$159 \quad \hat{\mathbf{B}}_{\text{OLS}} = (\mathbf{S}^T \mathbf{S})^{-1} \mathbf{S}^T \mathbf{X} \in \mathbb{R}^{d_S \times d_X}, \quad \hat{\mathbf{U}} = \mathbf{X} - \mathbf{S}\hat{\mathbf{B}}_{\text{OLS}} \in \mathbb{R}^{n \times d_X}.$$

160 By construction, the residuals $\hat{\mathbf{U}} \in \mathbb{R}^{d_X}$, rows of $\hat{\mathbf{U}}$, are orthogonal to S , satisfying $\text{Cov}(S, \hat{\mathbf{U}}) = 0$.
 161 Using these residuals, Komiyama et al. (2018) define a regression model: $Y = \boldsymbol{\alpha}^T S + \boldsymbol{\beta}^T \hat{\mathbf{U}} + \epsilon$,

162 where $\alpha \in \mathbb{R}^{ds}$ and $\beta \in \mathbb{R}^{dx}$ are coefficients associated with S and \hat{U} , respectively. To ensure
 163 fairness, they constrain the variance explained by S using an R^2 -based measure:
 164

$$165 \quad R^2(\alpha, \beta) = \frac{\text{Var}(\alpha^\top S)}{\text{Var}(\hat{Y})}, \quad (2)$$

168 where \hat{Y} denotes the predicted outcome. A fairness parameter $r \in [0, 1]$ is used to bound $R^2(\alpha, \beta)$,
 169 controlling the trade-off between fairness and predictive performance. The resulting optimization
 170 problem is:
 171

$$\min_{\alpha, \beta} \mathbf{E}[(Y - \hat{Y})^2] \quad \text{subject to} \quad R^2(\alpha, \beta) \leq r.$$

173 This approach explicitly balances prediction accuracy and fairness by controlling the influence of
 174 sensitive attributes on the outcome. Building on this framework, Scutari et al. (2022) highlighted
 175 limitations in the nonconvex formulation and proposed an alternative constrained optimization
 176 approach termed *Fair Ridge Regression Model (FRRM)*. Their method penalizes the sensitive attribute
 177 coefficients (α) with a ridge penalty while leaving the other coefficients (β) unconstrained. Specif-
 178 ically, they solve the following problem:
 179

$$\min_{\alpha, \beta} \|\mathbf{Y} - \mathbf{S}\alpha - \hat{\mathbf{U}}\beta\|_2^2 + \lambda(r)\|\alpha\|_2^2,$$

182 where $\lambda(r) \geq 0$ is the ridge penalty ensuring that $R^2(\alpha, \beta) \leq r$. By imposing a direct penalty on
 183 α , the FRRM simplifies the optimization process and ensures that fairness constraints are met while
 184 maintaining flexibility.
 185

186 **Limitations** Scutari et al. (2022) highlight key limitations in Komiyama et al. (2018)'s approach,
 187 including its reliance on a nonconvex optimization problem that is computationally challenging in
 188 high-dimensional settings and its restriction to linear regression models. Additionally, the fairness
 189 constraint becomes undefined as $r \rightarrow 0$, causing numerical instability, and the coupling of coeffi-
 190 cients α and β complicates interpretation. To address these issues, Scutari et al. (2022) propose the
 191 Fair Ridge Regression Model (FRRM), extending fairness constraints to generalized linear models
 192 and kernel regression. However, challenges remain: (1) **Inefficiency in Auxiliary Models:** The de-
 193 composition of X into components explained by S and residuals relies on multivariate linear regres-
 194 sion, ignoring correlations among predictors. This simplification reduces statistical efficiency and
 195 prediction accuracy. (cf. our Theorem 5.1) (2) **Loss of Interpretability:** Residual-based decom-
 196 position obscures the relationship between X and S , making it harder to understand how sensitive
 197 attributes influence outcomes.
 198

3.3 TOWARDS A PRINCIPLED DECOMPOSITION

200 These limitations motivate a framework that (i) provides a principled subspace decomposition of
 201 predictors, (ii) improves statistical efficiency, and (iii) preserves interpretability. We seek to explic-
 202 itely characterize how X relates to Y and S . As illustrated in Figure 1, we envision X as partitioned
 203 into four interpretable components: variation predictive of Y , variation associated with S , shared
 204 variation, and residual noise. Such a decomposition clarifies the pathways through which sensitive
 205 attributes affect predictions and establishes a natural foundation for models that achieve transparent
 206 and tunable fairness–utility trade-offs.
 207

4 METHODOLOGY

210 Our approach balances fairness and predictive performance by decomposing the predictor space X
 211 relative to both the response Y and the sensitive attributes S . As illustrated in Figure 1, X can be
 212 partitioned into four interpretable parts: shared with both Y and S , unique to Y , unique to S , and
 213 residual.
 214

Projection structure: Let (Γ, Γ_0) and (Φ, Φ_0) be orthogonal bases in \mathbb{R}^{dx} , where Γ spans direc-
 215 tions of X associated with S and Γ_0 its invariant complement; Φ spans predictive directions for Y

216
217
218
219
220
221
222
223
224
225
226
227

Figure 1: Conceptual decomposition of the predictor space X relative to response Y and sensitive attributes S . The diagram illustrates the partitioning of X -space into orthogonal subspaces: Π_{XY} (predictive only), Π_{XS} (sensitive only), Π_0 (residual variation in X) and Π_{XSY} (shared predictive and sensitive).

and Φ_0 the immaterial ones. The decomposition assumes

$$\Gamma_0^\top X \mid S \sim \Gamma_0^\top X, \quad \Gamma^\top X \perp\!\!\!\perp \Gamma_0^\top X \mid S, \quad \text{with } \Gamma^\top \Gamma_0 = 0. \quad (3)$$

$$Y \perp\!\!\!\perp \Phi_0^\top X \mid \Phi^\top X, \quad \Phi^\top X \perp\!\!\!\perp \Phi_0^\top X, \quad \text{with } \Phi^\top \Phi_0 = 0. \quad (4)$$

Intersecting these bases yields four orthogonal subspaces:

$$\begin{aligned} \Pi_{XSY} &= \text{span}(\Gamma) \cap \text{span}(\Phi) && \text{(shared: predictive and sensitive),} \\ \Pi_{XY} &= \text{span}(\Gamma_0) \cap \text{span}(\Phi) && \text{(predictive-only),} \\ \Pi_{XS} &= \text{span}(\Gamma) \cap \text{span}(\Phi_0) && \text{(sensitive-only),} \\ \Pi_0 &= \text{span}(\Gamma_0) \cap \text{span}(\Phi_0) && \text{(residual).} \end{aligned}$$

so any predictor decomposes as $X = X_{XSY} + X_{XY} + X_{XS} + X_0$, with $X_\bullet = P_{\Pi_\bullet} X$, where P_{Π_\bullet} denotes the projection onto Π_\bullet .

Regression models. Using these components, we define:

$$\text{Fair model: } Y = \beta_{XY}^\top X_{XY} + \varepsilon, \quad (5)$$

$$\text{Unconstrained OLS: } Y = \beta_{XY}^\top X_{XY} + \beta_{XSY}^\top X_{XSY} + \varepsilon, \quad (6)$$

$$\text{Interpolated: } \hat{\beta} = \arg \min_{\beta_{XY}, \beta_{XSY}} \|\mathbf{Y} - \mathbf{X}_{XY}\beta_{XY} - \mathbf{X}_{XSY}\beta_{XSY}\|_2^2 + \lambda \|\beta_{XSY}\|_2^2. \quad (7)$$

Here $\lambda \geq 0$ tunes the fairness-utility balance: $\lambda \rightarrow \infty$ yields the fair model (5), $\lambda \rightarrow 0$ recovers OLS (6). We refer to these models as Fair Envelope Regression Models (FERM). Note that, FERM provides an explicit, auditable decomposition of the predictor space into four orthogonal components. Predictions use only the predictive subspace, with a controlled contribution from the shared subspace to achieve the desired fairness level. This makes it transparent which directions in X drive prediction, which encode sensitive information, and how the fairness-utility trade-off is implemented - directly addressing Limitation (2) highlighted at the end of Section 3.2.

4.1 ALGORITHMIC IMPLEMENTATION

Envelope regression provides a practical way to estimate the bases $(\Gamma, \Gamma_0, \Phi, \Phi_0)$. Fitting a response envelope of X relative to S identifies directions associated with or invariant to S , while fitting a predictor envelope of Y relative to X isolates material and immaterial directions. Intersections of these envelopes yield empirical versions of $\Pi_{XSY}, \Pi_{XY}, \Pi_{XS}, \Pi_0$, enabling projection of X into orthogonal components that disentangle bias and signal.

Algorithms 1 and 2 summarize the procedure: (i) estimate envelope bases and intersections; (ii) project X into components; (iii) fit regression models with fairness-utility control by penalizing only the shared subspace. Technical details of envelope estimation, dimension selection, and ridge optimization are deferred to Appendix F.

270 **Algorithm 1** Envelope-Based Decomposition of the Predictor Space

271 1: **Input:** Training observations $\{(X_i, S_i, Y_i)\}_{i=1}^n$, with centered X, S, Y .

272 2: **Output:** Projection operators $\hat{\Pi}_{XSY}, \hat{\Pi}_{XS}, \hat{\Pi}_{XY}, \hat{\Pi}_0$.

273 3: **Response envelope for X relative to S :** Estimate $\hat{\Gamma} \in \mathbb{R}^{dx \times \hat{m}}$ and $\hat{\Gamma}_0$ (with $\hat{\Gamma}^\top \hat{\Gamma}_0 = 0$) by
minimizing a standard response-envelope objective; select \hat{m} by BIC or cross-validation.

274 4: **Predictor envelope for Y relative to X :** Estimate $\hat{\Phi} \in \mathbb{R}^{dx \times \hat{u}}$ and $\hat{\Phi}_0$ (with $\hat{\Phi}^\top \hat{\Phi}_0 = 0$) using
a predictor-envelope objective; select \hat{u} by BIC or cross-validation.

275 5: **Intersections (four subspaces):**

276
$$\hat{\Pi}_{XSY} := \text{span}(\hat{\Gamma}) \cap \text{span}(\hat{\Phi}), \quad \hat{\Pi}_{XY} := \text{span}(\hat{\Gamma}_0) \cap \text{span}(\hat{\Phi}),$$

277
$$\hat{\Pi}_{XS} := \text{span}(\hat{\Gamma}) \cap \text{span}(\hat{\Phi}_0), \quad \hat{\Pi}_0 := \text{span}(\hat{\Gamma}_0) \cap \text{span}(\hat{\Phi}_0).$$

278 6: **return** $\hat{\Pi}_{XSY}, \hat{\Pi}_{XS}, \hat{\Pi}_{XY}, \hat{\Pi}_0$.

