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Abstract

Detecting when a neural sequence model does “in-
teresting” computation is an open problem. The
next token prediction loss is a poor indicator: Low
loss can stem from trivially predictable sequences
that are uninteresting, while high loss may reflect
unpredictable but also irrelevant information that
can be ignored by the model. We propose a better
metric: measuring the model’s ability to predict
its own future hidden states. We show empirically
that this metric—in contrast to the next token pre-
diction loss—correlates with the intuitive inter-
estingness of the task. To measure predictability,
we introduce the architecture-agnostic “predic-
tion of hidden states” (PHi) layer that serves as
an information bottleneck on the main pathway
of the network (e.g., the residual stream in Trans-
formers). We propose a novel learned predictive
prior that enables us to measure the novel infor-
mation gained in each computation step, which
serves as our metric. We show empirically that
our metric predicts the description length of for-
mal languages learned in-context, the complexity
of mathematical reasoning problems, and the cor-
rectness of self-generated reasoning chains.

1. Introduction
Neural sequence models—especially large language models
(LLMs)—have demonstrated remarkable capabilities, such
as solving complex reasoning tasks (Lewkowycz et al., 2022;
Wei et al., 2022; Zelikman et al., 2022) and performing in-
context learning (Brown et al., 2020; Zhao et al., 2021;
Liu et al., 2022; Kirsch et al., 2022). Recent progress in
mechanistic interpretability has offered glimpses into how
these models process information internally: for instance, by
identifying specific induction heads (Olsson et al., 2022) or
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Figure 1. Interesting tasks, like in-context learning, or modeling
of code and literature, exhibit high hidden state prediction (PHi)
loss, while boring or trivial tasks, such as retrieving memorized
sequences or modeling random structureless data, show low PHi
loss. Next token loss provides no meaningful insight into task
complexity. Results for a specialized transformer model (blue) and
a pre-trained LLM (green), with PHi loss scales differing due to
hidden state size. See Sections 3.1.1 and 3.2.1 for details.

n-gram mechanisms (Akyürek et al., 2024) that capture non-
trivial aspects of the underlying computation. Nevertheless,
quantifying in a general way when and how much truly
interesting or complex computation is happening within a
model remains challenging.

A natural first instinct is to use next-token prediction loss
to gauge complexity: Computations that yield high loss
might appear “hard,” whereas those with low loss might be
“easy”. However, this notion of hardness does not necessar-
ily reflect the complexity or “interestingness” of underlying
computation, see e.g., Schmidhuber (1991a;b). For example,
a random sequence has a high next token prediction loss,
but at the same time, the model does not have to compute
anything because there is nothing that it can do to help the
predictions. Hence, next-token prediction alone fails to cap-
ture the complexity of in-context computation performed by
the model.

We therefore propose a new metric: hidden-state predictabil-
ity. Concretely, we measure how well the model can predict
its own future hidden states, rather than future tokens. To
achieve this, we introduce a PHi (“Prediction of Hidden
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States”) layer, which imposes an information bottleneck
on the hidden representations, and predicts them autore-
gressively. The layer is placed in the information pathway
of the autoregressive sequence model. Under this scheme,
the activations flowing through the PHi layer have to be
compressed—information is included in the hidden state
only if it is expected to be relevant for generating future
tokens. The model is encouraged to encode the “in-context
program” needed for sequence prediction in the hidden
states. The hidden state prediction loss (PHi loss) allows
us to quantify the complexity, or description length, of this
program.

Our approach offers several advantages: (i) It is architecture-
agnostic and can be inserted in a wide range of autoregres-
sive models, including transformers (Vaswani et al., 2017;
Schmidhuber, 1992b; Schlag et al., 2021) and RNNs (El-
man, 1990; Jordan, 1986; Hochreiter & Schmidhuber, 1997).
(ii) The model and the PHi layer can be jointly trained from
scratch, or the PHi layer can be added post-hoc to pretrained
LLMs. (iii) It provides a way to measure when the model is
doing complex computation by examining the unpredictabil-
ity—and hence information content—of the hidden states.

We provide empirical evidence, using both smaller-scale
transformers/RNNs and large pre-trained language models,
that our hidden-state unpredictability metric correlates with
task complexity in various domains. Concretely, we show
that:

• Tasks that require no interesting data-processing, such
as reciting memorized sequences, executing memo-
rized programs in-context, or modeling random noise,
are associated with low PHi loss. Interesting tasks such
as in-context learning or modeling complex natural lan-
guage and code yield high PHi loss (see Figure 1).

• For in-context learning formal stochastic languages,
PHi loss is predictive (beyond next token loss) of the
complexity of the language.

• For step-by-step solutions of math problems, PHi loss
is predictive (again, beyond next token loss) of the
hardness of the problem.

• When an LLM itself generates step-by-step solutions
to math problems, solutions with high PHi loss have a
significantly increased chance of being correct.

Taken together, these insights shed light on the internal
computations of powerful sequence models and offer a prin-
cipled tool for detecting “interesting” in-context behaviors.
The remainder of this paper is organized as follows: In Sec-
tion 2, we introduce the PHi layer and describe how it is
used to measure predictability, and how it is integrated into
an autoregressive model. In Section 3, we demonstrate the
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Figure 2. The structure of our PHi layer. It can be inserted in the
middle of any next token prediction architecture, and it reconstructs
its hidden states through an information bottleneck. It consists
of posterior encoder qψ(zt | ht) that predicts the latent code zt,
decoder aξ used to reconstruct the hidden state h′

t = aξ
(
zt
)
, and

a learned autoregressive prior pχ(zt | z1, . . . , zt−1) predicting zt
from the past latent codes. We propose to use the KL divergence
between the posterior and the prior to quantify the complexity of
the “in-context computation” performed by the model.

effectiveness of our approach on a variety of tasks, showcas-
ing how hidden-state predictability correlates with task com-
plexity. Section 4 reviews related work before we discuss
limitations and avenues for further research in Section 5.
We conclude with Section 6. Our code is publicly avail-
able (https://github.com/vincentherrmann/
predicting-hidden-states).

