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Abstract001

Large Language Models (LLMs) with web002
search capabilities show significant potential003
for deep research, yet current methods—brittle004
prompt engineering or RAG-based reinforce-005
ment learning in controlled environments—fail006
to capture real-world complexities. In this007
paper, we introduce DeepResearcher, the008
first comprehensive framework for end-to-end009
training of LLM-based deep research agents010
through scaling reinforcement learning (RL)011
in real-world environments with authentic012
web search interactions. Unlike RAG ap-013
proaches reliant on fixed corpora, DeepRe-014
searcher trains agents to navigate the noisy,015
dynamic open web. We implement a special-016
ized multi-agent architecture where browsing017
agents extract relevant information from vari-018
ous webpage structures and overcoming signif-019
icant technical challenges. Extensive experi-020
ments on open-domain research tasks demon-021
strate that DeepResearcher achieves substan-022
tial improvements of up to 28.9 points over023
prompt engineering-based baselines and up to024
7.2 points over RAG-based RL agents. Our025
qualitative analysis reveals emergent cognitive026
behaviors from end-to-end RL training, such027
as planning, cross-validation, self-reflection028
for research redirection, and maintain honesty029
when unable to find definitive answers. Our re-030
sults highlight that end-to-end training in real-031
world web environments is fundamental for032
developing robust research capabilities aligned033
with real-world applications. The source code034
for DeepResearcher is released and has been035
included as an attachment.036

1 Introduction037

The emergence of Large Language Models (LLMs)038

has fundamentally transformed the landscape of039

artificial intelligence, enabling increasingly au-040

tonomous problem-solving capabilities. When041

equipped with external tools such as web search042

and code execution (Li et al., 2025c), these mod-043

els can tackle complex research tasks that previ- 044

ously required significant human workload and 045

expertise. Notable examples include Gemini and 046

OpenAI Deep Research (Google, 2024; OpenAI, 047

2025), Grok3’s DeeperSearch (xAI, 2025), and 048

open-source projects like MetaGPT (Hong et al., 049

2024), OpenManus (Liang et al., 2025), and OWL 050

agents (CAMEL-AI.org, 2025). While impressive 051

commercial products exist, reproducible frame- 052

works for systematically developing robust re- 053

search agents remain largely elusive. 054

Recent advances suggest that reinforcement 055

learning (RL) offers a promising path forward for 056

improving LLM capabilities. Studies by Guo et al. 057

(2025) and Team et al. (2025) demonstrate that 058

scaling reinforcement learning for LLMs on math 059

and coding tasks (Li et al., 2025b) substantially 060

improves their reasoning abilities. Current open- 061

source efforts to integrate RL with information re- 062

trieval, such as Search-R1 (Jin et al., 2025), R1- 063

Searcher (Song et al., 2025), and ReSearch (Chen 064

et al., 2025), have primarily focused on Retrieval- 065

Augmented Generation (RAG) using static, local 066

text corpora. While these approaches provide valu- 067

able insights, they fundamentally fail to capture 068

the dynamic, unpredictable nature of real-world 069

web search environments. RAG systems also fail 070

to account for the substantial noise, variability in 071

search quality, and the challenges of navigating 072

diverse web content formats and structures. 073

In this work, we present the first comprehensive 074

study of RL scaling for LLM agents operating with 075

real-world web search capabilities. Our approach, 076

DeepResearcher, trains agents to interact directly 077

with live search engines, thereby learning to han- 078

dle the inherent variability and complexity of the 079

open web. By training in genuine web environ- 080

ments rather than controlled simulations, our 081

system develops robust capabilities for handling 082

the unpredictable nature of real-world information 083

retrieval and synthesis. 084
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DeepResearcher diverges significantly from085