284 **Algorithm 2** Training the Interpolated Regressor with Fairness Control

286 1: **Input:** Training observations $\{(X_i, S_i, Y_i)\}_{i=1}^n$, with centered X, S, Y ; $\hat{\Pi}_{XSY}, \hat{\Pi}_{XS}, \hat{\Pi}_{XY}, \hat{\Pi}_0$
from Alg. 1; target fairness $r \in [0, 1]$; new test point (X_{new}, S_{new}) .

287 2: **Output:** Coefficients $(\hat{\beta}_{XY}, \hat{\beta}_{XSY})$, fitted predictor \hat{Y}_λ .

288 3: If $r = 0$, fit Fair model (5): $\hat{\beta}_{XY}^{\text{fair}} := \arg \min_{\beta_{XY}} \|\mathbf{Y} - \mathbf{X}\hat{\Pi}_{XY}\beta_{XY}\|_2^2$; $\hat{Y}_{\text{fair}} := X_{XY}\hat{\beta}_{XY}^{\text{fair}}$.

289 4: If $r = 1$, fit Unconstrained model (OLS) (6):

290
$$(\hat{\beta}_{XY}^{\text{OLS}}, \hat{\beta}_{XSY}^{\text{OLS}}) := \arg \min_{\beta_{XY}, \beta_{XSY}} \|\mathbf{Y} - \mathbf{X}\hat{\Pi}_{XY}\beta_{XY} - \mathbf{X}\hat{\Pi}_{XSY}\beta_{XSY}\|_2^2,$$

291 Compute $\hat{Y}_{new, \text{OLS}} := (\hat{\beta}_{XY}^{\text{OLS}})^\top \hat{\Pi}_{XY}^\top X_{new} + (\hat{\beta}_{XSY}^{\text{OLS}})^\top \hat{\Pi}_{XSY}^\top X_{new}$.

292 5: If $r \in (0, 1)$, fit Interpolated (ridge) fit on shared component (7):

293
$$(\hat{\beta}_{XY}(\lambda), \hat{\beta}_{XSY}(\lambda)) = \arg \min_{\beta_{XY}, \beta_{XSY}} \|\mathbf{Y} - \mathbf{X}\hat{\Pi}_{XY}\beta_{XY} - \mathbf{X}\hat{\Pi}_{XSY}\beta_{XSY}\|_2^2 + \lambda \|\beta_{XSY}\|_2^2.$$

294 Here λ is chosen such that $R_S^2(\lambda) \leq r$ where

295
$$R_S^2(\lambda) := \frac{\text{Var}(\hat{\beta}_{XSY}^\top(\lambda) X_{XSY})}{\text{Var}(\hat{\beta}_{XSY}^\top(\lambda) X_{XSY} + \hat{\beta}_{XY}^\top(\lambda) X_{XY})}. \quad (8)$$

296 Compute $\hat{Y}_{new, \lambda} := \hat{\beta}_{XY}^\top(\lambda) \hat{\Pi}_{XY}^\top X_{new} + \hat{\beta}_{XSY}^\top(\lambda) \hat{\Pi}_{XSY}^\top X_{new}$.

297 6: **return** $(\hat{\beta}_{XY}(\lambda), \hat{\beta}_{XSY}(\lambda), \hat{Y}_\lambda)$.

5 THEORETICAL PROPERTIES

309 We now establish the key properties of our framework: (i) efficiency gains from modeling the predictor
310 subspace structure, and (ii) closed-form characterizations of the fairness–utility trade-off. **Prior**
311 **residual-based approaches** regress Y on $X - X_{XS} = X_{XSY} + X_{XY} + X_0$, removing the sensitive-
312 only component but still fitting OLS on directions that mix predictive, predictive–sensitive, and
313 immaterial noise. In contrast, our method *exploits the envelope structure* by isolating the mate-
314 rial subspace and regressing only on $X_{XSY} + X_{XY}$, thereby removing both sensitive-only and
315 Y -immaterial components (Algorithm 2). This corresponds to projecting $\hat{\beta}_{\text{OLS}}$ onto the predictive
316 subspace $\text{span}\{\Pi_{XSY}, \Pi_{XY}\}$, i.e. $\hat{\beta}_{\text{env}} := P\hat{\beta}_{\text{OLS}}$ is the estimated regression coefficient vector,
317 where P is the projection operator of the space spanned by Π_{XSY} and Π_{XY} .

318 Let the asymptotic variance matrix, $\text{avar}(\cdot)$, such that if $\sqrt{n}(T - \theta) \rightarrow N(0, A)$, then
319 $\text{avar}(\sqrt{n}T) = A$.

321 **Theorem 5.1** (Variance reduction via predictive projection). *Suppose $\sqrt{n}(\hat{\beta}_{\text{OLS}} - \beta) \rightarrow$
322 $N(0, \text{avar}(\sqrt{n}\hat{\beta}_{\text{OLS}}))$. Then asymptotic covariance matrices satisfy*

$$\text{avar}(\sqrt{n}\hat{\beta}_{\text{env}}) = P \text{avar}(\sqrt{n}\hat{\beta}_{\text{OLS}})P \leq \text{avar}(\sqrt{n}\hat{\beta}_{\text{OLS}}).$$

324 The inequality is strict whenever the residual subspace Π_0 is nontrivial.
 325

326 Theorem 5.1 shows that removing immaterial variation yields strictly lower asymptotic variance
 327 than OLS. This efficiency gain translates into improved predictive accuracy, as confirmed by our
 328 experiments in Section 6, directly addressing Limitation (1) highlighted at the end of Section 3.2.

329 **Proposition 5.2** (Consistency). Suppose $\hat{\Sigma}_Y, \hat{\Sigma}_X, \hat{\Sigma}_{XY}, \hat{\Sigma}_{XS}$ are \sqrt{n} -consistent estimators for
 330 $\Sigma_Y, \Sigma_X, \Sigma_{XY}, \Sigma_{XS}$. Let \hat{P} be the estimated projector obtained from Algorithm 1, and define
 331 $\hat{\beta}_{\text{env}}(\hat{P}) = \hat{P}\hat{\beta}_{\text{OLS}}$. Then $\hat{\beta}_{\text{env}}$ is \sqrt{n} -consistent estimator for β .
 332

333 By construction, $\Pi_{XY}X$ is predictive yet independent of S . Furthermore, this implies that
 334 $\text{Cov}(\hat{\Pi}_{XY}^\top X, S) \rightarrow 0$ as $n \rightarrow \infty$. Thus, if a linear regressor \hat{Y} is constructed solely from
 335 $\hat{\Pi}_{XY}^\top X$, it achieves asymptotic fairness in the sense that $\text{Cov}(\hat{Y}, S) \rightarrow 0$ as $n \rightarrow \infty$. We sum-
 336 marize this property in the following lemma.

337 **Lemma 5.3** (Asymptotically Fair Regressor). Let $\hat{Y}_{\text{fair}} := (\hat{\beta}_{XY}^{\text{fair}})^\top X_{XY}$ with $\hat{\beta}_{XY}^{\text{fair}}$ from (5). Under
 338 the assumptions of predictor-space decomposition, $\Pi_{XY}X \perp\!\!\!\perp S$ in the population, hence
 339

$$\text{Cov}(\hat{Y}_{\text{fair}}, S) \xrightarrow{p} 0 \quad \text{as } n \rightarrow \infty.$$

342 Finally, we characterize the interpolation between OLS and fair predictors under ridge penalization.
 343

344 **Theorem 5.4** (Fairness-utility trade-off under predictor-space decomposition). Assume that columns
 345 of \mathbf{X}_{XSY} are orthonormal. Consider three fitted predictors: (i) \hat{Y}_{fair} as in Lemma 5.3 ; (ii) $\hat{Y}_{\text{OLS}} =$
 346 $\hat{\beta}_{XY}^\top X_{XY} + \hat{\beta}_{XS}^\top X_{XS}$ after fitting (6); and (iii) the ridge predictor $\hat{Y}_\lambda = \hat{\beta}_{XY}(\lambda)^\top X_{XY} +$
 347 $\hat{\beta}_{XS}^\top X_{XS}$ after fitting (7) with $\lambda = \lambda(r)$ for given unfairness level $r \in [0, 1]$ so that $R_S^2(\lambda) \leq$
 348 r where $R_S^2(\lambda)$ as in (8). Then the ridge predictor admits the closed-form representation

$$\hat{Y}_\lambda = \frac{n}{n + \lambda(r)} \hat{Y}_{\text{OLS}} + \left(1 - \frac{n}{n + \lambda(r)}\right) \hat{Y}_{\text{fair}}, \quad \lambda(r) \geq 0, \quad (9)$$

351 interpolating between \hat{Y}_{OLS} ($\lambda \rightarrow 0$) and \hat{Y}_{fair} ($\lambda \rightarrow \infty$). Moreover, under squared loss its prediction
 352 risk decomposes as
 353

$$\mathbb{E}[(Y - \hat{Y}_\lambda)^2] = \mathbb{E}[(Y - \hat{Y}_{\text{OLS}})^2] + \left(1 - \frac{n}{n + \lambda}\right)^2 \mathbb{E}[(\hat{Y}_{\text{OLS}} - \hat{Y}_{\text{fair}})^2]. \quad (10)$$

354 This result quantifies the fairness-utility trade-off: penalizing the shared subspace smoothly interpo-
 355 lates between unbiased accuracy and fair model.
 356

360 6 SIMULATION STUDY

361 We evaluate FERM against the FRRM model of Scutari et al. (2022). To demonstrate the value of
 362 decomposition, we present two variants of our method, corresponding to different subspace choices:
 363 (i) **FERM-decorrelated**: prediction is based on the de-correlated component of X orthogonal to
 364 S (i.e., variation in X_{XS}). This corresponds to removing the S -linked subspace before prediction.
 365 (ii) **FERM-predictive**: prediction is based on the subspace of X relevant for Y but orthogonal to S
 366 (i.e., variation in X_{XY}). This leverages the predictor envelope to extract the most informative yet
 367 fair directions. In both cases, FERM enforces fairness by penalizing the sensitive subspace using a
 368 ridge penalty, with the penalty parameter chosen to satisfy a target unfairness budget.
 369