2. Method
In the following, Section 2.1 introduces our PHi layer, which
serves as a basis of our novel metric. Then, we build on
this layer to introduce our proposed quantification of “in-
terestingness” in Section 2.2. In Section 2.3, we discuss
the training of our layer, and we finish with Section 2.4 by
discussing the connection between our proposed PHi loss
and the next token prediction loss.

2.1. Prediction of Hidden States (PHi)

We consider a standard autoregressive sequence model πθ,
with parameters θ, so that

pθ(x1:T ) =

T∏
t=1

πθ(xt | x<t). (1)
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In practice, πθ(· | x<t) can be realized by any neural se-
quence model such as a decoder-only transformer or an
RNN. As long as πθ has at least two sequence layers, we
can split this model into a bottom set of layers and a top set
of layers.

Bottom Layers: The function Bβ , with parameters β, pro-
cesses the sequence (x1, . . . , xt) into a hidden representa-
tion ht = Bβ(x1, . . . , xt). One can think of Bβ as the first
few layers of the network.

Top Layers: The top (remaining) layers, denoted Tτ , with
parameters τ , use hidden representations {h1, . . . , ht−1} to
parameterize the next-token distribution: πθ(xt | x<t) =
Tτ

(
xt|h1, . . . , ht−1

)
.

PHi Layer: We introduce a new layer that has distinct func-
tions: It (a) introduces an information bottleneck on the
current hidden state ht and (b) predicts future hidden states.
We call this a PHi layer (see Figure 2). It is sandwiched
between Bβ and Tτ , and transforms {h1, . . . , ht} into a
new sequence of representations {h′1, . . . , h′t}. The layer is
inspired by variational autoencoders (Kingma & Welling,
2014), but instead of a fixed prior, we use an autoregres-
sive, learned prior, with access to the past states. First, we
introduce latent variables {z1, . . . , zt} at each time step.
The learned encoder qψ(zt | ht) maps each hidden state
ht to a posterior over zt. The autoregressive, learned prior
pχ(zt | z1, . . . , zt−1) generates a distribution over zt based
on the previous history of latent variables. Thus, the prior
serves as a predictor of future hidden states. In practice, the
prior can be implemented by any causal sequence processing
module, such as self-attention combined with a step-wise
multi-layer percepetron (MLP). A decoder aξ , parametrized
by a small neural network, is used to reconstruct the hidden
states h′t = aξ

(
zt
)

from the latents zt ∼ qψ( · | ht).

The PHi layer can easily be inserted into most autoregressive
sequence modeling architectures. The sequence model πθ
can be trained jointly with the PHi layer, or alternatively
can be pre-trained, optimizing only the new PHi layer while
holding the model’s weights fixed.

2.2. Quantifying “Interestingness”

We propose to quantify interestingness by measuring the
amount of information gained from the posterior qψ(zt | ht)
over the prior pχ(zt | z1, . . . , zt−1). This is precisely the
KL divergence DKL(qψ∥pχ). We define the PHi loss as the
the information gained in a given timestep t:

LPHi(t) = DKL

(
qψ( · | ht)

∥∥ pχ( · | z1, . . . , zt−1)
)

(2)

Intuitively, this measures the nats of novel information
learned in timestep t that is not predictable from the past. We
propose to use this quantity as the measure of the interest-

ingness of the computation performed in a specific timestep.

When quantifying the interestingness of an entire sequence,
we calculate the mean of the above metric over all tokens:

LPHi =
1

T

T∑
t

LPHi(t) (3)

We report this metric in our experiments in Section 3.

2.3. Training Objective

We train the entire system (bottom layers Bβ , top layers
Tτ , and PHi layer) by combining two losses. First, we need
to ensure that ensures that the transformed hidden states
{h′1, . . . , h′t−1} still suffice to predict the token xt. We do
this by using the standard negative log-likelihood next token
prediction loss used in language modeling:

LNLL(t) = − log Tτ
(
xt | h′1, . . . , h′t−1

)
(4)

In parallel, we also minimize the PHi loss (Eq. 2). This
encourages each zt to be predictable from its predecessors
z<t by minimizing the KL divergence between the posterior
and the autoregressive prior. Thereby, the “unnecessary”
information that is not expected to be relevant for future
predictions is discouraged in zt.

The total loss for time step t is:

L(t) = LNLL(t) + LPHi(t) (5)

In effect, the model is incentivized to maintain enough in-
formation in the latent zt (and hence h′t) to predict the next
token, but not so much as to deviate from the learned autore-
gressive prior over z. This enforces an information bottle-
neck on the hidden states while preserving good predictive
performance on the original sequence task.

We treat the latent variables {zt} in a fashion similar to
a variational autoencoder (VAE) by sampling them from
the approximate posterior qψ(zt | ht). To enable gradient
backpropagation through these samples, we use the stan-
dard reparameterization trick (Kingma & Welling, 2014;
Rezende et al., 2014). Specifically, the posterior is modeled
as a Gaussian with mean µψ(ht) and diagonal covariance
σψ(ht)

2, we draw an auxiliary noise variable ϵ ∼ N (0, I)
and set zt = µψ(ht) + σψ(ht) ϵ. This approach provides a
low-variance gradient estimator for updates to the parame-
ters ψ. Consequently, the entire network (including bottom
layers Bβ , the prior pχ, and the output transform aξ) can be
trained end to end via standard stochastic gradient descent.

2.4. The Connection Between LNLL and LPHi

Because the token sequence x1:T is modeled autoregres-
sively by (1), we can use a standard entropy-coding tech-
nique (e.g. arithmetic coding, compare Deletang et al.
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(2024)) to encode x1:T in

T∑
t=1

(
− log πθ(xt | x<t)

)
=

T∑
t=1

LNLL(t) nats.

