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ABSTRACT

Fairness in regression is crucial in high-stakes domains such as healthcare, fi-
nance, and criminal justice, where biased predictions can perpetuate unequal treat-
ment. Bias arises both directly, when sensitive attributes explicitly affect predic-
tions, and indirectly, when correlated predictors act as proxies. Existing fairness-
aware regression methods typically address only one type of bias or suffer from
reduced predictive performance, especially in case of multivariate sensitive at-
tributes. We introduce a fairness framework that adapts subspace decomposition
techniques from envelope regression. The predictor space is decomposed into four
orthogonal components: response-specific variation, sensitive variation, shared
variation, and residual noise. By penalizing only the sensitive component, our ap-
proach offers interpretable control over the fairness-utility trade-off. Unlike black-
box methods, it yields interpretable estimators with provable efficiency gains. We
validate the framework through simulations and real-world experiments, demon-
strating improved fairness and predictive accuracy compared to prior methods.
Our results highlight predictor-space decomposition as a principled tool for build-
ing fair, efficient, and interpretable regression models.

1 INTRODUCTION

Machine learning is increasingly deployed in high-stakes domains such as healthcare, finance, and
criminal justice (Das et al.,|2021; Bogen & Rieke} 2018} [Kourou et al., 2015; De Fauw et al., 2018;
Raji & Buolamwinil 2019; Buolamwini & Gebru, 2018)), where unfair predictions can reinforce or
amplify social inequities. Ensuring fairness in predictive models is therefore essential. In regression,
unfairness arises through two channels: (i) direct bias, when sensitive attributes (e.g., race, gender)
directly affect predictions, and (ii) indirect bias, when correlated predictors act as proxies (Barocas
et al., 2023} |Calmon et al., 2017; [Feldman et al., |2015). Most existing methods mitigate only one
form of bias, rely on restrictive assumptions, or sacrifice predictive accuracy.

Naively removing sensitive variables fails to eliminate indirect bias and obscures how unfair in-
fluence enters the model. More sophisticated strategies - pre-processing, in-processing, and post-
processing (Calders et al., 2013} Johnson et al., 2016; Komiyama et al., 2018} |Berk et al., [2021}
Agarwal et al.| 2019)- have been developed, but primarily in the classification setting. Fair re-
gression with continuous outcomes remains comparatively underexplored (Komiyama et al., 2018;
Scutari et al., |2022), especially in the presence of multiple sensitive attributes and complex inter-
actions. Existing regression-based approaches typically rely on constrained optimization or ad hoc
penalization. These methods lack a principled decomposition of the predictor space to distinguish
direct from indirect bias and do not exploit opportunities for statistical efficiency.

We address these gaps with the Fair Envelope Regression Model (FERM) framework. FERM lever-
ages envelope regression to decompose the predictor space into four orthogonal components: (i)
response-only, (ii) sensitive-only, (iii) shared response—sensitive, and (iv) residual. Penalizing only
the sensitive components provides interpretable control over the fairness—utility trade-off, allow-
ing practitioners to impose fairness constraints without discarding predictive signal. The enve-
lope structure further improves estimation efficiency, yielding more stable estimates than existing
fairness-aware baselines. We provide theoretical guarantees on consistency and efficiency, provide
expressions detailing how fairness-utility trade-off is achieved, and validate FERM through simu-
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lations and real-world data. Across settings, FERM consistently achieves superior fairness-utility
trade-offs compared to prior methods.

OUR CONTRIBUTIONS

1. Subspace Decomposition: We propose FERM, a fairness-aware envelope regression
framework that decomposes predictors into response-only, sensitive-only, shared, and
residual components, enabling transparent attribution of sensitive influence.

2. Fairness-Utility Trade-off: By applying a ridge penalty only to sensitive subspaces,
FERM provides a tunable mechanism that interpolates between unconstrained accuracy
and full fairness.

3. Efficiency and Theory: FERM leverages the envelope structure to reduce asymptotic vari-
ance relative to OLS, yielding more stable estimates, with formal guarantees of consistency
and efficiency. We also provide a closed-form characterization of the fairness—utility trade-
off.

4. Empirical Validation: Simulations and real-world experiments show that FERM achieves
improved fairness-utility trade-offs compared to prior regression-based methods.

The remainder of this paper is organized as follows. Section [2reviews related work on fairness in
regression. Section [3] provides background on envelope regression methodology and related fair-
ness approaches. Section [] introduces the FERM framework, with theoretical results presented in
Section[5] Section [6] evaluates the proposed method through a series of simulations and real-world
datasets, benchmarking FERM against existing fairness-aware regression techniques such as FRRM
(Scutari et al.l [2022)). Finally, Section [/|discusses limitations and outlines directions for future re-
search.

2 RELATED WORK

Developing predictors that exhibit independence from protected attributes, often formalized through
notions such as statistical parity, has been a central theme in algorithmic fairness research. Exist-
ing approaches can broadly be categorized into in-processing, pre-processing, and post-processing
strategies, with the majority of work focusing on classification rather than regression. Below we
review the most relevant directions for fairness in regression.

Moment-based and linear regression approaches. Early works such as [Calders et al.| (2013),
Johnson et al.|(2016), and Komiyama et al.[(2018) enforce restricted independence through moment
constraints, typically ensuring that predictions are uncorrelated with sensitive attributes. These
methods are designed primarily for least squares regression and can handle both continuous and
categorical attributes. [Komiyama et al.| (2018) in particular introduced a quadratic optimization
framework that bounds the relative proportion of variance explained by sensitive attributes, offering
explicit user control of fairness levels and theoretical optimality guarantees.

In-processing with fairness constraints. Fairness penalties have also been embedded directly
into the regression objective. Berk et al.| (2021 proposed convex formulations incorporating both
individual and group fairness notions. Similarly, Pérez-Suay et al.| (2017)) enforced zero correla-
tion in reproducing kernel Hilbert spaces (RKHS), though their method is largely restricted to least
squares settings. More recently, |Scutari et al|(2022) introduced a fairness-aware regression model
with ridge penalties on sensitive attributes, yielding mathematically simple formulations, partially
closed-form solutions, and extensions to generalized and kernelized regression.