370 The response variable is generated from the following model: $Y = \alpha^\top S + \beta^\top X + \epsilon$, where
 371 $\epsilon \sim \mathcal{N}(0, 0.5^2)$, $\alpha \in \mathbb{R}^{d_S}$, and $\beta \in \mathbb{R}^{d_X}$. The sensitive attributes S are sampled independently
 372 from a multivariate standard normal distribution $\mathcal{N}(0_{d_S}, I_{d_S})$. The predictor variables X consist
 373 of two components: one part correlated with S and another part independent of S . Specifically,
 374 the correlated part of X , denoted as $X_{\text{corr}} \in \mathbb{R}^{d_{\text{corr}}}$, is generated by: $X_{\text{corr}} = \beta_{SX}^\top S_Q S + \eta$, where
 375 $S_Q \in \mathbb{R}^{d_S \times d_S}$ is a projection matrix of rank d_{XS} that captures the subspace of X correlated with
 376 S , $\beta_{SX} \in \mathbb{R}^{d_S \times d_{\text{corr}}}$ is the coefficient matrix, and $\eta \sim \mathcal{N}(0_{d_{\text{corr}}}, I_{d_{\text{corr}}})$ is an independent noise term.
 377 The independent part of X , denoted as $X_{\text{indep}} \in \mathbb{R}^{d_X - d_{\text{corr}}}$, is sampled independently from a multi-
 378 variate standard normal distribution. The complete predictor matrix is constructed by concatenating

378
379
380
381
382
383
384

Table 1: Summary of simulation settings

Setting	d_X	d_{corr}	d_{XS}	d_S	Sample size n	Noise η
(1)	40	20	5	10	5000	normal
(2)	100	50	15	20	20000	normal
(3)	40	20	5	10	5000	poisson

385
386
387
388
389
390
391
392
393
394

(1a) Simulation setting 1: Predictive MSE

(1b) Simulation setting 1: Unfairness on test data

395
396
397
398
399
400
401
402
403
404

(2a) Simulation setting 2: Predictive MSE

(2b) Simulation setting 2: Unfairness on test data

■ FERM-predictive ■ FERM-decorrelated ■ FRRM

407
408
409
410
411
412
413

Figure 2: Left panel: Predictive MSE for FRRM (in blue), FERM-predictive (in red), and FERM-decorrelated (in green) for various unfairness levels r ; lower values are better. Right panel: Unfairness levels on test data (r_{test}) for FRRM (in blue), FERM-predictive (in red), and FERM-decorrelated (in green) at varying unfairness levels r . Simulation settings are described in Table 1.

414
415
416
417
418
419
420
421
422
423

these components $X = [X_{corr}, X_{indep}]$. After generating S , X , and Y , all variables are standardized to have zero mean and unit variance to ensure consistency in the modeling process. The dataset is then split into training and testing sets, where 80% of the samples are randomly assigned to the training set, and the remaining 20% are assigned to the testing set. We generate synthetic datasets $\{(X_i, Y_i, S_i)\}_{i=1}^n$ under three settings, as listed in Table 1. We consider two types of noise distributions for η : in the normal setting, each element of η follows a standard normal distribution, $\eta_{ij} \sim \mathcal{N}(0, 1)$, whereas in the Poisson setting, we set $\eta_{ij} \sim \text{Poi}(1) - 1$ (Results for Poisson setting (3) are provided in the Appendix E, Figure 9). The proposed FERM method and the baseline FRRM method are evaluated across varying unfairness constraints, defined by the unfairness budget $r \in \{0.1, 0.2, \dots, 0.5\}$. Each simulation is repeated 50 times for every r to account for variability in the results.

424
425
426
427
428
429
430
431

Across all settings, as shown in Figure 2, both decomposition-based models outperform FRRM in predictive accuracy (lower MSE) while maintaining comparable unfairness levels r , consistent with the theory in Section 4. **Fairness-utility trade-off (left panels):** at any fixed unfairness budget r , both FERM variants achieve lower test MSE than FRRM, with especially pronounced gains for FERM-predictive in higher-dimensional settings due to its removal of prediction-irrelevant components. **Attained unfairness (right panels):** all methods closely track the target unfairness budget on the test set, indicating that the fairness constraint is accurately enforced. In low dimensions, the two FERM variants perform similarly, but in high dimensions FERM-predictive is consistently superior, as its decomposition more effectively isolates the response-relevant directions in X . Both

Figure 3: Left panel: Predictive MSE for FRRM (in blue), FERM-predictive (in red), and FERM-decorrelated (in green) for unfairness levels $r = \{0.1, 0.2, 0.3\}$; lower values are better. Right panel: Unfairness levels on test data (r_{test}) for FRRM (in blue), FERM-predictive (in red), and FERM-decorrelated (in green) at unfairness levels $r = \{0.1, 0.2, 0.3\}$.

variants remain robust under non-Gaussian noise (see Figure 9). Overall, the simulations confirm that envelope-based decomposition improves statistical efficiency while preserving fairness.

6.1 REAL-WORLD DATA

For our real data application, we use U.S. Health Insurance Dataset (available at: <https://www.kaggle.com/datasets/teertha/ushealthinsurancedataset>). In this analysis, the sensitive attributes include gender, age, medical history, family medical history, and region. After creating dummy variables for all categorical variables, we finally have 15 features in S and 15 features in X . We evaluated the performance under various settings with $r \in 0.1, 0.2, 0.3$ and sample sizes $n \in 2000, 4000, 8000$. The real data was perturbed and each configuration was replicated 30 times. The results are provided in the Figure 3. Results demonstrate that FERM models are superior to FRRM approach in most of the settings.

7 CONCLUSION

We introduced a new framework for fairness-aware regression that decomposes the predictor space into response-specific, sensitive, shared, and residual components. By penalizing only the sensitive subspaces, FERM provides an interpretable and tunable mechanism for balancing fairness and predictive accuracy. Our theoretical results establish efficiency gains relative to OLS and show that fairness can be enforced without discarding predictive signal. Empirical studies on both simulated and real-world datasets confirm that FERM consistently improves the fairness-utility trade-off compared to existing regression-based approaches. Beyond strong empirical performance, the key advantage of FERM lies in its interpretability: fairness constraints are imposed at the subspace level, making explicit how sensitive information enters the model. This transparency distinguishes FERM from black-box debiasing methods and offers practitioners a principled lever to manage fairness requirements. Nevertheless, FERM has important limitations. The method assumes linear subspace decompositions, and its fairness control is tied to covariance-based independence. We highlight these limitations in Appendix H, along with directions for extensions to nonlinear representations, alternative fairness notions, and scalable algorithms for high-dimensional predictors. More broadly, envelope methodology continues to expand. Extensions to generalized linear models (Cook & Zhang, 2015; Forzani & Su, 2021), matrix- and tensor-valued responses and predictors (Cook & Zhang, 2018; Li & Zhang, 2017), and alternative fairness penalties (Scutari et al., 2022) provide natural avenues to adapt and generalize the FERM framework. We discuss these directions, including integration with broader definitions of fairness, in Appendix C.

Overall, our results highlight predictor-space decomposition as a powerful tool for fairness-aware learning. We hope this work encourages further exploration of envelope methods at the intersection of statistical efficiency, interpretability, and algorithmic fairness.

ETHICS STATEMENT

This work introduces FERM as a methodological tool to improve fairness and efficiency in regression. Simulations use only synthetic data, and the real-world experiment relies on a publicly available, anonymized Kaggle dataset. The method is designed to reduce unfair dependence on sensitive variables, though fairness guarantees remain context-dependent. This research complies with the ICLR Code of Ethics and has no conflicts of interest.

REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure reproducibility. All theoretical results are accompanied by formal proofs in Appendix B, with assumptions stated explicitly in Section 5. The full simulation setup, parameter choices, and evaluation protocol are described in Section 6 and Appendix F. Code to reproduce all synthetic experiments and figures, along with scripts for preprocessing the publicly available Kaggle dataset used in the real-world study, is included in the supplementary material. Random seeds and hyperparameter selection procedures are documented to enable exact replication.

REFERENCES

- Alekh Agarwal, Alina Beygelzimer, Miroslav Dudík, John Langford, and Hanna Wallach. A reductions approach to fair classification. In *International conference on machine learning*, pp. 60–69. PMLR, 2018.

Alekh Agarwal, Miroslav Dudík, and Zhiwei Steven Wu. Fair regression: Quantitative definitions and reduction-based algorithms. In *International Conference on Machine Learning*, pp. 120–129. PMLR, 2019.

Solon Barocas, Moritz Hardt, and Arvind Narayanan. *Fairness and machine learning: Limitations and opportunities*. MIT press, 2023.

Richard Berk, Hoda Heidari, Shahin Jabbari, Michael Kearns, and Aaron Roth. Fairness in criminal justice risk assessments: The state of the art. *Sociological Methods & Research*, 50(1):3–44, 2021.

Miranda Bogen and Aaron Rieke. Help wanted: An examination of hiring algorithms, equity, and bias. *Uptown*, December, 7, 2018.

Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy disparities in commercial gender classification. In *Conference on fairness, accountability and transparency*, pp. 77–91. PMLR, 2018.

Toon Calders, Asim Karim, Faisal Kamiran, Wasif Ali, and Xiangliang Zhang. Controlling attribute effect in linear regression. In *2013 IEEE 13th international conference on data mining*, pp. 71–80. IEEE, 2013.

Flavio Calmon, Dennis Wei, Bhanukiran Vinzamuri, Karthikeyan Natesan Ramamurthy, and Kush R Varshney. Optimized pre-processing for discrimination prevention. *Advances in neural information processing systems*, 30, 2017.

Silvia Chiappa. Path-specific counterfactual fairness. In *Proceedings of the AAAI conference on artificial intelligence*, volume 33, pp. 7801–7808, 2019.

Evgeny Chzhen and Nicolas Schreuder. A minimax framework for quantifying risk-fairness trade-off in regression. *The Annals of Statistics*, 50(4):2416–2442, 2022.

Evgeny Chzhen, Clément Denis, Mohamed Hebiri, Luca Oneto, and Massimiliano Pontil. Fair regression with wasserstein barycenters. In *Advances in Neural Information Processing Systems*, volume 33, pp. 7321–7331, 2020.

John B Conway. *A course in functional analysis*, volume 96. Springer, 2019.

