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Abstract

This paper studies the role of over-
parametrization in solving non-convex op-
timization problems. The focus is on the
important class of low-rank matrix sensing,
where we propose an infinite hierarchy of
non-convex problems via the lifting technique
and the Burer-Monteiro factorization. This
contrasts with the existing over-parametrization
technique where the search rank is limited by the
dimension of the matrix and it does not allow a
rich over-parametrization of an arbitrary degree.
We show that although the spurious solutions of
the problem remain stationary points through the
hierarchy, they will be transformed into strict
saddle points (under some technical conditions)
and can be escaped via local search methods.
This is the first result in the literature showing that
over-parametrization creates a negative curvature
for escaping spurious solutions. We also derive
a bound on how much over-parametrization is
requited to enable the elimination of spurious
solutions.

1. Introduction

In this paper, we focus on an important class of non-convex
optimization problems, named matrix sensing, which can
be formulated as the feasibility problem:

find M e R™™" (1)
st. A(M)=A(MY)
rank(M) <r, M = 0.
where the measurement operator A(-) : R"*™ — R™ is a

linear operator returning a d-dimensional measurement vec-
tor A(M) = [(A1, M), ..., (Ap, M)]T, for given sensing
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matrices {A;}", € R"*™. The goal is to find an unknown
matrix M* of rank r associated with the measurement vec-
tor b, meaning that b = A(M*), where r is often much
smaller than n. We factorize M* as M* = ZZT where
Z € R™*T,

The problem (1) is extremely broad since solving any ar-
bitrary polynomial optimization can converted to a series
of problems in the form of (1) (Molybog et al., 2020). In
addition, the problem (1) directly arises in various appli-
cations such as collaborative filtering (Koren et al., 2009),
phase retrieval (Singer, 2011; Boumal, 2016; Shechtman
et al., 2015), motion detection (Fattahi & Sojoudi, 2020),
and power system state estimation (Zhang et al., 2017; Jin
et al., 2019). Moreover, its strikingly simple form is asso-
ciated with only one source of non-convexity, which is the
rank constraint. As a result, the existing works have exten-
sively studied under what conditions one can recover M*
exactly, and the centerpiece of this line of research is the no-
tion of Restricted Isometry Property(RIP) of the measuring
operator A, which we state below:

Definition 1.1 (RIP). (Candes & Recht, 2009) Given a
natural number p, the linear map A : R™*™ — R™ is said
to satisfy 0,,-RIP if there is a constant d,, € [0, 1) such that

(1= 0p)IM|[% < AP < (1+6,)IIM]%
holds for all matrices M € R™*" satisfying rank(M) < p.

This criterion is also intuitive to understand, as it measures
how close A is to an identity operator (isometry) over ma-
trices of rank at most r. If A is an exact isometry, or equiv-
alently when it satisfies RIP with §,, = 0, we measure M *
exactly and the recovery is trivial. Therefore, a small value
for the RIP constant usually implies that the problem has a
low computational complexity.

A popular approach to solving (1) is to use the so-called
Burer-Monteiro (BM) factorization (Burer & Monteiro,
2003). The BM formulation explicitly factors M as M =
X X7, where X € R»*"

min

— 1 Ty _ 2
Xe]RnXTf(X) '_ 2||A(XX ) —blI” )

The problem (2) is an unconstrained smooth optimization
problem, which means that highly scalable local search
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methods such as Gradient descent can be utilized to numer-
ically solve it. Since the search is over R™*" instead of
R™*™ in the original feasibility problem (1), the number
of variables is dramatically reduced from O(n?) to O(nr),
thereby improving its scalability. The main issue with (2) is
that it is still a non-convex problem and thus it may contain
spurious' local minima, preventing local search methods
from convergence to a global optimum. However, despite
its non-convexity, a recent line of work (Zhang et al., 2019b;
Bi & Lavaei, 2020; Ma et al., 2023; Zhang et al., 2021;
Ma et al., 2022; Ma & Sojoudi, 2023) has shown that if
(2) satisfies the RIP condition with d5, < 1/2, every local
minimizer X of (2) will satisfy the relation XXT = M~
precisely in the noiseless scenario and approximately when
b is corrupted by random noise. It has also been proven
that d2,, < 1/2 is a sharp bound, meaning that there are
counterexamples such that XXT # M* once 69, > 1/2.
This also falls in line with a prior result that do, < 1/2
is sufficient for recovering M * using specialized methods
directly applied to (1) (Recht et al., 2010; Candes & Plan,
2011; Cai & Zhang, 2013).

1.1. The power and limitation of over-parametrization

The bound d3, < 1/2 is sharp, and RIP conditions are dif-
ficult to satisfy and verify except for isometric Gaussian
observations. In many applications, such as power sys-
tem analysis, the RIP constant does not exist or is above
0.99 (Zhang et al., 2019a). Yet, it is highly desirable to
transfer the scalability benefits of the BM factorization ap-
proach to these practical cases as well. Hence, it is essential
to investigate how to handle problems that do not satisfy
the RIP property with a constant smaller than 1/2, using
BM-type techniques. Towards this end, an active line of re-
search has studied the relationship between the complexity
of recovering the global optimum and the degree of (over-
) parametrization in (2) (Zhang, 2021; 2022; Levin et al.,
2022), and the results are promising.

The current idea of over-parametrization in matrix sensing
consists of enlarging the search space of X from R™*"
to R *"sech - where rgeuen € [7,1), and we arrive at the
following counterpart of (2)

min  f(X) = SJAXXT) b2 @)
X ER™ X Tsearch 2

The above-mentioned papers have shown that as rseyech in-

creases, stronger guarantees for the recovery of M * can be

obtained (although it requires stricter assumptions). One of

the main results in this area will be stated below.