Post-processing and minimax analyses. Post-processing strategies have been explored to en-
force fairness after model training. For example, |Chzhen et al.| (2020) used Wasserstein barycenters,
while [Zhao| (2021) derived tight lower bounds on the fairness—accuracy trade-off. Du et al.| (2022)
accounted for sample selection bias, and [Taturyan et al.| (2024) and |Divol & Gaucher| (2024)) de-
veloped post-processing and unawareness-based methods that achieve demographic parity without
requiring sensitive attributes at inference, an appealing property for privacy-constrained settings.
Minimax analyses have further characterized optimal risks under fairness constraints (Chzhen &
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Schreuder;, 2022} [Fukuchi & Sakuma, 2023)), highlighting fundamental trade-offs as a function of
feature dimension and group counts.

Kernel and probabilistic approaches. Several works extend fairness constraints to nonlinear set-
tings. Kernel-based methods for equalized odds and mean-parity were introduced by [Perez-Suay
et al.| (2023) and |Wei et al.[ (2023), providing closed-form solutions in RKHS. Probabilistic mod-
els enforcing statistical independence were explored by Kamishima et al.| (2012) and [Fukuchi et al.
(2015), though these often suffer from computational inefficiency and lack statistical guarantees.
Finally, |Agarwal et al. (2019) generalized the reductions-based minimax optimization framework of
Agarwal et al.| (2018)) to regression, offering flexible in-processing methods with fairness constraints.

Despite this broad literature, most fairness-aware regression methods lack a principled mechanism
to disentangle direct and indirect effects of sensitive attributes. Existing approaches typically rely
on constrained optimization or penalization, but do not exploit subspace decompositions that could
yield both interpretability and efficiency gains. Our work addresses this gap by introducing a
fairness-aware envelope regression framework that provides a transparent decomposition of pre-
dictor space, a tunable fairness-utility trade-off, and improved estimation precision.

3 PRELIMINARIES

We begin by introducing the key notation used throughout the paper. Let the random tuple (X, S,Y")
belong to the space R?x x S x R, where X € R%x denotes the non-sensitive feature, Y € R is the
response, and S € S C Rds represents the sensitive attribute, which can be scalar or vector-valued.
Let n denote the number of observations in the dataset {(X;, S;,Y;)}? ;. A fairness-aware algo-
rithm aims to provide an estimator Y(X ,.S) for Y, based on the input (X, .S), while satisfying prede-
fined fairness criteria. For convenience, we define the following matrices, representing the n samples
stacked by rows: X = [X; --- X,,]T € R"*9x for non-sensitive feature, Y = [Y; --- Y,,]T € R**!
for the response variable, and S = [S; - - - S,,]T € R"*%s for the sensitive attributes.

3.1 FAIRNESS CRITERIA IN REGRESSION WITH MULTIVARIATE SENSITIVE ATTRIBUTES

Fairness in regression is typically enforced by requiring statistical independence between predic-
tions Y and sensitive attributes S. Two common operationalizations are: (1) Uncorrelatedness:
COV(Y, S) = 0, ensuring linear independence; (2) Bounded explanatory power: limiting the vari-
ance in Y’ explained by S, often via an R? measure (Komiyama et al., [2018} [Scutari et al., [2022).

We adopt the R? criterion, which is especially well-suited for multivariate S. It aggregates their
joint contribution into a single interpretable quantity, avoiding multiple pairwise constraints and
providing a direct knob for tuning fairness.

For completeness, Appendix|C.3|shows how our framework can incorporate alternative notions, such
as equality of opportunity, by redefining the fairness subspace and penalty. Du et al. (Du et al.| 2022)
review regression fairness notions and confirm that R? (with partial correlations as an alternative) is
among the most widely adopted.

3.2 PREVIOUS WORKS

Existing approaches to fairness in regression models often aim to reduce the association between X
and S by introducing auxiliary de-correlation steps. Notably, [Komiyama et al.| (2018)) proposed a
multivariate linear regression to model the relationship between predictors and sensitive attributes,
and use residuals as decorrelated predictors in the subsequent step as follows:

X =SB+ U, (1)
The ordinary least squares (OLS) solution and the residuals are computed as
Bous = (S78)'STX e R*4x, U =X - SBors € R0,

By construction, the residuals U € R, rows of U, are orthogonal to S, satisfying Cov(.S, U ) =0.
Using these residuals, Komiyama et al.| (2018) define a regression model: ¥ = alS + BTU + €,
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where & € R% and 8 € R are coefficients associated with S and U, respectively. To ensure
fairness, they constrain the variance explained by S using an R?-based measure:
_ Var(a'S)

2
Ble.p) = Var(Y')

where Y denotes the predicted outcome. A fairness parameter € [0, 1] is used to bound R2(cx, 8),
controlling the trade-off between fairness and predictive performance. The resulting optimization
problem is:

mi,g E[(Y —Y)? subjectto R?*(c,B) <.
«,

This approach explicitly balances prediction accuracy and fairness by controlling the influence of
sensitive attributes on the outcome. Building on this framework, Scutari et al.| (2022) highlighted
limitations in the nonconvex formulation and proposed an alternative constrained optimization ap-
proach termed Fair Ridge Regression Model (FRRM). Their method penalizes the sensitive attribute
coefficients (cx) with a ridge penalty while leaving the other coefficients (3) unconstrained. Specif-
ically, they solve the following problem:

min [[Y — Sa - UB|5 + A(r)all3,

where \(r) > 0 is the ridge penalty ensuring that R?(cx, 3) < r. By imposing a direct penalty on
a, the FRRM simplifies the optimization process and ensures that fairness constraints are met while
maintaining flexibility.

Limitations |Scutari et al.|(2022) highlight key limitations in Komiyama et al.| (2018)’s approach,
including its reliance on a nonconvex optimization problem that is computationally challenging in
high-dimensional settings and its restriction to linear regression models. Additionally, the fairness
constraint becomes undefined as » — 0, causing numerical instability, and the coupling of coeffi-
cients « and 3 complicates interpretation. To address these issues, Scutari et al.|(2022) propose the
Fair Ridge Regression Model (FRRM), extending fairness constraints to generalized linear models
and kernel regression. However, challenges remain: (1) Inefficiency in Auxiliary Models: The de-
composition of X into components explained by .S and residuals relies on multivariate linear regres-
sion, ignoring correlations among predictors. This simplification reduces statistical efficiency and
prediction accuracy. (cf. our Theorem [5.1) (2) Loss of Interpretability: Residual-based decom-
position obscures the relationship between X and S, making it harder to understand how sensitive
attributes influence outcomes.

