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ABSTRACT

In this paper, we propose OCCVAR, a generative occupancy world model that
simulates the movement of the ego vehicle and the evolution of the surround-
ing environment. Different from visual generation, the occupancy world model
should capture the fine-grained 3D geometry and dynamic evolution of the 3D
scenes, posing great challenges for the generative models. Recent approaches
based on autoregression (AR) have demonstrated the potential to predict vehicle
movement and future occupancy scenes simultaneously from historical observa-
tions, but they typically suffer from the inefficiency and temporal degradation in
long-time generation. To holistically address the efficiency and quality issues, we
propose a spatial-temporal transformer via temporal next-scale prediction, aim-
ing at predicting the 4D occupancy scenes from coarse to fine scales. To model
the dynamic evolution of the scene, we incorporate the ego movement before the
tokenized occupancy sequence, enabling the prediction of ego movement and con-
trollable scene generation. To model the fine-grained 3D geometry, OCCVAR uti-
lizes a muitli-scale scene tokenizer to capture the hierarchical information of the
3D scene. Experiments show that OCCVAR is capable of high-quality occupancy
reconstruction, long-time generation and fast inference speed compared to prior
works.

1 INTRODUCTION

Recent years have seen great advancements in the development of autonomous driving (AD) sys-
tems. While existing AD methods (Hu et al., 2023b; Jiang et al., 2023; Hu et al., 2022; Huang et al.,
2023; Yang et al., 2024) have demonstrated excellent results across a range of driving scenarios,
there are still challenges when dealing with long-tail distributions or out-of-distribution situations.
A promising direction to address these challenges is world models, which simulate and comprehend
the surrounding environment by learning a comprehensive representation of the external world.

Occupancy world model, as a specialized type of world model, has gained significant attention for
its expressiveness of the 3D geometry. The occupancy world model takes the historical occupancy
observations and movement of ego car as input, aiming at forecasting the future 3D scene evolu-
tions and planning a safe trajectory of the ego car. Different from vision-based approaches, the 3D
occupancy can describe the fine-grained 3D structure of the scene, demonstrating superior expres-
siveness of the 3D road scenes. Several occupancy world models (Zheng et al., 2023; Wei et al.,
2024; Wang et al., 2024a) have been developed in recent years. Despite their compelling results,
these methods suffer from two limitations: inefficiency and temporal degradation, especially in
long-time generation.

There are two potential approaches to construct the occupancy world model: diffusion-based meth-
ods and autoregressive methods. Diffusion-based techniques (Wang et al., 2024a; Liu et al., 2023)
leverage a diffusion model to generate occupancy scenes. However, these methods face the problem
of inefficiency due to the multiple denoising steps involved in inference.

In contrast, GPT-style autoregressive methods (Zheng et al., 2023; Wei et al., 2024) generate occu-
pancy scenes sequentially in an autoregressive manner. The GPT framework (Radford et al., 2019)
has been successfully applied to image/video generation (Yu et al., 2022; Esser et al., 2021; Yan
et al., 2021; Kondratyuk et al., 2023) and demonstrates superior generation ability. Following the
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Figure 1: We propose OCCVAR, a novel autoregressive occupancy world model that generates
occupancy scenes from coarse to fine scales (lower to higher resolutions). Our model is capable of
generating long-time occupancy scenes (right) in short times, demonstrating the effectiveness and
efficiency of the proposed framework.

GPT structure, a naive implementation for occupancy world model is to utilize a VQVAE-like to-
kenizer to represent the scene as discrete tokens, which are then flattened into a one-dimensional
sequence and input to transformers for next-token prediction training. However, this vanilla ap-
proach, where each generation step depends on the previous one, is also inefficient. For example,
assume that a scene is comprised of (50 × 50) discrete tokens. The number of autoregressive steps
in next-token prediction for generating 10 frames is 25k, incurring significant inference time costs.
Moreover, the flattening process after quantization causes the degradation in the spatial locality and
temporal consistency. This results in the low fidelity of the generated 4D occupancy scenes, espe-
cially for long-time generation.

More recently, VAR (Tian et al., 2024a) introduces next-scale prediction (NSP) to handle the in-
efficiency and spatial degradation problem of next-token prediction (NTP) in image generation,
shedding some light on the autoregressive modeling paradigm in occupancy prediction. Neverthe-
less, different from 2D image generation, the 4D occupancy forecasting requires the model to depict
the fine-grained 3D geometry of the 3D scenes. Moreover, to generate temporal sequence of occu-
pancy, the model should also be able to capture the dynamics of the scene evolution, which requires
a consideration for temporal modeling in next-scale prediction.