prompt-based and RAG-based methods by incor-086

porating several critical techniques that have been087

largely absent from prior work:088

• Scaling RL for Deep Research: In contrast089

to prompt and SFT-based methods, we directly090

scale RL training for deep research tasks using091

solely outcome-based rewards.092

• Real-world Environment: Unlike controlled093

RAG environments, real web search presents094

noisy, unstructured, and heterogeneous informa-095

tion sources that require sophisticated filtering096

and relevance assessment capabilities.097

• End-to-end Training: We train the model end-098

to-end without human priors, enabling the agent099

to discover its own problem-solving strategies.100

This end-to-end approach significantly departs101

from human-designed workflows.102

• Addressing Implementation Challenges:103

Training with real web search introduces104

unique challenges absent in RAG settings,105

including stringently managing search API rate106

limits, handling network latency, addressing107

anti-crawling mechanisms, and processing108

diverse webpage structures.109

• Multi-agent Framework: Our approach em-110

ploys a specialized multi-agent architecture111

where dedicated browsing agents extract relevant112

information from entire webpages—a stark con-113

trast to RAG-based systems that simply retrieve114

and present pre-processed text passages.115

To conclude, we make the following contribu-116

tions:117

• We introduce DeepResearcher, a novel RL frame-118

work specifically designed for training LLM119

agents in real web environments, enabling it-120

erative reasoning and search, and synthesizing121

diverse web information to answer open-domain122

questions.123

• We overcome numerous technical challenges in-124

herent to RL scaling with real-world web search,125

making this the first successful implementation126

of RL at scale in genuine web environments.127

• We conduct extensive experiments across open-128

domain tasks, demonstrating significant improve-129

ments over prompt-engineered baselines and130

RAG-based RL approaches.131

• We perform detailed analysis examining emer-132

gent behaviors from DeepResearcher’s end-to-133

end RL scaling, finding that the system can for-134

mulate plans, cross-validate answers, reflect 135

on its process, and be honest about limitations. 136

• We open-source our complete training frame- 137

work to the research community, fostering trans- 138

parency and enabling further advancements in 139

deep research systems. 140

2 Related Work 141

In this section, we review existing approaches to 142

enhance large language models’ (LLMs) ability 143

to access external knowledge with search. We 144

categorize these methods into prompt-based and 145

training-based search agents. Furthermore, we ex- 146

amine the operational environments in which these 147

methods are deployed—namely, local retrieval- 148

augmented generation (RAG) frameworks and real- 149

world, dynamic web search settings—and situate 150

our approach within this broader technological and 151

methodological landscape. 152

2.1 Prompt-Based Search Agents 153

Many current approaches rely on manually crafted 154

workflows that specify how LLMs should in- 155

teract with external knowledge sources (Wang 156

et al., 2024a). Recent works such as OpenRe- 157

searcher (Zheng et al., 2024), AirRAG (Feng 158

et al., 2025), IterDRAG (Yue et al., 2024b), 159

Plan*RAG (Verma et al., 2025), Search-o1 (Li 160

et al., 2025a) and Open Deep Search (Alzubi et al., 161

2025) have demonstrated significant progress in 162

search capabilities through designed workflows. 163

2.2 Training-Based Search Agents 164

Recent developments have moved beyond man- 165

ually crafted prompts toward training-based ap- 166

proaches that enable more flexible and adaptive 167

search behaviors. 168

Supervised Fine-Tuning (SFT) SFT for RAG 169

have become an enhanced alternative to manual 170

optimization of RAG workflows (Yu et al., 2024; 171

Wang et al., 2024b). For example, CoRAG (Wang 172

et al., 2024b) utilizes Monte Carlo Tree Search 173

(MCTS) to dynamically select the best document 174

blocks under budget constraints. 175

Reinforcement Learning (RL) End-to-end re- 176

inforcement learning offers a promising alterna- 177

tive that effectively unlocks LLMs’ inherent ca- 178

pabilities. By late 2024, large language models 179

achieved remarkable breakthroughs in reasoning 180

capability enhancement through RL (Guo et al., 181
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Figure 1: The trajectory of a single sample from a batch of questions processed in parallel by a distributed cluster.
Each question undergoes multiple independent rollouts with distinct memory. Upper-left: Displays the batch of
questions and their concurrent rollout paths. Upper-right: Shows the browsing agent retrieving web pages via
URLs, processing them sequentially to incrementally extract relevant information. Bottom: Details the iterative
decision-making steps, from initial query formulation and search to snippet retrieval, further reasoning, browsing,
information extraction, and answer generation.

2025; OpenAI, 2024; Team et al., 2025). Recent re-182

search has explored applying RL to external knowl-183

edge retrieval, with systems such as Search-R1 (Jin184

et al., 2025), ReSearch (Chen et al., 2025), and R1-185

Searcher (Song et al., 2025) abandoning manually186

specified cues in favor of models that autonomously187

develop reasoning during the retrieval process.188

2.3 Training Environments189

Training environments for search agents can be190

broadly categorized into two types:191

Local RAG Environments Current mainstream192

local RAG frameworks (Gao et al., 2023; Yu et al.,193

2024) rely on pre-built fixed knowledge reposito-194

ries, resulting in three critical issues: information195

timeliness decay, poor domain adaptability, and196

storage efficiency bottlenecks. While RAG-based197

RL approaches like Search-R1 (Jin et al., 2025), Re-198

Search (Chen et al., 2025), and R1-Searcher (Song199

et al., 2025) have made progress, their experimental200

validation remains primarily confined to predefined201

knowledge bases and similarity-based search, re-202

stricting the search space and potentially limiting203

generalizability to real-world applications.204

Real-World Web Search Environments Web 205

search-based methods (Schick et al., 2023; Qin 206

et al., 2023) integrate open search engines with 207

LLMs to access and utilize real-time information. 208

However, search-based methods requiring external 209

system participation are seldom trained end-to-end, 210

with research often gravitating toward optimization 211

through manually crafted or heuristically designed 212

workflows (Wang et al., 2024a). 213

We introduce a novel approach that uniquely in- 214

tegrates reinforcement learning (RL) with training 215

in genuine web environments. Unlike prior RL 216

methods reliant on static, local corpora, our agents 217

directly interact with live search engines. This en- 218

ables them to navigate the open web’s variability, 219

developing robust capabilities for real-world in- 220

formation retrieval and synthesis, thereby address- 221

ing limitations of prompt-based and RAG-confined 222

methods by learning adaptive search strategies. 223

3 Methodology 224

In this section, we describe the methodology used 225

to train an agent capable of solving problems with 226

web search in dynamic real-world environments. 227
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3.1 Deep Research Trajectory228