3.3 TOWARDS A PRINCIPLED DECOMPOSITION

These limitations motivate a framework that (i) provides a principled subspace decomposition of
predictors, (ii) improves statistical efficiency, and (iii) preserves interpretability. We seek to explic-
itly characterize how X relates to Y and S.

As illustrated in Figure[I] we envision X as partitioned into four interpretable components: variation
predictive of Y, variation associated with .S, shared variation, and residual noise. Such a decompo-
sition clarifies the pathways through which sensitive attributes affect predictions and establishes a
natural foundation for models that achieve transparent and tunable fairness—utility trade-offs.

4 METHODOLOGY

Our approach balances fairness and predictive performance by decomposing the predictor space X
relative to both the response Y and the sensitive attributes S. As illustrated in Figure [1} X can be
partitioned into four interpretable parts: shared with both Y and .S, unique to Y, unique to S, and
residual.

Projection structure: Let (I', o) and (®, ®() be orthogonal bases in Rx, where I" spans direc-
tions of X associated with .S and I'y its invariant complement; ¢ spans predictive directions for Y’
and ®( the immaterial ones. The decomposition assumes
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Figure 1: Conceptual decomposition of the predictor space X relative to response Y and sensitive
attributes S. Overlaps correspond to predictive signal, sensitive signal, or shared variation; non-
overlapping regions capture response-only, sensitive-only, or residual variation.

[gX|S~TgX, T"X 1L IjX | S, 2)
Y ULOX|'X, o'X I &)X, 3)
with Ty = &7 ®, = 0.

Intersecting these bases yields four orthogonal subspaces:

IIx sy = span(I") N span(®) (shared: predictive and sensitive),
IIxy = span(T'g) N span(P) (predictive-only),
ITxs = span(T") N span(Py) (sensitive-only),
Ty = span(Ty) N span(P) (residual).

so any predictor decomposes as X = Xxgy + Xxy + Xxs + Xo, with X, = Py, X, where P,
denotes the projection onto I1,.

Regression models. Using these components, we define:
Fair model: Y = B)T(YXXY + €, @
Unconstrained OLS: Y = [3;YXXY + ﬂ;SYXXSY + e, 5)

. ) 2
Interpolated: 8 = argﬁ min ||Y — XxyBxy — XXSYBXSYH2 + )‘HBXSY”§ (6)

Xy ,Bxsy
Here A > O tunes the fairness-utility balance: A — oo yields the fair model (E[), A — 0 recovers
OLS (3)). We refer to these models as Fair Envelope Regression Models (FERM).

4.1 ALGORITHMIC IMPLEMENTATION

Envelope regression provides a practical way to estimate the bases (I, 'y, @, ®). Fitting a response
envelope of X relative to S identifies directions associated with or invariant to S, while fitting a
predictor envelope of Y relative to X isolates material and immaterial directions. Intersections of
these envelopes yield empirical versions of Il x gy, IIxy,Ixg, Iy, enabling projection of X into
orthogonal components that disentangle bias and signal.

Algorithms |I| and |Z| summarize the procedure: (i) estimate envelope bases and intersections; (ii)
project X into components; (iii) fit regression models with fairness—utility control by penalizing
only the shared subspace. Technical details of envelope estimation, dimension selection, and ridge
optimization are deferred to Appendix
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Algorithm 1 Envelope-Based Decomposition of the Predictor Space
1: Input: Training observations {(X;, S;,Y;)}7,, with centered X, S, Y.
2: Qutput: Projection operators ﬁxsy, ﬁxs, ﬁXy, f[o.
3: Response envelope for X relative to S: Estimate [' € Rx*m gnd Ty (with 'y = 0) by
minimizing a standard response-envelope objective; select 12 by BIC or cross-validation.
4: Predictor envelope for Y relative to X : Estimate P € RIxx0 and d, (with T o, = 0) using

a predictor-envelope objective; select 4 by BIC or cross-validation.
5: Intersections (four subspaces):

[xsy := span(l') Nspan(®), TIxy := span(ly) N span(d),
IIxs := span(I) Nspan(®g), Iy := span(L'y) N span(do).

6: return f[xsy, ﬂxs7 ﬂXYv 1QIO-

Algorithm 2 Training the Interpolated Regressor with Fairness Control
1: Input: Training observations {(X;, S;,Y;)}7,, with centered X, S, Y’; Mxsy,Ixs, Mxy, o
from Alg. target fairness r € [0, 1]; new test point (X,ew, Snew)-
2: Output: Coefficients (B XY, B x sy ), fitted predictor Ys.
3: If r = 0, fit Fair model (#): A%, := argming,, [|[Y — XITxy Bxv |3 Ve := Xxy AL
4: If r = 1, fit Unconstrained model (OLS) (3):

(6%, A?}Ssy) =arg min ||Y — XIlxyBxy — XllxysBxsyl3
Bxy,Bxsy

3 o (AOLS\THT A0LS \TyT
Compute Yyew,0Ls := (Bxy) xy Xnew + (Bxsy) Hxsy Xnew-

5: If r € (0, 1), fit Interpolated (ridge) fit on shared component @:

(Bxy (M), Bxsy () =arg  min [[Y — XILyyBxy — XﬁxysﬁxsyH; + M|Bxsyl3-

xv,Bxsy
Here ) is chosen such that R%()\) < r where
Var(5% sy (A) Xxsy)

R%2()\) = - - . 7
SO = B Tay W Xxay + ALy (VU Xxy) @

Compute Yy,eu \ == By Mk y Xew + BT(A)XSYﬁ)T(SYXnew.
6: return (Gxy(N), Bxsy (A),Yy).

5 THEORETICAL PROPERTIES

We now establish the key properties of our framework: (i) efficiency gains from modeling the pre-
dictor subspace structure, and (ii) closed-form characterizations of the fairness—utility trade-off.