Theorem 1.2 (Theorem 1.1 of Zhang (2022)). Assume that
(3) satisfies the (Ls, n)-RSS (Restricted Strong Smoothness)

'A point is called spurious if it satisfies first-order and second-
order necessary optimality conditions but is not a global minimum.

and (s, n)-RSC (Restricted Smooth Convexity) properties.
If

1 /L, 2

Tsearch > ( - 1) T, T S Tsearch < T (4)
4\ oy

then every second-order point (SOP) X € RXTsearh of (3)

satisfies that XX T = M*.

Note that X is an SOP if it satisfies the first-order and
second-order necessary optimality conditions. The above
theorem replaces the RIP condition with the similar condi-
tions of RSS and RSC, which will be formally defined in
the next section. The power of this theorem is in dealing
with the scenario where Js,. > 1/2, by selecting a search
rank rgearen > 7.

Despite the superiority of (3) over (2), the power of the
stated over-parametrization is limited. The reason is that
T'search Cannot be greater than n and therefore it is impossible
to satisfy the condition (4) in practical cases where L/
is large. This calls for a new framework that accommodates
an arbitrarily large degree of parametrization (as opposed
t0 Tsearch < 1), Which would be effective in the regime of
high L/ values. In this paper, we address this problem
by proposing a tensor-based framework and analyzing its
optimization landscape.

Our approach is related to over-parametrization used in the
Semidefinite Programming (SDP) formulation. The SDP
formulation is a natural convex relaxation of the original
problem (1), obtained by removing the rank constrained. It
aims to minimize the nuclear norm of M as a surrogate of
its rank. When the search is performed on the space of sym-
metric and positive-semidefinite matrices, we can further
reformulate the problem using a trace objective instead of
the nuclear norm due to their equivalence under this setting.
Hence, the resulting SDP formulation can be stated as

min  tr(M) st. AM)=b, M>0, (5

McRnxn

The relation a3, < 1/2 is a sufficient condition for the
recovery of M* via (5), but not a necessary one (Cai &
Zhang, 2013). Recently, Yalcin et al. (2023) showed that
a sufficient bound close to d5,, < 1 can be achieved when
n = 2r, which proves that the formulation (5) may solve
the problem even if the sharp bound ds, > 1/2 for (2) is not
satisfied as long as r is a large number (note that the focus
of this paper is on the practical scenario of a small rank 7).

Overall, over-parametrization is a powerful idea since the
inclusion of extra variables reshapes the landscape of the
problem. Outside the realm of matrix sensing, the idea of
constructing an infinite hierarchy of non-convex problems
of increasing dimensions has been applied to the Tensor
PCA problem (Wein et al., 2019). The empirical evidence
of deep learning practice shows the advantage of using over-
parametrized models for both convergence properties during
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training (Oymak & Soltanolkotabi, 2020; Zou et al., 2020;
Du et al., 2019; Allen-Zhu et al., 2019b) and generalization
performance of the trained model (Allen-Zhu et al., 2019a;
Neyshabur et al., 2019; Mei & Montanari, 2022; Belkin
et al., 2020). Practitioners also design their own hierarchy
of machine learning models, to satisfy the scaling laws (Ka-
plan et al., 2020; Hoffmann et al., 2022; Maloney et al.,
2022). The cornerstone idea on the theoretical side of this
field comes from the development of a hierarchy of convex
problems, called the Sum-of-Squares hierarchy.

1.2. Sum-of-Squares Optimization

One of the most prominent over-parametrization frame-
works for polynomial optimization is the framework of
Sum-of-Squares (SOS) hierarchy of optimization problems
(Parrilo, 2003; Lasserre, 2001). SOS optimization is essen-
tially an optimization framework that leverages deep results
in algebraic geometry to construct a hierarchy of convex
problems of increasing qualities, solving each of which ob-
tains a lower-bound certificate on the minimum value of the
polynomial optimization problem of interest. Since (2) is
also a polynomial optimization problem, SOS can be applied
to handle the problem through a highly parametrized set-
ting. Moreover, instead of using the usual SOS framework
that finds a sequence of lower bounds on the optimal value
of (2), we could use its dual problem, since the minimum
value of (2) is 0 by construction. To construct the dual SOS
problem, define x > 1 to be an integer such that 2« is equal
to or larger than the maximum degree of f(v) in (2), where
v = vec(X). Here for simplicity please also assume r = 1.
Furthermore, define [v],, € R® to be a vector containing the
standard monomials of v up to degree k, with s := (":” .
We then build the moment matrix D = [v],[v]] with its
entries being all standard monomials up to degree 2x. As a
result, it is possible to rewrite f(v) (i.e., f(X)) as a linear
function of D, namely

f(v): <F7D>

for some constant matrix ' € R**®. Therefore, optimizing
(F, D) is equivalent to optimizing f(v) given that D is rank-
1 and positive-semidefinite. However, the rank-1 constraint
is non-convex and its elimination leads to the dual SOS
problem with the following form:

min (F, D) s.t. L(D)=0,D =0 (6)

Dess
The linear operator £ captures the so-called consistency
constraints, as some entries in D may be identical due to
being the outer product of monomial vectors. For example,
if n = 2,k = 2, we have

T
[v]x = [1, 01, 02,07, 0102, 3]

meaning that D15 = Da3 = viva, D1y = Doy = ”U%,
D34 = D25 = U%Ug, D26 = D35 = vlv%, and so on.

The dual SOS problem (6) has some nice properties: it is
convex and its optimal value asymptotically reaches that
of (2) as k grows to infinity (under generic conditions),
which enables solving the non-convex (2) with an arbitrary
accuracy (Lasserre, 2001). However, the problem (6) also
presents daunting challenges.

