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Abstract

Despite success in many domains, neural models struggle in settings where train
and test examples are drawn from different distributions. In particular, in contrast
to humans, conventional sequence-to-sequence (seq2seq) models fail to generalize
systematically, i.e., interpret sentences representing novel combinations of concepts
(e.g., text segments) seen in training. Traditional grammar formalisms excel in such
settings by implicitly encoding alignments between input and output segments,
but are hard to scale and maintain. Instead of engineering a grammar, we directly
model segment-to-segment alignments as discrete structured latent variables within
a neural seq2seq model. To efficiently explore the large space of alignments, we
introduce a reorder-first align-later framework whose central component is a neural
reordering module producing separable permutations. We present an efficient
dynamic programming algorithm performing exact marginal and MAP inference
of separable permutations, and, thus, enabling end-to-end differentiable training of
our model. The resulting seq2seq model exhibits better systematic generalization
than standard models on synthetic problems and NLP tasks (i.e., semantic parsing

and machine translation).

1 Introduction

Recent advances in deep learning have led to ma-
jor progress in many domains, with neural models
sometimes achieving or even surpassing human perfor-
mance [49]. However, these methods often struggle in
out-of-distribution (0od) settings where train and test ex-
amples are drawn from different distributions. In partic-
ular, unlike humans, conventional sequence-to-sequence
(seq2seq) models, widely used in natural language pro-
cessing (NLP), fail to generalize systematically 4,127, 28],
i.e., correctly interpret sentences representing novel combi-
nations of concepts seen in training. Our goal is to provide
a mechanism for encouraging systematic generalization in
seq2seq models.

To get an intuition about our method, consider the semantic
parsing task shown in Figure[T] A learner needs to map
a natural language (NL) utterance to a program which
can then be executed on a knowledge base. To process
the test utterance, the learner needs to first decompose it
into two segments previously observed in training (shown

Training Examples

what is the length of the colorado river ?

len( river( riverid ( ‘colorado’ ) ) )

what is the longest river ?
longest( river(all)))
Test Example
what is the length of the longest river ?

len( longest( river(all)) )

Figure 1: A semantic parser needs to
generalize to test examples which con-
tain segments from multiple training ex-
amples (shown in green and blue).

in green and blue), and then combine their corresponding program fragments to create a new
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program. Current seq2seq models fail in this systematic generalization setting [[12,[24]]. In contrast,
traditional grammar formalisms decompose correspondences between utterances and programs into
compositional mappings of substructures [46]], enabling grammar-based parsers to recombine rules
acquired during training, as needed for systematic generalization. Grammars have proven essential in
statistical semantic parsing in the pre-neural era [51}157], and have gained renewed interest now as a
means of achieving systematic generalization [18]41]. However, grammars are hard to create and
maintain (e.g., requiring grammar engineering or grammar induction stages) and do not scale well
to NLP problems beyond semantic parsing (e.g., machine translation). In this work, we argue that
the key property of grammar-based models, giving rise to their improved ood performance, is that a
grammar implicitly encodes alignments between input and output segments. For example, in Figure[T]
the expected segment-level alignments are ‘the length — len’ and ‘the longest river —
longest (river(all))’. The encoded alignments allow for explicit decomposition of input and
output into segments, and consistent mapping between input and output segments. In contrast,
decision rules employed by conventional seq2seq models do not exhibit such properties. For example,
recent work [15] shows that primitive units such as words are usually inconsistently mapped across
different contexts, preventing these models from generalizing primitive units to new contexts. Instead
of developing a full-fledged grammar-based method, we directly model segment-level alignments
as structured latent variables. The resulting alignment-driven seq2seq model remains end-to-end
differentiable, and, in principle, applicable to any sequence transduction problem.

Modeling segment-level alignments requires simultaneously inducing a segmentation of input and
output sequences and discovering correspondences between the input and output segments. While
segment-level alignments have been previously incorporated in neural models [50, 1535, to maintain
tractability, these approaches support only monotonic alignments. The monotonicity assumption is
reasonable for certain tasks (e.g., summarization), but it is generally overly restrictive (e.g., consider
semantic parsing and machine translation). To relax this assumption, we complement monotonic
alignments with an extra reordering step. That is, we first permute the source sequence so that
segments within the reordered sequence can be aligned monotonically to segments of the target
sequence. Coupling latent permutations with monotonic alignments dramatically increases the space
of admissible segment alignments.