In a typical DeepResearcher’s trajectory, it con-229

ducts reasoning and tool selection based on the user230

question and accumulated observations iteratively231

as illustrated in Figure 1.232

Reasoning We restrict DeepResearcher to do rea-233

soning before taking action. Each reasoning pro-234

cess is wrapped in a <think> tag following the235

setting in DeepSeek-R1 (Guo et al., 2025).236

Web Search Tool DeepResearcher invokes the237

web search tool by generating a JSON-formatted238

request with the tool name web_search and the239

search queries as arguments. Search results are re-240

turned in a structured format comprising title, URL,241

and snippet for each webpage. The current imple-242

mentation employs a fixed top-k (e.g., 10) value for243

search results retrieval. Future work could explore244

LLM-driven dynamic parameter optimization for245

enhanced search efficacy.246

Web Browsing Agent The web browsing agent247

provides reliable, question-relevant, and incremen-248

tally updated information in to the DeepResearcher249

system. Specifically, the agent maintains a short-250

term memory repository for each query. Upon re-251

ceiving a web_browse request, it processes the first-252

page segment of the URL in the request. Subse-253

quently, the web browsing agent takes two actions254

based on the query, historical memory, and the255

newly acquired webpage content: (1) determining256

whether to continue reading the next URL/segment257

or stop and (2) appending relevant information to258

the short-term memory. Once the agent decides to259

discontinue further browsing, it compiles all newly260

added information from the short-term memory261

and returns it to the DeepResearcher system.262

Answering When the model determines it263

has sufficient information to answer the ques-264

tion, it generates a final response within <an-265

swer></answer>as the answer to return to the user.266

3.2 Addressing Challenges in Dynamic267

Real-World Web Environments268

In our open, real-world web setting, several unique269

challenges arise that necessitate specialized solu-270

tions. The following sections detail our strategies271

for managing these issues effectively.272

Challenge I: High-concurrency requests at a sin-273

gle moment The implementation of GRPO re-274

sults in a large number of sampling iterations, lead-275

ing to a significant volume of search queries and 276

webpage crawling operations (e.g., 4096), caus- 277

ing long delays. To resolve this issue, we created 278

a distributed CPU server cluster with 50 nodes, 279

specifically designed to manage the Tool requests 280

generated during the RL rollout process. Each 281

server is tasked with handling a portion of these 282

requests, processing search results, and crawling 283

webpages based on the URLs identified by the lan- 284

guage model for further reading. 285

Challenge II: Managing Web Crawling and API 286

Limitations During the crawling phase, the sys- 287

tem frequently encounters anti-crawl measures de- 288

ployed by web servers, which may return irrelevant 289

content or fail to respond entirely. Similarly, when 290

interfacing with search engines or LLM APIs, re- 291

strictions such as provider rate limits (e.g. 200 per 292

second) can arise. To mitigate these issues, we im- 293

plemented a robust retry mechanism that effectively 294

addresses exceptions encountered during API calls 295

or webpage crawling. In addition, we introduced a 296

caching strategy for search results: if an identical 297

search query is made within a predetermined pe- 298

riod (e.g., 7 days), the system retrieves the results 299

from the cache. This approach not only reduces 300

the API call frequency but also helps manage the 301

associated costs, particularly for expensive services 302

like the Google Search API. 303

Challenge III: Optimizing Information Extrac- 304

tion via a Multi-Agent Approach We employ a 305

multi-agent framework wherein a dedicated read- 306

ing agent is tasked with extracting pertinent in- 307

formation from crawled webpages. Given that 308

many webpages are lengthy and may contain lim- 309

ited relevant content, these pages are partitioned 310

into smaller segments. The reading agent mimics 311

human behavior by processing content sequentially 312

from the first page. Under the assumption that if the 313

initial segments of a URL predominantly contain 314

irrelevant information, the webpage is likely unpro- 315

ductive and can be skipped, this method enables 316

more efficient resource allocation and improves 317

overall information extraction accuracy. 318

3.3 RL Training Framework 319

Our approach utilizes Reinforcement Learning 320

(RL) to train the agent. This section outlines how 321

we employ the RL framework to train the agent and 322

the tools used within it. 323
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GRPO In this work, we adopt the Group Rel-324

ative Policy Optimization (GRPO) algorithm.325

GRPO optimizes the current policy πθ by leverag-326

ing a reference policy πθref along with a set of roll-327

outs generated by an existing policy πθold . Specifi-328

cally, given G rollouts329

τ = {yi}Gi=1 ∼ πθold(·|x) (1)330

(with each input x ∼ D, where D is the experi-331

ence distribution), GRPO estimates the baseline332

using these trajectories instead of training a sepa-333

rate critic. The current policy is then optimized by334

maximizing the following objective function:335

J (θ) = E
x∼D,{yi}Gi=1

∼πθold
(·|x)

1

G

G∑
i=1

[
min

(
πθ(yi|x)
πθold (yi|x)

Ai,

clip

(
πθ(yi|x)
πθold (yi|x)

, 1 − ϵ, 1 + ϵ

)
Ai

)
−βDKL

(
πθ||πθref

)]
(2)

336

Masking Observations The output of the tool is337

an observation, not the desired result that the model338

is expected to produce. Therefore, we apply mask-339

ing to prevent the observation from being involved340

in training, allowing only the model’s responses to341

contribute to the training process.342

3.4 Reward343

Rewards play a crucial role during the training pro-344

cess and guide the agent in continuously improving345

its performance. This section defines the reward346

structure and describes how the agent’s behavior is347

rewarded.348

We employ the F1 score as our primary reward349

metric due to our utilization of open-domain QA350

datasets with short-answer ground truth. For future351

work involving long-form answers, more sophis-352

ticated reward may be necessary, as noted in the353

Deep Research system card (OpenAI, 2025). The354

reward is determined by the following conditions:355

reward =

{
−1 if format is incorrect
F1 score if format is correct

356

• Format Penalty: If the format is incorrect357

(e.g., missing tags or structural errors), the358

agent receives a penalty of -1.359

• F1 Reward: If the format is correct, the re-360

ward is based on the word-level F1 score,361

which measures the accuracy of the generated362

answer compared to the reference answer. A363

higher F1 score results in a higher reward.364

4 Experiments 365

4.1 Experimental Setups 366

4.1.1 Training Data Curation 367

To ensure our models genuinely learn search strate- 368

gies and to mitigate data contamination, we metic- 369

ulously curated training data from existing open- 370

domain QA benchmarks. A rigorous two-stage 371

filtering process eliminated low-quality questions 372

and instances where the base model could answer 373

without search, yielding a final dataset of 80,000 ex- 374

amples deliberately emphasizing multi-hop scenar- 375

ios (75% of the total). The complete methodology 376

for data curation is detailed in Appendix A. 377

4.1.2 Model and Hyperparameters 378

We adopt Qwen2.5-7B-Instruct1 (Qwen et al., 379

2025) as the backbone model for our training 380

pipeline. The training is conducted using the verl 381

framework2. At each training step, we sample 256 382

prompts, and sample 16 rollouts for each prompt. 383

Each rollout consists of up to 10 tool calls followed 384

by a final answer step. The training is performed 385

with a mini-batch size of 4,096, which means one 386

rollout stage will backprop for one time. 387

4.2 Evaluation and Results 388

4.2.1 Benchmarks 389

To thoroughly evaluate model performance across 390

both in-domain (ID) and out-of-domain (OOD) set- 391

tings, we construct a diverse benchmark suite span- 392

ning a range of open-domain QA challenges. For 393

in-domain evaluation, we include the dev sets of 394

NQ (Kwiatkowski et al., 2019), TQ (Joshi et al., 395

2017), HotpotQA (Yang et al., 2018), and 2Wiki 396

(Ho et al., 2020) as mentioned in Section A. 397

For out-of-domain evaluation, we introduce 398

three datasets that differ significantly in ques- 399

tion style and information distribution: MuSiQue 400

(Trivedi et al., 2022), Bamboogle (Press et al., 401

2022), and PopQA (Mallen et al., 2022). These 402

datasets test the model’s generalization ability be- 403

yond the training domain. 404

To ensure a fair and balanced evaluation, we 405

randomly sample 512 examples from the develop- 406

ment sets of NQ, TQ, HotpotQA, 2Wiki, MuSiQue, 407

and PopQA as well as all 125 samples from Bam- 408

boogle’s development set. This sampling strategy 409

allows us to assess model robustness across a broad 410

range of topics and reasoning requirements. 411

1https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
2https://github.com/volcengine/verl
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4.2.2 Baselines412