If the decomposition in Section E]is ignored, prior approaches regress Y on X — Xxg5 = Xxgsy +
Xxyv + Xo, removing the sensitive-only component but not exploiting the envelope structure. Let
BOLS denote the resulting OLS estimator. Our method explicitly separates predictive and sensitive
variation by regressing only on X x sy + X xy (Algorithm . This corresponds to projecting 5OLS

onto the predictive subspace span{Ilxgsy,Ixy}, i.e. Benv = PBOLS is the estimated regression
coefficient vector, where P is the projection operator of the space spanned by ITx sy and IIxy.

Let the asymptotic variance matrix, avar(-), such that if /n(T — 6) — N(0,A), then
avar(y/nT) = A.

Theorem 5.1 (Variance reduction via predictive projection). Suppose /n(Bors — 8) —
N(0, avar(\/ﬁ ﬂOLs) ). Then asymptotic covariance matrices satisfy

avar(y/n Beny) = P avar(v/n fors) P < avar(v/n fors)-
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The inequality is strict whenever the residual subspace 11 is nontrivial.

Thus, envelope-based estimators achieve strictly smaller asymptotic variance by discarding imma-
terial directions.

Proposition 5.2 (Consistency) Suppose f)y, )y X, )y XY, )y X are \/n-consistent estimators for
Ey, % X DX XY Yxg. Let P be the estimated projector obtained from Algorithm |I} and define
5env( ) = PﬂOLs Then Benv is \/n-consistent estimator for (3.

By construction, IIxy X is predictive yet independent of S. Furthermore, this implies that
COV(H xyX,S) — 0 asn — oo. Thus, if a linear regressor Y is constructed solely from

H}YX , it achieves asymptotic fairness in the sense that Cov(f/, S) — 0 asn — oo. We sum-
marize this property in the following lemma.

Lemma 5.3 (Asymptotically Fair Regressor). Let Yiair := (B%22)T X xy with B2 from (@) Under
the assumptions of predictor-space decomposition, Il xy X 1L S in the population, hence

Cov(Yfair,S) o0 asn— .

Finally, we characterize the interpolation between OLS and fair predictors under ridge penalization.

Theorem 5.4 (Fairness-utility trade-off under predictor-space decomposmon) Assume that columns
of X x sy are orthonormal. Consider three fitted predictors: (i) Yfa,, as in Lemma s (ii) YOLS =

BXYXXy + BXSYXXSY after fitting (9 (l) and (iii) the ridge predictor Y,\ = ﬁxy( Y Xxy +
ﬁXSY()\)XXSY after fitting (@) with \ = \(r) for given unfairness level v € [0, 1] so that R%(\) <
r where RE(X) as in (7). Then the ridge predictor admits the closed-form representation

~ n

n
= n—+ A(r)

- m) Y}aim )\(7“) >0, (8)

Yors + (1
interpolating between YOLS (A — 0) and }A?m', (A — 00). Moreover, under squared loss its prediction
risk decomposes as

B[V ~ Y] = BL(Y — o)) + (1= ) BlFous — Yiar)?]. ©)

This result quantifies the fairness-utility trade-off: penalizing the shared subspace smoothly interpo-
lates between unbiased accuracy and fair model.

6 SIMULATION STUDY

We evaluate FERM against the FRRM model of [Scutari et al.| (2022). To demonstrate the value of
decomposition, we present two variants of our method, corresponding to different subspace choices:
(i) FERM-decorrelated: prediction is based on the de-correlated component of X orthogonal to
S (i.e., variation in X xg). This corresponds to removing the S-linked subspace before prediction.
(i) FERM-predictive: prediction is based on the subspace of X relevant for Y but orthogonal to S
(i.e., variation in X xy). This leverages the predictor envelope to extract the most informative yet
fair directions. In both cases, FERM enforces fairness by penalizing the sensitive subspace using a
ridge penalty, with the penalty parameter chosen to satisfy a target unfairness budget.

The response variable is generated from the following model: ¥ = a'S + BT X + ¢, where
e ~ N(0,0.5%), a € R, and B3 € R?I*. The sensitive attributes S are sampled independently
from a multivariate standard normal distribution N' (04, I45). The predictor variables X consist
of two components: one part correlated with .S and another part independent of S. Specifically,
the correlated part of X, denoted as Xcorr € R%, is generated by: Xcorr = B4 SoS + 1, where
Sg € Rés*ds js a projection matrix of rank dxg that captures the subspace of X correlated with
S, Bsx € Ris*der js the coefficient matrix, and 7 ~ N (04, I4,,) is an independent noise term.
The independent part of X, denoted as Xingep € R9X ~%or_is sampled independently from a multi-
variate standard normal distribution. The complete predictor matrix is constructed by concatenating
these components X = [Xcorr, Xinaep]. After generating .S, X, and Y, all variables are standardized
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Table 1: Summary of simulation settings

Setting dx  decorr dxs dg Samplesizen Noisen

(1 40 20 5 10 5000 normal
2) 100 50 15 20 20000 normal
3) 40 20 5 10 5000 poisson
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(1a) Simulation setting 1: Predictive MSE (1b) Simulation setting 1: Unfairness on test data
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0.1 ——————
(2a) Simulation setting 2: Predictive MSE (2b) Simulation setting 2: Unfairness on test data

3 FERM-predictive I FERM-decorrelated [EEE FRRM

Figure 2: Left panel: Predictive MSE for FRRM (in blue), FERM-predictive (in red), and FERM-
decorrelated (in green) for various unfairness levels r; lower values are better. Right panel: Un-
fairness levels on test data (r¢s:) for FRRM (in blue), FERM-predictive (in red), and FERM-
decorrelated (in green) at varying unfairness levels 7. Simulation settings are described in Table

m

to have zero mean and unit variance to ensure consistency in the modeling process. The dataset
is then split into training and testing sets, where 80% of the samples are randomly assigned to the
training set, and the remaining 20% are assigned to the testing set. We generate synthetic datasets
{(X;,Y;,S;)}, under three settings, as listed in Table [} We consider two types of noise dis-
tributions for 7: in the normal setting, each element of 7 follows a standard normal distribution,
ni; ~ N(0,1), whereas in the Poisson setting, we set 7;; ~ Poi(1) — 1 (Results for Poisson set-
ting (3) are provided in the Appendix [D} Figure[d]). The proposed FERM method and the baseline
FRRM method are evaluated across varying unfairness constraints, defined by the unfairness budget
r € {0.1,0.2,...,0.5}. Each simulation is repeated 50 times for every r to account for variability
in the results.