The space of general permutations is exceedingly large, so, to allow for efficient training, we restrict
ourselves to separable permutations [S]]. We model separable permutations as hierarchical reordering
of segments using permutation trees. This hierarchical way of modeling permutations reflects the
hierarchical nature of language and hence is arguably more appropriate than ‘flat’ alternatives [33l].
Interestingly, recent studies [45) 47]] demonstrated that separable permutations are sufficient for
capturing the variability of permutations in linguistic constructions across natural languages, providing
further motivation for our modeling choice.

Simply marginalizing over all possible separable permutations remains intractable. Instead, inspired
by recent work on modeling latent discrete structures [9} [14], we introduce a continuous relaxation of
the reordering problem. The key ingredients of the relaxation are two inference strategies: marginal
inference, which yields the expected permutation under a distribution; MAP inference, which returns
the most probable permutation. In this work, we propose efficient dynamic programming algorithms
to perform exact marginal and MAP inference with separable permutations, resulting in effective
differentiable neural modules producing relaxed separable permutations. By plugging these modules
into an existing module supporting monotonic segment alignments [55], we obtain end-to-end
differentiable seq2seq models, supporting non-monotonic segment-level alignments.

In summary, our contributions are:

* A general seq2seq model for NLP tasks that accounts for latent non-monotonic segment-level
alignments.

* Novel and efficient algorithms for exact marginal and MAP inference with separable permu-
tations, allowing for end-to-end training using a continuous relaxationﬂ

» Experiments on synthetic problems and NLP tasks (semantic parsing and machine transla-
tion) showing that modeling segment alignments is beneficial for systematic generalization.

'Our code and data are available at https://github.com/berlino/tensor2struct-public


https://github.com/berlino/tensor2struct-public

2 Background and Related Work

2.1 Systematic Generalization

Human learners exhibit systematic generalization, which refers to their ability to generalize from
training data to novel situations. This is possible due to the compositionality of natural languages -
to a large degree, sentences are built using an inventory of primitive concepts and finite structure-
building mechanisms [8]. For example, if one understands ‘John loves the girl’, they should also
understand ‘The girl loves John’ [13]]. This is done by ‘knowing’ the meaning of individual words
and the grammatical principle of subject-verb-object composition. As pointed out by Goodwin et al.
[L5], systematicity entails that primitive units have consistent meaning across different contexts. In
contrast, in seq2seq models, the representations of a word are highly influenced by context (see
experiments in Lake and Baroni [27]). This is also consistent with the observation that seq2seq
models tend to memorize large chunks rather than discover underlying compositional principles [20].
The memorization of large sequences lets the model fit the training distribution but harms out-of-
distribution generalization.

2.2 Discrete Alignments as Conditional Computation Graphs

Latent discrete structures enable the incorporation of inductive biases into neural models and have
been beneficial for a range of problems. For example, input-dependent module layouts [2] or
graphs [37] have been explored in visual question answering. There is also a large body of work on
inducing task-specific discrete representations (usually trees) for NL sentences [9, (17,136} 154]. The
trees are induced simultaneously with learning a model performing a computation relying on the
tree (typically a recursive neural network [43]]), while optimizing a task-specific loss. Given the role
the structures play in these approaches — i.e., defining the computation flow — we can think of the
structures as conditional computation graphs.

In this work, we induce discrete alignments as conditional computation graphs to guide seq2seq
models. Given a source sequence = with n tokens and a target sequence y with m tokens, we optimize
the following objective:

X = Encodey(x) Lys(r,y) = —logE,, arix)pe(y| X, M) 1)

where Encode is a function that embeds x into X € R™*" with h being the hidden size, M ¢
{0, 1}™*™ is the alignment matrix between input and output tokens. In this framework, alignments
M are separately predicted by ps (M| X)) to guide the computation py(y| X, M) that maps x to y.
The parameters of both model components (¢ and ) are disjoint.