The PHi layer allows us to proceed similarly with the hid-
den state sequence, or more precisely with the sequence of
posteriors {qψ(·|ht), t ∈ 1, . . . T} over the latent variables
z1:T . The number of nats required to encode the entire latent
sequence is

T∑
t=1

DKL

(
qψ( · | ht)

∥∥ pχ( · | z<t)) =

T∑
t=1

LPHi(t).

This description length of the hidden states allows us to
quantify the amount of information that the model is extract-
ing from the input sequence and is used to predict the remain-
der of the sequence. Note that the token xt̂ at any particular
position t̂ alone can be encoded in LNLL(t̂)+

∑t̂−1
t=1 LPHi(t)

nats by first encoding the latent sequence z1:t̂−1 and then
encoding xt̂ given Tτ (·|h′1, . . . h′t̂−1

) without explicitly en-
coding the past sequence of tokens.

3. Experiments
We split the experiment section into two parts: Section 3.1
covers smaller scale sequence models that are trained jointly
with the PHi layer from scratch. Section 3.2 investigates
inserting a PHi layer into a pre-trained LLM.

3.1. Experiments with Fully Trained Sequence Models

We begin our evaluation by training autoregressive sequence
models from scratch with the proposed hidden-state predic-
tion framework. Specifically, we consider two architectures:
a decoder-only transformer and an LSTM. The transformer
has 12 layers and a hidden state size of 768. The LSTM has
2 layers and the same hidden state size. In each network,
we insert a single PHi layer in the middle of the model.
Exact hyperparameters and further details can be found in
Appendix A. Our primary goal is to explore how the PHi
approach responds to different tasks, especially those that
require non-trivial in-context computation.

Background: In-Context Language Learning with Prob-
abilistic Finite Automata We adopt the in-context lan-
guage learning setup proposed by (Akyürek et al., 2024),
where each problem instance is defined by a probabilistic fi-
nite automaton (PFA). A PFA has a set of states and directed
edges, each labeled with a token from some vocabulary.
To generate an example from a PFA, we start at a random
initial state and randomly sample an outgoing edge (with
uniform probability among that state’s edges). We emit the

associated token, move to the edge’s target state, and repeat
for a random length of 10–50 tokens. In in-context language
learning, for each input, a new random PFA is generated,
and the model is presented with multiple examples gener-
ated from this PFA. To achieve good next-token predictions
on subsequent examples, the model must infer the structure
of the PFA in-context.

We quantify the theoretical complexity of the “program”
that must be learned in-context by calculating the number
of bits necessary to encode the PFA. Let a PFA A have n
states and m edges, each labeled with a token from a chosen
subset of size v out of a total vocabulary of size V . We
encode A by (1) specifying log2

(
V
v

)
bits to choose which v

tokens are used; (2) listing m edges, each requiring log2 n
bits for the origin state, log2 n bits for the target state, and
log2 v bits for the token. Hence, the complexity is

C(A) = log

(
V

v

)
+ m

(
2 log n + log v

)
. (6)

Since A changes with the problem instance, the model must
synthesize in its hidden states an in-context representation
of complexity C(A) to predict future tokens effectively.

3.1.1. BORING VS. INTERESTING TASKS

We first investigate how the PHi loss differs among tasks of
varying complexity. Concretely, we train our Transformer
and LSTM models on a mixture of four tasks: (1) Retrieval
of Memorized Subsequences: A small, fixed set of ran-
dom subsequences is repeatedly used during training and
testing. Each overall sequence is a random concatenation
of these subsequences. The model can simply memorize
this small set in its static parameters and requires almost
no in-context computation. (2) Retrieval of Memorized
Programs: A small set A of automata (PFAs) is fixed dur-
ing training and testing. Each sequence is generated by an
automaton in A. Again, the model needs only to identify
which automaton from A is being used and then rely on its
memorized representation (minimal in-context inference).
(3) In-Context Language Learning: Each sequence is gen-
erated from a new, unfamiliar PFA A. The model must
learn A in-context, effectively synthesizing a program of
complexity C(A). This is a non-trivial in-context learning
task. (4) Random Examples: Each sequence consists of
random tokens with no structure to learn. While next-token
prediction is difficult (leading to high loss), no meaningful
in-context computation is required.

Only Task 3 demands truly interesting in-context computa-
tion: The model must discover the PFA’s structure to predict
future tokens effectively. By contrast, Tasks 1–2 can be
solved by looking up a memorized routine, and Task 4 is
just uniform noise.

Figure 3 shows the next-token prediction loss for both archi-
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Figure 3. Next-token prediction loss on each of the four tasks, for
both the Transformer and the LSTM. Memorized tasks yield the
lowest loss, random is the highest, and the in-context language
learning task is intermediate. Bootstrapped mean with 95% confi-
dence intervals across 10 runs.
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Figure 4. PHi loss, relative to the performance on the memorized
sequences, for the same four tasks. In-context language learning
shows a significantly higher PHi loss than the other tasks, indi-
cating that the model is performing non-trivial computation in its
hidden states to infer the unknown automaton. Bootstrapped mean
with 95% confidence intervals across 10 runs.

tectures. As expected, Tasks 1 and 2 yield low loss, while
Task 4 is the highest due to random sequences. Task 3
has an intermediate loss. Note, however, that intermediate
loss alone does not clarify whether the model has learned an
intricate structure or is simply mixing easy and random com-
ponents. In Figure 4 we can observe that we have a high PHi
loss only for Task 3. This is in accordance with our claim
that hidden states are difficult to predict when a complex
program is generated in-context (Task 3), but not when easy
tasks are being performed (Tasks 1, 2 & 4). These results are
consistent for both the Transformer and the LSTM model.