To comprehensively evaluate the effectiveness and413

practical utility of DeepResearcher, we compare it414

against the following baseline methods:415

• CoT Only: Employs Chain-of-Thought (CoT)416

reasoning for answer generation without ac-417

cess to external reference context.418

• RAG: Integrates CoT reasoning with retrieved419

reference context to guide the answer genera-420

tion process.421

• Search-o1: A multi-step reasoning baseline422

in which the model generates search queries423

or intermediate answers.3424

• Search-o1 + Web Search: Extends Search-o1425

by enabling open web access through real-426

time search APIs and URL Browse.427

• Search-r1: A RL method for question answer-428

ing that utilizes a retriever to search Wikipedia429

during training and inference.430

• R1-Searcher: Conducts Bing searches by431

appending "site:en.wikipedia.org" to432

queries and summarizes the top three search433

results. DeepResearcher differs from this434

approach in three key aspects: (1) DeepRe-435

searcher is trained with real-world environ-436

ment; (2) DeepResearcher does not restrict the437

search space to a specific domain; and (3) Our438

method allows the model to autonomously439

select URLs rather than compulsorily summa-440

rizing the top three search results.441

4.2.3 Evaluation Metrics442

Rule-based Metrics We evaluate the perfor-443

mance of the model using the F1 score that aligns444

with the reward for training. Both ground-truth and445

predicted answers are normalized by converting446

to lowercase and removing all punctuation before447

computing the metrics.448

Model-based Evaluation Rule-based evaluation449

doesn’t suit long-form responses, so we adopt a450

model-based evaluation (MBE) approach using451

LLM-as-a-Judge (Zheng et al., 2023). Specifically,452

we prompt GPT-4o-mini (Hurst et al., 2024) to as-453

sess the model’s answer against the question and454

ground truth answer, and label it as either "correct"455

3To ensure consistency with other results, we reimple-
mented search-o1 using our own prompt.

or "incorrect." The MBE score is then computed 456

as the accuracy of these judgments.(Zheng et al., 457

2023) The full prompt is provided in Appendix C.3. 458

4.2.4 Main Results 459

Table 1 and Table 2 present the main results of 460

DeepResearcher and the baselines in-domain and 461

out-of-domain, respectively. From these results, 462

we draw the following observations: 463

DeepResearcher outperforms the baselines 464

within training domains. As shown in Table 1, 465

DeepResearcher achieves the highest performance 466

across the four datasets when measured by the more 467

reliable MBE metric, outperforming baselines by a 468

substantial margin on TQ and 2Wiki. While Search- 469

r1-base shows comparable MBE results on NQ and 470

HotpotQA, it’s important to note that Search-r1- 471

base was specifically trained and evaluated using a 472

local RAG system with direct access to the relevant 473

Wikipedia corpus. In contrast, DeepResearcher 474

must navigate the entire Internet to find relevant 475

information, representing a more realistic and sig- 476

nificantly more challenging scenario even though 477

the answers ultimately come from Wikipedia. 478

DeepResearcher demonstrates exceptional gen- 479

eralization to novel domains. As revealed in 480

Table 2, DeepResearcher consistently outperforms 481

all other baselines across three OOD datasets. This 482

indicates that the model successfully learns gener- 483

alizable skills for reasoning, searching, and synthe- 484

sizing information from different sources through 485

RL scaling, rather than merely adapting to specific 486

training distributions. 487

Importance of Real-World Environment in 488

Training Questions in Bamboogle specifically 489

require knowledge beyond Wikipedia’s coverage. 490

Consequently, DeepResearcher significantly out- 491

performs local RAG-based methods on this bench- 492

mark. Furthermore, even when we enable R1- 493

Searcher (which was trained using local RAG) to 494

search the real-world web, it still performs substan- 495

tially worse than DeepResearcher. These results 496

demonstrate the critical advantage of using real- 497

world environments during RL scaling training, as 498

this exposure develops robust information retrieval 499

and synthesis capabilities that cannot be achieved 500

in controlled, static environments. 501
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Method Inference
Environment

NQ TQ HotpotQA 2Wiki
F1 MBE F1 MBE F1 MBE F1 MBE

Prompt Based
CoT Local RAG 19.8 32.0 45.6 48.2 24.4 27.9 26.4 27.3
CoT + RAG Local RAG 42.0 59.6 68.9 75.8 37.1 43.8 24.4 24.8
Search-o1* Local RAG 34.5 57.4 52.6 61.1 31.6 40.8 28.6 32.8
Search-o1 Web Search 32.4 55.1 58.9 69.5 33.0 42.4 30.9 37.7
Training Based
Search-r1-base Local RAG 45.4 60.0 71.9 76.2 55.9 63.0 44.6 47.9
Search-r1-instruct Local RAG 33.1 49.6 44.7 49.2 45.7 52.5 43.4 48.8
R1-Searcher Web Search 35.4 52.3 73.1 79.1 44.8 53.1 59.4 65.8
DeepResearcher Web Search 39.6 61.9 78.4 85.0 52.8 64.3 59.7 66.6

Table 1: In-domain results on four datasets (NQ, TQ, HotpotQA, 2Wiki), evaluated by F1 and MBE metrics.
DeepResearcher outperforms all baseline methods in MBE and shows competitive performance in F1, particularly
excelling on TQ and 2Wiki. It is worth noting that Search-r1-base was trained and evaluated in a local RAG
environment with direct access to the relevant Wikipedia corpus, while DeepResearcher must navigate the entire
Internet to find information, achieving excellent results despite facing a more realistic and challenging scenario.

Method Inference
Environment

Musique Bamboogle PopQA
F1 MBE F1 MBE F1 MBE

Prompt Based
CoT Local RAG 8.5 7.4 22.1 21.6 17.0 15.0
CoT + RAG Local RAG 10.0 10.0 25.4 27.2 46.9 48.8
Search-o1* Local RAG 16.8 21.3 35.8 38.4 36.9 42.4
Search-o1 Web Search 14.7 19.7 46.6 53.6 38.3 43.4
Training Based
Search-r1-base Local RAG 26.7 27.5 56.5 57.6 43.2 47.0
Search-r1-instruct Local RAG 26.5 28.3 45.0 47.2 43.0 44.5
R1-Searcher Web Search 22.8 25.6 64.8 65.6 42.7 43.4
DeepResearcher Web Search 27.1 29.3 71.0 72.8 48.5 52.7

Table 2: This table shows the performance of different methods on three out-of-domain datasets (Musique,
Bamboogle, PopQA), evaluated by F1 and MBE metrics. DeepResearcher leads in both F1 and MBE on all datasets,
demonstrating strong generalization capabilities compared to other methods. Notably, unlike the other datasets,
Bamboogle’s corpus is not entirely derived from Wikipedia pages.