In this paper, we propose OCCVAR: a novel autoregressive occupancy world model that is capa-
ble of forecasting the future 3D scene evolutions and conducting motion planning for ego vehicle.
Specially, we introduce a coarse-to-fine autoregressive modeling mechanism: temporal next-scale
prediction (TNSP), inspired from VAR (Tian et al., 2024a), which effectively handles the ineffi-
ciency and spatial degradation problem in previous works. To enable the long-time generation and
ensure the temporal consistency of the generated occupancy scenes, we develop a novel transformer
architecture designed for temporal next-scale prediction. We also develop a multi-scale occupancy
tokenizer to capture the hierarchical information of the 3D scenes. The extensive experiments on
the nuScenes dataset (Caesar et al., 2020) validate the effectiveness and efficiency of OCCVAR.

Our contributions are summarized as follows:

• We introduce OCCVAR, a coarse-to-fine occupancy world model that incorporates tempo-
ral next-scale prediction for autoregressive modeling. A well-designed transformer archi-
tecture is specially designed for the temporal modeling of next-scale prediction.

• We propose a multi-scale tokenizer to effectively extract and discretize the hierarchical
information of the 3D occupancy scenes.

• OCCVAR outperforms baseline methods by 2.13% on IoU and 1.86% on mIoU and sets
state-of-the-art on nuScenes dataset. We also conduct a comprehensive ablation study to
demonstrate the effectiveness and efficiency of OCCVAR.
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2 RELATED WORK

2.1 WORLD MODEL

World model (Ha & Schmidhuber, 2018) can predict the consequences of various actions, which is
crucial for autonomous driving. Traditional models emphasize visual prediction (Hu et al., 2023a;
Zhao et al., 2024; Su et al., 2024; Gao et al., 2024; Wang et al., 2023; Lu et al., 2023; Wang et al.,
2024b; Zheng et al., 2024; Gao et al., 2024; Jiang et al., 2024), potentially overlooking the essential
3D information needed for AD vehicles. Some approaches attempt to forecast point clouds using
unannotated LiDAR scans (Zhang et al., 2023; Zyrianov et al., 2024), but these methods neglect
semantic information and are not suitable for vision-based or fusion-based autonomous driving.
Occupancy world models (Zheng et al., 2023; Wei et al., 2024; Wang et al., 2024a) create a world
model in 3D occupancy space, providing a more comprehensive understanding of the evolvement of
3D scenes.

2.2 VISUAL AUTO-REGRESSIVE GENERATION

Visual Autoregressive (AR) Generation refers to utilizing autoregressive methods to generate images
(Esser et al., 2021; Razavi et al., 2019; Lee et al., 2022; Yu et al., 2021; 2022) or videos (Yan et al.,
2021; Kalchbrenner et al., 2017; Yu et al., 2023). Generally, the AR models employ a raster-scan
paradigm, which encodes and flattens 2D images into 1D token sequences. Recently, VAR (Tian
et al., 2024a) proposes to utilize next-scale prediction in visual auto-regressive modeling, which
effectively handle the inefficiency and spatial degradation of next-token prediction. However, it still
remains unclear whether the next-scale prediction is suitable for occupancy prediction. Moreover,
the modeling process of VAR does not take accounts for the temporal dimension, which still requires
a consideration for how to adapt this modeling approach for 4D occupancy generation, which is the
main focus of our work.

3 METHOD

In this work, we propose OCCVAR, a novel occupancy world model designed to comprehend his-
torical observations and forecast the future 3D scenarios. As illustrated in Fig. 2, our proposed
OCCVAR consists of two components: a robust tokenizer that encodes 3D occupancy and ego mo-
tion into discrete tokens (see Sec. 3.1), and a generative world model using next-scale prediction for
future 3D scene forecasting and motion planning (see Sec. 3.2).

3.1 TOKENIZER

The tokenizer aims to model the 3D occupancy scene and the ego motion as discrete tokens. To
achieve this, our tokenizer consists of two components: scene tokenizer and motion tokenizer.