First, it has poor scalability properties because it requires
solving costly SDP problems. The idea behind this paper
is related to applying the BM factorization to (2) (without
dealing with SDPs) via a lifting technique similar to (6).
Currently, there is no guarantee that local minimizers of
the BM formulation will translate to the minimizer of the
convex problem (6). The state-of-the-art result regarding
the BM factorization states that this correspondence can
be established only when r(r + 1)/2 > m, where m is
the number of linear constraints (Boumal, 2016). In matrix
sensing, since r is small and m is large, this result cannot
be applied.

Second, it is difficult to gauge how large x needs to be in
order for the convex relaxation to be exact, meaning that
one may need to use significant computational resources
to solve an instance of (6) corresponding to some value
of k, only to discover that its solution does not provide
useful information about the optimal solution of the original
problem, promoting to repeat the process for a larger value
of k. This also prevents the practical application of SOS as it
is common to miscalculate in advance how computationally
challenging it can be to solve (2) via the SOS framework.

1.3. Our Approach

In this paper, we build upon some of the core ideas of SOS
optimization in order to construct a new framework for
over-parametrization that addresses the current issues with
(6). The key observation is that [v],; is highly similar to a
symmetric rank-1 tensor, namely

[v],, = v®" € R™°"

with the only difference being that v®*~ contains some terms
appearing more than once, which implies that (6) could
also be casted as an SDP based on the outer product of
v®* with itself. The notion of a tensor and its properties
(symmetry, rank, etc) will be formally introduced in Section
2 and Appendix A. Instead of solving a non-scalable SDP
problem for the optimal D over S°; we propose to apply
local search over R™°~ for v®*, and will analyze when it
converges to the global optimum.

We first focus our attention to the » = 1 case, which is
easier to conceptualize. The idea is that we replace R™ with
R™ %™ 'meaning that we replace our decision variable
with an [-way tensor x € R™**" We will show that this
new problem can convert spurious solutions of the original
problem to strict saddle points in the lifted tensor space, and
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we further derive how large [ should be in order for this to
occur, thereby addressing two main practical deficiencies of

(6).

2. Definitions and Notations

The formal definition of a tensor, alongside with the property
of symmetry and rank will be elaborated in Appendix A.

Definition 2.1 (Tensor Multiplication). Outer product is
an operation carried out on a couple of tensors, denoted as
®. The outer product of 2 tensors a and b, respectively of
orders [ and p, is a tensor of order [ + p, c = a ® b with
Civ.igjr.gp — ailn-ilbjl-ujp

When the 2 tensors are of the same dimension, this product
is such that ® : R™°! x R™°? — R™(+P)_ Note we often
use the shorthand

a®--~®a::a®l
N—_———

| times

We also define an inner product of two tensors. The mode-g
inner product between the 2 aforementioned tensors having
the same g-th dimension is denoted as (a, b),. Without loss
of generality, assume ¢ = 1 and

ez
[<a, b>‘1]i2...ilj2...jp = Z aaig.i.ilbajgi..jp
a=1

Note that when we write (-, -),, we count the g-th dimension
of the first entry. Indeed, this definition of inner product can
also be trivially extended to multi-mode inner products by
just summing over all modes, denoted as (a,b)g, .. s.

Definition 2.2 (restricted strong smoothness (RSS)). The
linear operator A : R"*™ — R™ satisfies the (L, )-RSS,
property if:

FOM) — F(N) < (M — N, VF(N)) + =M ~ N[}

forall M, N € S™ with rank(M ), rank(N) < r.
Definition 2.3 (restricted strong convexity (RSC)). The

linear operator A : R™*™ — R™ satisfies the (o, r)-RSC
property if:
o
F(M) = f(N) = (M = N,VF(N)) + = [|M = N7
forall M, N € S™ with rank(M ), rank(N) < r.

2.1. Notations

In this paper, I,, refers to the identity matrix of size n x n.

The notation M > 0 means that M is a symmetric and

positive semidefinite (PSD) matrix. S™ denotes the sym-
metric PSD space of dimension n. ¢;(M) denotes the i-
th largest singular value of a matrix M, and \;(M) de-
notes the i-th largest eigenvalue of M. ||v|| denotes the
Euclidean norm of a vector v, while || M || r and || M ||2 de-
note the Frobenius norm and induced [5 norm of a ma-
trix M, respectively. (A, B) is defined to be tr(A” B) for
two matrices A and B of the same size. For a matrix M,
vec(M) is the usual vectorization operation by stacking
the columns of the matrix M into a vector. For a vector
vER™, mat(v) converts v to a square matrix and mat g (v)
converts v to a symmetric matrix, i.e., mat(v) = M and
matg(v) = (M +M7)/2, where M € R™ " is the unique
matrix satisfying v = vec(M). [n] denotes the integer set
[1,...,n], and ol stands for the shorthand of repeated carte-
sian product x - - - x for [ times. A (u, ) refers to the mul-
tivariate Gaussian distribution with mean p and covariance
3.

3. The Lifted Formulation

To streamline the presentation, we focus on the problem of
rank-1 matrix sensing presented in the BM formulation:

: T Ty\|12
- 7
min  [lA(zz — 2273 @)

where M* = 2z is the ground truth rank-1 matrix. The
generalization of the ideas to > 1 is straightforward but
the mathematical notations will be cumbersome.