5 Analysis502

5.1 Training Dynamics503

• Performance gradually scaling with rein-504

forcement learning: Figure 2 (a) present the505

evaluation of F1 scores, across different train-506

ing steps. The F1 score 0.375, and gradually507

increases to around 0.55 demonstrating a con-508

sistent upward trend. This result indicates the509

progressive improvement of the model’s per-510

formance in reinforcement learning.511

• Training leads to increased reasoning steps512

in hard question: Figure 2 (b) illustrates the513

average number of turns required for different514

reasoning hops. The general trend indicates515

that as the training progresses, the required516

number of tool calls also increases across dif-517

ferent difficulty levels. Unlike the other three518

settings, the 4-hop setting continues to exhibit519

an increasing trend even after 34 steps. This520

suggests that the model is still learning to re- 521

trieve more information when dealing with 522

more difficult questions. 523

• Continuous learning makes long response 524

without saturation: Figure 2 (c) presents 525

the length of responses for different reason- 526

ing hops. The response lengths also increase 527

with reasoning complexity. However, all four 528

settings show a sustained upward trend, in- 529

dicating that the model continues to expand 530

its reasoning processes during training. This 531

further supports the idea that the model adapts 532

to increasingly complex queries by generat- 533

ing more detailed outputs like double-check, 534

refinement, planning, etc. 535

5.2 Case Study 536

Figures 3 and 4 present four cases illustrating 537

the model’s behavior after reinforcement learning. 538
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Figure 2: Training dynamics of F1, turns and response length. In this figure, we find the performance gradually
scaling with reinforcement learning. The numbers of tool calls and responses also increase.

From these examples, we identify several key be-539

havioral patterns:540

• Behavior I: Planning when addressing541

multi-hop questions: As demonstrated on542

the left side of Figure 3, DeepResearcher is543

capable of making plans and dynamically ad-544

justing it throughout the reasoning process.545

Notably, the model can merge steps when546

appropriate, indicating that planning abilities547

emerge naturally without the necessity of SFT548

on explicit planning data (Yue et al., 2024a).549

• Behavior II: Cross-validation before finaliz-550

ing its answers: As observed on the right side551

of Figure 3, DeepResearcher identifies the cor-552

rect answer during its first tool call. However,553

rather than immediately committing to this re-554

sult, it proceeds to verify its accuracy through555

subsequent steps. This cautious approach en-556

hances the reliability of model’s responses, en-557

suring greater robustness in final predictions.558

• Behavior III: Reflection when observations559

deviate from expectations: The left side of560

Figure 4 illustrates the model’s ability to re-561

flect on its search process. When the retrieved562

information does not fully align with the ques-563

tion, DeepResearcher recognizes this discrep-564

ancy based on environmental feedback and565

refines its search query in subsequent tool566

calls. This reflective capability is essential567

for preventing the model from getting stuck568

(Fu et al., 2025) in reasoning, enabling it to569

enhance overall problem-solving efficiency.570

• Behavior IV: Honesty by acknowledging571

its limitations: A reliable model should min-572

imize hallucinations and provide honest re- 573

sponses when it lacks the necessary knowl- 574

edge (Yang et al., 2024). We observe that 575

DeepResearcher is capable of recognizing 576

when it has not found the correct answer and 577

appropriately declines to provide a response. 578

This behavior is beneficial, however, current 579

question-answering evaluation metrics do not 580

yet account for this aspect of model reliability. 581

6 Conclusion 582

In conclusion, we presents DeepResearcher, a 583

groundbreaking approach for scaling reinforce- 584

ment learning in LLMs to operate effectively in 585

real-world web search environments. Unlike ap- 586

proaches dependent on static knowledge bases, 587

DeepResearcher trains agents to interact with live 588

search engines, allowing them to navigate the in- 589

herent complexity and variability of the open web. 590

This direct engagement with dynamic search envi- 591

ronments leads to substantial improvements in task 592

completion and deep research capabilities. 593

Through an end-to-end training methodology, 594

DeepResearcher addresses real-world challenges 595

like network latency while enabling agents to au- 596

tonomously develop robust problem-solving strate- 597

gies and cultivates cognitive behaviors such as plan- 598

ning, reflection, and cross-validation through its 599

multi-agent architecture. The success of Deep- 600

Researcher represents a significant milestone for 601

LLM agents, showcasing how scaling reinforce- 602

ment learning in real-world environments can un- 603

lock superior research performance and pave the 604

way for more adaptive systems capable of tackling 605

complex, open-domain problems. 606
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Limitations607

While DeepResearcher demonstrates significant608

advancements, this study has certain limitations.609

Firstly, our experiments were conducted using a 7B610

parameter model (Qwen2.5-7B-Instruct). Although611

this model size yielded substantial improvements,612

we have not yet explored the potential performance613

gains or emergent capabilities that might arise from614

applying the DeepResearcher framework to sig-615

nificantly larger language models. Future work616

could investigate the scalability of our approach617

with more powerful base models.618

Secondly, the reward mechanism employed in619

this study, while effective for the open-domain QA620

tasks with short, factual answers (relying on F1621

scores and a format penalty), may not adequately622

address the complexities of more open-ended deep623

research inquiries. Such inquiries often involve ill-624

defined problem spaces, require extensive synthesis625

of diverse information, and may result in long-form,626

nuanced outputs where traditional metrics like F1627

are less applicable. Consequently, a critical area for628

future exploration is the development of training629

methodologies and reward structures specifically630

tailored to deep research on these more open ques-631

tions.632

Ethical Considerations633

The advanced information retrieval and reasoning634

capabilities of DeepResearcher, while powerful,635

could potentially be misused by malicious actors636

for tasks such as infringing upon individual privacy637

by accessing sensitive information without consent.638

We emphasize that the DeepResearcher framework639

is intended for beneficial research, and developers640

must ensure its responsible and ethical application,641

adhering to privacy and legal standards.642
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A Beyond Memorization: Curating843