Across all settings, both decomposition-based models outperform FRRM in predictive accuracy
(lower MSE) while maintaining comparable unfairness levels 7, consistent with the theory in Sec-
tion 4 Gains are especially pronounced in high-dimensional settings, where envelope methods
reduce dimensionality and improve efficiency. In low dimensions the two variants perform simi-
larly, but in higher dimensions FERM-predictive is superior to FERM—decorrelated, as its predictor
decomposition better isolates the response-relevant components of X. Both variants remain robust
under non-Gaussian noise, and all methods achieve fairness levels close to their targets. Overall, the
simulations confirm that envelope-based decomposition improves statistical efficiency while pre-
serving fairness.
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Predictive MSE vs Fairness Level (sample size n = 2000, 4000, 8000)
Sample Size: 2000 Sample Size: 4000 Sample Size: 8000

r_test vs Fairness Level (sample size n = 2000, 4000, 8000)

Sample Size: 2000 Sample Size: 4000 Sample Size: 8000
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(a) Predictive MSE (b) Unfairness on test data
[ FERM-predictive B FERM-decorrelated [HEEE FRRM

Figure 3: Left panel: Predictive MSE for FRRM (in blue), FERM-predictive (in red), and FERM-
decorrelated (in green) for unfairness levels » = {0.1,0.2,0.3}; lower values are better. Right
panel: Unfairness levels on test data (r;.s:) for FRRM (in blue), FERM-predictive (in red), and
FERM-decorrelated (in green) at unfairness levels » = {0.1, 0.2, 0.3}.

6.1 REAL-WORLD DATA

For our real data application, we wuse U.S. Health Insurance Dataset (available at:
https://www.kaggle.com/datasets/teertha/ushealthinsurancedataset). In this analysis, the sensitive
attributes include gender, age, medical history, family medical history, and region. After creating
dummy variables for all categorical variables, we finally have 15 features in S and 15 features in
X. We evaluated the performance under various settings with » € 0.1,0.2,0.3 and sample sizes
n € 2000, 4000, 8000. The real data was perturbed and each configuration was replicated 30 times.
The results are provided in the Figure 3] Results demonstrate that FERM models are superior to
FRRM approach in most of the settings.

7 CONCLUSION

We introduced a new framework for fairness-aware regression that decomposes the predictor space
into response-specific, sensitive, shared, and residual components. By penalizing only the sensi-
tive subspaces, FERM provides an interpretable and tunable mechanism for balancing fairness and
predictive accuracy. Our theoretical results establish efficiency gains relative to OLS and show
that fairness can be enforced without discarding predictive signal. Empirical studies on both simu-
lated and real-world datasets confirm that FERM consistently improves the fairness-utility trade-off
compared to existing regression-based approaches. Beyond strong empirical performance, the key
advantage of FERM lies in its interpretability: fairness constraints are imposed at the subspace
level, making explicit how sensitive information enters the model. This transparency distinguishes
FERM from black-box debiasing methods and offers practitioners a principled lever to manage fair-
ness requirements. Nevertheless, FERM has important limitations. The method assumes linear
subspace decompositions, and its fairness control is tied to covariance-based independence. We
highlight these limitations in Appendix |H along with directions for extensions to nonlinear rep-
resentations, alternative fairness notions, and scalable algorithms for high-dimensional predictors.
More broadly, envelope methodology continues to expand. Extensions to generalized linear models
(Cook & Zhang] 2015; [Forzani & Su, [2021)), matrix- and tensor-valued responses and predictors
(Cook & Zhang|, 2018} |[Li & Zhang} [2017), and alternative fairness penalties (Scutari et al., 2022)
provide natural avenues to adapt and generalize the FERM framework. We discuss these directions,
including integration with broader definitions of fairness, in Appendix

Overall, our results highlight predictor-space decomposition as a powerful tool for fairness-aware
learning. We hope this work encourages further exploration of envelope methods at the intersection
of statistical efficiency, interpretability, and algorithmic fairness.
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ETHICS STATEMENT

This work introduces FERM as a methodological tool to improve fairness and efficiency in regres-
sion. Simulations use only synthetic data, and the real-world experiment relies on a publicly avail-
able, anonymized Kaggle dataset. The method is designed to reduce unfair dependence on sensitive
variables, though fairness guarantees remain context-dependent. This research complies with the
ICLR Code of Ethics and has no conflicts of interest.

REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure reproducibility. All theoretical results are accompanied
by formal proofs in Appendix[B] with assumptions stated explicitly in Section[5] The full simulation
setup, parameter choices, and evaluation protocol are described in Section [6]and Appendix [E} Code
to reproduce all synthetic experiments and figures, along with scripts for preprocessing the publicly
available Kaggle dataset used in the real-world study, is included in the supplementary material.
Random seeds and hyperparameter selection procedures are documented to enable exact replication.
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APPENDIX

A ENVELOPE REGRESSION MODELS

In this section, we illustrate the envelope regression methods, which aims to improve estimation
efficiency by identifying relevant subspaces in the response or predictor space |Cook et al.| (2010;
2013), forming the foundation of our proposed methodology.

Definition A.1 (M-Envelopes, (Cook et al., 2010)). For M € R?*? and B C span(M), the
M —envelope of B, denoted as Ey7(B), is defined as the intersection of all reducing subspaces of
M that contains .

Response Envelope Regression Model We employ the response envelope model, which assumes
that a part of the predictors X remain stochastically constant as the sensitive attributes S vary.
Consider the model:

X =BTS+e, (10)

where e is zero-mean normal noise with covariance matrix Cov(e) = X x. The response envelope
model assumes that the distribution of certain linear combinations of X is invariant to S. This
decomposition is formalized using two orthogonal matrices I' € R*x*" and I'y e Rdx *(dx—m)
where [T T'g] is an orthogonal matrix. Then we have:

(@) T X |S ~ 'y X, indicating invariance of T'j X to S.
(b) T'" X is uncorrelated with T'J X given S.