3.1.2. SIMPLE VS. COMPLEX TASKS

Here, we focus exclusively on in-context language learning
(Task 3 from Section 3.1.1) to investigate whether more
complex tasks lead to higher PHi loss. Recall that the
complexity of a stochastic language can be quantified by
the code-length C(A) of the corresponding PFA (see Eq. 6).
Intuitively, larger or more intricate automata require more
complex “in-context programs” to achieve low next-token
prediction errors. The previous experiment (3.1.1) demon-
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Figure 5. Token-wise PHi loss (y-axis) versus binned next-token
losses (x-axis), stratified by PFA complexity (color, grouped into
10 levels, from 1 (simple) to 10 (complex)). Across all next-token
prediction losses, more complex PFAs result in a higher PHi loss.

strated that “boring” tasks (memorized or random) lead
to more compressible hidden states (i.e., lower PHi loss),
whereas “interesting” tasks (requiring non-trivial in-context
learning) exhibit higher PHi loss. Now we ask: Within
the realm of in-context learning itself, does the degree of
complexity correlate with the magnitude of the PHi loss?

We again train our Transformer model on PFAs of varying
complexity. Then we test the trained model on 1000 prob-
lem instances, each based on a different unfamiliar PFA. For
each sequence, we track token-wise PHi loss as well as next-
token prediction loss. Because more complex PFAs also
tend to have higher irreducible uncertainty (and thus higher
next-token loss), we want to show that PHi loss explains
task complexity beyond next-token loss. To accomplish
this, we bin tokens by their next-token prediction loss and
compare the average PHi loss across sequences of different
complexity levels. Figure 5 displays the token-wise PHi loss
versus binned next-token losses, stratified by PFA complex-
ity (grouped into 10 levels, from 1 (simple) to 10 (complex)).
We see a clear trend: Even after controlling for next-token
loss, more complex PFAs yield systematically higher PHi
loss. Similarly, a partial correlation analysis (controlling
for mean next-token loss) reveals a significant relationship
between sequence-wise mean PHi loss and PFA complexity
(r = 0.37, with a 95% confidence interval of [0.32, 0.43]).
These findings confirm that PHi loss tracks the amount of
in-context computation needed, beyond what is implied by
simple token-level uncertainty.

3.2. Experiments with Large Language Models

Next, we investigate whether our findings generalize to
LLMs that have already been pre-trained on extensive cor-
pora. The model weights are held fixed, and we insert
and train a single PHi layer within the existing architec-
ture. Specifically, we use the instruction-tuned “Llama 3.2”
model with 3B parameters (Dubey et al., 2024), and train a
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Figure 6. Next token prediction loss in a pretrained Llama 3B
model with the PHi layer inserted at different layer positions. Dot-
ted lines show the performance of the base model without PHi
layer. Note that inserting it in the lower layers causes significant
degradation in the model quality, most likely due to posterior col-
lapse. We see no correlation between next token prediction loss
and the fact of whether a task is simple (Trivial, Licenses, Random)
or complex (Literature, Code).

single PHi layer for 10,000 steps on a mixture of reasoning
and natural-language data (see Appendix B for details).

Unlike training from scratch, inserting a PHi layer into a
pre-trained model raises design questions: Where in the
model (which layer) do we impose the information bottle-
neck? The pre-trained model did not “expect” an internal
bottleneck, some layers might not be able to accommodate
it. Furthermore, which tasks are actually easy or difficult,
simple or complex to an LLM? What kinds of texts and
programs does it have memorized?

3.2.1. DIFFERENT LANGUAGE MODELING TASKS

The first experiment involving LLMs seeks to address these
questions. We design a test set comprising five types of se-
quences, with varying expectations about memorization and
in-context reasoning complexity: (a) Trivial Tasks: Exam-
ples such as multiplication tables, counting to 50 in Spanish,
or listing weekdays in January 2025. We expect the model
to have these “programs” firmly memorized and easily re-
trievable. (b) Memorized Licenses: Popular licenses on
GitHub that appear frequently in pre-training data, which
the model can reproduce verbatim without additional in-
context reasoning. (c) Random Words: Shuffled tokens
lacking syntactic or semantic structure. Although this results
in high next-token loss, there is no interesting structure to
learn in-context. (d) Unknown Literature: Recent Project
Gutenberg chapters assumed unseen by the model. Natural
language, especially literary text, often contains a rich struc-
ture that benefits from deeper in-context reasoning. (e) Un-
known Code: A private python codebase, never encoun-
tered during pre-training. Programming languages typically
require the model to capture longer-range dependencies and
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Figure 7. PHi loss for different tasks at different layers of a pre-
trained Llama 3B model. For layers 18-24 (the highlighted region),
we can see the most differentiation between PHi losses for differ-
ent tasks. In these layers, tasks that are intuitively “uninteresting”,
like predicting random sequences, memorized licenses, or trivial,
memorized tasks, have a lower PHi loss compared to interesting
tasks like code or literature prediction.

syntax, suggesting a non-trivial in-context program.

We group tasks (a)–(c) as “boring” (no new in-context pro-
gram) and tasks (d)–(e) as “interesting” (likely to require
more in-context synthesis).

We insert the PHi layer at various depths in the Llama
model, then measure PHi loss and its effect on the
next-token prediction loss on each task. Figure 6 shows that
placing the PHi layer in early layers can lead to posterior
collapse: Next-token loss rises significantly (the bottleneck
disrupts the flow of information), yet very low PHi loss.
In contrast, placing the PHi layer in the later layers yields
minimal impact on next-token accuracy and avoids collapse.
In our analysis and the remaining experiments, we focus
on the instances where the PHi layer is placed after layers
18-24. There, the PHi losses are most differentiated between
tasks and we observe no posterior collapse. Figure 7 shows
that the PHi loss is indeed higher for unknown literature and
code than for trivial, memorized, or random tasks. Mean-
while, the next-token loss (6) shows no consistent pattern
that discriminates “interesting” tasks from “boring” ones.

3.2.2. SIMPLE VS. COMPLEX TASKS IN LLMS

We next explore whether we can again distinguish simple
versus complex tasks using PHi loss, this time in a pre-
trained LLM. We use the same Llama-based setup (Sec-
tion 3.2.1), inserting a PHi layer into the upper portion of
the network while keeping the rest of the weights fixed.

PFA-Based Tasks. Following a methodology similar to
the Experiment 3.1.2, we instruct the LLM to generate data
from a probabilistic finite automaton (PFA), then present if
with an examples generated by particular problem instance.