The objective is to solve (7) using a lifted or over-
parametrized framework. This means that instead of op-
timizing over the original vector space R", the goal is to
optimize over a tensor space, namely R™°! for some [ > 2.
Note that (7) aims to find a vector x such that

Alzz") = AM*) = A(22") = b.
Therefore, it is also desirable to achieve
{.A(.IJJT)}@)I _ b@l c Rmol

According to (Petersen et al., 2008), for arbitrary 4 vectors
a, b, ¢, d of the same dimension it holds that

(a®@b,c®d) = (a,c)(b,d) (8)

With the repeated application of the above identity, we have

{A(zz")N® = (A, 2% @ 22 )
where the tensor A € R(meD)x(n*0D) is defined as:

l
Ay = [ [ @ vee(Amy). (10)

k=1
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Therefore, one can write the lifted objective similarly to (7)
as:
min A wow— 202 b (D
weRne T
For notational convenience, define f(-) : R"*™ — R and
h(-) : R™ — Ras:

FM) =AM = 22")|3,  h(z) = f(az"),

and Vf(-) = Varf() and VA() = Vh().

Similarly, define f!(-) : R"°2! = R and h!(-) : R™! s R
as:

fl(M) = ||<A7M - Z®l 0y Z®l>m’+1,...,m’+n2’ ||§7‘7

Bw) = fl(w @ w), (12

as well as Vf!(-) = Vaf(-) and VA (-) = Vi hl().

4. A Motivating Example

In this section, we study a class of benchmark matrix sensing
instances that have many spurious local minima, where each
instance A is defined as

Mij7 lf(Z,j) €N

13
GMZ‘]‘, ( )

Ae (M)U = {

otherwise

where () is a measurement set such that
Q= {(i,1), (4,2k), (2k,9)| Vi € [n],k € [[n/2]]}

Yalcin et al. (2023) has proved that each such instance has
O(2/"/21 — 2) spurious local minima, while it satisfies the
RIP property with dz, = (1—€)/(1+e€) for some sufficiently
small e.

To study whether our lifted framework can reshape the opti-
mization landscape of the problem, we analyze the spurious
local minima of the unlifted problem (7). Given any spuri-
ous local minimum Z, it is essential to understand whether
its lifted counterpart #®! behaves differently in (11), or
more precisely whether #® is still a spurious solution. To
get some insight into this question, we conduct numerical
experiments to first find the spurious solutions of (7) for the
measurement matrices given in (13), and then find the small-
est eigenvalue of the Hessian of (11) at the lifted counterpart
of each spurious solution. We summarize the findings in
Table 1 for e = 0.3. Note that due to the structure of (13),
the numbers of spurious local minimizers are equal for two
cases n and n + 1 if [n/2] = [(n + 1)/2], and therefore
the results for n = 4 and n = 6 are omitted.

It can be observed that, for a given spurious local minimizer
& of (7), two properties hold: (i) £® is still a critical point

as the gradient of the corresponding objective function h! is
small (its nonzero value is due to the early stopping of the
numerical algorithm), (ii) the Hessian at this point becomes
smaller as [ increases. This means that as the degree of
over-parametrization increases, the unlifted spurious local
minima will become less of a local minima and more of a
strict saddle point. This can be seen for n = 3, as every
increase in the parametrization leads to a reduced smallest
eigenvalue and finally, 2®! becomes a saddle point with a
negative eigenvalue at level [ = 4, meaning that there is
a viable escape direction for gradient descent algorithms.
This trend can also be clearly observed forn = 5andn =7,
implying that the transformation of the geometric properties
at 2®! is not an isolated phenomenon. To further study
how much parametrization is needed and to show that this
is not unique to any particular problem form, we provide
theoretical results next.

5. Optimization Landscape of the Lifted
Problem

We analyze the optimization landscape of (11) around #%!,
where 2 is a spurious spurious solution of (7). The proofs
to all of the results below can be found in Appendix B.

5.1. FOP and SOP conditions
Lemma 5.1. The vector & is a SOP of (7) if and only if

Vf(Ei" )i =0,
UV f(zd "), uu )+

(V2f(22 )] (3u" +ud,du’ +uz’) >0

(14a)

(14b)

Vu € R7”, with (14a) being the necessary and sufficient
condition for & to be a first-order point (FOP), which is a
stationary point of the objective function.

Please refer to (Ha et al., 2020) or (Zhang et al., 2021) for
a proof of this lemma. Lemma 5.1 has a counterpart in the
lifted space since (7) and (11) are highly similar. This will
be formalized below.

Lemma 5.2. The tensor W is a SOP of (11) if and only if

(VW W), W) pigr,... (15a)
V(W W), A®A) + V(%@ W)
(WRA+AQW, WOA+ARW) >0 VA ecR™
(15b)

with (15a) being a necessary and sufficient condition for &
to be a FOP.
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Table 1. The smallest eigenvalue of the Hessian of lifted SOPs of (7)

no L VEGE) e VA G r Aun(V2H ) Apa(V2R(E)
31 0 0 3.99 2.67
3 2 0 0.003 3.99 0.61
3 3 0.004 0.002 3.99 0.24
3 4 0.006 0.004 3.99 -0.17
5 1 0 0 4.18 1.87
5 2 0.002 0 4.56 -0.81
7 1 0.002 0 4.35 1.89
7 2 0.041 0 5.16 -1.64

5.2. Optimality condition of lifted problem, symmetric
rank-1 constraint

Theorem 5.3. For (11), the equality Vh!(W) = 0 holds if

W =%

where £ € R™ is an FOP of (7).

Theorem 5.3 theoretically confirms the phenomenon that
we observed in the numerical example above, by asserting
that all FOPs of the unlifted problem (7) are still FOPs in
the lifted domain by transforming this point using tensor
outer product, or by overparametrization. This means that
some critical geometric structures of (7) are still maintained
in (10), establishing strong connections between these two
representations of the same problem.