Relation to Attention Standard encoder-decoder models [3]] rely on continuous attention weights
ie., M|, i € A" for each target token 1 < ¢ < m. Discrete versions of attention (aka hard
attention) have been studied in previous work [[11} 53] and show superior performance in certain
tasks. In the discrete case M is a sequence of m categorical random variables. Though discrete, the
hard attention only considers word-level alignments, i.e., assumes that each target token is aligned
with a single source token. This is a limiting assumption; for example, in traditional statistical
machine translation, word-based models (e.g., [6]]) are known to achieve dramatically weaker results
than phrase-based models (e.g., [26]). In this work, we aim to bring the power of phrase-level (aka
segment-level) alignments to neural seq2seq models.E]

3 Latent Segment Alignments via Separable Permutations

Our method integrates a layer of segment-level alignments with a seq2seq model. The architecture of
our model is shown in Figure[2] Central to this model is the alignment network, which decomposes
the alignment problem into two stages: (i) input reordering and (ii) monotonic alignment between the
reordered sequence and the output. Conceptually, we decompose the alignment matrix from Eq([I]

into two parts:
M = MpeMmo 2

2One of our models (see Section|3.2) still has a flavor of standard continuous attention in that it approximates
discrete alignments with continuous expectation.
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Figure 2: The architecture of our seq2seq model for semantic parsing. After encoding the input
utterance, our model permutes the input representations using our reordering module. Then, the
reordered encodings will be used for decoding the output program in a monotonic manner.

where M. € R™*" is a permutation matrix, and My, € R"*™ represents monotonic alignments.
With this conceptual decomposition, we can rewrite the objective in Eq|[T]as follows:

Lop(x,y) = —10gEp, (M) Ep,,, (Moo My x)P0 (Y| Mpe X, Mino) 3)

where M, X denotes the reordered representation. With a slight abuse of notation, ¢ now de-
notes the parameters of the model generating permutations, and ¢’ denotes the parameters used
to produce monotonic alignments. Given the permutation matrix M., the second expectation
Ep (M| M x)P0 (Y| Mpe X, Mo ), which we denote as pg, 4/ (y| Mpe X ), can be handled by existing
methods, such as SSNT [55] and SWAN [50]. In the rest of the paper, we choose SSNT as the module
for handling monotonic alignmentﬂ We can rewrite the objective we optimize in the following
compact form:

Ly p¢(v,y) = —10gEp, (n.)2) P06 (Y| Mpe X) “)

3.1 Structured Latent Reordering by Binary Permutation Trees

Inspired by Steedman [47]], we restrict word reorderings to separable permutations. Formally, separa-
ble permutations are defined in terms of binary permutation trees (aka separating trees [3l)), i.e., if a per-
mutation can be represented by a permutation tree, it is separable. A binary permutation tree over a per-
mutation of a sequence 1. ..n is a binary tree in which each node represents the ordering of a segment
1. ..J; the children exhaustively split their parent into sub-segments ¢...k and k+1...j. Each node
has a binary label that decides whether the segment of the left child precedes that of the right child.
Bracketing transduction grammar [BTG, [52], which is

proposed in the context of machine translation, is the cor- X6

responding context-free grammar to represent binary per- Xi4

mutation trees. Specifically, BTG has one non-terminal X N X
13 4,6

(X) and three anchored rules:

Straight ; X1,2 X2,3 X3,4 X4,5 X5,6
Siw i X XIX; thI '|| | thI h dl h

Inver i e Ir Saw e eageno
Tijp :  XpIerted, xixk & sence

Ti : XZH —x; Figure 3: The tree represents the re-
ordered sentences ‘saw the girl the

where XF is the anchored non-terminal covering the seg- hedgehog” where A\, A denotes Inverted
ment from i to k (excluding k). The first two rules decide and Straight, respectively.
whether to keep or invert two segments when construct-
ing a larger segment; the last rule states that every word x; in an utterance is associated with a
non-terminal X ;4—1_ An example is shown in Figure |3] Through this example, we note that the
first two rules only signify which segments to inverse; an additional process of interpreting the tree
(i.e., performing actual actions of keeping or inverting segments) is needed to obtain the permutated
sequence. This hierarchical approach to generating separable permutations reflects the compositional
nature of language, and, thus, appears more appealing than using ‘flat’ alternatives [[10, |16, [33].
Moreover, with BTGs, we can incorporate segment-level features to model separable permutations,
and design tractable algorithms for learning and inference.