3.1.1 SCENE TOKENIZER

The goal of scene tokenizer is to model the 3D occupancy scene as discrete tokens. To achieve this,
a common practice for scene tokenizer is to employ a quantized autoencoder like VQVAE (Zheng
et al., 2023; Wei et al., 2024), which quantizes the occupancy feature map with discrete feature
vectors. However, unlike natural language sentences with an inherent left-to-right ordering, the oc-
cupancy feature map are inter-dependent, resulting in the bidirectional correlations of the quantized
token sequence. This contradicts the unidirectional dependency assumption of autoregressive mod-
els, where each token can only depend on its prefix, as illustrated in Tian et al. (2024a). Thus, we
propose a multi-scale tokenizer specifically designed for next-scale prediction.

Occupancy Encoder. Firstly we employ an occupancy encoder to encode the occupancy scene into
a BEV feature map. Given a scene S ∈ RHraw×Wraw×Draw with L semantic classes, where Hraw,
Wraw, Draw represents the resolution of the 3D volume, we first convert it to a BEV representation.
We employ an embedding layer to embed the 3D occupancy scene into a latent space. Then we
convert the 3D scene to a BEV representation by merging the height dimension with the channel
dimension. We utilize a series of 2D convolution layers to compress the BEV map to a latent feature
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Figure 2: Overview of OCCVAR. OCCVAR consists of two components: a robust tokenizer (a and
c) that encodes 3D occupancy and ego motion into discrete tokens, and a generative world model
(b) using next-scale prediction for future 3D scene forecasting and motion planning.

F ∈ RH×W×C , where H = Hraw/d, Wd = Wraw/d and d is a hyper-parameter that determines
the down-sampling factor.

Multi-scale Quantizer. The quantizer aims to tokenize the latent feature F into multi-scale discrete
tokens. Previous approaches (Zheng et al., 2023; Wei et al., 2024) attempt to transform the feature
into a collection of codebook entries through vector quantization, where each entry is responsible for
a small area. However, operating tokenization solely on local information may result in the loss of
global context. Inspired from visual generation works (Tian et al., 2024a), we develop a multi-scale
quantizer to discretize the occupancy feature into multi-scale discrete tokens.

Assume that we want to quantize the latent feature F ∈ RH×W×C to M multi-scale discrete token
maps: Fq = (f1q , f

2
q , ..., f

M
q ), each with resolution (h1, w1, h2, w2, ..., hM , YM ). Note that hM =

H and wm = W . We define a learnable codebook C ∈ RV×C , consisting of V vectors, each
embedding with a dimension of C.

The multi-scale quantization is conducted from low resolution to high resolution. To get the low
resolution features at m-th scale, we utilize an interpolation function to downsample the latent BEV
feature F ∈ RH×W×C to the low resolution (hm, wm), resulting in fm ∈ Rhm×wm×C . Then
we conduct quantization by replacing the vectors in the interpolated feature map fm to its nearest
neighbour look-up in the codebook C. This process can be formulated as:

fmq = argmin
q∈C

∥q− fm∥2, fm = I(f , (xm, ym)), (1)

where I is the interpolation function. In this way, we get the quantized tokens fmq at the first scale.

With a residual design, the interpolated feature map f would be updated after getting the quantized
tokens of each scale. For example, after getting fmq at m-th scale, we would upsample the fmq to the
original resolution (H,W ), which is then subtracted from the feature map F. This process can be
formulated as:

F′ = F− ϕm(I(fmq , (H,W ))), (2)

where I is the interpolation function and ϕm represents the convolution layers to address the infor-
mation loss in upsampling.

The whole process would be repeated until we get all of the M scale tokens Fq = (f1q , f
2
q , ..., f

M
q ).

The quantized multi-scale tokens would be passed as input to the subsequent reconstruction and
generation modules.
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Occupancy Decoder. The occupancy decoder takes the multi-scale quantized tokens as input and
output the reconstructed 3D occupancy scenes. Firstly, we convert the multi-scale quantized tokens
Fq = (f1q , f

2
q , ..., f

M
q ) to the BEV feature map F̂. We upsample the features of each scale to the

original resolution and then pass them as input to the convolution layers ϕ1,...,M , which is the same
as those in 2. The interpolated results are accumulated to get the reconstructed bev feature map.
This process can be formulated as:

F̂ =

M∑
m=1

ϕm(I(fmq , (xd, yd))) (3)

To reconstruct the 3D occupancy scene from F̂ ∈ RXd×Yd×C , we utilize another series of convo-
lution layers to upsample the BEV feature map F̂ to resolution X × Y , and then split the height
dimension from the channel dimension. Finally we apply an MLP to transform the channel dimen-
sion to the class number for classification, resulting in Ŝraw ∈ RX×Y×Z×L, where L is the class
number.