After establishing the above negative result about a FOC
having remained a stationary point after lifting, we turn to
studying the differences between (7) and (11), since Table 1
suggests that the negative curvature of the Hessian at each
spurious local minimizer will disappear after enough over-
parametrization. Thus, the central problem under study is
that whether for an instance of (7) with spurious local min-
ima, these undesirable points will continue to be spurious
solutions in the lifted space. If so, there is no apparent ben-
efit to performing the lifting operation. Conversely, if the
stationary points obtain a negative curvature, one can select
from a large set of low-complexity algorithms to efficiently
escape from strict saddles, and therefore eliminate local
minima from the problem formulation.

The following theorem demonstrates that lifting enables the
elimination of spurious solutions, and we can further derive
a bound on the order [ needed to achieve the elimination of
spurious solutions given the RSS and RSC constants of the
problem.

Theorem 5.4. Consider a SOP & # +z € R" of (7), and
assume that (7) satisfies the RSC and RSS conditions. Then
w = &% is a strict saddle of (11) with a rank-1 symmetric

escape direction if T satisfies the inequality

* _ g L,
I — 227 > OTHffllz tr(M™) (16)
S
and l is odd and is large enough so that
> 1 a7
1 —log,(28)
where (3 is defined as
Lgtr(M*)]|Z||2
P TS TET

asl| M+ — 22 T3

Here, Lg, g are the respective RSS and RSC constants of

7).

Theorem 5.4 is powerful since it proves that by lifting spu-
rious solutions to higher-order tensor spaces, we can con-
vert them to saddle points, which attests to the power of
over-parametrization. More importantly, regardless of how
large L/ is, it is always possible to find an order [ large
enough to convert 2®'s to saddle points, which is a major
improvement over the existing results such as Theorem 1.2.
Equation (16) implies that in order for #®! to become a
saddle point in the lifted formulation, it is enough to have
either a small # or a large | M* — 24" ||%. As a result, no
spurious solution % close to the origin will remain spurious
after lifting. This is a significant result because if we ini-
tialize a saddle-escaping algorithm near the origin, it will
not be trapped inside a spurious solution during the early
iterations even if the problem is highly non-convex. One
fact to note is that (16) is not a necessary condition, but a
sufficient one, and therefore it is possible that the statements
of Theorem 5.4 can be applied to a wider range of z.

Another major advantage of Theorem 5.4 is that it quantifi-
ably studies how many levels of parametrization are need in
order to make an existing spurious local minimizer & a sad-
dle point in the lifted space. Therefore, instead of offering
a statement asserting that over-parametrization will work
at some large enough [ (as done in the SOS setting), it ex-
plains how large this [ needs to be in terms of its geometric
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regularities, captured by the RSC and RSS parameters, and
also the distance | M* — 23" ||%.

Theorem 5.4 also implies that over-parametrization works
particularly well for those spurious solutions  far away
from the ground truth, in the sense that the further away Z is
from the ground truth, the smaller [ needs to be in order for
%! to become a saddle point, as suggested by (17). This
fact is in line with the existing literature saying that the
optimization landscape near M ™ is benign, in the sense that
there exists no spurious local solution in a region around M *.
A well-known incarnation of the aforementioned statement
is given below.

Theorem 5.5 (Theorem 3 (Bi & Lavaei, 2020)). If & is a
SOP of (7) and

4L 0

ST *
||I$ ||F = (Ls+as)2

1213, (18)
then
23" = M*

This means that any spurious solution must violate the in-
equality (18). This allows us to simplify the results of Theo-
rem 5.4, which can be stated in the following form

Theorem 5.6. Assume that & # £z € R™ is a spurious
solution of (7), and that (7) satisfies the RSC and RSS as-
sumptions with as and L constants respectively. The point
29 will become a saddle point of (11) for an odd | satisfy-
ing (17) if

2\@@2/2

M ||p < —Y%s

19)

This theorem is proved by setting the RHS of (18) to be
smaller than that of (16). Another technical lemma is intro-
duced to bridge the two terms, so that it does not depend on
specific £ anymore.

The above results all aim to convert spurious solutions to
saddle points via lifting. Although this property is highly
desirable for spurious local solutions, it is essential to make
sure that it will not hold for the ground truth solution since
the correct solution should remain a SOP in the lifted space
in order for the lifting technique to be useful.

In our previous numerical experiment, we empirically
showed that the smallest eigenvalue of the Hessian at z®!
remains positive, meaning that it is still a SOP in the lifted
formulation (11). In the following theorem we formally
establish this observation.

Theorem 5.7. Assume that z € R" is the ground truth
solution of (7). Then z®" remains a SOP of (11) regardless
of the parametrization level |, and without the need for (7)
to satisfy RSC or RSS conditions.

6. Numerical Experiments

In this section, we numerically demonstrate that the theoret-
ical results of this paper can be translated to real advantages
when using the lifted framework (11)?.

For the sake of convenience, we revisit the matrix sensing
problem (7) with n = 3 and the special operator (13). We
choose € = 0.3 in the numerical experiment, which trans-
lates to the RIP constant of do, = 0.52, going beyond the
known sharp threshold of § < 1/2, and may create spuri-
ous solutions. By the special structure of (13), it is easy to
verify that there are theoretically 4 SOPs in total, and they
converge to the following 4 points as € becomes sufficiently
small, which are:

1 -1 -1

§>
Q
— o =
“&>
[ V)
Q

in which z; and 4 are ground truth solutions as i"lif =
:%4§:4T = M?*. The other SOPs %5 and 3 are spurious
solutions.