3In our initial experiments, we found that SWAN works as well as SSNT but is considerably slower.



By assigning a score to each anchored rule using segment-level features, we obtain a distribution over
all possible derivations, and use it to compute the objective in Eq ]
R

py(D|x) = %7 Lo.g.6(x,y) = —10g B, (p|2)Po.¢ (Y| M X) )
where fy is a score function assigning a (non-negative) weight to an anchored rule R € {S,Z, T},
Z(x,¢) = > p/ [1reps fo(R) is the partition function, which can be computed using the inside
algorithm, M£ is the permutation matrix corresponding to the derivation D. BTG, along with the
weight assigned for each rule, is a weighted context-free grammar (WCFG). In this WCFG, the
weight is only normalized at the derivation level. As we will see in Algorithm [T} we are interested
in normalizing the weight of production rules and converting the WCFG to an equivalent PCFG
following Smith and Johnson [42]], so that the probability of a derivation can be computed as follows:

ps(Dlx) = ] Gs(R) ©6)
ReD
where G (R) is the weight of the production rule R under the transformed PCFG. The details of the
conversion are provided in the Appendix.

The challenge with optimizing the objective in Eq[3]is that the search space of possible derivations
is exponential, making the estimation of the gradients with respect to parameters of the reordering
component (¢) non-trivial. We now present two differentiable surrogates we use.

3.2 Soft Reordering: Computing Marginal Permutations

The first strategy is to use the deterministic ex-
pectation of permutations to softly reorder a Algorithm 1 Dynamic programming for comput-
sentence, analogous to the way standard atten- ing marginals and differentiable sampling of per-
tion approximates categorical random variables. mutation matrix wrt. a parameterized grammar
Speciﬁcally, we use the following approxima- Input: G (R): probability of an anchored rule R
tion: sampling: whether perform sampling

Mée = Ep¢(D|a:)MpLe) : fori:=1tondo

1
- / 2: Etl =1
Lo.p.¢ (2,y) ~ —logpg,g (y| My X) 3: end for
where Mée is the marginal permutation matrix, 4: for w := 2 to n do > width of spans
and it can be treated as structured attention [25]. 5. fori:=1ton —w+ 1do
Methods for performing marginal inference for  ¢: ki=i+w
anchored rules, i.e., computing the marginal dis-  7: if sampling then
tribution of production rules are well-known in . G s(R) = s_arg max(Gy(R))
NLP [32]. However, we are interested in the o. else > computing marginals
marginal permutation matrix (or equivalently .. a (R) = Gy(R)
the expectation of the matrix components) as . end if¢ ¢

the matrix is the data structure that is ultimately 12:

used in our model. As a key contribution of this forj:=i+1tok—1do

work, we propose an efficient algorithm to ex- 1> Bf += Cf¢’(8i7j ’“)(Elj © Ej)
actly compute the marginal permutation matrix 14 Elk += Gy (Lyk)(Ef © E]k )
using dynamic programming. 15: end for

16: end for

In or'der to compute the .mar.ginal permutation 4. oo for
matrix we need to marginalize over the expo- ¢. peturn E™*!
nentially many derivations of each permutation. !
We propose to map a derivation of BTG into its corresponding permutation matrix in a recursive
manner. Specifically, we first associate word ¢ with an identity permutation matrix M ZH = 1; then
we associate Straight and Inverted rules with direct @ and skew & sums of permutation matrices,
respectively:

0 B B 0
For example, the permutation matrix of the derivation tree shown in Figure [3|can be obtained by:

A@B:[A 0] A@B:[O A}

MY = ((<Mf o M) o M) @ (M] & M§>) ™



Intuitively, the permutation matrix of long segments can be constructed by composing permutation
matrices of short segments. Motivated by this, we propose a dynamic programming algorithm, which
takes advantage of the observation that we can reuse the permutation matrices of short segments
when computing permutation matrices of long segments, as shown in Algorithm [T} While the above
equation is defined over discrete permutation matrices encoding a single derivation, the algorithm
applies recursive rules to expected permutation matrices. Central to the algorithm is the following
recursion: _ ‘

Ef = ) Gu(Siin)(B] @ B)) + Gy(Zi1x) (B] © B}) ®)

i<j<k

where E¥ is the expected permutation matrix for the segment from i to k, G 4(R) is the probability
of employing the production rule R, defined in Eq[6] Overall, Algorithm I]is a bottom-up method
that constructs expected permutation matrices incrementally in Step[I3]and[I4] while relying on the
probability of the associated production rule. We prove the correctness of this algorithm by induction
in the Appendix.