- 540 R Dennis Cook and Xin Zhang. Foundations for envelope models and methods. *Journal of the*
 541 *American Statistical Association*, 110(510):599–611, 2015.
- 542
- 543 R Dennis Cook and Xin Zhang. Algorithms for envelope estimation. *Journal of Computational and*
 544 *Graphical Statistics*, 25(1):284–300, 2016.
- 545 R Dennis Cook and Xin Zhang. Fast envelope algorithms. *Statistica Sinica*, 28(3):1179–1197, 2018.
- 546
- 547 R Dennis Cook, Bing Li, and Francesca Chiaromonte. Envelope models for parsimonious and
 548 efficient multivariate linear regression. *Statistica Sinica*, pp. 927–960, 2010.
- 549
- 550 R Dennis Cook, IS Helland, and Zoey Su. Envelopes and partial least squares regression. *Journal*
 551 *of the Royal Statistical Society: Series B (Statistical Methodology)*, 75(5):851–877, 2013.
- 552 Elliot Creager, David Madras, Jörn-Henrik Jacobsen, Marissa Weis, Kevin Swersky, Toniann Pitassi,
 553 and Richard Zemel. Flexibly fair representation learning by disentanglement. In *International*
 554 *conference on machine learning*, pp. 1436–1445. PMLR, 2019.
- 555
- 556 Sanjiv Das, Michele Donini, Jason Gelman, Kevin Haas, Mila Hardt, Jared Katzman, Krishnaram
 557 Kenthapadi, Pedro Larroy, Pinar Yilmaz, and Bilal Zafar. Fairness measures for machine learning
 558 in finance. *The Journal of Financial Data Science*, 2021.
- 559
- 560 Jeffrey De Fauw, Joseph R Ledsam, Bernardino Romera-Paredes, Stanislav Nikolov, Nenad Toma-
 561 sev, Sam Blackwell, Harry Askham, Xavier Glorot, Brendan O’Donoghue, Daniel Visentin, et al.
 562 Clinically applicable deep learning for diagnosis and referral in retinal disease. *Nature medicine*,
 563 24(9):1342–1350, 2018.
- 564
- 565 Victor Divol and Simon Gaucher. Demographic parity in regression and classification within the
 566 unawareness framework. arXiv preprint arXiv:2409.02471, 2024.
- 567
- 568 Wei Du, Xintao Wu, and Hanghang Tong. Fair regression under sample selection bias. In *2022*
 569 *IEEE International Conference on Big Data (Big Data)*, pp. 1435–1444. IEEE, 2022.
- 570
- 571 Michael Feldman, Sorelle A Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkatasubra-
 572 manian. Certifying and removing disparate impact. In *proceedings of the 21th ACM SIGKDD*
 573 *international conference on knowledge discovery and data mining*, pp. 259–268, 2015.
- 574
- 575 Liliana Forzani and Zhihua Su. Envelopes for elliptical multivariate linear regression. *Statistica*
 576 *Sinica*, 31(1):301–332, 2021.
- 577
- 578 Kazuto Fukuchi and Jun Sakuma. Demographic parity constrained minimax optimal regression
 579 under linear model. In *Advances in Neural Information Processing Systems*, volume 36, pp.
 580 8653–8689, 2023.
- 581
- 582 Kazuto Fukuchi, Toshihiro Kamishima, and Jun Sakuma. Prediction with model-based neutrality.
 583 *IEICE TRANSACTIONS on Information and Systems*, 98(8):1503–1516, 2015.
- 584
- 585 Kory D Johnson, Dean P Foster, and Robert A Stine. Impartial predictive modeling: Ensuring
 586 fairness in arbitrary models. *arXiv preprint arXiv:1608.00528*, 2, 2016.
- 587
- 588 Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and Jun Sakuma. Fairness-aware classifier with
 589 prejudice remover regularizer. In *Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2012, Bristol, UK, September 24-28, 2012. Proceedings, Part II* 23, pp. 35–50. Springer, 2012.
- 590
- 591 Motonobu Kanagawa, Philipp Hennig, Dino Sejdinovic, and Bharath K Sriperumbudur. Gaussian
 592 processes and kernel methods: A review on connections and equivalences. *arXiv preprint*
 593 *arXiv:1807.02582*, 2018.
- 594
- 595 Junpei Komiyama, Akiko Takeda, Junya Honda, and Hajime Shimao. Nonconvex optimization for
 596 regression with fairness constraints. In *International conference on machine learning*, pp. 2737–
 597 2746. PMLR, 2018.

- 594 Konstantina Kourou, Themis P Exarchos, Konstantinos P Exarchos, Michalis V Karamouzis, and
 595 Dimitrios I Fotiadis. Machine learning applications in cancer prognosis and prediction. *Computa-*
 596 *tional and structural biotechnology journal*, 13:8–17, 2015.
- 597 Lexin Li and Xin Zhang. Parsimonious tensor response regression. *Journal of the American Statis-*
 598 *tical Association*, 112(519):1131–1146, 2017.
- 600 Ji Liu, Zenan Li, Yuan Yao, Feng Xu, Xiaoxing Ma, Miao Xu, and Hanghang Tong. Fair represen-
 601 *tation learning: An alternative to mutual information.* In *Proceedings of the 28th ACM SIGKDD*
 602 *Conference on Knowledge Discovery and Data Mining*, pp. 1088–1097, 2022.
- 603 Weishen Pan, Sen Cui, Jiang Bian, Changshui Zhang, and Fei Wang. Explaining algorithmic fairness
 604 through fairness-aware causal path decomposition. In *Proceedings of the 27th ACM SIGKDD*
 605 *Conference on Knowledge Discovery & Data Mining*, pp. 1287–1297, 2021.
- 606 Adrián Pérez-Suay, Valero Laparra, Gonzalo Mateo-García, Jordi Muñoz-Marí, Luis Gómez-Chova,
 607 and Gustau Camps-Valls. Fair kernel learning. In *Joint European Conference on Machine Learn-*
 608 *ing and Knowledge Discovery in Databases*, pp. 339–355. Springer, 2017.
- 609 Alberto Perez-Suay, Pablo Gordaliza, Jean-Michel Loubes, Dino Sejdinovic, and Gustau Camps-
 610 Valls. Fair kernel regression through cross-covariance operators. *Transactions on Machine Learn-*
 611 *ing Research*, 2023.
- 612 Inioluwa Deborah Raji and Joy Buolamwini. Actionable auditing: Investigating the impact of pub-
 613 *licly naming biased performance results of commercial ai products.* In *Proceedings of the 2019*
 614 *AAAI/ACM Conference on AI, Ethics, and Society*, pp. 429–435, 2019.
- 615 Craig Saunders, Alexander Gammerman, and Volodya Vovk. Ridge regression learning algorithm
 616 in dual variables. In *Proceedings of the Fifteenth International Conference on Machine Learning*,
 617 pp. 515–521, 1998.
- 618 Marco Scutari, Francesca Panero, and Manuel Proissl. Achieving fairness with a simple ridge
 619 *penalty.* *Statistics and Computing*, 32(5):77, 2022.
- 620 Grigory Tatyryan, Evgeny Chzhen, and Mohamed Hebiri. Regression under demographic parity
 621 *constraints via unlabeled post-processing.* In *Advances in Neural Information Processing Systems*,
 622 volume 37, pp. 117917–117953, 2024.
- 623 Shuyi Wei, Jian Liu, Bo Li, and Hongyuan Zha. Mean parity fair regression in rkhs. In *Proceed-*
 624 *ings of the 26th International Conference on Artificial Intelligence and Statistics*, volume 206 of
 625 *Proceedings of Machine Learning Research*, pp. 4602–4628. PMLR, 2023.
- 626 Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. Learning fair representations.
 627 In *International conference on machine learning*, pp. 325–333. PMLR, 2013.
- 628 Xin Zhang, Kai Deng, and Qing Mai. Envelopes and principal component regression. *Electronic*
 629 *Journal of Statistics*, 17(2):2447–2484, 2023.
- 630 Yuchen Zhang, John Duchi, and Martin Wainwright. Divide and conquer kernel ridge regression: A
 631 *distributed algorithm with minimax optimal rates.* *The Journal of Machine Learning Research*,
 632 16(1):3299–3340, 2015.
- 633 Han Zhao. Costs and benefits of fair regression. arXiv preprint arXiv:2106.08812, 2021.
- 634
- 635
- 636
- 637
- 638
- 639
- 640
- 641
- 642
- 643
- 644
- 645
- 646
- 647

648 APPENDIX
649650 A ENVELOPE REGRESSION MODELS
651652 In this section, we illustrate the envelope regression methods, which aims to improve estimation
653 efficiency by identifying relevant subspaces in the response or predictor space Cook et al. (2010;
654 2013), forming the foundation of our proposed methodology.655 **Definition A.1** (M-Envelopes, (Cook et al., 2010)). For $M \in \mathbb{R}^{d \times d}$ and $\mathcal{B} \subseteq \text{span}(M)$, the
656 M -envelope of \mathcal{B} , denoted as $\mathcal{E}_M(\mathcal{B})$, is defined as the intersection of all reducing subspaces of
657 M that contains \mathcal{B} .658 **Response Envelope Regression Model** We employ the response envelope model, which assumes
659 that a part of the predictors \mathbf{X} remain stochastically constant as the sensitive attributes \mathbf{S} vary.
660 Consider the model:

661
$$X = B^\top S + e, \quad (11)$$

662 where e is zero-mean normal noise with covariance matrix $\text{Cov}(e) = \Sigma_X$. The response envelope
663 model assumes that the distribution of certain linear combinations of X is invariant to S . This
664 decomposition is formalized using two orthogonal matrices $\Gamma \in \mathbb{R}^{d_X \times m}$ and $\Gamma_0 \in \mathbb{R}^{d_X \times (d_X - m)}$,
665 where $[\Gamma \ \Gamma_0]$ is an orthogonal matrix. Then we have:

- 666 (a)
- $\Gamma_0^\top X | S \sim \Gamma_0^\top X$
- , indicating invariance of
- $\Gamma_0^\top X$
- to
- S
- .
-
- 667 (b)
- $\Gamma^\top X$
- is uncorrelated with
- $\Gamma_0^\top X$
- given
- S
- .