These conditions imply that F(—)r X carries no information about S. Furthermore, |Cook et al.[(2010)
showed that conditions (a) and (b) are equivalent to:

(a") span(B) C span(T").
(®) Ex =31 + 3 = Pr¥xPr + QrExQr,

where ¥ x is the covariance of X, Pr and Qr = I — Pr are projection operators onto span(I") and
span(T'y), respectively. Based on these conditions, the response envelope model can be expressed
as (Conwayl 2019):

X =T¢S +e,
Yx =TQrT + Qg , (11)
where ( € R™*4s denotes the coefficients, the columns of T is an orthogonal basis for the ¥ x-

envelope of span(B), denoted by &, (span(B)), and m = dim (Ex, (span(B))). The matrices
Q € R™ ™ and )y € R@x—m)x(dx—m) provide the coordinates of X x with respect to I

Predictor Envelope Regression Model The predictor envelope model |Cook et al.| (2013)) identi-
fies material and immaterial parts of the predictors X in the regression of Y on X. The model is
defined as:

Y =py + BT (X — px) +e (12)

where € is zero-mean noise. The predictor envelope method seeks a dimension reduction for X by
finding the X x-envelope of span(3 "), denoted by ex, (span(3")). This decomposition divides X
into material and immaterial parts, denotes as Py; X and @Q ;s X, which satisfies

(i) QX and Py, X are uncorrelated.
(i) QX is uncorrelated with Y given Py X.
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Let u = dim (ex, (span(87))), and let & € RP** and &, € RP*(P~%) be orthogonal bases for

ex, (span(8T)) and its orthogonal complement, respectively. The predictor envelope model can
then be written as:

Y =py +9T 0N (X - px) +e
Yx = PADT + ByA D, (13)

where § = @1, and A € R**% and Ay € RP=#)*(P=%) proyide the coordinates of X x with
respect to .

A.1 ENVELOPE ESTIMATION OBJECTIVE

Given the dimension v of an envelope subspace, envelope estimation reduces to solving the con-
strained optimization problem

I =arg min Jo(T),  Ju(D) =logDTMT|+log|TT (M +0U)7'T|, (14
TeRpXu :TTI=],

where M = 0 and U = 0 are finite-sample estimators of the population matrices M and U. The
envelope estimator is then defined as

~

En(U) = span(ID).

The constraint T'TT" = I, ensures that I has orthonormal columns. Consequently, optimization
problem (T4} is non-convex and takes place on a Stiefel manifold. If we treat the subspace S =
span(T") as the argument rather than the basis matrix T", then the problem becomes equivalent to a
non-convex optimization over the Grassmann manifold (the set of u-dimensional subspaces of RP).

This formulation highlights that envelope estimation is inherently a problem of manifold optimiza-
tion. Almost all envelope methods, including those used in regression, prediction, and our fairness-
aware adaptation (FERM), are connected through this shared objective structure.

Choice of M and U: The specific form of M and U depends on whether one is estlmatlng a
response envelope or a predictor envelope. Let Ey, EX, ES, ny, ngand ny = Exy,

Sex = L% xg denote the (centered) sample covariance and cross-covariance matrices computed
from {(X;, S;, Y;)}™_ ;. As described in|Cook & Zhang| (2018); Zhang et al.|(2023), Then the em-
pirical counterparts used in equation @] are:

* Response envelope model in :

M = Yy, U = $xs3sx.

* Predictor envelope model in (T3)) :

M = X¥x, U = Sxy Syx.

B PROOFS OF RESULTS IN SECTION[3]

Proof of Theorem 3.1k

Recall that Beny := PBoLs, where P is the orthogonal projector onto the subspace spanned by
yxsy and xy. Let © € R¥*** have orthonormal columns forming a basis for this subspace,
and let Oy € R4 *(@x—F) form an orthonormal basis for its orthogonal complement, where k =
dim(span{HXSy, ny}).
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Since 8 € range(P), we have P§ = (3. Thus,
\/E(Benv - 6) = \/EP(BOLS - B)

Because v — Pu is linear and continuous, the continuous mapping theorem combined with the
assumed asymptotic normality of Sors gives

Vi (Bene = B) == N(0, PXP),
where 3 := avar(y/n Bors). Therefore,

avar(\/ﬁﬁ’env) = PYP.

Next, express P and I — P in the chosen orthonormal basis:
P=00T, [-P=000,.
With respect to this basis, X has the block form

Y11 X2

S =[O0 O [221 o

] [© @O]T, where ¥;; = 0/ £0;.

By construction of the envelope subspace, Y15 = ¥4, = 0, so X is block-diagonal with respect to
P @ PL. Hence,
PYXP=0Y,0", Y~ PYP =020, .

Since ¥ > 0 implies X592 >~ 0, we obtain X — PX P > 0, i.e.,
PYP <3

Finally, if ©¢ is nontrivial and Y5 > 0, then

¥ — PYP = 0% 0] >0,
which establishes the strict inequality PXP < X. O
Proof of Proposition The result follows by combining the asymptotic normality of BOLS with
the \/n-consistency of envelope subspace estimators.

First, by standard linear model theory,

5 d
Vn(Bos — B) — N(0,%),
SO BOLS is v/n-consistent for 3.

Second, Algorithm |1 estimates the envelope projector P using either the 1D algorithm of |Cook &
Zhang|(2016)) or the NIECE algorithm of Zhang et al.|(2023)). Proposition 6 in/Cook & Zhang| (2016))
and Theorem 1 in|Zhang et al.|(2023)) both establish that the estimated envelope subspace converges
at y/n-rate to the population envelope subspace, i.e.,

1P = P = Op(n~"/?).
Now decompose R ) X R R
Benv(P) — B = (P — P)Bors + P(BoLs — B).

Since foLs = O,(1) and P — P = O,(n~'/?). The second term is asymptotically normal with
mean zero and covariance PX P by Theorem

Therefore, A A
\/ﬁ(ﬁenv(P) - ﬁ) = Op(l)a

showing that Benv is y/n-consistent. ]
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Proof of Theorem
Note that

3 — argmin ||Y — Xxy Bxy |2,
Bxy

(B, U8 ) =arg min  [|Y — XxyBxy — XxsyBxsy|2
Bxy,Bxsy

(Bxy (N, Bxsy(N) = arg mén Y — XxvBxy — XxsyBxsy 3 + MBxsyl3,
SY

XY PX
with penalty A > 0 applied only to the shared component. Thus,
A N N . -1 .
Bry(N) = B9 = (M X Xy ) 15y XTY,
R -1
Bxsy(N) = (XxsyXxsy +A(N)I)  XysyY.
Using Sherman-Morrison-Woodbury identity for matrices, we have

—1
-1 -1 -1 1
(XxsyXxsy +A(MI) = (XxsyXxsy) — (XxsyXxsy) (MX}SYXXSY + I) .
Thus,
—1

R 1 -1 1

Bxsy(N) = (XxsyXxsy) XxgyY — (XxsyXxsy) (A(T)X}SYXXSY + I) XxsyY

—1
. -1 1
= %y — (X;SYXXSY) (A(T)X}SYXXSY =+ I) XxsyY.