3.3 Hard Reordering: Gumbel-Permutation by Differentiable Sampling

During inference, for efficiency, it is convenient to rely on the most probable derivation D’ and its
corresponding most probable y:

arg maxp97¢r(y|M£,X) 9)
y

where D’ = arg max , py(D|x). The use of discrete permutations M2 " during inference and soft
reorderings during training lead to a training-inference gap which may be problematic. Inspired by
recent Gumbel-Softmax operator [21}[31] that relaxes the sampling procedure of a categorical distri-
bution using the Gumbel-Max trick, we propose a differentiable procedure to obtain an approximate
sample Mp'é from p(D|x). Concretely, the Gumbel-Softmax operator relaxes the perturb-and-MAP
procedure [39], where we add noises to probability logits and then relax the MAP inference (i.e.,
arg max in the categorical case); we denote this operator as s_arg max. In our structured case, we
perturb the logits of the probabilities of production rules G4 (R), and relax the structured MAP
inference for our problem. Recall that p(D|z) is converted to a PCFG, and MAP inference for
PCFG is algorithmically similar to marginal inference. Intuitively, for each segment, instead of
marginalizing over all possible production rules in marginal inference, we choose the one with the
highest probability (i.e., a local MAP inference with categorical random variables) during MAP
inference. By relaxing each local MAP inference with Gumbel-Softmax (Step [§] of Algorithm [I)),
we obtain a differentiable sampling procedure. E] We choose Straight-Through Gumbel-Softmax
so that the return of Algorithm [I]is a discrete permutation matrix, and in this way we close the
training-inference gap faced by soft reordering.

Summary We propose two efficient algorithms for computing marginals and obtaining samples
of separable permutations with their distribution parameterized via BTG. In both algorithms, PCFG
plays an important role of decomposing a global problem into sub-problems, which explains why we
convert p(D|z) into a PCFG in Eq@ Relying on the proposed algorithms, we present two relaxations
of the discrete permutations that let us induce latent reorderings with end-to-end training. We refer to
the resulting system as ReMoto, short for a seq2seq model with Reordered-then-Monotone alignments.
Soft-ReMoto and Hard-ReMoto denote the versions which use soft marginal permutations and hard
Gumbel permutations, respectively.

Segment-Level Alignments Segments are considered as the basic elements being manipulated in
our reordering module. Concretely, permutation matrices are constructed by hierarchically reordering
input segments. SSNT, which is the module on top of our reordering module for monotonically
generating output, conceptually also considers segments as basic elements. Intuitively, SSNT
alternates between consuming an input segment and generating an output segment. Modeling
segments provides a strong inductive bias, reflecting the intuition that sequence transduction in NLP
can be largely accomplished by manipulations at the level of segments. In contrast, there is no explicit
notion of segments in conventional seq2seq methods.

*If we change s_arg max with arg max in Step [8|of Algorithm we will obtain the algorithm for exact
MAP inference.



Dataset Input Output

Arithmetic | ((149) = ((7+8)/4)) ((194)((784)4/)*)
SCAN-SP | jump twice after walk around left thrice | after (twice (jump), thrice(walk (around, left)))
GeoQuery | how many states do not have rivers ? count(exclude(state(all), loc_1(river(all))))

Table 1: Examples of input-output pairs for parsing tasks.

Arithmetic SCAN-SP
Model IID LEN | IID LEN
Seq2Seq 100.0 0.0 | 100.0 139
LSTM-based Tagging 100.0 20.6 | 100.0 57.7
Sinkhorn-Attention Tagging | 99.5 8.8 | 100.0 48.2
- Soft-ReMoto | 100.0 869 | 100.0 100.0

- shared parameters 100.0 40.9 | 100.0 100.0

Hard-ReMoto 100.0 83.3 | 100.0 100.0

Table 2: Accuracy (%) on the arithmetic and SCAN-SP tasks.