668 These conditions imply that $\Gamma_0^\top X$ carries no information about S . Furthermore, Cook et al. (2010)
669 showed that conditions (a) and (b) are equivalent to:

- 670 (a')
- $\text{span}(B) \subset \text{span}(\Gamma)$
- .
-
- 671 (b')
- $\Sigma_X = \Sigma_1 + \Sigma_2 = P_\Gamma \Sigma_X P_\Gamma + Q_\Gamma \Sigma_X Q_\Gamma$
- ,

672 where Σ_X is the covariance of X , P_Γ and $Q_\Gamma = I - P_\Gamma$ are projection operators onto $\text{span}(\Gamma)$ and
673 $\text{span}(\Gamma_0)$, respectively. Based on these conditions, the response envelope model can be expressed
674 as (Conway, 2019):

675
$$X = \Gamma \zeta S + e, \quad (12)$$

676
$$\Sigma_X = \Gamma \Omega \Gamma^\top + \Gamma_0 \Omega_0 \Gamma_0^\top,$$

677 where $\zeta \in \mathbb{R}^{m \times d_S}$ denotes the coefficients, the columns of Γ is an orthogonal basis for the Σ_X -
678 envelope of $\text{span}(B)$, denoted by $\mathcal{E}_{\Sigma_X}(\text{span}(B))$, and $m = \dim(\mathcal{E}_{\Sigma_X}(\text{span}(B)))$. The matrices
679 $\Omega \in \mathbb{R}^{m \times m}$ and $\Omega_0 \in \mathbb{R}^{(d_X - m) \times (d_X - m)}$ provide the coordinates of Σ_X with respect to Γ .680 The visual representation (Figure 4) illustrates this decomposition for $X \in \mathbb{R}^2$ and $S \in \mathbb{R}$. Each
681 point represents an observation $X = (X_1, X_2)$, colored according to its value of the sensitive
682 attribute S .

- 683 • The blue arrow, labeled
- $\text{Span}(\Gamma)$
- , indicates the direction in the
- X
- space along which the
-
- 684 values of
- X
- change significantly with
- S
- . Observations with similar
- S
- values tend to cluster
-
- 685 or vary predominantly along this direction.
-
- 686 • The red arrow, labeled
- $\text{Span}(\Gamma_0)$
- , represents the direction in the
- X
- space along which the
-
- 687 values of
- X
- are invariant of
- S
- . Variations along this direction show no systematic change
-
- 688 with the sensitive attribute.

Figure 4: Response X with Sensitive Attribute S and Envelope Subspaces. The data points are colored by the value of S . The blue arrow indicates the direction of the sensitive-associated subspace $\text{Span}(\Gamma)$, while the red arrow indicates the sensitive-invariant subspace $\text{Span}(\Gamma_0)$.

Predictor Envelope Regression Model The predictor envelope model Cook et al. (2013) identifies material and immaterial parts of the predictors X in the regression of Y on X . The model is defined as:

$$Y = \mu_Y + \beta^\top (X - \mu_X) + \epsilon, \quad (13)$$

where ϵ is zero-mean noise. The predictor envelope method seeks a dimension reduction for X by finding the Σ_X -envelope of $\text{span}(\beta^\top)$, denoted by $\varepsilon_{\Sigma_X}(\text{span}(\beta^\top))$. This decomposition divides X into material and immaterial parts, denoted as $P_M X$ and $Q_M X$, which satisfies

(i) $Q_M X$ and $P_M X$ are uncorrelated.

(ii) $Q_M X$ is uncorrelated with Y given $P_M X$.

Let $u = \dim(\varepsilon_{\Sigma_X}(\text{span}(\beta^\top)))$, and let $\Phi \in \mathbb{R}^{p \times u}$ and $\Phi_0 \in \mathbb{R}^{p \times (p-u)}$ be orthogonal bases for $\varepsilon_{\Sigma_X}(\text{span}(\beta^\top))$ and its orthogonal complement, respectively. The predictor envelope model can then be written as:

$$Y = \mu_Y + \psi^\top \Phi^\top (X - \mu_X) + \epsilon, \quad (14)$$

$$\Sigma_X = \Phi \Delta \Phi^\top + \Phi_0 \Delta_0 \Phi_0^\top,$$

where $\beta = \Phi \psi$, and $\Delta \in \mathbb{R}^{u \times u}$ and $\Delta_0 \in \mathbb{R}^{(p-u) \times (p-u)}$ provide the coordinates of Σ_X with respect to Φ .

Remark A.2. Throughout the paper, we use the terms “associated” for S and “predictive” for Y because the two envelopes play fundamentally different roles in our framework. The matrix Γ spans directions of X that are *associated* with S , that is, the variation in X that can be explained by S . In contrast, Φ spans the directions of X that are *predictive* of Y , i.e., the variation that is material for the regression of Y on X . Their complements naturally take on different names: Γ_0 corresponds to S -invariant directions, while Φ_0 corresponds to Y -immaterial directions. This terminology is directly inherited from the envelope regression literature, where predictor envelopes (for S) and response envelopes (for Y) describe these two distinct types of material-immaterial decompositions.

756 A.1 ENVELOPE ESTIMATION OBJECTIVE
757758 Given the dimension u of an envelope subspace, envelope estimation reduces to solving the con-
759 strained optimization problem

760
$$\hat{\Gamma} = \arg \min_{\Gamma \in \mathbb{R}^{p \times u} : \Gamma^\top \Gamma = I_u} J_n(\Gamma), \quad J_n(\Gamma) = \log |\Gamma^\top \hat{M} \Gamma| + \log |\Gamma^\top (\hat{M} + \hat{U})^{-1} \Gamma|, \quad (15)$$

761

762 where $\hat{M} \succ 0$ and $\hat{U} \succeq 0$ are finite-sample estimators of the population matrices M and U . The
763 envelope estimator is then defined as
764

765
$$\hat{\mathcal{E}}_M(U) = \text{span}(\hat{\Gamma}).$$

766

767 The constraint $\Gamma^\top \Gamma = I_u$ ensures that Γ has orthonormal columns. Consequently, optimization
768 problem (15) is *non-convex* and takes place on a Stiefel manifold. If we treat the subspace $\mathcal{S} =$
769 $\text{span}(\Gamma)$ as the argument rather than the basis matrix Γ , then the problem becomes equivalent to a
770 non-convex optimization over the Grassmann manifold (the set of u -dimensional subspaces of \mathbb{R}^p).
771772 This formulation highlights that envelope estimation is inherently a problem of manifold optimiza-
773 tion. Almost all envelope methods, including those used in regression, prediction, and our fairness-
774 aware adaptation (FERM), are connected through this shared objective structure.
775776 **Choice of \hat{M} and \hat{U} :** The specific form of \hat{M} and \hat{U} depends on whether one is estimating a
777 *response envelope* or a *predictor envelope*. Let $\hat{\Sigma}_Y, \hat{\Sigma}_X, \hat{\Sigma}_S, \hat{\Sigma}_{XY}, \hat{\Sigma}_{XS}$ and $\hat{\Sigma}_{YX} = \hat{\Sigma}_{XY}^\top$,
778 $\hat{\Sigma}_{SX} = \hat{\Sigma}_{XS}^\top$ denote the (centered) sample covariance and cross-covariance matrices computed
779 from $\{(X_i, S_i, Y_i)\}_{i=1}^n$. As described in Cook & Zhang (2018); Zhang et al. (2023), Then the em-
780 pirical counterparts used in equation 15 are:
781

- 782 • Response envelope model in (12) :

783
$$\hat{M} = \hat{\Sigma}_X, \quad \hat{U} = \hat{\Sigma}_{XS} \hat{\Sigma}_{SX}.$$

784

- 785 • Predictor envelope model in (14) :

786
$$\hat{M} = \hat{\Sigma}_X, \quad \hat{U} = \hat{\Sigma}_{XY} \hat{\Sigma}_{YX}.$$

787

788 789 790 791 B PROOFS OF RESULTS IN SECTION 5
792793 794 795 **Proof of Theorem 5.1:**796 Recall that $\hat{\beta}_{\text{env}} := P\hat{\beta}_{\text{OLS}}$, where P is the orthogonal projector onto the subspace spanned by
797 Π_{XSY} and Π_{XY} . Let $\Theta \in \mathbb{R}^{dx \times k}$ have orthonormal columns forming a basis for this subspace,
798 and let $\Theta_0 \in \mathbb{R}^{dx \times (dx-k)}$ form an orthonormal basis for its orthogonal complement, where $k =$
799 $\dim(\text{span}\{\Pi_{XSY}, \Pi_{XY}\})$.
800801 Since $\beta \in \text{range}(P)$, we have $P\beta = \beta$. Thus,

802
$$\sqrt{n}(\hat{\beta}_{\text{env}} - \beta) = \sqrt{n}P(\hat{\beta}_{\text{OLS}} - \beta).$$

803

804 Because $v \mapsto Pv$ is linear and continuous, the continuous mapping theorem combined with the
805 assumed asymptotic normality of $\hat{\beta}_{\text{OLS}}$ gives

806
$$\sqrt{n}(\hat{\beta}_{\text{env}} - \beta) \xrightarrow{d} N(0, P\Sigma P),$$

807

808 where $\Sigma := \text{avar}(\sqrt{n}\hat{\beta}_{\text{OLS}})$. Therefore,
809

810
$$\text{avar}(\sqrt{n}\hat{\beta}_{\text{env}}) = P\Sigma P.$$

810 Next, express P and $I - P$ in the chosen orthonormal basis:
 811

$$812 \quad P = \Theta \Theta^\top, \quad I - P = \Theta_0 \Theta_0^\top.$$

813 With respect to this basis, Σ has the block form
 814

$$815 \quad \Sigma = [\Theta \quad \Theta_0] \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} [\Theta \quad \Theta_0]^\top, \quad \text{where } \Sigma_{ij} = \Theta_i^\top \Sigma \Theta_j.$$

817 By construction of the envelope subspace, $\Sigma_{12} = \Sigma_{21}^\top = 0$, so Σ is block-diagonal with respect to
 818 $P \oplus P^\perp$. Hence,
 819

$$820 \quad P \Sigma P = \Theta \Sigma_{11} \Theta^\top, \quad \Sigma - P \Sigma P = \Theta_0 \Sigma_{22} \Theta_0^\top.$$

821 Since $\Sigma \succeq 0$ implies $\Sigma_{22} \succeq 0$, we obtain $\Sigma - P \Sigma P \succeq 0$, i.e.,
 822

$$823 \quad P \Sigma P \preceq \Sigma.$$

824 Finally, if Θ_0 is nontrivial and $\Sigma_{22} \succ 0$, then
 825

$$826 \quad \Sigma - P \Sigma P = \Theta_0 \Sigma_{22} \Theta_0^\top \succ 0,$$

827 which establishes the strict inequality $P \Sigma P \prec \Sigma$. \square
 828

829 **Proof of Proposition 5.2.** The result follows by combining the asymptotic normality of $\hat{\beta}_{OLS}$ with
 830 the \sqrt{n} -consistency of envelope subspace estimators.
 831