This allows us to obtain the following representation, using X ¢y X xsy = nl,

YA(X,S) = Bxy (V) Xxv + Brgy V) Xxsy

3 5 11 -1
= (B) " Xxv + (BRSy) ' Xxsy — (XksyXxsy) (/\(T)X)Tcsyxxsy + —’) XisyY) Xxsy
AOLS\ T AOLS \T L Ar) T T
= (Bxy) Xxv + (Bxsy) Xxsy — EW(XXSYY) Xxsy
~ ~ )\(r) ~
= (B Xxv + (BF6y)  Xxsv — m(ﬁ%sy)TXXSY
On rearranging, we get
N n A n ~
Yy A Yors + (1 o )\(r)) Yair, A(r) >0
Letw(n,r) = 7Taqy - Thus,

Y -Yy=Y -~ {w(n, ) Yous + (1 —w(n,r)) YA;‘air:| = (Y = Yors) + (1 —w(n,7))(Yors — Yiair)
Hence
ElY — )A’,\]Q =E[Y - YOLS]Q + (1 —w(n, T))2E[Y0LS - Yfair]2
+2(1 - w(n,)E[(Y - Yos)(Yors — Yiuir)]-

But note that (Y — Yors) and (Yors — Yiair) are orthogonal, hence uncorrelated. Since, E(e) = 0,
the cross-term above vanishes.

That is,
MSE) = MSEors + (1 — w(n,r))? MSE;,.
showing exactly how FERM interpolates between the two models via the tuning parameter A(r).
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C EXTENSIONS OF FERM MODELS

FERM is constructed with a modular and flexible design, which enables a wide range of possible
extensions. These include incorporating nonlinear modeling frameworks, introducing alternative or
more sophisticated penalization schemes, applying different definitions of fairness, and adapting the
method to various types of response variables using generalized linear models. A key strength of
FERM lies in the clear separation between model selection (i.e., the choice of A(r)) and model esti-
mation (i.e., estimation of aggrm and Bperm), Which facilitates independent modification of either
stage. This separation allows FERM to draw from and integrate with a broad body of established
techniques in statistical modeling, offering adaptability to different fairness-aware regression set-
tings.

C.1 NONLINEAR REGRESSION MODELS

FERM can be extended to handle nonlinear relationships by incorporating kernel methods, in a
similar fashion as suggested by Komiyama et al.|(2018)) and Scutari et al.[(2022). Specifically, the
model can be fitted into transformed feature spaces Zpr(I'7 X) and Zr,(I'J X), obtained through
positive definite kernel functions, similar to the approach in [Komiyama et al.| (2018). Applying
the kernel trick in conjunction with ridge penalization leads to a kernel ridge regression variant of
FERM (cf. [Saunders et al| (1998))), which can be estimated efficiently using techniques such as
those proposed by [Zhang et al.| (2015). Moreover, since kernel ridge regression is closely related
to Gaussian process regression, this extension naturally opens the door to Bayesian nonparametric
variants of FERM using Gaussian processes, as discussed in|Kanagawa et al.|(2018]).

C.2 EXTENSIONS TO DEEP LEARNING MODELS

The FERM framework can also be extended to deep learning architectures by leveraging the en-
velope decomposition as a structured preprocessing step. Specifically, the decomposition of the
predictor space into orthogonal components — associated with the response (Y'), the sensitive at-
tribute (S), their shared variation, and residuals — provides a principled way to separate and control
different sources of variation prior to feeding them into a neural network. One approach is to project
the raw inputs onto the learned subspaces, and then use only the subspace orthogonal to the sensitive
attributes as input to the downstream model. This can help ensure that the representations learned
by the network are less entangled with sensitive information, improving fairness in predictions.

C.3 DIFFERENT DEFINITIONS OF FAIRNESS

The modular structure of FERM allows flexibility in how fairness is defined and enforced. In par-
ticular, the fairness constraint used in the form R?(a, 3) < r in our methodology can be modified
independently of the estimation procedure for apgry and BpgrM- In particular, the extension re-
ported in Section 4.3 of |Scutari et al.[(2022) can be directly applied to achieve this in our case. For
instance, this constraint can be replaced by an analogous constraint based on equality of opportunity.
One such measure is:

_ Var(S¢)
Rio(9,v) = Var(Ye) + So)

where ¢, 1 are the regression coefficients in the model Yy = Y + S¢p + €* and Yy as defined
before. If equality of opportunity holds exactly, then YrgRM is conditionally independent of .S
given Y, i.e., Cov(Yy,S | Y) = 0. This implies ¢ = 0 and R, = 0. FERM can approximate
this condition asymptotically: as A(r) — oo, we have Yy — Yiair, leading to vanishing conditional
covariance. Conversely, as A(r) — 0, the fairness constraint becomes inactive, and }A/}\ — YQLS.
For finite \(r), we obtain Yy = w(n,r) YoLs + (1 —w(n, 7")) Yiaics implying that COV(Y,\7 S1Y)
and thus R2, decrease as \(r) increases. This mirrors the control we exert over R? in Section
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(3a) Simulation setting 3: Predictive MSE (3b) Simulation setting 3: Unfairness on test data
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Figure 4: Left panel: Predictive MSE for FRRM (in blue), FERM-predictive (in red), and FERM-
decorrelated (in green) for various unfairness levels r; lower values are better. Right panel: Un-
fairness levels on test data (r4s:) for FRRM (in blue), FERM-predictive (in red), and FERM-
decorrelated (in green) at varying unfairness levels . Simulation settings are descrsibed in Table([T}

D EXPERIMENTS
In Figure we provide simulation results for the Poisson setting (3) given in Table

D.1 REPRODUCIBILITY

All code used to generate the simulation results in Section [f]is provided in the supplementary ma-
terial. The repository includes data generation scripts, training routines for FERM and FRRM, and
plotting code to reproduce all figures and tables. Random seeds and parameter settings are fixed to
ensure exact replication.