3.1.2 MOTION TOKENIZER

The motion tokenizer is utilized to discretize the motion of ego vehicle for better integrating it into
our sequence prediction model. We utilize the position x, y and orientation θ relative to the previous
frame to represent the motion of the vehicle. We discard the information in the z-axis because the
vehicle’ speed in z-axis is nearly zero in most time. We apply a vanilla uniform quantization of
the motion information, resulting in Vx, Vy and Vθ tokens in vocabulary. Then we map the relative
motion with three discrete tokens to a motion token P by Cartesian product:

P = E(x+ y × Vx + θ × Vx × Vy), (4)

where E is an embedding layer. By doing so, we can account for the vehicle’s expected trajectory
and control how it influences the occupancy predictions, ensuring that the model captures how the
environment evolves as the vehicle moves.

3.2 GENERATIVE WORLD MODEL

In this section, we introduce our generative world model via next-token prediction, as shown in
Fig. 2. As input, we assume the tokenized BEV features F = {F1, ...,FT−1} and ego motion
P = {P1, ...,PT−1} with previous T − 1 frames. The target output of the world model is the
occupancy scene ST and motion PT at the T -th frame.

3.2.1 PRELIMINARY

Some previous occupancy world models (Wei et al., 2024) utilize a vanilla next-token autoregressive
modeling on occupancy prediction. Considering the occupancy map with resolution (n × n), the
likelihood of the sequence x = {x1, x2, ..., xn×n} can be decomposed to the product of n × n
conditional probabilities:

p(x) =

n×n∏
i=1

p (xt | x1, x2, . . . , xi−1) (5)

However, such next-token prediction introduces several issues:

(1) Inefficiency. With a vast number of occupancy tokens to generate, producing each token sequen-
tially in an autoregressive manner results in a significant computational cost. The complexity of
generating a occupancy feature map with resolution (n× n) is O(n6) (see Proof at Appendix. A.1).

(2) Structural degradation. After quantization, the occupancy tokens are flatten for next-token au-
toregressive modeling, which disrupts the spatial and temporal locality inherent in the occupancy
feature map.

A naive solution for the issues is to utilize next-scale prediction Tian et al. (2024a), which have
demonstrated successful practice in image generation. This modeling approach can reduce the gen-
erating complexity to O(n4) (see Proof at Appendix. A.1). Moreover, there is no flattening operation
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Figure 3: Transformer block design. We employ three types of attention blocks: temporal attention
blocks, spatial attention blocks and VAR generation blocks.

in next-scale prediction, and tokens in the same scale are fully correlated. This multi-scale design
would not disrupt the spatial locality in the occupancy feature map. However, how to model the
temporal dependency of the occupancy sequence and how to maintain the temporal consistency of
the generated frames still remains unexplored.

3.2.2 TRANSFORMER BLOCK DESIGN

We propose a well-designed transformer to adapt the next-scale autoregressive modeling approach
for temporal generation, details shown in Fig. 3. To better integrate the ego-vehicle motion into our
prediction paradigm, we treat the motion token as 0-th scale token f0 and splice it before the multi-
scale occupancy tokens, resulting in M +1 tokens {f0, f1t , ..., fMt } for each frame. We employ three
types of attention blocks: temporal attention blocks, spatial attention blocks and VAR attention
blocks, as shown in Fig. 3.

The temporal attention blocks aim to model the temporal dependencies of the occupancy frames. In
this process, we utilize a block-wise causal attention mask to ensure that each token fmt can only
attend to its prefix and the tokens in the same scale: {F1,F2, . . . ,Ft−1, f

1
t , f

2
t , . . . , f

m−1
t }. After

temporal attention blocks, we denote the token of t-th frame at m-th scale as ḟmt
Then we utilize spatial attention blocks to capture the spatial relationship of different scales. In this
process, the attention scores are computed within a scene. We utilize an intra-frame full-attention
mask to ensure that each token ḟmt has a global view at the whole scene {ḟ1t , ḟ2t , . . . , ḟMt }. After
spatial attention blocks, the token of t-th frame at m-th scale as f̈mt .