However, different from our reordering module where segments are first-class objects during modeling,
the alternating process of SSNT is realized by a series of token-level decisions (e.g., whether to
keep consuming the next input token). Thus, properties of segments (e.g., segment-level features)
are not fully exploited in SSNT. In this sense, one potential way to further improve ReMoto is to
explore better alternatives to SSNT that can treat segments as first-class objects as well. We leave this
direction for future work.

Reordering in Previous Work In traditional statistical machine translation (SMT), reorderings are
typically handled by a distortion model [e.g., 1] in a pipeline manner. Neubig et al. [35]], Nakagawa
[34] and Stanojevi¢ and Sima’an [44]] also use BTGs for modeling reorderings. Stanojevi¢ and
Sima’an [44] go beyond binarized grammars, showing how to support 5-ary branching permutation
trees. Still, they assume the word alignments have been produced on a preprocessing step, using an
alignment tool [38]]. Relying on these alignments, they induce reorderings. Inversely, we rely on
latent reordering to induce the underlying word and segment alignments.

Reordering modules have been previously used in neural models, and can be assigned to the following
two categories. First, reordering components [[7, |19] were proposed for neural machine translation.
However, they are not structured or sufficiently constrained in the sense that they may produce invalid
reorderings (e.g., a word is likely to be moved to more than one new position). In contrast, our
module is a principled way of dealing with latent reorderings. Second, the generic permutations
(i.e., one-to-one matchings or sorting), though having differentiable counterparts [[10l [16}33]], do not
suit our needs as they are defined in terms of tokens, rather than segments. For comparison, in our
experiments, we design baselines that are based on Gumbel-Sinkhorn Network [33]], which is used
previously in NLP (e.g., [30]).

4 Experiments

First, we consider two diagnostic tasks where we can test the neural reordering module on its own.
Then we further assess our general seq2seq model ReMoto on two real-world NLP tasks, namely
semantic parsing and machine translation.

4.1 Diagnostic Tasks

Arithmetic We design a task of converting an arithmetic expression in infix format to the one in
postfix format. An example is shown in Table[T} We create a synthetic dataset by sampling data from
a PCFG. In order to generalize, a system needs to learn how to manipulate internal sub-structures (i.e.,
segments) while respecting well-formedness constraints. This task can be solved by the shunting-yard
algorithm but we are interested to see if neural networks can solve it and generalize ood by learning
from raw infix-postfix pairs. For standard splits (IID), we randomly sample 20k infix-postfix pairs
whose nesting depth is set to be between 1 and 6; 10k, 5k, 5k of these pairs are used as train, dev
and test sets, respectively. To test systematic generalization, we create a Length split (LEN) where



training and dev examples remain the same as IID splits, but test examples have a nesting depth of 7.
In this way, we test whether a system can generalize to unseen longer input.

SCAN-SP We use the SCAN dataset [27]], which consists of simple English commands coupled
with sequences of discrete actions. Here we use the semantic parsing version, SCAN-SP [[18]], where
the goal is to predict programs corresponding to the action sequences. An example is shown in Table[I]
As in these experiments our goal is to test the reordering component alone, we remove parentheses
and commas in programs. For example, the program after (twice (jump), thrice(walk
(around, left))) is converted to a sequence: after twice jump thrice walk around
left. In this way, the resulting parentheses-free sequence can be viewed as a reordered sequence of
the NL utterance ‘jump twice after walk around left thrice’. The grammar of the programs is known
so we can reconstruct the original program from the intermediate parentheses-free sequences using
the grammar. Apart from the standard split (IID, aka simple split [27]), we create a Length split
(LEN) where the training set contains NL utterances with a maximum length 5, while utterances in
the dev and test sets have a minimum length of 6E]

Baselines and Results In both diagnostic tasks, we use ReMoto with a trivial monotonic alignment
matrix My, (an identity matrix) in Eq[3] Essentially, ReMoto becomes a sequence tagging model. We
consider three baselines: (1) vanilla Seq2Seq models with Luong attention [29]]; (2) an LSTM-based
tagging model which learns the reordering implicitly, and can be viewed as a version ReMoto with a
trivial Ml and My,; (3) Sinkhorn Attention that replaces the permutation matrix of Soft-ReMoto in
Eq [ by Gumbel-Sinkhorn networks [33].