832 First, by standard linear model theory,

$$833 \quad \sqrt{n}(\hat{\beta}_{OLS} - \beta) \xrightarrow{d} N(0, \Sigma),$$

834 so $\hat{\beta}_{OLS}$ is \sqrt{n} -consistent for β .
 835

836 Second, Algorithm 1 estimates the envelope projector \hat{P} using either the 1D algorithm of Cook &
 837 Zhang (2016) or the NIECE algorithm of Zhang et al. (2023). Proposition 6 in Cook & Zhang (2016)
 838 and Theorem 1 in Zhang et al. (2023) both establish that the estimated envelope subspace converges
 839 at \sqrt{n} -rate to the population envelope subspace, i.e.,
 840

$$841 \quad \|\hat{P} - P\| = O_p(n^{-1/2}).$$

842 Now decompose
 843

$$844 \quad \hat{\beta}_{env}(\hat{P}) - \beta = (\hat{P} - P)\hat{\beta}_{OLS} + P(\hat{\beta}_{OLS} - \beta).$$

845 Since $\hat{\beta}_{OLS} = O_p(1)$ and $\hat{P} - P = O_p(n^{-1/2})$. The second term is asymptotically normal with
 846 mean zero and covariance $P \Sigma P$ by Theorem 5.1.
 847

Therefore,
 848

$$849 \quad \sqrt{n}(\hat{\beta}_{env}(\hat{P}) - \beta) = O_p(1),$$

850 showing that $\hat{\beta}_{env}$ is \sqrt{n} -consistent. \square
 851

852 **Proof of Theorem 5.4:**

853 Note that

$$854 \quad \hat{\beta}_{XY}^{\text{fair}} = \arg \min_{\beta_{XY}} \|\mathbf{Y} - \mathbf{X}_{XY} \beta_{XY}\|_2^2,$$

$$856 \quad (\hat{\beta}_{XY}^{\text{OLS}}, \hat{\beta}_{XSY}^{\text{OLS}}) = \arg \min_{\beta_{XY}, \beta_{XSY}} \|\mathbf{Y} - \mathbf{X}_{XY} \beta_{XY} - \mathbf{X}_{XSY} \beta_{XSY}\|_2^2,$$

$$858 \quad (\hat{\beta}_{XY}(\lambda), \hat{\beta}_{XSY}(\lambda)) = \arg \min_{\beta_{XY}, \beta_{XSY}} \|\mathbf{Y} - \mathbf{X}_{XY} \beta_{XY} - \mathbf{X}_{XSY} \beta_{XSY}\|_2^2 + \lambda \|\beta_{XSY}\|_2^2,$$

859 with penalty $\lambda \geq 0$ applied only to the shared component. Thus,
 860

$$861 \quad \hat{\beta}_{XY}(\lambda) = \hat{\beta}_{XY}^{\text{OLS}} = \left(\hat{\Pi}_{XY}^\top \mathbf{X}^\top \mathbf{X} \hat{\Pi}_{XY} \right)^{-1} \hat{\Pi}_{XY}^\top \mathbf{X}^\top \mathbf{Y},$$

$$863 \quad \hat{\beta}_{XSY}(\lambda) = (\mathbf{X}_{XSY}^\top \mathbf{X}_{XSY} + \lambda(r)I)^{-1} \mathbf{X}_{XSY}^\top \mathbf{Y}.$$

864 Using Sherman-Morrison-Woodbury identity for matrices, we have
 865

$$866 \quad (867) \quad (\mathbf{X}_{XSY}^\top \mathbf{X}_{XSY} + \lambda(r)I)^{-1} = (\mathbf{X}_{XSY}^\top \mathbf{X}_{XSY})^{-1} - (\mathbf{X}_{XSY}^\top \mathbf{X}_{XSY})^{-1} \left(\frac{1}{\lambda(r)} \mathbf{X}_{XSY}^\top \mathbf{X}_{XSY} + I \right)^{-1}.$$

868
 869 Thus,
 870

$$871 \quad \hat{\beta}_{XSY}(\lambda) = (\mathbf{X}_{XSY}^\top \mathbf{X}_{XSY})^{-1} \mathbf{X}_{XSY}^\top \mathbf{Y} - (\mathbf{X}_{XSY}^\top \mathbf{X}_{XSY})^{-1} \left(\frac{1}{\lambda(r)} \mathbf{X}_{XSY}^\top \mathbf{X}_{XSY} + I \right)^{-1} \mathbf{X}_{XSY}^\top \mathbf{Y}$$

$$872 \quad = \hat{\beta}_{XSY}^{\text{OLS}} - (\mathbf{X}_{XSY}^\top \mathbf{X}_{XSY})^{-1} \left(\frac{1}{\lambda(r)} \mathbf{X}_{XSY}^\top \mathbf{X}_{XSY} + I \right)^{-1} \mathbf{X}_{XSY}^\top \mathbf{Y}.$$

876 This allows us to obtain the following representation, using $\mathbf{X}_{XSY}^\top \mathbf{X}_{XSY} = nI$,
 877

$$878 \quad \hat{Y}_\lambda(X, S) = \hat{\beta}_{XY}(\lambda)^\top X_{XY} + \hat{\beta}_{XSY}^\top(\lambda) X_{XSY}$$

$$879 \quad = (\hat{\beta}_{XY}^{\text{OLS}})^\top X_{XY} + (\hat{\beta}_{XSY}^{\text{OLS}})^\top X_{XSY} - ((\mathbf{X}_{XSY}^\top \mathbf{X}_{XSY})^{-1} \left(\frac{1}{\lambda(r)} \mathbf{X}_{XSY}^\top \mathbf{X}_{XSY} + I \right)^{-1} \mathbf{X}_{XSY}^\top \mathbf{Y})^\top X_{XSY}$$

$$880 \quad = (\hat{\beta}_{XY}^{\text{OLS}})^\top X_{XY} + (\hat{\beta}_{XSY}^{\text{OLS}})^\top X_{XSY} - \frac{1}{n} \frac{\lambda(r)}{n + \lambda(r)} (\mathbf{X}_{XSY}^\top \mathbf{Y})^\top X_{XSY}$$

$$881 \quad = (\hat{\beta}_{XY}^{\text{OLS}})^\top X_{XY} + (\hat{\beta}_{XSY}^{\text{OLS}})^\top X_{XSY} - \frac{\lambda(r)}{n + \lambda(r)} (\hat{\beta}_{XSY}^{\text{OLS}})^\top X_{XSY}$$

882
 883 On rearranging, we get
 884

$$885 \quad \hat{Y}_\lambda = \frac{n}{n + \lambda(r)} \hat{Y}_{\text{OLS}} + \left(1 - \frac{n}{n + \lambda(r)} \right) \hat{Y}_{\text{fair}}, \quad \lambda(r) \geq 0$$

886 Let $\omega(n, r) = \frac{n}{n + \lambda(r)}$. Thus,
 887

$$888 \quad Y - \hat{Y}_\lambda = Y - \left[\omega(n, r) \hat{Y}_{\text{OLS}} + (1 - \omega(n, r)) \hat{Y}_{\text{fair}} \right] = (Y - \hat{Y}_{\text{OLS}}) + (1 - \omega(n, r))(\hat{Y}_{\text{OLS}} - \hat{Y}_{\text{fair}})$$

889 Hence
 890

$$891 \quad E[Y - \hat{Y}_\lambda]^2 = E[Y - \hat{Y}_{\text{OLS}}]^2 + (1 - \omega(n, r))^2 E[\hat{Y}_{\text{OLS}} - \hat{Y}_{\text{fair}}]^2$$

$$892 \quad + 2(1 - \omega(n, r)) E[(Y - \hat{Y}_{\text{OLS}})(\hat{Y}_{\text{OLS}} - \hat{Y}_{\text{fair}})].$$

901 But note that $(Y - \hat{Y}_{\text{OLS}})$ and $(\hat{Y}_{\text{OLS}} - \hat{Y}_{\text{fair}})$ are orthogonal, hence uncorrelated. Since, $E(e) = 0$,
 902 the cross-term above vanishes.

903 That is,
 904

$$905 \quad \text{MSE}_\lambda = \text{MSE}_{\text{OLS}} + (1 - \omega(n, r))^2 \text{MSE}_{\text{fair}}.$$

906 showing exactly how FERM interpolates between the two models via the tuning parameter $\lambda(r)$.
 907
 908
 909
 910
 911

912 C WHEN ARE LINEAR ENVELOPES APPROPRIATE? NONLINEAR 913 GENERALIZATIONS OF FERM

914 The FERM framework is built on an explicit four-way linear decomposition of the predictor space
 915 into orthogonal components capturing predictive, sensitive, shared, and residual variation. This
 916 decomposition - combined with the closed-form characterization of the fairness–utility trade-off - is
 917

918 only achievable under a linear model for Y . Linear envelopes therefore serve as the mathematically
 919 tractable foundation on which our theoretical guarantees rest.

920 This structure mirrors the classical development of PCA: the linear PCA formulation provides in-
 921 terpretability, closed-form solutions, and a clear geometric foundation; nonlinear variants such as
 922 kernel PCA arise only after the linear theory is firmly established. Our contribution plays an anal-
 923 ogous role in fairness-aware regression: it formalizes the linear envelope setting as a principled,
 924 interpretable baseline with guarantees on efficiency and fairness.

925 Nevertheless, linear envelopes are not the end point. FERM is constructed with a modular and flex-
 926 ible design, which enables a wide range of possible extensions. These include incorporating non-
 927 linear modeling frameworks, introducing alternative or more sophisticated penalization schemes,
 928 applying different definitions of fairness, and adapting the method to various types of response vari-
 929 ables using generalized linear models. A key strength of FERM lies in the clear separation between
 930 model selection (i.e., the choice of $\lambda(r)$) and model estimation, which facilitates independent modi-
 931 fication of either stage. This separation allows FERM to draw from and integrate with a broad body
 932 of established techniques in statistical modeling, offering adaptability to different fairness-aware
 933 regression settings.

935 C.1 NONLINEAR REGRESSION MODELS

936 FERM can be extended to handle nonlinear relationships by incorporating kernel methods, in a
 937 similar fashion as suggested by Komiya et al. (2018) and Scutari et al. (2022). Specifically, the
 938 model can be fitted into transformed feature spaces $Z_\Gamma(\hat{\Gamma}^T X)$ and $Z_{\Gamma_0}(\hat{\Gamma}_0^T X)$, obtained through
 939 positive definite kernel functions, similar to the approach in Komiya et al. (2018). Applying
 940 the kernel trick in conjunction with ridge penalization leads to a kernel ridge regression variant of
 941 FERM (cf. Saunders et al. (1998)), which can be estimated efficiently using techniques such as
 942 those proposed by Zhang et al. (2015). Moreover, since kernel ridge regression is closely related
 943 to Gaussian process regression, this extension naturally opens the door to Bayesian nonparametric
 944 variants of FERM using Gaussian processes, as discussed in Kanagawa et al. (2018).