Finally, we utilize VAR attention blocks to forecast the tokens in the next frame. During training
period, when generating the tokens at frame t+1, the model takes the features of its previous frame
F̈t and the start token [S] as input. When generating the m-th scale at t-th frame, the autoregressive
likelihood is formulated as:

p(x) =

M∏
m=0

p(f̂mt+1 | F̈t, f̂
0
t+1, f̂

1
t+1, . . . , f̂

m−1
t+1 ) (6)

where the f̂0t is the motion token and f̂mt denotes the k-th scale tokens at t-th frame. Note that
we utilize a block-wise causal attention mask to ensure that each token f̂mt+1 can only attend to its
prefix {F̈t, f̂

0
t+1, f̂

1
t+1, . . . , f̂

m−1
t+1 }. To better demonstrate the design of each block, we show the

visualization of attention mask of different attention blocks in the Appendix. A.2.

3.3 LOSS FUNCTION

When training the scene tokenizer, we utilize cross-entropy loss and lovasz-softmax loss (Berman
et al., 2018). To enhance the the global occupancy reconstruction performance, we also utilize
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Method Input MIOU(%)↑ IOU(%)↑
1s 2s 3s Avg. 1s 2s 3s Avg.

OccWorld-F (Zheng et al., 2023) Cam 8.03 6.91 3.54 6.16 23.62 18.13 15.22 18.99
OccLLaMA-F (Wei et al., 2024) Cam 10.34 8.66 6.98 8.66 25.81 23.19 19.97 22.99
OCCVAR-F (Ours) Cam 17.17 10.38 7.82 11.79 27.60 25.14 20.33 24.35

OccWorld-O (Zheng et al., 2023) Occ 25.78 15.14 10.51 17.14 34.63 25.07 20.18 26.63
OccLLaMA-O (Wei et al., 2024) Occ 25.05 19.49 15.26 19.93 34.56 28.53 24.41 29.17
OCCVAR-O (Ours) Occ 27.96 21.75 16.47 22.06 38.73 29.50 24.86 31.03
• The ”-O” represents the results utilizing ground truth occupancy as input.
• The ”-F” represents that the input is multi-view camera images.

Table 1: Quantitative results of 4D occupancy forecasting. The ”-O” represents the results utilizing
ground truth occupancy as input. The ”-F” represents that the input is multi-view camera images
and we use FBOCC (Li et al., 2023) to predict the occupancy from images. We can see that our
OCCVAR outperforms previous work in a large margin.

geoscal loss and semscal loss illustrated in Cao & De Charette (2022), which optimize the class-
wise derivable precision, recall and specificity for semantics and geometry. In general, our loss
function is defined as: L = λ1Lce + λ2Llovasz + λ3Lgeoscal + λ4Lsemscal, where the factors
λ1,2,3,4 are used to balance the losses.

When training the world model, we utilize cross-entropy loss for the generation of occupancy tokens
and pose tokens. The loss function is defined as: L = β1Locc + β2Lpose.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Metrics. We evaluate our method on the nuScenes (Caesar et al., 2020) dataset. The
nuScenes dataset is collected in Boston and Singapore and comprised of 1000 driving sequences.
We inherit the official nuScenes (Caesar et al., 2020) split setting for evaluation, where the train/val
scenes are 700 and 150, respectively. Each sequence lasts for around 20 seconds and the key-frames
are annotated at 2 Hz. We employ the occupancy annotation in Occ3D (Tian et al., 2024b) based on
nuScenes.

Following common practices, we utilize 2-second historical context (4 frames) and forecast the
subsequent 3-second scenes (6 frames) unless specified. We report the mIoU and IoU for the 4D
occupancy prediction task.

Implementation Details. Our training period consists of 2 stages: tokenization and generation.
For tokenization, we downsample the occupancy with a factor of 8. The codebook are comprised
of 4096 nodes and the channel dimension of the codebook entry is 128. We utilize 6 scales with
[1,5,10,15,20,25] for multi-scale settings. In the tokenizer loss function, the λ1, λ2, λ3, λ4 are 10.0,
1.0, 0.3, 0.5 respectively. For generation, we utilize 4 layers each for three blocks of our methods.
The hidden dimension and head number are 128 and 4, respectively. The β1 and β2 are 1.0 and 1.0
respectively. More details could be found in Appendix. A.3.

4.2 MAIN RESULTS

Our generative world model can accomplish two tasks: 4D occupancy forecasting task and motion
planning task. The 4D occupancy forecasting task aims to forecast the future observation of 3D
occupancy scene. The motion planning task aims to calculate a sequence of trajectory points for the
ego vehicle.