We report results by averaging over three runs in Table[2] In both datasets, almost all methods achieve
perfect accuracy in IID splits. However, baseline systems cannot generalize well to the challenging
LEN splits. In contrast, our methods, both Soft-ReMoto and Hard-ReMoto, perform very well on
LEN splits, surpassing the best baseline system by large margins (> 40%). The results indicate that
ReMoto, particularly its neural reordering module, has the right inductive bias to learn reorderings.
We also test a variant Soft-ReMoto where parameters 6, ¢ with shared input embeddings. This variant
does not generalize well to the LEN split on the arithmetic task, showing that it is beneficial to
split models of the ‘syntax’ (i.e., alignhment) and ‘semantics’, confirming what has been previously
observed [17, 140].

4.2 Semantic Parsing

Our second experiment is on semantic parsing where ReMoto models the latent alignment between
NL utterances and their corresponding programs. We use GeoQuery dataset [56] which contains 880
utterance-programs pairs. The programs are in variable-free form [23]]; an example is shown in Table
E] Similarly to SCAN-SP, we transform the programs into parentheses-free form which have better
structural correspondence with utterances.Again, we can reconstruct the original programs based
on the grammar. An example of such parentheses-free form is shown in Figure[2] Apart from the
standard version, we also experiment with the Chinese and German versions of GeoQuery [22} 48]].
Since different languages exhibit divergent word orders [47]], the results in the multilingual setting
will tell us if our model can deal with this variability.

In addition to standard IID splits, we create a LEN split where the training examples have parentheses-
free programs with a maximum length 4; the dev and test examples have programs with a minimum
length 5. We also experiment with the TEMP split [18]] where training and test examples have
programs with disjoint templates.

Baselines and Results Apart from conventional seq2seq models, for comparison, we also imple-
mented the syntactic attention [40]]. Our model ReMoto is similar in spirit to the syntactic attention,
‘syntax’ in their model (i.e., alignment) and ‘semantics’ (i.e., producing the representation relying

SSince we use the program form, the original length split [27]], which is based on the length of action
sequence, is not very suitable in our experiments.

SWe use the varaible-free form, as opposed to other alternatives such lambda calculus, for two reasons: 1)
variable-free programs have been commonly used in systematic generalization settings [18,41], probably it is
easier to construct generalization splits using this form; 2) the variable-free form is more suitable for modeling
alignments since variables in programs usually make alignments hard to define.



Model IID TeEmp LEN | IID TeEmpP LEN | IID TEMP LEN
Seq2Seq 757 388 21.8 | 725 254 19.8 | 56.1 18.8 15.2
Syntactic Attention [40] | 74.3  39.1 183 | 70.2  27.9 18.7 | 54.3 19.3 14.2
SSNT [55] 753 387 19.1 | 71.6 238 17.8 | 55.2 19.8 14.1

" Soft-ReMoto |~ 745 393 1987734 303 173 ]558 195 134
Hard-ReMoto 752 432 232 | 743 457 223|556 223 16.6

Table 3: Exact-match accuracy (%) on three splits of the multilingual GeoQuery dataset. Numbers
underlined are significantly better than others (p-value < 0.05 using the paired permutation test).

on the alignment) are separately modeled. In contrast to our structured mechanism for modeling
alignments, their syntactic attention still relies on the conventional attention mechanism. We also com-
pare with SSNT, which can be viewed as an ablated version of ReMoto by removing our reordering
module.

Results are shown in Table[3] For the challenging TEMP and LEN splits, our best performing model
Hard-ReMoto achieves consistently stronger performance than seq2seq, syntactic attention and SSNT.
Thus, our model bridges the gap between conventional seq2seq models and specialized state-of-the-art
grammar-based models [[18} 141]

4.3 Machine Translation

Our final experiment is on small-scale machine translation tasks, where ReMoto models the latent
alignments between parallel sentences from two different languages. To probe systematic generaliza-
tion, we also create a LEN split for each language pair in addition to the standard IID splits.

English-Japanese We use the small en-ja dataset extracted from TANKA Corpus. The original
split (IID) has 50k/500/500 examples for train/dev/test with lengths 4-16 WOI‘dSEI We create a LEN
split where the English sentences of training examples have a maximum length 12 whereas the
English sentences in dev/test have a minimum length 13. The LEN split has 50k/538/538 examples
for train/dev/test, respectively.