To empirically verify that e = 0.3 is indeed small enough,
we simply start from random Gaussian initialization, and
apply optimization algorithms to check to what point(s) the
algorithm will eventually converge to. We use the standard
ADAM optimizer (Kingma & Ba, 2014) with the hyper-
parameter Ir = 0.02, and the 3D convergence trajectories
are plotted in Figure 1(a) for 40 different trials with indepen-
dently sampled initial points. In this plot, the ground truth
21 and 4 are labeled with big red dots, and 5 and 3 are
labeled with black crosses. One can easily observe that the
theoretically derived SOPs are indeed correct, as the plot
shows that regardless of initialization, the algorithm will
always converge to one of the 4 points given above, which
means that e = 0.3 is already small enough to deteriorate
the landscape. Upon a closer scrutiny, one can further real-
ize that all 4 SOPs are equally attractive, and it is impossible
to differentiate between ground truth solutions and spurious
solutions. In particular, the success rate of applying ADAM
to (7) with (13) is 57.5%. This is highly undesirable in prac-
tice because the user will constantly obtain different results
by running the same algorithm, leading to confusion as to
which result is correct, which exactly represents the inherent
difficulty of a highly non-convex optimization problem like
(13).

Thus, at a high level, it is necessary to show that by using
the lifted framework (11), we can avoid converging to :ﬁ?l
and i’?l since with this over-parametrized framework, it
is possible that they have become saddle points instead of
spurious solutions, as suggested by Theorem 5.4. To this

2The code used to produce results in this section can be found
at: https://github.com/anonpapersbm/liftedmatrixsensing
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(a) Convergence trajectories of unlifted formula-
tion.

(b) Convergence trajectories of lifted formula-
tion with [ = 3.

Figure 1. The convergence trajectories of (13), with n = 3, ¢ = 0.3. Random gaussian initialization with o = 0.01, = 0. 40 Trials in

total.

end, we plot the optimization trajectory of (11) with [ = 3
and (13) in Figure 1(b), where the optimizer of choice is
still ADAM, since it has the ability to escape saddle points
and it makes the comparison with Figure 1(a) meaningful.
The reason that we chose [ = 3 instead of [ = 2 is because
Theorem 5.4 only applies to odd values of [. However, one
caveat is that since the optimization is performed in tensor
space, it is impossible to visualize. To address this issue,
instead of showing the full tensor, we perform tensor PCA
along each step of the trajectory, and plot the 3D vector that
can be transformed to the dominant rank-1 symmetric tensor
via tensor outer product. In particular, given a tensor w on
the trajectory, we plot w € R3 such that:

w = argmin |[w — w®!||p
w

meaning that w is the best projection of w onto R?. This is
why Figure 1(b) seems more complicated than Figure 1(a),
as an extra layer of approximation is applied. Nevertheless,
the message of Figure 1(b) is unchanged, as now instead
of converging to all 4 points equally, the lifted formulation
only converges to the ground truth solutions, as no trajectory
leads to the black crosses. This indicates that by converting
#$" and #5" to saddle points via over-parametrization, we
gain real benefits by avoiding spurious solutions, especially
compared side-by-side with Figure 1(a). To further demon-
strate the power of the over-parametrized framework (11),
we summarize the success rate of unlifted framework (7)
and the lifted framework (11) in the table below. Here, we
count a trial to be a ”success” if the final iteration Zerminal
satisfies
28— 2% p < 0.05

terminal
From Table 2, we can see that n increases, the success
rate of the lifted framework goes up, especially in contrast
to the fact that higher n means lower success rate for the

Table 2. Success rate of the lifted and unlifted frameworks applied
to (13)

Unlifted | =1 Liftedl =3
n=3 0.575 0.62
n=4 0.575 0.68
n=>5 0475 0.75

unlifted formulation due to it having O(2/™/21 —2) spurious
local solution. This empirically demonstrates that the lifted
formulation is especially valuable in problems with higher
dimensions.

7. Conclusion

This paper proposed a powerful method to deal with the
non-convexity of the matrix sensing problem via the popu-
lar BM formulation. Since the problem has several spurious
solutions in general and local search methods are prone to be
trapped in those points, we developed a new framework via
a SOS-type lifting technique to address the issue. We show
that although the spurious solutions remain stationary points
through the lifting, if a sufficiently rich over-parametrization
is used, those spurious solutions will be transformed into
strict saddle points (under technical assumptions) and are
escapable. This establishes the first result in the literature
proving the conversion of spurious solutions to saddle points,
and it quantifies how much over-parametrization is needed
to break down the complexity of the problem. Future re-
search directions include the sparsification of the lifting
method to eliminate unnecessary monomials and reduce the
complexity, as well as studying whether lifting will create
new stationary points and where they are located relative to
the ground truth solution.
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A. Definition

Definition A.1 (Tensor). As a generalization of the way vectors are used to parametrize finite-dimensional vector spaces, we
use arrays to parametrize tensors generated from product of finite-dimensional vector spaces, as per (Comon et al., 2008).
In particular, we define an [-way array as such:

a= {ailiz...il|1 S ik S nk71 S k S l} € Ran-~~><n1,

Note that in this paper tensors and arrays can be regarded as synonymous since there exists an isomorphism between them.
Moreover, if ny = - -- = ng, then we call this tensor(array) an [-order(way), n-dimensional tensor. For the convenience
of tensor representation, we use the notation R™! withnol:=n X --- x n. In this work, tensors are denoted with bold
variables, and other fonts are reserved for matrices, vectors, and scalars unless specified otherwise.

Definition A.2 (Symmetric Tensor). Similar to the definition of symmetric matrices, for an order-/ tensor a with the same

dimensions (i.e., n; = - -+ = ny), also called a cubic tensor, it is said that the tensor is symmetric if its entries are invariance

under any permutation of their indices:
Qigryigqy = Gig-iy Yo, i1,...,1 € {1, Ce 7n}

where o € G; denotes a specific permutation and G; is the symmetric group of permutations on {1, ...,1}. We denote the
set of symmetric tensors as S!(R").