4D Occupancy Forecasting In this experiment, we compare our method with state-of-the-art ap-
proaches on the 4D occupancy forecasting task. Following common practice, we conduct our evalu-
ation in two settings: (1) using ground-truth 3D occupancy data (-O); and (2) using predicted results
from FBOCC Li et al. (2023) based on camera data (-F). The results are shown in Tab. 1. We ob-
serve that our OCCVAR achieves significant performance gain over existing methods in short time
forecasting within 3 seconds. Specifically, for occupancy input, we can see that compared with Oc-
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Method Input Supervision
L2(m)↓ Coll.(%)↓

1s 2s 3s Avg. 1s 2s 3s Avg.

ST-P3 (Hu et al., 2022) Cam M. & B. & D. 1.33 2.11 2.90 2.11 0.23 0.62 1.27 0.71

UniAD (Hu et al., 2023b) Cam
M. & B. & Mot.

& T. & Occ.
0.48 0.96 1.65 1.03 0.05 0.17 0.71 0.31

VAD† (Jiang et al., 2023) Cam M. & B. & Mot. 0.54 1.15 1.98 1.22 0.04 0.39 1.17 0.53
OccWorld-F Cam Occ. 0.45 1.33 2.25 1.34 0.08 0.42 1.71 0.73
OCCVAR-F (Ours) Cam Occ. 0.46 1.37 2.23 1.35 0.15 0.47 1.89 0.83

OccNet (Tong et al., 2023) Occ M. & B. 1.29 2.31 2.98 2.25 0.20 0.56 1.30 0.69
OccWorld-O Occ None 0.43 1.08 1.99 1.17 0.07 0.38 1.35 0.60
OCCVAR-O (Ours) Occ None 0.45 1.10 2.02 1.21 0.12 0.42 1.80 0.78

• M., B., D., Mot., T., Occ. represent Map, Box, Depth, Motion, Tracking, and Occupancy respectively.
• The VAD† means we evaluate VAD with the metrics in Occworld.

Table 2: Quantitative results of motion planning. OCCVAR achieves competitive performance while
relying solely on 3D semantic occupancy.

cworld, OCCVAR improves the average IoU from 29.17 to 31.03 and improves the average mIoU
from 19.93 to 22.06. For camera input, we observe that OCCVAR improves the average IoU from
22.99 to 24.35 and improves the average mIoU from 8.66 to 11.79. This results highlights the strong
predictive performance of OCCVAR, which sets the state-of-the-art on nuScenes val dataset.

Motion Planning We compare the motion planning performance of OCCVAR with several strong
baselines that utilize various inputs and supervision methods. The results are shown in Tab. 2.
We observe that UniAD (Hu et al., 2023b) achieves the best performance among these methods.
However it relies heavily on multiple supervisions, including map segmentation, detection, depth
estimation, tracking and occupancy prediction. The excessive auxiliary tasks limits its scalability to
large-scale datasets. As an alternative, OCCVAR achieves competitive performance while relying
solely on 3D semantic occupancy. We can see that the results of OCCVAR are slightly worse than
the baselines. We attribute this to the information loss caused by the discretization of ego motion.
However, such discretization has a positive impact on generating occupancy scenes.

4.3 ABLATION RESULTS

To delve into the effect of each module, we conduct a comprehensive ablation study on OCCVAR.

Long-term Generation. To evaluate the long-term generation capabilities of OCCVAR, we con-
ducted a series of experiments comparing its performance against OccWorld (Zheng et al., 2023).
As shown in 4, we observe that OccWorld exhibits repetition artifacts when generating long time
series. Specifically, after a certain number of time steps, the model begins to produce repetitive
patterns, which diminishes the fidelity of the generated 3D scenes.

In contrast, OCCVAR demonstrates significantly improved performance in long-term sequence gen-
eration. For example, the geometry of the bus in the first sequence is well-maintained over time. By
leveraging next-scale prediction, our model avoids the common pitfalls of next-token autoregressive
models. As a result, OCCVAR produces coherent, high-fidelity occupancy scenes that more closely
mirror real-world 3D dynamics, even in long-term predictions.