Chinese-English We extract a subset from FBIS corpus (LDC2003E14) by filtering English sen-
tences with length 4-30. We randomly shuffle the resulting data to obtain an IID split which has
141k/3k/3k examples for train/dev/test, respectively. In addition, we create a LEN split where English
sentences of training examples have a maximum length 29 whereas the English sentences of dev/test
examples have a length 30. The LEN split has 140k/4k/4k examples as train/dev/test sets respectively.

Baselines and Results In addition

to the conventional seq2seq, we com- EN-JA ZH-EN
pare with the original SSNT model IID LEN | IID LEN
which only accounts for monotonic Seq2Seq 356 253 | 214 18.1
alignments. We also implemented a SSNT [33] 363 265 | 205 173
variant that combines SSNT with the Local Reordering [19] | 36.0 27.1 | 21.8 17.8
local reordering module [19] as our " Soft-ReMoto ~ |~ 36.6 275 | 2237 192 °
baseline to show the advantage of our Hard-ReMoto 374 287 | 226 195

structured ordering module.

Results are shown in Table @l Our Table 4: BLEU scores on the EN-JA and ZH-EN translation.

model, especially Hard-ReMoto, con-

sistently outperforms other baselines on both splits. In EN-JA translation, the advantage of our
best-performance Hard-ReMoto is slightly more pronounced in the LEN split than in the IID split. In
ZH-EN translation, while SSNT and its variant do not outperform seq2seq in the LEN split, ReMoto
can still achieve better results than seq2seq. These results show that our model is better than its
alternatives at generalizing to longer sentences for machine translation.

7NQG [41]] achieves 35.0% in the English LEN, and SBSP [18] (without lexicon) achieves 65.9% in the
English TEMP in execution accuracy. Both models are augmented with pre-trained representations (BERT).
8https ://github.com/odashi/small_parallel_enja
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original input: /_[/:Elln %gsa lyjlg%?ahich J‘H?tate 55 El-i_}ﬁ?ongesl E,(]7 ?ﬂ?ﬁiﬁver Eéi’%gorder
reordered input: J\I‘I:'llale El:iéi-%gorder fl-i-}:/tﬁ)ngesl E/‘]7 ?ﬂ?ﬁ‘ﬁver ’Ej5 ]]ﬂ[gm:h‘ahich %gsa Z'£11n
prediction: state? next_to_2Y longest river®”™® loc_2 countryid_ENTITY5’3’2
ground truth: state next_to_2 longest river loc_2 countryid_ENTITY
original input: according® to? the® newspaper? > there® was” a® big” fire I° last!l night'?
reordered input: according’ to? the® newspaper? ,° night'? last!' big® fire!® a® there® was”
prediction: FTI< KA ig - L2345 FERIZ KO KFHI0 N H86 527
ground truth: #7112 & % EHER R KER & - 72

Table 5: Output examples of Chinese semantic parsing and English-Japanese translation. For clarity,
the input words are labeled with position indices, and, for semantic parsing, with English translations.
A prediction consists of multiple segments, each annotated with a superscript referring to input
tokens.

Interpretability Latent alignments, apart from promoting systematic generalization, also lead to
better interpretability as discrete alignments reveal the internal process for generating output. For
example, in Table[5] we show a few examples from our model. Each output segment is associated
with an underlying rationale, i.e. a segment of the reordered input.

5 Conclusion and Future Work

In this work, we propose a new general seq2seq model that accounts for latent segment-level
alignments. Central to this model is a novel structured reordering module which is coupled with
existing modules to handle non-monotonic segment alignments. We model reorderings as separable
permutations and propose an efficient dynamic programming algorithm to perform marginal inference
and sampling. It allows latent reorderings to be induced with end-to-end training. Empirical
results on both synthetic and real-world datasets show that our model can achieve better systematic
generalization than conventional seq2seq models.

The strong inductive bias introduced by modeling alignments in this work could be potentially
beneficial in weakly-supervised and low-resource settings, such as weakly-supervised semantic
parsing and low-resource machine translation where conventional seq2seq models usually do not
perform well.
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