947 C.2 EXTENSIONS TO DEEP LEARNING MODELS

948 The FERM framework can also be extended to deep learning architectures by leveraging the en-
 949 velope decomposition as a structured preprocessing step. Specifically, the decomposition of the
 950 predictor space into orthogonal components – associated with the response (Y), the sensitive at-
 951 tribute (S), their shared variation, and residuals – provides a principled way to separate and control
 952 different sources of variation prior to feeding them into a neural network. One approach is to project
 953 the raw inputs onto the learned subspaces, and then use only the subspace orthogonal to the sensitive
 954 attributes as input to the downstream model. This can help ensure that the representations learned
 955 by the network are less entangled with sensitive information, improving fairness in predictions.

956 Taken together, the linear envelope provides the theoretical scaffold, while the nonlinear extensions
 957 offer paths toward greater flexibility. This Appendix clarifies when the linear formulation is appro-
 958 priate (e.g., when interpretability, closed-form decomposition, or theoretical guarantees are desired)
 959 and how the nonlinear generalizations can be systematically constructed.

962 C.3 DIFFERENT DEFINITIONS OF FAIRNESS

963 The modular structure of FERM allows flexibility in how fairness is defined and enforced. In par-
 964 ticular, the fairness constraint used in the form $R^2(\alpha, \beta) \leq r$ in our methodology can be modified
 965 independently of the estimation procedure for α_{FERM} and β_{FERM} . In particular, the extension re-
 966 ported in Section 4.3 of Scutari et al. (2022) can be directly applied to achieve this in our case. For
 967 instance, this constraint can be replaced by an analogous constraint based on *equality of opportunity*.
 968 One such measure is:

$$971 R_{\text{EO}}^2(\phi, \psi) = \frac{\text{Var}(S\phi)}{\text{Var}(Y\psi + S\phi)},$$

972 where ϕ, ψ are the regression coefficients in the model $\hat{Y}_\lambda = Y\psi + S\phi + \varepsilon^*$ and \hat{Y}_λ as defined
 973 before. If equality of opportunity holds exactly, then \hat{Y}_{FERM} is conditionally independent of S
 974 given Y , i.e., $\text{Cov}(\hat{Y}_\lambda, S \mid Y) = 0$. This implies $\phi = \mathbf{0}$ and $R_{\text{EO}}^2 = 0$. FERM can approximate
 975 this condition asymptotically: as $\lambda(r) \rightarrow \infty$, we have $\hat{Y}_\lambda \rightarrow \hat{Y}_{\text{fair}}$, leading to vanishing conditional
 976 covariance. Conversely, as $\lambda(r) \rightarrow 0$, the fairness constraint becomes inactive, and $\hat{Y}_\lambda \rightarrow \hat{Y}_{\text{OLS}}$.
 977 For finite $\lambda(r)$, we obtain $\hat{Y}_\lambda = \omega(n, r) \hat{Y}_{\text{OLS}} + (1 - \omega(n, r)) \hat{Y}_{\text{fair}}$, implying that $\text{Cov}(\hat{Y}_\lambda, S \mid Y)$
 978 and thus R_{EO}^2 decrease as $\lambda(r)$ increases. This mirrors the control we exert over R^2 in Section 4.
 979

D ADDITIONAL RESULTS

983 In this section, we present additional simulation results to support our theoretical guarantees. We
 984 compare three regression settings:

$$\begin{aligned} \mathcal{M}_1 : Y &\sim X_{XY} + X_{XS} & (\text{Env_Xy_Xys}), \\ \mathcal{M}_2 : Y &\sim X_{XY} + X_0 + X_{XS} & (\text{Env_XyX0_Xys}), \\ \mathcal{M}_3 : Y &\sim \underbrace{X_{XY} + X_0}_{U} + \underbrace{X_{XS} + X_{SY}}_{S} & (\text{FRRM}), \end{aligned}$$

990 where “ \sim ” indicates that Y is regressed on the specified terms.

991 Our evaluation focuses on three key objectives:

- 993 • **Coefficient convergence in the unconstrained case.** When $r = 1$, Theorem 5.4 shows
 994 that both envelope estimators (\mathcal{M}_1 and \mathcal{M}_2) converge to the ordinary least-squares esti-
 995 mator (FRRM in \mathcal{M}_3). We verify this by computing the L_2 distance between the envelope
 996 coefficients and the FRRM coefficients.
- 997 • **Fairness: convergence of covariance to zero.** When $r = 0$, Lemma 5.3 implies that the
 998 covariance between predictions and the sensitive component converges to zero in probabili-
 999 ty for all three models. We evaluate this by computing $\text{Cov}(\hat{Y}, S)$ on held-out test data.
- 1000 • **Efficiency gain through subspace reduction.** The envelope model removes the redundant
 1001 component X_0 , which has no impact on Y . Eliminating this noise-inflating subspace re-
 1002 duces the variance of the estimated coefficients, as shown in Theorem 5.1, demonstrating
 1003 the efficiency benefit of envelope-based dimension reduction.

1004 We conduct experiments under two settings:

$$\begin{aligned} 1005 \quad d_X &= 30, & d_S &= 20, & \dim(\Pi_{XY}) &= \dim(\Pi_{XS}) = 5, \\ 1006 \quad d_X &= 100, & d_S &= 20, & \dim(\Pi_{XY}) &= \dim(\Pi_{XS}) = 10. \end{aligned}$$

1008 For each setting, we vary the sample size

$$1009 \quad n \in \{200, 500, 1000, 2000, 5000, 10000, 20000\},$$

1010 and the unfairness control level

$$1011 \quad r \in \{0, 0.1, 0.3, 0.5, 0.7, 0.9, 1\}.$$

1012 All configurations are replicated 50 times. The corresponding results are summarized below.

1013 From Figure 5, we observe that in both settings ($d_X = 30$ and $d_X = 100$) and in the unconstrained
 1014 case ($r = 1$), the estimated coefficients from \mathcal{M}_1 and \mathcal{M}_2 converge toward those of \mathcal{M}_3 , confirming
 1015 the consistency result established in Theorem 5.4.

1016 Figures 6 and 7 further show that when $r = 0$, all three models yield fully fair estimators: the
 1017 covariance between the predicted value and the sensitive component decreases steadily as the sample
 1018 size increases, in accordance with Lemma 5.3. In contrast, this covariance does not vanish when
 1019 $r = 0.5$, since the model is not required to be fair and the predictions may legitimately depend on
 1020 the sensitive direction.

1021 Finally, Figure 8 demonstrates the efficiency gain obtained from removing the redundant subspace
 1022 X_0 . Across all dimensions and all fairness levels, the average variance ratio between \mathcal{M}_2 (which
 1023 includes X_0) and \mathcal{M}_1 (which excludes X_0) is consistently greater than one. This confirms that
 1024 eliminating components that do not contribute to the response reduces estimator variance and yields
 1025 a more efficient model.

Figure 5: **Coefficient convergence under the unconstrained case ($r = 1$)**. The plots show the L_2 distance between the estimated coefficients of the two envelope models (\mathcal{M}_1 and \mathcal{M}_2) and the FRRM estimator \mathcal{M}_3 across different sample sizes, under two dimensional settings ($d_X = 30$ and $d_X = 100$).

Figure 6: **Covariance between predictions and the sensitive component when $d_X = 30$** . Left: When $r = 0$, all three models produce fully fair estimators, and the empirical covariance $\text{Cov}(\hat{Y}, S)$ decreases toward zero as the sample size increases. Right: When $r = 0.5$, the covariance does not converge to zero since the model is only partially fair.

Figure 7: **Covariance between predictions and the sensitive component when $d_X = 100$** .

Figure 8: **Efficiency comparison via variance ratios of envelope estimators.** For each dimension setting ($d_X = 30$ (left panel) and $d_X = 100$ (right panel)), the plots show the ratio of the average coordinatewise variance of the estimator from \mathcal{M}_2 (which includes the redundant subspace X_0) to that from \mathcal{M}_1 (which excludes X_0). Across all fairness levels and sample sizes, this ratio is consistently greater than 1.

Figure 9: Left panel: Predictive MSE for FRRM (in blue), FERM-predictive (in red), and FERM-decorrelated (in green) for various unfairness levels r ; lower values are better. Right panel: Unfairness levels on test data (r_{test}) for FRRM (in blue), FERM-predictive (in red), and FERM-decorrelated (in green) at varying unfairness levels r . Simulation settings are described in Table 1.

E EXPERIMENTS

E.1 POISSON SETTING

In Figure 9, we provide simulation results for the Poisson setting (3) given in Table 1.

E.2 ADDITIONAL REAL-WORLD DATA

In another real-data application, we use the Full-Year Consolidated (FYC) data files from the *Medical Expenditure Panel Survey (MEPS)* dataset (available at: https://meps.ahrq.gov/data_stats/download_data_files.jsp), which combine person-level demographics, socioeconomic status, insurance coverage, and all medical expenditures across the entire year. In this analysis, the outcome Y is the total annual medical expenditure (`totexp`), treated as a continuous centered variable. The sensitive attributes S consist of eight standardized socioeconomic and payment-related variables: age (`age`), family income (`faminc`), poverty level (`povlev`), and total payments from self-pay (`totself`), Medicare (`totmcr`), Medicaid (`totmcd`), and private insurance (`totprv`). The predictor set X includes 100 continuous features derived from MEPS health, demographic, income, and expenditure variables after removing identifiers, low-variance fields, and

Figure 10: Left panel: Predictive MSE for FRRM (in blue), FERM-predictive (in red), and FERM-decorrelated (in green) for unfairness levels $r = \{0.1, 0.2, 0.3, 0.4, 0.5\}$; lower values are better. Right panel: Unfairness levels on test data (r_{test}) for FRRM (in blue), FERM-predictive (in red), and FERM-decorrelated (in green) at unfairness levels $r = \{0.1, 0.2, 0.3, 0.4, 0.5\}$. The plots for sample sizes $n = 500, 750, 1000, 1250$ are shown here.

categorical-like columns.

We evaluate performance across fairness levels $r \in \{0.1, 0.2, 0.3, 0.4, 0.5\}$ and sample sizes $n \in \{500, 750, 1000, 1250\}$. The dataset is subsampled and perturbed, and each configuration is replicated 30 times. The corresponding results are shown in Figure 10. Across most settings, the FERM models outperform the FRRM baseline, demonstrating improved predictive efficiency under fairness constraints in this complex real-world healthcare environment.