Definition A.3 (Rank of Tensors). The rank of a cubic tensor a € R™°! is defined as:
rank(a) = min{r|a = Zul QU ® - Qw;}
i=1
where u;, ..., w; € R™ Vi. Furthermore, according to (Kolda, 2015), if a is a symmetric tensor, then it can be decomposed

as:
r T
i=1 i=1

and the rank is conveniently defined as the number of nonnegative \;s, which is very similar to the rank of symmetric
matrices indeed. For notational convenience, we denote rank-r symmetric tensors as S!(R™),..

B. Proofs
Proof of Theorem 5.3. (14a) implies that
[m]x [n]x[n]x[n] [m]x [n]x[n]x[n]
> (Adw(Adydidsis = > (Ad)sw(Ad)yzizids Yk (20)
a,:,j,s a,:,j,s

Then we focus on (15a) with

VHAWeWw) = (ATA, WO W — 2% @ 2% 2y opa

i)

where ATA = (A, A).ii1. miin2. Thus, the LHS of (15a) is:

([m]ol) x ([n]ol) x ([n]ol) x ([n]ol) l l
(H Aa(xsakmAaoimjai,iaijnj}sa> - <H AdgsakaAagiajaZiaZjats,
a=0

{aaiardarsath— a=0
' 1)
l [m]x[n]x[n]x[n] [m]x[n]x[n]x[n]
=11 > AvosahoAaicjationtjnts, | = 1 > AdgsakaAagiajaZiaZjatsa
a=0 GayiasJasSa a=0 GaslasjasSa
Given (20) and (10), we know that:
[m]x[n]x[n]x[n] [m]x[n]x[n]X[n]
Z AdcsakaAaicjaTialjels, = Z AdasakaAaiajaZiaZiatsa  Vha
AayiasjasrSa AayiasjasSa

11
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Therefore, substituting the above equality into (21) yields that LHS of (15a) is O.

O
Before proceeding to the proof of Theorem 5.4, we first recall a useful technical Lemma from (Ma & Sojoudi, 2023):
Lemma B.1. For any SOP & of (7), define G as G := —\in(Vf(22 ")), and L be the RSS constant. Then it holds that:
G < ||2[I5Ls
Proof of Theorem 5.4. (14b) implies that:
[m] % [n]o4
LHS =2 Z (Aa)sk(Aa)ij (Cf?if?j — zizj)ukus—i-
a,i,7,8,k
22
[m]x[n]o4 (22)
D (Ad)er(Aa)ij (g + i) (Foup + ugiy)
a,i,7,s,k

If the A, matrices are symmetric, which can be achieved by redefining A, as (AL +A,)/2 without changing the measurement
values, the above equation can be simplified as:

[m]x[n]o4 [m]x[n]o4
2 Z a a 1] (jjzi‘] ZzZJ)ukus +4 Z sk(Aa)iji‘ijjkujus (23)
a,i,7,8,k a,i,7,s,k
01 CZ

According to (Zhang et al., 2021), V f (M) can be assumed to be symmetric without loss of generality. Hence, one can select
u € R™ such that uTVf(A 1) u = Anin(VF(22 7)) and Apin(Vf(22 7)) < 0 under the RSC assumption with ag > 0.
The reason that this holds is because first we know that

FM) 2 f(227) +(Vf(@2 "), M* — 22" ) + as|l22 " — M.
Since (Vf(#27),24 ") = 0 according to (14a) and f(2# ) — f(M*) > 0, we know that
(Vf(@27),M") < —agl&d" — M*|[%

after rearrangements. Furthermore, since both V f(#4 ") and M* are assumed to be positive semidefinite for the above-
mentioned reasons, we have that

(VF(@eT), MY > Apin(Vf (22 7)) tr(M*)

which implies that
|27 —

Amin(Vf(227)) < —ag M- <0 24)

tr(M*)
With this piece of knowledge in mind, we define G := —A\yin(Vf(22 7)) > 0. Thus,
Ci = —-G.

Moreoever, the RSS condition implies that:

4Cy = [V2f(22 )] (du" +ud " du’ +ui’) < Lo|du’ +ui'|%
= Lotr((du’ +ud’) du’ +ui’) =2L,)|2||3

since v & = 0 according to the first-order condition (14a). Therefore,

1.
Cs < 5L, )3

12
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Now, we take a look at the left-hand side (LHS) of (15b); here we choose A = u®! for the same u € R™ chosen above:

([m]ol) x[([n]ol)o4] l !
2 Z (H AaasukaAauiuja‘%iui‘jausauku> - <H AausakaAaaiajuZiazjausuuka) +

{aaaiavjaysaaka}ét:1 a=0 a=0

ot (25)
([m]ol) x[([n]ol)od] 1
4 Z H AaasakocAaaia]‘ai"ia‘i‘kau‘jausa

{aaﬂaajavsavka}ix:l a=0

Cy
Now,
! [m]x[n]od l [m]x[n]o4
= 2 H Z Aaasaka Aaaiaja i‘ia j]a usa uka - 2 H Z (Aaasaka A(laiaja Zia Zja Usa uka
a=1 \ a,i,j,s,k a=1 \ a,ij,sk
[m] x [n]o4 t [m]x[n]od l
=2 Z (Aa)sk(Aa)ijiii'jukus -2 Z (Aa)sk(Aa)z]Z1Z]uku€ (26)
a,i,j,8,k a,i,j,s,k
[m]x[n]o4 t
<2 (Aa)sk(Aa)ij(Tidj — zizj)upus | = 20{ = —2G"
a,i,j,8,k

where the inequality follows from:
"—pt<(a—b)" Vb>a>0

Here, since a — b = C; < 0, the above inequality can be used. Next,

[m]x[n]o4

Co=( Y (Ad)wl(Aa)ijdidrujus)' = Ch < Ll W[ElFS 27)

As aresult,
LHS of (15b) < —2G" + —Ll L)l 2t
——
Part 1
Part 2
We know that G > 0 so Part 1 is always negative assuming [ is odd, and Part 2 is always positive. Therefore, it suffices to
find the order [ such that

L> (172N Lyl|2 (3 (28)
to be able to make the LHS of (15b) negative.