Effectiveness of Progressive Training. In next-scale prediction, a reasonable training method can
greatly improve the convergence speed of the model. One of the training strategies is the progres-
sive training Tian et al. (2024a). Progressive training in next-scale prediction involves gradually
increasing the complexity of the task. The model first learns to predict lower-resolution features
before moving on to higher resolutions. This staged approach helps stabilize training and enhances
performance in generating detailed visual content. Specifically, we start with training the model on
lower-resolution token, allowing it to learn basic structures and patterns. For example, in the first
stage, we only calculate the loss of the 0-th token (motion token) to learn the the motion information
of ego car. Then we gradually introduce the loss from low resolution to high resolution. The loss of
each scale gradually increases in a warm up manner and only proceeds to the next scale after train-
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Figure 4: Qualitative results. We compare OCCVAR with OccWorld (Zheng et al., 2023) in gener-
ating long sequences. OccWorld exhibits repetition artifacts. In contrast, OCCVAR produces more
diverse and realistic occupancy scenes. We mark the ego vehicle with an orange circle in the first
column.

Training
MIOU(%)↑ IOU(%)↑

1s 2s 3s Avg. 1s 2s 3s Avg.

Direct 26.83 20.92 14.95 20.90 36.74 27.10 22.09 28.64
Progressive 27.96 21.75 16.47 22.06 38.73 29.50 24.86 31.03

Table 3: Ablation study of progressive training. Progressive training is a key strategy in next-scale
prediction and has a positive impact on training results.

ing to convergence. The results are shown in Tab. 3. We can see that the progressive training can
enhance the generation capability of the model greatly, demonstrating the importance of progressive
training in OCCVAR. We display the details of progressive training process in Appendix. A.5.

Efficiency. The latency is of great significance for the deployment of autonomous driving system. In
this experiment, we compare OCCVAR with existing works, including diffusion-based approaches
Wang et al. (2024a) and autoregressive approaches Zheng et al. (2023). Since OccLLaMA Wei
et al. (2024) is not open source, we do not report their inference time. Moreover, OccWorld is not
a standard AR model that utilizes next-token prediction, we also adapt our method for next-token
prediction. Specifically, we utilize the tokenizer in Occworld (Zheng et al., 2023) while employing
the same generation architecture as ours, denoted as Ours (AR). The results are shown in Tab. 4. We
can see that compared with next-token prediction (Ours AR), the next-scale prediction (Ours VAR)
has a much lower latency while demonstrating better performance. This indicates the superiorty of
the next-scale prediction rather than next-token prediction in 4D occupancy world model. It is worth
mentioning that although Occworld also has a very fast inference speed, the OCCVAR outperforms
Occworld by 4.9% on MIoU and 4.4% on IoU.

9
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Figure 5: Qualitative results of motion controllability. OCCVAR successfully generates results
aligned with the motion input, thus enabling precise control of the vehicle’s motion like turning (top)
or changing lane (bottom). We mark the ego vehicle with an orange circle in the first column.

Method Para.(M) Latency(s) MIOU(%)↑ IOU(%)↑
OccSora (Wang et al., 2024a) 9896 ∼ 20 - -
Occworld (Zheng et al., 2023) 7238 0.35 17.14 26.63
OccLLaMA (Wei et al., 2024) - - 19.93 29.17

Ours (AR) 5591 ∼ 5 19.20 26.63
Ours (VAR) 5881 0.56 22.06 31.03

Table 4: Efficiency analysis. Para. refers to the number of parameters. The latency refers to the
inference time of generating a scene with 6 frames.

Motion Controllability Controllability refers to the model’s capacity to precisely adhere to these
inputs, ensuring that the generated scenes reflect the specified conditions with high fidelity. Ego-
motion control is particularly critical, as it ensures that the model generates scenes from the correct
viewpoint and perspective. In this setting, we manipulate the ego-motion inputs and measure the per-
formance of the resulting occpupancy scenes in terms of scene geometry and temporal consistency.
As shown in Fig. 5, OCCVAR can generate the corresponding results that collaboratively aligned
with the conditional motion input, indicating the powerful generalization ability of our method.