Search-Dependent Training Data844

A.1 Leveraging Open Domain QA Data845

Despite the growing interest in deep research capa-846

bilities for LLM agents, there currently exists no847

open-source training dataset specifically designed848

for this purpose. To address this gap, we leverage849

existing open-domain question-answering datasets,850

which contain single-hop to multi-hop questions851

that inherently require online search to find accu-852

rate answers.853

Our training corpus comprises a diverse collec-854

tion of QA datasets that require varying degrees of855

retrieval complexity. Specifically, we utilize Natu-856

ralQuestions (NQ) (Kwiatkowski et al., 2019) and857

TriviaQA (TQ) (Joshi et al., 2017) for single-hop858

scenarios, where answers can typically be found859

within a single web document. For more complex860

multi-hop scenarios, which require integrating in-861

formation across multiple sources, we incorporate862

examples from HotpotQA (Yang et al., 2018) and863

2WikiMultiHopQA (2Wiki) (Ho et al., 2020), both864

of which were specifically designed to evaluate865

multi-step reasoning capabilities.866

A.2 The Issue of Data Contamination867

For training models that genuinely learn to lever-868

age web search tools—rather than simply recalling869

memorized information—it is critical to address870

the problem of data contamination. Large language871

models have been pretrained on vast internet cor-872

pora, which likely include many of the QA pairs in873

standard benchmarks. Without proper contamina-874

tion detection, the model might appear to success-875

fully complete research tasks while actually using876

its parametric knowledge, defeating the purpose of877

learning web search strategies.878

This contamination issue is particularly problem-879

atic in the context of our work, as it could lead880

to:881

• Models that falsely appear to benefit from web882

search when actually using memorized knowl-883

edge.884

• Failure to develop genuine search strategies885

when deployed on truly novel questions.886

• Inability to generalize to real-world research887

scenarios where answers cannot be found in888

the model’s training data.889

A.3 Data Cleaning and Contamination 890

Detection 891

To ensure the integrity of our training process, we 892

implemented a comprehensive two-stage filtering 893

methodology: 894

Low-Quality Question Filtering We exclude 895

questions that could yield unreliable or problematic 896

search results. Specifically, we eliminate: 1) Time- 897

sensitive questions (e.g., "Who is the current CEO 898

of Apple?"); 2) Highly subjective queries (e.g., 899

"What is the best smartphone?"); and 3) Potentially 900

harmful or policy-violating content. This filtering 901

was implemented using DeepSeek-R1 (Guo et al., 902

2025) with a carefully designed evaluation prompt 903

to systematically identify and mark problematic 904

questions. 905

Contamination Detection To ensure the model 906

genuinely learns to use search tools rather than 907

memorizing answers, we employed a robust con- 908

tamination detection procedure. For each candi- 909

date question, we randomly sample 10 responses 910

from the base model we will use in training, and 911

check if any response contains the ground truth an- 912

swer (i.e., pass@10). Questions where the model 913

demonstrated prior knowledge (by producing the 914

correct answer without search) were excluded from 915

the training set. This contamination screening is 916

critical for preventing the model from developing 917

a false reliance on parametric knowledge when 918

search-based knowledge is required. 919

The prompts used for data cleaning and con- 920

tamination detection are listed in Appendix C.1. 921

After applying these quality control measures, we 922

constructed a final training dataset of 80,000 ex- 923

amples with a distribution ratio of 1:1:3:3 for 924

NQ:TQ:HotpotQA:2Wiki. This proportion de- 925

liberately emphasizes multi-hop scenarios (75% 926

of examples), as these better reflect the complex 927

information-seeking behaviors required for deep 928

research questions. 929

B Case Study Example 930

This Section provides supplementary visual exam- 931

ples to illustrate distinct behavioral characteristics 932

of the DeepResearcher during its reasoning pro- 933

cesses. These case studies serve to concretize the 934

model’s capabilities in dynamic planning, cross- 935

validation, reflection, and honest self-assessment. 936
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Response Trajectory from DeepResearcher:
<think>
To answer this question, I need to figure out who Gloria in D Major's composer 
was and their birthplace. Then I can find the famous bridge in that city. 

Step 1: Identify the composer of Gloria in D Major.
Step 2: Find the place of birth of that composer.
Step 3: Look for a famous bridge in that city.
</think>
<search>
composer of Gloria in D Major
birthplace of the composer of Gloria in D Major
</search>
<tool_response>
{
 'title': 'Gloria (Vivaldi) - Wikipedia',
 'snippets': ' Antonio Vivaldi wrote at least three Gloria compositions, 
settings of the hymn Gloria in excelsis Deo, with words probably dating back to 
the 4th century.',
 'url':'https://en.wikipedia.org/wiki/Gloria_(Vivaldi)’
}
{
 'title': 'Antonio Vivaldi: Gloria in D Major, RV 589 - Boston Baroque',
 'snippets': ' The Gloria, part of that Turin collection, received its twentieth-
century premiere in 1930 and has remained the most popular of all Vivaldi's 
vocal works ever ...',
 'url':'https://baroque.boston/vivaldi-gloria’
}
...(more results are omitted to save space)
</tool_response>
<think> 
From the search results, I can see that Antonio Vivaldi is the composer of 
Gloria in D Major and he was born in Venice. Now I need to find the famous 
bridge in Venice.
</think>
<search>
famous bridge in Venice 
</search>
<tool_response>
{
 'title': 'THE 15 BEST Venice Bridges to Visit (2025) - Tripadvisor',
 'snippets': 'Ponte della Paglia is a bridge that bridges the Rio di Palazzo 
canal on the border of the Sestiere San Marco and Cast',
 'url’:'https://www.tripadvisor.com/Attractions-g187870-Activities-c47-t5-
Venice_Veneto.html’
}
{
 'title': 'Rialto Bridge - Wikipedia',
 'snippets': 'The Rialto Bridge is the oldest of the four bridges spanning the 
Grand Canal in Venice, Italy. Connecting the sestieri (districts) of San Marco and 
San Polo ...',
 'url’:'https://en.wikipedia.org/wiki/Rialto_Bridge’
}
...(more results are omitted to save space)
</tool_response>
<think>
The Rialto Bridge is the oldest and most famous bridge in Venice. I can now 
answer the question.
</think>
<answer>
Rialto Bridge
</answer>

Cross Validation
Question: Which filmmaker is considered a pioneer, Herschell Gordon Lewis or 
Leah Meyerhoff?
Ground Truth: Herschell Gordon Lewis was a pioneer

Response Trajectory from DeepResearcher:
<think> 
To answer this question, I need to investigate the contributions of both 
Herschell Gordon Lewis and Leah Meyerhoff to filmmaking. Specifically, I need 
to understand if either of them is considered a pioneer. First, I will perform a 
web search to find out more about the filmmakers and what they are known 
for. 
</think>
<search>
Herschell Gordon Lewis filmmaker pioneer
Leah Meyerhoff filmmaker pioneer
</search>
<tool_response>
{
 'title': 'Herschell Gordon Lewis - Wikipedia',
 'snippets': 'Herschell Gordon Lewis ( June 15, 1926 September 26, 2016) 
was an American filmmaker, best known for creating the 'splatter' subgenre of 
horror films.',
 'url':'https://en.wikipedia.org/wiki/Herschell_Gordon_Lewis'
}
...(more results are omitted to save space)
</tool_response>
<think> 
The web search results show that Herschell Gordon Lewis is frequently referred 
to as a pioneer in the genre of horror films, often being called the "Godfather of 
Gore" and "Pioneer in the arena of gore or splatter flicks." On the other hand, 
Leah Meyerhoff is described as an award-winning independent filmmaker, 
particularly known for her narrative feature film "I Believe In Unicorns". There is 
no mention of her being a pioneer in the filmmaking industry.