To derive a sufficient condition for (28), we first need a lowerbound on G, and to do so, we start with the (sparse) RSC
assumption:

* o * AA s * oA
FOMY) 2 f237) +(Vf(@27), M* =22 ") + |M* = 2277
Then, since f(M*) < f(#2") (as M* is the global optimum), we have:
* AA * o P * Qg * AA
0> (Vf(aa"),M* — i)+ *IIM 23T = (Vf(@27), M) + |M* — 2T | (29)

where the equality follows from the FOP condition (14a) for 2. Also, since M* is assumed to be positive semidefinite, we
have
(VF@a"), M*) > Anin(Vf(22 7)) tr(M™). (30)

13



A lifted framework for matrix sensing problems

Combining (29) and (30), we have:

PN Qg * PN
-G = )\min(vf(l’x—r)) < _2tr(M*) ”M - ‘rx—r”%"
meaning that
: G>—2 M —z3T|2 31)
= 2tr(M*) F

Therefore, if

l
«a
S M*_ A~T 2 > 1 2[—1 Ll 2 2l7
(serir i - aaTIF) > /2t el
we can conclude that (28) holds, which implies that the LHS of (15b) is negative, directly proving that 2®! is not a SOP
anymore. Elementary manipulations of the above equation give that a sufficient condition is

o Ly, . .
1M — 22T |7 > 212 |]]3 te(M7) (32)
‘We now consider (16), which means that
A 112 Qs * a2
< — —||M* - 33
191 < pgecaey 1M — 2271 (33)

Subsequently, define a constant  such that:

«
Ls ~112 _ S M* A2

Then according to Lemma B.1 and (31), we can conclude that v > 1. Moreover, (33) also means that v < 2. So with this
new definition, the sufficient condition (32) becomes

y

1> 2(1-1)/1

(34)
Since we already know that 1 <~ < 2, there always exists a large enough [ such that (34) holds, which in turn implies that
LHS of (15b) is negative, proving that 2®' is a saddle point with the escape direction u®!, proving the claim.

Next, we aim to study how large [ needs to be in order for (34) to hold. Now, by utilizing Lemma B.2 again, we know that

2L tr(M¥)||2]I3
Cag||Mr— 2277

=20

and we know S < 1 due to assumption (16). So for (34) to hold true, we need

1

-1
oU=1)/L 5 9 — >1 2 ' T Tos,09)
>28 = i > logy(28) = 1> 1 —log,(23)

Proof of Theorem 5.6. First, consider the following technical lemma, which is proved below this proof,

Lemma B.2. Given a FOP z of (7), it holds that

. (2L, . .
2] < 7||M |7 (35)

Via the above lemma, we know that a sufficient condition to (16) is

2L§ * *
M| p tr(M7)

3
A

1M — 2@ [ >

Making the RHS of the above inequality to be smaller than RHS of (18) proves the theorem, especially by acknowledging
that M* is rank-1. O
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Proof of Lemma B.2. Lemma 6 of (Zhang et al., 2021) states that given an arbitrary constant A and vector v € R”,
2L, N 20/1
lulld = max{==2 M3, (ZX0) %} = [ Vh(w)lr 2 X
A simple negation to both sides gives

IVAW)F <X = [Jully < max{=||M*||%, (

S

)"}

2L W
o Qs
If we set u = Z, then LHS of the above relationship is automatically satisfied for arbitrarily small A since || VA(Z)| r = 0,

and thus we conclude that
2L,

Qs

ully < = M*||%
since (%)4/ 3 can be made arbitrarily small. O

Proof of Theorem 5.7. Again utilizing the assumption that A, matrices are symmetric( A, can be converted to be symmetric
without altering the observation b), we arrive at

[m]x[n]o4 [m]x[n]o4
LHS of (14b) = 2 Z (Aa)sk(Aa)ij (i’lfj — zizj)ukus +4 Z (Aa)sk(Aa)iji'ikajus >0 (36)
a,i,7,s a,i,j,s

for any SOP z. If we substitute z into the above equation, we obtain that for any u € R"

[m] % [n]o4

Z (Ag)sk(Ag)ijziziujus >0 (37)

a,%,7,8

Then given any A € R™®!, we CP decompose ( CANDECOMP, a standard tensor decomposition scheme) it as:
R
A:Z(SPJ@...@(W
p=1

where R is the rank of A, a finite number. Next, we consider (15b) evaluated at 2®! and we have that LHS of (15b) equals:

R ([m]ol)x[([n]ol)o4] l l
Z 2 Z <H AaasakaAaaiajaZiaZjaég(;a&i;a) — <H AaasakaAaaiajaziazjaagéaéi‘fC) +

p=1 {aaviavjavsa;ka}gzl a=0 a=0
([m]ol)x[([n]ol)od] 1
E yZ1e Ny oNeY
4 H Aaasﬂka Aaaiaja Zia zk’a 6](, 5§a
{aaaiamjag'sayka}fl:l a=0

Z ([m]ol)x[([n]ol)o4] 1

R
4 Aaasaka A(laiaja Zio Pk, 55?‘;&55:1
p=1 {ami(,,jmsa,km}flzl a=0
R 1 [m]x[n]o4
=4> ]I > AvpsakaAaginiaZia 2, 00060 | >0
p=1a=0 a,t,7,8
(38)
where the last inequality follows from (37).
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