5 CONCLUSIONS

In this paper, we present OCCVAR, an innovative autoregressive occupancy world model designed
to enhance the efficiency and accuracy of 3D scene prediction for autonomous driving applications.
By integrating next-scale prediction and a multi-scale scene tokenizer, OCCVAR effectively cap-
tures hierarchical spatial information while maintaining temporal consistency. Our extensive eval-
uations on the nuScenes dataset demonstrate that OCCVAR surpasses existing methods, achieving
improvements of 2.13% in IoU and 1.86% in mIoU, setting new benchmarks in the field. These re-
sults highlight the potential of OCCVAR to facilitate real-time applications in autonomous driving,
paving the way for future advancements in occupancy modeling.
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A APPENDIX

A.1 TIME COMPLEXITY

In this section, we show the proof of the time complexity of next-token prediction and next-scale
prediction generation illustrated in VAR Tian et al. (2024a). Note that the complexity is computed
for generating one frame with a standard self-attention transformer. We assume the total number of
BEV tokens are x×y = n2, where (x, y) are the resolution of the BEV feature map and x = y = n.
For next-token prediction, during the i-th (1 ≤ i ≤ n2) autoregressive iteration, the attention scores
are computed between the i-th token and all previous tokens, requiring O(i2) time. Thus the total
time of generating n2 tokens is:

n2∑
i=1

i2 =
1

6
n2(n2 + 1)(2n2 + 1), (7)

which is equivalent to O(n6) basic computation.

For next-scale prediction, assume that we utilize M resolutions (x1, y1, x2, y2, ..., xM , yM ) of BEV
space and xM = yM = n. M is a constant. We set nm = am−1 where a > 1 is a constant such that
aM−1 = n. In this assumption, there are M autoregression iterations and M = loga n+ 1.

Consider the m-th (1 ≤ m ≤ M ) autoregression iteration, the attention scores are computed be-
tween the m-th scale and all previous scales. The total number of tokens to be attended is:

m∑
i=1

n2
i =

m∑
i=1

a2·(m−1) =
a2m − 1

a2 − 1
(8)
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Thus the complexity of the m-th autoregression iteration is (a
2m−1
a2−1 )2. The total time of generating

M scale tokens is:
loga(n)+1∑

m=1

(
a2m − 1

a2 − 1

)2

(9)

=
(a4 − 1) log n+

(
a8n4 − 2a6n2 − 2a4(n2 − 1) + 2a2 − 1

)
log a

(a2 − 1)3(a2 + 1) log a
(10)

∼ O(n4). (11)

A.2 ATTENTION MASK VISUALIZATION

We show the attention mask of each transformer block in Fig. 6. In temporal attention blocks, we
employ a scale-wise causal attention, where each token can attend on its prefix as well as the tokens
in the same scale. In spatial attention blocks, we employ an intra-frame full attention, where each
token can attend to the tokens in the same frame. In var attention blocks, we employ an inter-frame
causal attention, where each token can attend to its prefix as well as the tokens in the same scale.
Note that when generating t + 1-th frame, the var attention blocks only take the tokens in previous
frame (instead of all frames) as prefix for efficiency.

(a) Temporal Attention (b) Spatial Attention (c) VAR Attention

t-2 t-1 t t+1

t

t t+1

Figure 6: Visualization of attention mask of three types of transformer blocks.

A.3 IMPLEMENTATION DETAILS

We utilized the deepspeed (Rasley et al., 2020) for accelerating training and saving memory. We
utilize AdamW optimizer and a Cosine Annealing scheduler for training, where the learning rate is
1e-4 and the weight decay is 0.01. The whole training are conducted on 8 NVIDIA A100.

A.4 EFFECTIVENESS OF MULTI-SCALE TOKENIZER.

We compare the reconstruction performance of different hyperparameters of the tokenizer, results
shown in Tab. 5. We also show the reconstruction performance of the existing methods for com-
parison. We observe that our multi-scale scene tokenizer outperforms baseline in a large margin,
demonstrating the superiority of multi-scale quantization. We also observe that larger resolution of
the latent BEV feature map resolution delivers better performance. However, the increase in resolu-
tion will also lead to a significant increase in the number of tokens after discretization, which influ-
ences the performance in the generation stage. Thus we utilize the BEV with resolution (25 × 25)
in our autoregressive modeling.
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Method Setting Reconstruction
Res. Dim. Size MIOU(%)↑ IOU(%)↑

Occworld 50 128 512 66.38 62.29
OccLLaMA 50 256 4096 70.94 61.03

Ours 25 128 4096 57.83 49.76
Ours 50 128 4096 75.09 68.96

Table 5: Ablation study of tokenizer parameters.

A.5 PROGRESSIVE TRAINING

In this section, we show the the process of the progressive training. Progressive training in next-
scale prediction involves gradually increasing the complexity of the task. We first train the 0-th
scale token (motion token) until convergence. Then we gradually add the loss of 1-th scale to the
total loss in a warm-up approach. We utilize a linear warm-up function and the warm-up process for
each scale lasts for 10 epochs.
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