Based on the information retrieved, it seems that Herschell Gordon Lewis is the 
filmmaker considered a pioneer. 

The next step is to narrow down the exact reason why he is considered a 
pioneer. I will conduct another web search with more specific keywords to 
pinpoint the characteristics of his work that set him apart as a pioneer.
 </think>
<search>
Herschell Gordon Lewis why considered a pioneer
Herschell Gordon Lewis pioneer features
</search>
<tool_response>
{
 'title': 'Herschell Gordon Lewis, a Pioneer of Gore Cinema, Dies at 90',
 'snippets': 'Mr. Lewis set the bar for low-budget horror in movies like 
"Blood Feast" that went on to inspire filmmakers like Wes Craven and Quentin 
...',
 'url’:'https://www.nytimes.com/2016/09/28/movies/herschell-gordon-
lewis-a-pioneer-of-gore-cinema-dies-at-90.html'
}
...(more results are omitted to save space)
</tool_response>
<think> 
From the refined search, it is clear that Herschell Gordon Lewis is considered a 
pioneer due to his pioneering the "splatter" subgenre of horror films. His films 
introduced the extreme visuals and violent content that set them apart, even 
though they were often considered an "insult to the art of filmmaking". 
Therefore, Herschell Gordon Lewis is the filmmaker considered a pioneer. 
</think>
<answer>
Herschell Gordon Lewis
</answer>

Planning
Question: What is the name of the famous bridge in the birthplace of Gloria in 
D Major's composer?
Ground Truth: Rialto Bridge

Validate result from 
different sources

Step 1

Step 2

Step 3

Make a plan first

Figure 3: Planning and Cross Validation Behaviors. Left: DeepResearcher is capable of making plans and
dynamically adjusting it throughout the reasoning process. Notably, the model can merge steps when appropriate.
Right: DeepResearcher identifies the correct answer during its first tool call. However, rather than immediately
committing to this result, it proceeds to verify its accuracy through subsequent steps. This rigorous behavior
enhances the reliability of the model’s responses, ensuring greater robustness in its final answers. Note: In the actual
model, the tool call and tool response format is a JSON string, rather than a tag. However, for clarity and ease of
presentation, we have used tags in the figure to represent the output.
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Honesty
Question: In the seventh-largest country in Africa, what is the oil prodcution of 
the city at the mouth of the Congo River?
Ground Truth: 1200000 oilbbl/d

Response Trajectory from DeepResearcher:
<think> 
To answer this question, I need to identify the city at the mouth of the Congo River in 
the seventh-largest country in Africa, and then find its current oil production.
</think>
<search>
seventh largest country in africa
city at the mouth of the Congo River in the seventh largest country in africa
</search>
<tool_response>
...(omitted to save space)
</tool_response>
<think> 
From the search results, I found that Angola is the seventh largest country in Africa, 
and its capital Luanda is located near the mouth of the Congo River. Now I need to 
find the oil production of Luanda. 
 </think>
<search>
oil production of Luanda
oil production in Angola
</search>
<tool_response>
...(omitted to save space)
</tool_response>
<think> 
From the search results, I can see that Angola currently produces around 1.16 million 
barrels of oil per day. However, I should find the specific production of the city at the 
mouth of the Congo River, which is Luanda.
</think>
<search>
oil production of Luanda
oil production in Luanda
</search>
<tool_response>
...(omitted to save space)
</tool_response>
<think>
After a series of web searches, I couldn't find specific information about the oil 
production of Luanda. The results are mostly about Angola's total oil production. 
Since Luanda is the capital and the largest city of Angola, it's likely that a significant 
portion of Angola's oil production happens there. For a more exact figure, we might 
need to explore specialized databases or recent reports about the oil industry in 
Luanda.
</think>
<browse_webpage>
https://en.wikipedia.org/wiki/Luanda
https://www.worldometers.info/country-data/angola/oil-production
</browse_webpage>
<think>
It seems the information about the oil production of Luanda is not directly available 
in the search results or in the previously browsed webpages. Given the information 
from previous searches, Angola is a major oil producer, and as the capital and largest 
city, Luanda likely plays a key role in the country's oil production. However, to answer 
the question precisely, we may need a more detailed report on the city's oil 
production, which might be included in specialized databases or recent reports. 
Since the exact oil production of Luanda is not available from the searches and 
browsing, and given the context and the previously found information that Angola is 
a major oil producer, it's reasonable to infer that the oil production in the city at 
the mouth of the Congo River (Luanda) is a significant part of Angola's total oil 
production. However, without a precise figure, I will not provide a number. 
</think>
<answer>
significant portion
</answer>

Reflection
Question: Where was the place of burial of Djedefhor's father?
Ground Truth: Great Pyramid of Giza

Response Trajectory from DeepResearcher:
<think> 
To answer this question, I need to find out information about Djedefhor's father 
and the place of his burial. I will start with a web search. 
</think>
<search>
Herschell Gordon Lewis filmmaker pioneer
Leah Meyerhoff filmmaker pioneer
place of burial of Djedefhor's father
Djedefhor father burial site
who was Djedefhor's father and where was he buried
</search>
<tool_response>
...(omitted to save space)
</tool_response>
<think> 
The web search results provide clues about Djedefhor's father. However, the 
search results are mostly about Boromir's father Denethor from the Lord of 
the Rings, not Djedefhor's father. I need to refine my search to find 
information about Djedefhor specifically.
 </think>
<search>
who was Djedefhor's father and where was he buried
Djedefhor father name
Djedefhor father identity
</search>
<tool_response>
...(omitted to save space)
</tool_response>
<think> 
The new search results provide information about Djedefhor's father, Khufu, 
and also his burial place. However, the search results for his burial need to be 
more specific. I will use the web browser tool to look at the pages where the 
information may be more relevant.
</think>
<browse_webpage>
https://en.wikipedia.org/wiki/Djedefre 
https://www.ancient-egypt.org/history/old-kingdom/4th-
dynasty/djedefre/biography-of-djedefre.html
https://ancientegyptonline.co.uk/djedefre/
</browse_webpage>
<tool_response>
...(omitted to save space)
</tool_response>
<think>
From the browsing pages, it is evident that Djedefhor's father is Khufu. The 
pages specifically mention that Khufu was the father of Djedefhor. However, I 
need to find the place of burial of Djedefhor's father, Khufu.
</think>
<search>
place of burial of Khufu
Khufu burial site
where was Khufu buried
</search>
<tool_response>
...(omitted to save space)
</tool_response>
<think>
The search results clearly indicate that Khufu's burial place was in the Great 
Pyramid of Giza. This pyramid served as the tomb for pharaoh Khufu.
</think>
<answer>
Great Pyramid of Giza
</answer>