6



Measuring In-Context Computation Complexity via Hidden State Prediction

10 2 10 1 100

Next Token Loss

1.4 × 102

1.6 × 102

1.8 × 102

2 × 102

2.2 × 102

2.4 × 102
2.6 × 102

PH
i L

os
s

2

4

6

8

10

PF
A 

Co
m

pl
ex

ity

Figure 8. Token-wise PHi loss (y-axis) versus binned next-token
losses (x-axis), stratified by PFA complexity (color). Results for
Llama 3B with the PHi layer placed after layer 20. For most next-
token loss bins, more complex PFAs result in a higher PHi loss.

For this, we observe token-wise PHi loss and next-token
prediction loss. We again bin tokens by their next-token loss
and group PFA instances by complexity, C(A). Figure 8
shows that, much like the smaller but specialized model
shown in Figure 5, complex PFAs yield higher PHi losses
overall, even after controlling for next-token loss.

Mathematical Reasoning. We further test whether PHi
loss tracks the complexity of mathematical reasoning.
Specifically, we use the MATH dataset (Hendrycks et al.,
2021), which consists of math problems labeled from
Level 1 (easy) to Level 5 (hard), along with detailed reason-
ing solutions. We measure the partial correlation between
PHi loss on the step-by-step solution and the difficulty of the
problem and find across all tested layers a highly significant
positive relationship (r = 0.079, with a 95% confidence
interval of [0.07, 0.09]). In line with our overall hypothe-
sis, more difficult math problems appear to demand a more
complex “in-context program” in the hidden states, leading
to higher PHi loss.

3.2.3. CORRECT VS. ERRONEOUS RATIONALES

Finally, we examine how PHi loss relates to chains-of-
thought generated by the model itself. Specifically, we look
at the correctness of generated answers to questions from
GSM-8k (Cobbe et al., 2021), a dataset of grade-school
math problems. For each test question, we sample sev-
eral solution candidates from the model, giving 8 example
problems with solutions in-context and employing chain-of-
thought prompting. From these candidates, we assemble
random pairs of rationales for each problem, with one of the
generated rationales leading to a correct final answer and
the other one to an incorrect answer.

Figure 9 shows that choosing the answer for which the ra-
tionale has higher PHi loss leads to a significantly increased
chance of picking the correct one (the probability of picking
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Figure 9. Chance of choosing the correct answer to mathematical
reasoning questions from the GSM-8k dataset when selecting the
one with the higher PHi loss between two option (one correct one
false). The step-by-step rationales are generated by the model itself.
“Counterintuitive” are only those questions for which the answer
with the lower next token prediction loss is wrong. In purple, the
partial correlation r between PHi loss and answer correctness—
controlled for next token prediction loss—is shown. Answers with
high PHi loss are clearly more likely to be correct.

the correct answer by random guessing in this setting is of
course 50%). It should be noted that when, from all solu-
tion pairs, we always pick the ones with lower mean next
token prediction loss, our chance of being correct is 71%.
This is surprising, since in general, PHi loss and next token
prediction loss are positively correlated. It suggests that the
two losses capture different important aspects of the gener-
ated rationale: A good solution to a mathematical question
should be coherent (low next token loss) and interesting
(high PHi loss). Also here, we perform a partial correla-
tion analysis and find that PHi loss is highly predictive for
correctness when controlling for next token prediction loss,
across all tested PHi layer positions. Additionally, we con-
struct a subset of “counterintuitive” questions. These are
questions for which the more likely answer (the one with
lower next token prediction loss) is wrong. Even for these
question, we observe the increased chance of choosing the
correct answer when selecting the one with higher PHi loss.
These findings suggest that, for unfamiliar or challenging
math problems, the model must synthesize a more complex
in-context program (and hence incur higher PHi loss) to
achieve correct solutions.

We also perform the same experiments on the MATH dataset,
previously used in Section 3.2.2. There, we obtain very
similar results (see Appendix C.3). The classification of
questions by difficulty allows for a more granular analysis.
This breakdown reveals an intriguing pattern in the coun-
terintuitive subset: For easy questions, high PHi loss does
not correlate with correct rationales, whereas for difficult
questions, there is a strong positive correlation between high
PHi loss and correctness. We propose the following tenta-
tive explanation: In difficult counterintuitive questions, the
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model tends to generate misleading rationales that are overly
simplistic. Arriving at the correct answer requires “effort,”
which is reflected in the PHi loss. In contrast, for easy coun-
terintuitive questions, failure is not due to oversimplified
rationales but might stem for example from genuine mis-
conceptions within the model. Put differently, for difficult
questions, we expect the correct answer to be “interesting”—
demanding complex reasoning—whereas for easy questions,
this is not necessarily the case.

4. Related Work
In early work on hidden-state prediction, Schmidhuber
(1992a) proposed using one RNN to predict not only its
next input but also the hidden state of another “chunker”
RNN, which operates at a higher temporal level of abstrac-
tion. However, the chunker’s hidden states had no explicit
incentive to be predictable by the lower-level RNN. This
approach was explored in the context of a non-generative
autoencoder, encouraged to produce an internal representa-
tion that is informative about its current input while at the
same time being predictable from previous inputs (Schmid-
huber & Prelinger, 1993). More recently, self-predictive
representations have been proposed in the context of rein-
forcement learning to encourage state representations that
capture the important structure of the environment dynam-
ics (Schwarzer et al., 2020; Guo et al., 2020; Ni et al., 2024).

Variational autoencoders (VAEs, Kingma & Welling
(2014)) are generative models that combine variational
Bayesian methods and autoencoder architectures. Their
basis is the parametrization trick (Kingma & Welling,
2014; Rezende et al., 2014), which allows backpropagation
through stochastic sampling operations. VAEs typically
use fixed, non-informative priors, although structured priors
that more closely resemble our autorregressive prior have
been proposed (Johnson et al., 2016; Li & Mandt, 2018).