Summary of Results. Across most configurations, the predictive performance of FERM is comparable to that of FRRM, as shown in the left panels of Figure 10. However, the right panels reveal a key distinction: FRRM often exceeds the target unfairness levels r , whereas FERM consistently adheres to the specified fairness constraint. This deviation explains the apparent similarity in predictive error - FRRM achieves lower error in some settings only by violating the intended fairness budget. In contrast, FERM provides more reliable and controlled fairness–utility trade-offs, maintaining performance while respecting the target unfairness levels.

E.3 REPRODUCIBILITY

All code used to generate the simulation results in Section 6 is provided in the supplementary material. The repository includes data generation scripts, training routines for FERM and FRRM, and plotting code to reproduce all figures and tables. Random seeds and parameter settings are fixed to ensure exact replication.

E.4 COMPUTATIONAL DETAILS:

We conduct all our experiments on a Gentoo Linux server with an Intel Xeon E5-2683 v4 @ 2.10GHz CPU and 251GB of RAM. No GPU is involved.

1188 F IMPLEMENTATION DETAILS OF ALGORITHMS
1189
1190
1191
11921193 F.1 BASELINE IMPLEMENTATION DETAILS: FAIR RIDGE REGRESSION MODEL (FRRM)
1194

1195 For the Fair Ridge Regression Model (FRRM; Scutari et al. (2022)), we follow the authors’ imple-
1196 mentation exactly as recommended. All FRRM results were obtained using the `frrm()` function
1197 from the `fairml` package in R, with default settings unless otherwise specified. FRRM requires
1198 the user to specify a target unfairness budget r , and the algorithm internally determines the cor-
1199 responding ridge penalty λ to satisfy this constraint. No additional hyperparameter tuning is ex-
1200 posed to the user. In all our experiments (Section 6), we evaluated FRRM at unfairness levels
1201 $r = \{0.1, 0.2, 0.3, 0.4, 0.5\}$. For reproducibility, we ensured that FRRM was fit using the same
1202 training splits, sensitive variable encoding, and preprocessing steps applied to FERM. No post-hoc
1203 adjustments were made to FRRM outputs.

1204 F.2 ENVELOPE-BASED DECOMPOSITION (ALGORITHM 1)
1205

1206 Algorithm 1 requires estimation of two envelope subspaces: a response envelope of X relative to S ,
1207 and a predictor envelope of Y relative to X .
1208

Envelope estimation: We estimate envelope bases using the objective function in (15), solved
1209 either with the 1D algorithm of Cook & Zhang (2016) or the NIECE algorithm of Zhang et al.
1210 (2023). In both cases, the estimated envelope subspace is \sqrt{n} -consistent. Dimensions \hat{m} and \hat{u} are
1211 chosen by BIC or cross-validation.

1212 **Sample covariance estimators:** Let $\hat{\Sigma}_Y$, $\hat{\Sigma}_X$, $\hat{\Sigma}_{XY}$, and $\hat{\Sigma}_{YX}$ denote the usual sample covari-
1213 ances. Then:

- 1214 • *Response reduction:* $\hat{M} = \hat{\Sigma}_X$, $\hat{U} = \hat{\Sigma}_{XS} \hat{\Sigma}_{SX}$.
- 1215 • *Predictor reduction:* $\hat{M} = \hat{\Sigma}_X$, $\hat{U} = \hat{\Sigma}_{XY} \hat{\Sigma}_{YX}$.

1216 The intersections of the estimated envelope subspaces yield the four orthogonal components
1217 $\hat{\Pi}_{XSY}$, $\hat{\Pi}_{XY}$, $\hat{\Pi}_{XS}$, $\hat{\Pi}_0$.
1218

1219 **Numerical optimization:** The envelope objective is non-convex and solved on Stiefel/Grassmann
1220 manifolds. In practice, we use manifold optimization routines from the R package `Renvlp`.
1221

1222 F.3 INTERPOLATED REGRESSOR WITH FAIRNESS CONTROL (ALGORITHM 2)
1223

1224 Given the decomposition from Algorithm 1, Algorithm 2 trains regressors under three cases:
1225

- 1226 1. **Fair model ($r = 0$):** Only the subspace spanned by $\hat{\Pi}_{XY}$ is used, yielding predictions
1227 independent of S asymptotically.
- 1228 2. **Unconstrained model ($r = 1$):** OLS on projections of predictor X on both subspaces
1229 spanned by $\hat{\Pi}_{XY}$ and $\hat{\Pi}_{XSY}$ subspaces. When $r = 1$, the statistically efficient choice
1230 remains to fit the model using only the material components (X_{XY} and X_{XSY}), rather
1231 than the full predictor X . Even though these subspaces are estimated and therefore sub-
1232 ject to sampling variability, prior empirical evidence Cook et al. (2010); Cook & Zhang
1233 (2015; 2016) and our experiments indicate that removing Y -immortal variation typically
1234 provides efficiency gains that outweigh the additional estimation noise, particularly in mod-
1235 erate or high-dimensional settings.
- 1236 3. **Interpolated model ($0 < r < 1$):** A ridge penalty is applied only to the shared component
1237 obtained by projecting X on subspace spanned by $\hat{\Pi}_{XSY}$. The penalty λ is chosen such
1238 that the R^2 -fairness criterion in (8) satisfies $R_S^2(\lambda) \leq r$. We compute $\text{Var}(\cdot)$ in (8) as the
1239 sample variance of centered fitted values.
1240

1242 **Practical computation of λ :** In practice, λ is found via a line search (e.g., bisection) over a grid
 1243 of candidate values until the fairness constraint $R_S^2(\lambda) \leq r$ is met. This ensures the fitted model
 1244 interpolates smoothly between the fair and unconstrained extremes.
 1245

1246 **Software:** All algorithms are implemented in R. For cross-validation and BIC, we rely on existing
 1247 libraries for model selection. Ridge penalties are implemented using standard linear algebra solvers.
 1248

1249 Together, Algorithms 1 and 2 provide a practical pipeline for training regressors that interpolate
 1250 between fairness and predictive utility in a principled way.
 1251

1252 **Additional advantage of our framework:** Unlike prior methods, FERM also decomposes the
 1253 sensitive attributes S . This removes the immaterial variation in S that is unrelated to Y , ensuring that
 1254 fairness constraints target only the predictive overlap between S and Y . As a result, our R_S^2 measure
 1255 in (equation 8) provides a more principled notion of unfairness: it penalizes only the variance in
 1256 predictions attributable to the material component of S , rather than noise. This refinement yields
 1257 tighter fairness control and a sharper fairness-accuracy trade-off than existing approaches.
 1258

1265 G ADDITIONAL DISCUSSION OF RELATED WORK

1266
 1267 For completeness, we briefly situate FERM relative to two areas of the fairness literature that also
 1268 discuss direct and indirect effects.
 1269

1270
 1271 **Causal literature.** Works in the causal literature defines “direct” and “indirect” effects in terms
 1272 of causal pathways under a structural causal model (e.g., Chiappa (2019); Pan et al. (2021)). These
 1273 approaches rely on strong assumptions (e.g., valid mediators, no hidden confounding, identifiable
 1274 counterfactuals) that are not available in our supervised learning setting with multivariate continuous
 1275 S . Our decomposition is geometric - based on orthogonal subspaces of the X -space - rather than
 1276 causal.
 1277

1278
 1279 **Fair representation learning.** Methods from the fair representation-learning literature (e.g., ad-
 1280 versarial learning, VFAE, pre-processing decorrelation) are almost exclusively developed for binary
 1281 or categorical sensitive attributes and rely on iterative optimization procedures (e.g., Creager et al.
 1282 (2019); Zemel et al. (2013); Liu et al. (2022)). Their loss functions and fairness objectives (e.g.,
 1283 adversarial equality of odds, demographic parity constraints, mutual-information penalties) are tai-
 1284 lored to discrete protected groups and are not readily extendable to the multivariate continuous S
 1285 that we consider. Moreover, these approaches do not yield explicit fairness–utility trade-offs or
 1286 closed-form decompositions, making them unsuitable as baselines for our theoretical framework.
 1287

1292 H LIMITATIONS

1293 While FERM provides a principled framework for fairness-aware regression, several limitations
 1294 should be noted:
 1295

1296 **Linearity of subspace decomposition:** FERM assumes that both material and immaterial variation
 1297 can be captured through *linear* subspaces of the predictor space. In many real-world applications,
 1298 sensitive attributes may influence Y through nonlinear interactions with X , in which case a
 1299 purely linear envelope decomposition may be too restrictive. Extending the methodology to nonlinear
 1300 settings (e.g., kernelized or deep envelope methods) remains an important direction for future
 1301 work.

1302 **Dependence on subspace estimation:** The validity of FERM relies on accurately estimating the
 1303 envelope subspaces. Although the 1D and NIECE algorithms provide \sqrt{n} -consistent estimators, in
 1304 finite samples the estimated subspaces may deviate from their population counterparts, especially
 1305 when d_X is large relative to n . This may lead to imperfect fairness guarantees in small samples.

1306 **Choice of tuning parameters:** FERM requires selecting the envelope dimensions (\hat{m}, \hat{u}) and the
 1307 interpolation parameter λ (or equivalently the fairness target r). While BIC and cross-validation are
 1308 standard, their stability can vary across datasets. Automatic and robust criteria for selecting these
 1309 parameters remain an open area of research.

1310 **Fairness notion:** Our fairness control is expressed through covariance-based independence (or
 1311 R_S^2) between predictions and sensitive attributes. Other fairness notions (e.g., counterfactual fairness,
 1312 equalized odds) are not directly captured. Extending the envelope framework to these broader
 1313 definitions requires additional methodological development.

1314 **Computational cost:** Envelope estimation involves non-convex optimization on Stiefel or Grass-
 1315 mann manifolds. Although efficient algorithms like NIECE exist, the procedure is more computa-
 1316 tionally intensive than standard regression, and scalability to very high-dimensional predictors may
 1317 be challenging without additional structural assumptions.

1318 Overall, while these limitations highlight directions for future work, FERM demonstrates that sub-
 1319 space decomposition provides a tractable and interpretable pathway to fairness-aware regression.

1320 LLM USAGE

1321 Large Language Models (LLMs) were used as an assistive tool in preparing this submission. Their
 1322 role was limited to: (i) editing and polishing drafts of the introduction and methodology sections
 1323 for clarity and conciseness; (ii) suggesting alternative phrasings to improve readability; and (iii)
 1324 checking grammar, spelling, and typographical errors. All technical contributions, theoretical re-
 1325 sults, experimental designs, and analyses were developed entirely by the authors. The authors take
 1326 full responsibility for the accuracy and integrity of the content.