Reflection and adjust 
research direction

Be honest when didn’t 
find the exact answer

Figure 4: Reflection and Honesty Behavior. The search and browse are 2 apis in json format in the real inference
stage. Left: When the retrieved information does not fully align with the question, DeepResearcher recognizes this
discrepancy based on environmental feedback and refines its search query in subsequent tool calls. This proves its
reflection ability. Right: DeepResearcher is capable of recognizing when it has not found the correct answer and
appropriately declines to provide a response to be honesty. Note: In the actual model, the tool call and tool response
format is a JSON string, rather than a tag. However, for clarity and ease of presentation, we have used tags in the
figure to represent the output.
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C Prompts937

C.1 Prompt for Question Quality Level938

Evaluation939

The prompt below displays two templates. Identi-940

fies if questions are time-sensitive, subjective, or941

potentially harmful. Includes classification guide-942

lines, question placeholder, and required answer943

tag format.944

Prompt for training data quality checking

Please identify whether the given question is

time-sensitive, subjective, or may cause harmful

answers.

- Time-sensitive: The answer to the question

may change over time.

- Harmful: The answer to the question may be

harmful or offensive.

- Subjective: The answer to the question may be

subjective and not based on facts.

Here is the question:

<question>

{question}

</question>

Wrap your answer in <answer> tags with

one of the following values:

- time_sensitive: if the question is time-sensitive

- harmful: if the question may cause harmful answers

- subjective: if the question is subjective

- good: if the question is none of the above
945

The prompt below shows the template prompt946

for contamination detection. To tests if AI re-947

sponses are influenced by training data contami-948

nation.949

Prompt for contamination detection

Give a short answer to the following question. The
answer should be in English.

Question: {question}

Your answer:
950

C.2 Prompt for Model’s Answer Quality951

Level Evaluation952

The prompt below provides instructions for evaluat-953

ing the correctness of AI-generated answers (pred954

answer) against a list of ground truth answers. To955

judge if a predicted answer correctly answers a 956

question by comparing it to ground truth answers. 957

Prompt for Model-based Evaluation

You will be given a question and its ground truth
answer list where each item can be a ground truth
answer. Provided a pred_answer, you need to judge
if the pred_answer correctly answers the question
based on the ground truth answer list.
You should first give your rationale for the judgement,
and then give your judgement result (i.e., correct or
incorrect).

Here is the criteria for the judgement:
1. The pred_answer doesn’t need to be exactly the
same as any of the ground truth answers, but should
be semantically same for the question.
2. Each item in the ground truth answer list can be
viewed as a ground truth answer for the question,
and the pred_answer should be semantically same to
at least one of them.

question: {question}
ground truth answers: {gt_answer}
pred_answer: {pred_answer}

The output should in the following json for-
mat:
”’json
{
"rationale": "your rationale for the judgement, as a
text",
"judgement": "your judgement result, can only be
’correct’ or ’incorrect’"
}
”’

Your output:
958

C.3 Prompt for Research Plan on Question 959

Answering 960

The prompt below outlines the structured approach 961

for addressing complex questions, utilizing web 962

search and webpage browsing tools to conduct in- 963

depth research and gather the necessary informa- 964

tion for a comprehensive response. 965
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Prompt for Research Plan on Complex Question Answering

## Background information
* Today is YYYY-MM-DD
* You are Deep AI Research Assistant
The question I give you is a complex question that requires a *deep research* to answer.

I will provide you with two tools to help you answer the question:
* A web search tool to help you perform google search.
* A webpage browsing tool to help you get new page content.

You don’t have to answer the question now, but you should first think about the research plan or what to
search next.

Your output format should be one of the following two formats:

<think>
YOUR THINKING PROCESS
</think>
<answer>
YOUR ANSWER AFTER GETTING ENOUGH INFORMATION
</answer>
or
<think>
YOUR THINKING PROCESS
</think>
<tool_call>
YOUR TOOL CALL WITH CORRECT FORMAT
</tool_call>

You should always follow the above two formats strictly.
Only output the final answer (in words, numbers or phrase) inside the <answer></answer> tag, without any
explanations or extra information. If this is a yes-or-no question, you should only answer yes or no.

# Tools
You may call one or more functions to assist with the user query.
You are provided with function signatures within <tools></tools> XML tags:
<tools>
{’type’: ’function’, ’function’: {’name’: ’web_search’, ’description’: ’Search the web for relevant information from
google. You should use this tool if the historical page content is not enough to answer the question. Or last search result
is not relevant to the question.’, ’parameters’: {’type’: ’object’, ’properties’: {’query’: {’type’: ’array’, ’items’: {’type’:
’string’, ’description’: ’The query to search, which helps answer the question’}, ’description’: ’The queries to search’}},
’required’: [’query’], ’minItems’: 1, ’uniqueItems’: true}}}
{’type’: ’function’, ’function’: {’name’: ’browse_webpage’, ’description’: ’Browse the webpage and return the content
that not appeared in the conversation history. You should use this tool if the last action is search and the search result
maybe relevant to the question.’, ’parameters’: {’type’: ’object’, ’properties’: {’url_list’: {’type’: ’array’, ’items’:
{’type’: ’string’, ’description’: ’The chosen url from the search result, do not use url that not appeared in the search
result’}, ’description’: ’The chosen urls from the search result.’}}, ’required’: [’url_list’]}}}
</tools>

For each function call, return a json object with function name and arguments within <tool_call></tool_call> XML

tags:

<tool_call>

"name": <function-name>, "arguments": <args-json-object>

</tool_call>
966
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D Training Scaling Result967

Figure 5 presents the F1 score in 7 benchmarks.968

We sampled 125 cases from each benchmarks’ de-969

velopment set. DeepResearcher can scale in all970

benchmarks, especially in OOD benchmarks.971

E Performance972

Figure 6 provides a consolidated visualization of973

DeepResearcher’s performance in comparison to974

other models across a comprehensive suite of seven975

distinct datasets. This consistent outperformance976

not only serves as a robust validation of the model’s977

advanced capabilities and effectiveness but also978

strongly indicates its significant generalization abil-979

ity across diverse data domains and task types.980
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Figure 5: F1 score during training
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Figure 6: DeepResearcher performs the best on all 7 datasets measured by reliable model-based evaluation.
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