Various forms of information bottlenecks (Tishby & Za-
slavsky, 2015) and autoencoders are widely used in mecha-
nistic interpretability literature. Jiang et al. (2020) propose
using an information bottleneck for token-level attribution
of BERT models (Devlin et al., 2019). Recently, sparse
autoencoders (Bricken et al., 2023) are proposed to decom-
pose features in superposition (Elhage et al., 2022), that
are common in large language models. (Henderson & Fehr,
2023) uses a VAE-based method to regularize the atten-
tion (Bahdanau et al., 2015; Schmidhuber, 1992b; 1993) in
transformers.

In-context learning (Brown et al., 2020; Zhao et al., 2021;
Liu et al., 2022) is a well-known ability of large language
models that enables learning from examples presented as
inputs during inference time without explicit training. This
is in contrast with the standard paradigm of train and test

time separation. To uncover the mechanical underpinning
of such capabilities, Akyürek et al. (2024) investigate the in-
context learning of formal languages. They generate finite
state automata on the fly and present transitions sampled
from them to the model, and the model has to infer the
structure of the automata in context. The authors call this
setup “in-context language learning”. We adapt their setup
for our experiments in Sec. 3.1.

Prequential coding (Blier & Ollivier, 2018) is proposed
to measure the complexity of neural models. It measures
the amount of information needed to encode a network
and its training data together, starting from an untrained
model, training it online, and using the improving estimates
from the model to compress the training data. The authors
show that this results in good compression ratios, and more
compressible models tend to generalize better. Building on
these findings, Elmoznino et al. (2024) shows that the next
token prediction loss naturally minimizes both the training
error and the prequential code length of the implicit model
learned by in-context learning, which can serve as a form of
Occam’s razor that encourages generalization.

Our work can be seen as explicitly quantifying and minimiz-
ing an upper bound on the complexity of this implicit model
(i.e., the “program”) that is generated in-context to predict
the next tokens. This perspective, of jointly minimizing a
two-part description—the complexity of a model plus the
complexity of the data given that model (Grünwald, 2007)—
relates closely to a concept from algorithmic information
theory called sophistication (Koppel, 1987; Kolmogorov,
1974). This uncomputable quantity is the complexity of
the simplest model which minimizes the two part descrip-
tion length of some data; it captures the amount of struc-
tured, meaningful or “interesting” information contained
the data (Vitányi, 2006). Sophistication is closely related
to logical depth (Bennett, 1988; Antunes et al., 2017), an-
other concept that seeks to quantify interestingness. Other
views of interestingness relate it to discoverable compres-
sion progress (Schmidhuber, 1999; 2009), or indeed—as we
do in this work—to information gain (Storck et al., 1995;
Itti & Baldi, 2005; Herrmann et al., 2023).

5. Limitations & Future Work
Although our proposed PHi loss shows a clear correlation to
the intuitive notion of “interestingness”, its precise connec-
tion to formal concepts such as sophistication remains an
open question. One particular issue is that of copying, or re-
dundancy in general: When random sequences are repeated,
the model must pass the information through the PHi bottle-
neck in order to predict the second instance of a sequence,
leading to increased PHi loss. An empirical demonstration
of this effect can be found in Appendix C.1. However, under
most definitions, such redundancy does not constitute true
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“interestingness”. Addressing this conceptual challenge—
both theoretically and empirically—remains an important
direction for future work.

At present, the hidden states need many more bits to encode
than the discrete tokens, most likely due to their high
dimensionality. Exploring alternative forms of information
bottlenecks (e.g., quantized autoencoders (van den Oord
et al., 2017)) could help bring the two losses onto more
directly comparable scales. Moreover, the correlation
between the next token prediction loss and the PHi loss
should be explored further, possibly compensating for it
when computing an aggregate score.

While we observe promising results by inserting a PHi layer
into a pre-trained model, we rely on heuristics for deciding
where in the network to place the bottleneck. Further empir-
ical and theoretical studies are necessary to identify optimal
bottleneck positions, and it would be valuable to train large
models from scratch (or at least fine-tune them) so that they
can fully accommodate the new information bottleneck. For
simplicity, we aggregate the PHi loss over individual to-
kens by taking the mean. This works well for fixed-size
sequences, but for variable-length sequences, alternative
aggregation methods (e.g., summation, top-k averaging, or
thresholding by next-token loss) could also be considered.
Finally, both “interestingness” and “task complexity” are
inherently difficult to define. Consequently, evaluating our
approach poses unique challenges. Developing new datasets
with explicit complexity gradations—aligned to our intu-
itive sense of interestingness—remains an important avenue
for future work.

A robust measure of interestingness could prove invaluable
for agents that explore the world in an open-ended fash-
ion (Lehman & Stanley, 2008; Hughes et al., 2024). Many
ultimately important tasks provide neither external rewards
nor verifiable solutions. Future work should investigate us-
ing the PHi loss of a world model as an intrinsic reward
signal for exploration in reinforcement learning, or as a
self-supervised objective for reasoners that must learn in the
absence of external feedback.

6. Conclusion
We introduce the PHi loss, a novel information-theoretic
metric for quantifying the complexity or “interestingness”
of in-context computation within neural sequence models.
By augmenting standard architectures (e.g., Transformers or
RNNs) with our self-predictive information bottleneck (the
PHi layer), we can measure when models encode non-trivial
structure in their hidden states. The PHi layer can be trained
both from scratch and post-hoc (with pretrained models like
Llama), allowing flexibility in how our method is used. Our
experiments demonstrate that PHi loss correlates with mean-

ingful notions of task complexity, such as the description
length of probabilistic finite automata, and aligns well with
intuitive conceptions of complexity across various tasks.
We anticipate that the PHi loss could serve as a powerful
objective for applications that lack direct external feedback.
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A. Details on Experiments with Fully Trained Sequence Models
We train both the Transformer and the LSTM model for 30, 000 steps using the Adam optimizer, a batch size of 16 and
gradient norm clipping of 1.0. The learning rate is 0.0003, with a 500 step linear warm-up from zero and no decay. The
standard next token prediction loss and PHi loss are both weighted with 1, but for the PHi loss we take the mean of
the element-wise KL-Divergence for z, not the sum. To prevent posterior collapse, we employ a contrastive self-critic
loss (Menon et al., 2022) with weighting factor of 0.1.