D.2 COMPUTATIONAL DETAILS:

We conduct all our experiments on a Gentoo Linux server with an Intel Xeon E5-2683 v4 @
2.10GHz CPU and 251GB of RAM. No GPU is involved.

E IMPLEMENTATION DETAILS OF ALGORITHMS

E.1 ENVELOPE-BASED DECOMPOSITION (ALGORITHM [I))

Algorithm|[T|requires estimation of two envelope subspaces: a response envelope of X relative to S,
and a predictor envelope of Y relative to X.

Envelope estimation: We estimate envelope bases using the objective function in (T4), solved
either with the 1D algorithm of |(Cook & Zhang (2016) or the NIECE algorithm of [Zhang et al.
(2023)). In both cases, the estimated envelope subspace is y/n-consistent. Dimensions 772 and 4 are
chosen by BIC or cross-validation.

Sample covariance estimators: Let Sy, Sx, Sxy, and Sy x denote the usual sample covari-
ances. Then:

* Response reduction: M= i]X, U= EXS Ysx.

o Predictor reduction: M = i]X, U= f)Xy f)yx.
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The intersections of the estimated envelope subspaces yield the four orthogonal components
Ixsy,Uxy,Uxs, .

Numerical optimization: The envelope objective is non-convex and solved on Stiefel/Grassmann
manifolds. In practice, we use manifold optimization routines from the R package Renvlp.

E.2 INTERPOLATED REGRESSOR WITH FAIRNESS CONTROL (ALGORITHM [2))

Given the decomposition from Algorithm [T} Algorithm 2]trains regressors under three cases:

1. Fair model (r = 0): Only the subspace spanned by [xy is used, yielding predictions
independent of S asymptotically.

2. Unconstrained model (» = 1): OLS on projections of predictor X on both subspaces
spanned by Il xy and IIx sy subspaces, recovering the standard linear model.

3. Interpolated model (0 < r < 1): A ridge penalty is applied only to the shared component
obtained by projecting X on subspace spanned by [Ixsy. The penalty A is chosen such
that the R?-fairness criterion in (7) satisfies R%(\) < r. We compute Var(-) in (7) as the
sample variance of centered fitted values.

Practical computation of \: In practice, X is found via a line search (e.g., bisection) over a grid
of candidate values until the fairness constraint R%()\) < r is met. This ensures the fitted model
interpolates smoothly between the fair and unconstrained extremes.

Software: All algorithms are implemented in R. For cross-validation and BIC, we rely on existing
libraries for model selection. Ridge penalties are implemented using standard linear algebra solvers.

Together, Algorithms [I] and [2] provide a practical pipeline for training regressors that interpolate
between fairness and predictive utility in a principled way.

Additional advantage of our framework: Unlike prior methods, FERM also decomposes the
sensitive attributes S. This removes the immaterial variation in .S that is unrelated to Y, ensuring that
fairness constraints target only the predictive overlap between S and Y. As a result, our R% measure
in (equation |7 provides a more principled notion of unfairness: it penalizes only the variance in
predictions attributable to the material component of S, rather than noise. This refinement yields
tighter fairness control and a sharper fairness-accuracy trade-off than existing approaches.

F LIMITATIONS

While FERM provides a principled framework for fairness-aware regression, several limitations
should be noted:

Linearity of subspace decomposition: FERM assumes that both material and immaterial varia-
tion can be captured through linear subspaces of the predictor space. In many real-world applica-
tions, sensitive attributes may influence Y through nonlinear interactions with X, in which case a
purely linear envelope decomposition may be too restrictive. Extending the methodology to nonlin-
ear settings (e.g., kernelized or deep envelope methods) remains an important direction for future
work.

Dependence on subspace estimation: The validity of FERM relies on accurately estimating the
envelope subspaces. Although the 1D and NIECE algorithms provide /n-consistent estimators, in
finite samples the estimated subspaces may deviate from their population counterparts, especially
when dx is large relative to n. This may lead to imperfect fairness guarantees in small samples.
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Choice of tuning parameters: FERM requires selecting the envelope dimensions (772, @) and the
interpolation parameter A (or equivalently the fairness target ). While BIC and cross-validation are
standard, their stability can vary across datasets. Automatic and robust criteria for selecting these
parameters remain an open area of research.

Fairness notion: Our fairness control is expressed through covariance-based independence (or
R%) between predictions and sensitive attributes. Other fairness notions (e.g., counterfactual fair-
ness, equalized odds) are not directly captured. Extending the envelope framework to these broader
definitions requires additional methodological development.

Computational cost: Envelope estimation involves non-convex optimization on Stiefel or Grass-
mann manifolds. Although efficient algorithms like NIECE exist, the procedure is more computa-
tionally intensive than standard regression, and scalability to very high-dimensional predictors may
be challenging without additional structural assumptions.

Overall, while these limitations highlight directions for future work, FERM demonstrates that sub-
space decomposition provides a tractable and interpretable pathway to fairness-aware regression.

LLM USAGE

Large Language Models (LLMs) were used as an assistive tool in preparing this submission. Their
role was limited to: (i) editing and polishing drafts of the introduction and methodology sections
for clarity and conciseness; (ii) suggesting alternative phrasings to improve readability; and (iii)
checking grammar, spelling, and typographical errors. All technical contributions, theoretical re-
sults, experimental designs, and analyses were developed entirely by the authors. The authors take
full responsibility for the accuracy and integrity of the content.

20



	Introduction
	Related Work
	Preliminaries
	Fairness Criteria in Regression with Multivariate Sensitive Attributes
	Previous Works
	Towards a Principled Decomposition

	Methodology
	Algorithmic Implementation

	Theoretical Properties
	Simulation Study
	Real-world data

	Conclusion
	Envelope Regression models
	Envelope Estimation Objective

	Proofs of Results in Section 5
	Extensions of FERM models
	Nonlinear Regression Models
	Extensions to Deep Learning Models
	Different Definitions of Fairness

	Experiments
	Reproducibility
	Computational Details:

	Implementation Details of Algorithms
	Envelope-Based Decomposition (Algorithm 1)
	Interpolated Regressor with Fairness Control (Algorithm 2)

	Limitations