Transformer Hyperparameters

The model is based on the Llama 3.2 architecture (Dubey et al., 2024).

• Number of layers: 12
• Model dimensionality: 768
• Number of attention heads: 6
• MLP intermediate size: 2048
• Position of PHi layer: After layer 6

PHi Layer:

• z dimensionality: 768
• qψ: Linear transform for µ and σ each
• aξ: Linear transform
• pχ: One transformer layer like the ones in the rest of the model

LSTM Hyperparameters

A standard LSTM architecture with linear input and output projections.

• Number of layers: 2
• Model dimensionality: 768
• Position of PHi layer: After layer 1

PHi Layer:

• z dimensionality: 768
• qψ: Linear transform for µ and σ each
• aξ: Linear transform
• pχ: One Llama transformer layer with a dimensionality of 768, 6 attention heads, and an intermediate MLP size of
2048

Training and Testing Data Generation

We follow Akyürek et al. (2024) for the exact setup of the in-context langauge learning tasks. The parameters of the PFAs
are randomly sampled from the following ranges:

• Number of states: 3− 12
• Number of edges per state: 1− 4
• Vocabulary size: 4− 18
• Example length: 10− 50

Each sequence consists of 10− 20 examples from one PFA. To make training more robust, for half of the examples, we
randomly perturb 20% of the tokens. During testing we use no perturbation.

As data for the four different tasks in experiment 3.1.1 we use:

• Memorized Sequences task: 10 randomly generated examples
• Memorized Programs task: Examples procedurally generated from one of 10 fixed PFAs
• In-Context Language Learning task: Examples procedurally generated from a newly sampled PFA
• Random Sequences task: Randomly sampled examples
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Each sequence is uniformly sampled from one of the tasks.

For experiment 3.1.2, we train a transformer with the same hyperparameters and training conditions as described above.
However, here we train exclusively on data from Task 3. This is to avoid any biases due to the memorized PFAs from task 2.

B. Details on Experiment with Pre-Trained LLMs
The models involved in all of the experiments have the same hyperparameters and training data. We fix the pre-trained
instruction-tuned Llama 3B model’s parameters and only optimize the weights of the PHi layer. They are trained for 10, 000
steps using the Adam optimizer, a batch size of 2 and gradient norm clipping of 1.0. The learning rate is 0.0001, with no
warm-up or decay. No contrastive self-critic loss is used. One model is trained with the PHi layer positioned after layer 2, 4,
6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, or 28, respectively.

PHi Layer:

• z dimensionality: 3072
• qψ: Linear transform for µ and σ each
• aξ: Linear transform
• pχ: One transformer layer like the ones in the rest of the model

The models are trained on a mixture of natural language data from the SlimPajama dataset, the MATH training set and the
GSM-8k training set.

Evaluation Data

In section 3.2.1, we use the following data:

• Trivial tasks:
– Write the multiplication table from 1 to 10.
– List all the dates in January 2025 with their day of the week.
– Convert the numbers 1 to 50 into binary.
– Write the numbers 1 to 50 in Spanish.
– Repeat the string ’RJGHDTSL’ 64 times.

• Licenses tasks:
– Generate the MIT license.
– Generate the Apache 2.0 license.
– Generate the GNU General Public License 2.0.

• Random tasks: Examples from the SlimPajama dataset where the word order is randomly shuffled.
• Literature tasks:

– The beginning of ‘Nigel Browning’ by Agnes Giberne.
– The beginning of ‘Binney the Beaver’ by Lucy Ellen Guernsey.
– The beginning of ‘The Red-Hot Dollar’ by H.D. Umbstaetter
– The beginning of ‘Hooking a Sky Ride’ by Dan Morrissey.
– The beginning of ‘Flying Down a Rainbow’ by Homer King Gordon.
– The beginning of ‘Boots - A story of the Sierra Paru’ by Murray Leinster.
– The beginning of ‘The Radio Cop’ by Vic Whitman.
– The beginning of ‘The Trap’ by Murray Leinster.
– The beginning of ‘The Cradle of the Deep’ by Joan Lowell.
– The beginning of ‘Fix Bayonets!’ by John W. Thomason, Jr.

• Code tasks: Files from a private python code base that deals mainly with symbolic processing of music data.
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C. Additional Results
C.1. PHi Loss and Copying

To highlight the conceptual issue of interestingness and redundancy, we extend the experiments from Section 3.1.1 by
introducing an additional task: copying. Similar to the random task, each sequence consists of previously unseen random
subsequences. However, in this case, every subsequence appears twice within the same context. On its second occurrence,
the model should be able to predict it almost perfectly via context retrieval. To do that, the information has to cross the
PHi bottleneck, resulting in high PHi loss. Figures 10 and 11 show the next token loss and the PHi loss for fully trained
models across all five tasks, including copying. For the transformer, the PHi loss in the copy task remains significantly lower
than in in-context language learning. Still, it is debatable whether the copying task should be regarded as at all interesting.
Note that this version of the copying task, with an exact 1-to-1 ratio of new random sequences to copies, maximizes the PHi
loss. Increasing the proportion of either copies or random data would reduce the PHi loss per token, as the total information
passing through the bottleneck is constrained by the lesser of the two components.

Mem. Seq. Mem. Prog. ICCL Random Copy
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ne
xt

 To
ke

n 
Lo

ss

Transformer
LSTM

Figure 10. Token-wise PHi loss versus binned next-token losses,
stratified by PFA complexity (color). Normalized across each bin.
Results from a fully trained Transformer model. Across all next-
token prediction losses, more complex PFAs result in a higher PHi
loss.
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Figure 11. Token-wise PHi loss versus binned next-token losses,
stratified by PFA complexity (color). Normalized across each
bin. Results from Llama 3B model with the PFA layer placed
after layer 20. Also here, across most next-token prediction losses,
more complex PFAs result in a higher PHi loss.
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C.2. PFA Task Examples and Normalized Complexity

Figure 12 shows concrete examples of in-context language learning tasks, along with memorized sequence, memorized
programs and random data. Figures 13 and 14 show alternative versions of Figures 5 and Figure 8, respectively. Here, the
PHi losses are normalized across each next token prediction loss bin.

Memorized Sequences

Memorized Programs

In-Context Language Learning

Random

PHi Loss Next Token Loss

Figure 12. Examples of the four different tasks discussed in Section 3.1.1, colored by the PHi and next token loss from a Transformer
model trained from scratch. We see clearly that the in-context language learning task leads to higher PHi values, especially in the later
parts of the sequences.

16



Measuring In-Context Computation Complexity via Hidden State Prediction

10 1 100

Next Token Loss

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e 

PH
i L

os
s

2

4

6

8

10

PF
A 

Co
m

pl
ex

ity

Figure 13. Token-wise PHi loss versus binned next-token losses,
stratified by PFA complexity (color). Normalized across each bin.
Results from a fully trained Transformer model. Across all next-
token prediction losses, more complex PFAs result in a higher PHi
loss.
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Figure 14. Token-wise PHi loss versus binned next-token losses,
stratified by PFA complexity (color). Normalized across each
bin. Results from Llama 3B model with the PFA layer placed
after layer 20. Also here, across most next-token prediction losses,
more complex PFAs result in a higher PHi loss.

C.3. Correct vs. Erroneous Rationales for the MATH Dataset

These results extend those presented in Section 3.2.3. Figure 15 shows the chance of choosing the correct answer for MATH
dataset problems when picking the one with higher PHi loss, both across all answer pairs and for counterintuitive ones
specifically. We use a chain-of-thought prompt but, following common practice for this dataset, provide no in-context
examples. Once again, we find that responses with high PHi loss are significantly more likely to be correct. Compared to
results on GSM-8k, selecting the response with the lowest next token loss is less predictive of correctness (only ca. 52%).
Figure 16 further breaks down the MATH dataset by difficulty. Notably, for counterintuitive questions, a strong correlation
emerges between high PHi loss and correctness in difficult problems, whereas this relationship is absent in easier ones.
While this finding warrants deeper analysis, we propose the following explanation: Recall that we define counterintuitive
questions as those where the response with lower next-token loss is incorrect. Such questions may be counterintuitive for
various reasons. One possibility is that they contain a tempting but ultimately incorrect simplistic solution. In this case, high
PHi loss—signaling greater cognitive effort—may indicate that the model is resisting this temptation. For difficult problems,
this factor may dominate. Conversely, for easier problems, counterintuitiveness may stem from factual errors, which are not
necessarily linked to PHi loss.
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Figure 15. Similar to Figure 9, but for the MATH dataset. Chance of choosing the correct answer when selecting the one with the higher
PHi loss between a correct and a wrong option. “Counterintuitive” are only those questions for which the answer with the lower next
token prediction loss is wrong. In purple, the partial correlation r between PHi loss and answer correctness—controlled for next token
prediction loss—is shown. Answers with high PHi loss are clearly more likely to be correct.
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Figure 16. Detailed view of rationales generated for the MATH dataset, separated by the difficulty of the questions. Curves show (green)
the chance of choosing the correct answer when selecting the one with highest PHi loss among all answer pairs, (orange) among the
counterintuitive pairs, (pink) among all pairs when selecting the answer with lowest next token loss, and (purple) the partial correlation
between PHi loss and answer correctness, controlled for next token loss. We see a strong correlation between the correctness of the
rationale and PHi loss, especially for difficult counterintuitive questions. For easy counterintuintuitive question, this relationship does not
exist.

C.4. Histograms for Next Token and PHi Loss

Figure 17 provides a more detailed view of the results from Section 3.1.1 in the form of two-dimensional histograms, with
next-token loss and PHi loss as the axes. Figure 18 presents similar results for models trained also with the copying task. As
shown in the top-right histogram, the Transformer model exhibits a distinct cluster of copied sequences characterized by low
next-token loss but high PHi loss. In contrast, the LSTM model does not display this cluster, likely because it struggles
to adequately perform the copying task. Copying is known to be challenging for LSTMs—see, for example, Graves et al.
(2014).

Figure 19 presents analogous histograms for the Llama 3B model on tasks from Section 3.2.1.
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Figure 17. Two-dimensional histogram of tokens from the four different tasks presented in Section 3.1.1, PHi loss (y-axis) versus next
token loss (x-axis). For memorized sequences, tokens are concentrated on the lower left, whereas for random data, they are clustered in
the lower right corner. Only in-context language learning yields a significant amount of tokens that are high up on the y-axis. 10,000
tokens per task from a Transformer, and from an LSTM model.

10 2 10 1 100

Next Token Loss

0

10

20

30

40

50

60

PH
i L

os
s

Memorized Sequences

10 2 10 1 100

Next Token Loss

Memorized Programs

10 2 10 1 100

Next Token Loss

In-Context Language Learning

10 2 10 1 100

Next Token Loss

Random

10 2 10 1 100

Next Token Loss

Copy
Transformer with Copy

10 2 10 1 100

Next Token Loss

0

10

20

30

40

50

60

PH
i L

os
s

Memorized Sequences

10 2 10 1 100

Next Token Loss

Memorized Programs

10 2 10 1 100

Next Token Loss

In-Context Language Learning

10 2 10 1 100

Next Token Loss

Random

10 2 10 1 100

Next Token Loss

Copy
LSTM with Copy

Figure 18. Similar to Figure 17, but including the copying task. For the transformer model, we can see that copied sequences have low
next token loss, but relatively high PHi loss.
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Figure 19. Two-dimensional histograms of tokens from the five types of data described in Section 3.2.1. For Literature and Code we see
more token spreading to the upper, high PHi loss part of the histogram. Data shown for the PHi layer located after layers 18, 20, 22 and 24
of the Llama 3B model.
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