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Collaboration-Aware Hybrid Learning for
Knowledge Development Prediction

Anonymous Author(s)

ABSTRACT
In recent years, the rise of online knowledge management platforms
has significantly improved work efficiency in enterprises. Knowl-
edge development prediction, as a critical application within these
platforms, enables organizations to proactively address knowledge
gaps and align their learning initiatives with evolving job require-
ments. However, it still confronts challenges in exploring collabo-
rative networks and adapting to ecological situations in working
environment. To this end, in this paper, we propose a Collaboration-
Aware Hybrid Learning approach (CAHL) for predicting the future
knowledge acquisition of employees and quantifying the impact of
various knowledge learning patterns. Specifically, to fully harness
the inherent rules of knowledge development, we first learn the
knowledge co-occurrence and prerequisite relationships with an as-
sociation prompt attention mechanism to generate effective knowl-
edge representations through a specially-designed Job Knowledge
Embedding module. Then, we aggregate the features of mastering
knowledge and work collaborators for employee representations
in another Employee Embedding module. Moreover, we propose to
model the process of employee knowledge development via a Hy-
brid Learning Simulation module that integrates both collaborative
learning and self learning to predict future-acquired job knowl-
edge of employees. Finally, extensive experiments conducted on a
real-world dataset clearly validate the effectiveness of CAHL 1.

CCS CONCEPTS
• Information systems→ Data mining.

KEYWORDS
Knowledge development, knowledge management system, web
mining, content analysis

1 INTRODUCTION
In the fast-evolving knowledge economy era, efficient knowledge
learning has become a crucial success factor and driving force
to achieve sustainable competitive advantage for talent develop-
ment [20, 42]. Recently, the emergence of online Knowledge Man-
agement Systems (KMSs) such as Viva [4] and Slack [30] has assisted
employees with knowledge learning and project collaboration. As

1The code and data are available at https://anonymous.4open.science/r/CAHL.
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Python, PyTorch, Recommendation, API design, Modality 

fusion, Image recognition, Multimodal recommendation, …

(b) The hybrid learning of employee A.

(c) The knowledge development of employee A.

(a) The original knowledge mastery state of employees. 

Python, PyTorch, Recommendation, …

Employee Mastering knowledge

A Python, PyTorch, Recommendation, …

B Python, API design, Backend development, …

C Image caption generation, Modality fusion, …

Collaborative Learning Self Learning

A

B C

A

Figure 1: An example of the knowledge development process
of employee A with hybrid knowledge learning.

one of the pivotal tasks in online KMS, tracking the knowledge
development process of employees benefits proactively understand-
ing their knowledge state and planning their future knowledge
learning [5] for promoting career progress and stability.

During the past decades, researchers have devoted large efforts
to predicting the knowledge development of students in the edu-
cation field [26, 45]. However, these methods are not suitable for
enterprise scenarios, since they ignore collaborative networks and
knowledge flow to support quantitative and personalized knowl-
edge development prediction for employees. Nowadays, enterprises
are undergoing the shift to data-driven knowledge management,
making management styles informative and intelligent. In this pro-
cess, large-scale talent data have been significantly accumulated in
online platforms, which implies the patterns of employee knowl-
edge development and provides an unparalleled opportunity for
achieving effective knowledge development prediction.

Indeed, knowledge development is a complicated process that
involves the hybrid knowledge learning of employees including
collaborative learning and self learning [23, 24]. Figure 1 shows an
example of such a hybrid learning and knowledge development pro-
cess. Specifically, Figure 1(a) shows the original knowledge mastery
states of employee A, B, and C. After the hybrid learning in Fig-
ure 1(b), employee A acquires several new knowledge in Figure 1(c),
which may come from different kinds of learning patterns. To be
specific, “API design” and “Modality fusion” are more likely to be
results of knowledge flow from collaborator B and C respectively,

1
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while others probably depend on self learning. Apart from the hy-
brid learning process, knowledge development can have inherent
rules. On the one hand, co-occurrence relationships exist between
job knowledge, because work generally requires employees to learn
multiple specific knowledge simultaneously. For example, a multi-
modal recommendation project requires employee A to know both
“modality fusion” and “multimodal recommendation”. On the other
hand, knowledge is often learned from the shallower to the deeper.
For employee A, “recommendation” is prerequisite knowledge for
“multimodal recommendation”. Motivated by this employee knowl-
edge learning process, we intend to model and predict the knowl-
edge development of employees from a hybrid learning perspective,
with considerations of knowledge development rules.

However, it is non-trivial to model this hybrid learning for knowl-
edge development prediction. First, job knowledge development
is jointly influenced by multiple learning patterns and multiple
collaborators [16]. These complicated situations make it difficult
for the model to seize the pathways to job knowledge acquisition.
Second, since the personal traits of employees (e.g., learning ability)
may impact the way they propagate and learn knowledge, col-
laboration does not always bring job knowledge flow. Thus, it is
difficult to model employees’ ability to transfer and receive concrete
knowledge and how they influence knowledge flow in collaboration.
Third, leveraging the inherent rules of knowledge development re-
quires the model to capture the relationships between knowledge.
However, traditional statistical methods suffer from severe noise
and are hard to estimate these relationships [7, 31].

To conquer these challenges, we propose a Collaboration-Aware
Hybrid Learning approach (CAHL) to automatically predict the
future knowledge acquisition of employees for knowledge develop-
ment prediction. In CAHL, we first specially design a Job Knowledge
Embedding (JKE) module to fully harness the inherent rules of job
knowledge development. In particular, an association prompt at-
tention mechanism is developed to capture the co-occurrence and
prerequisite relationships between knowledge. Then, we aggregate
the features of mastering knowledge and work collaborators for
employee representations in another Employee Embedding (EE)
module. Moreover, we propose a Hybrid Learning Simulation (HLS)
module to predict future-acquired job knowledge, which models
employee knowledge development via simulating collaborative and
self learning patterns in a hybrid view. Specially, we model the
collaborative learning process in terms of knowledge flow. In this
part, the outflow and inflow score functions are invented to model
employees’ ability to transfer and receive concrete knowledge. For
modeling the self learning process, a personalized knowledge acqui-
sition score function is devised based on employee profiles. Finally,
extensive experiments conducted on a real-world dataset clearly
validate the effectiveness of CAHL.

2 RELATEDWORK
In this section, we introduce the related work on knowledge devel-
opment prediction and graph representation learning.

2.1 Knowledge Development Prediction
Existing studies on knowledge development prediction mainly
concentrate on the knowledge state of students in the education

area [3]. Early arts are proposed to utilize Bayesian methods to
assume that student knowledge is represented as a set of binary
variables [3, 32, 45]. Recently, researchers have started to leverage
deep learning techniques to update the knowledge states of stu-
dents with side information, such as the contents of exercises [2, 26],
knowledge point graphs [31], and knowledge-exercise relation-
ships [15, 19, 27]. Although knowledge development prediction for
students has been performed through the above methods, they do
not consider the knowledge development of employees based on
their work collaborations and ecological situation in workplaces.
Therefore, they cannot be directly applied in enterprise scenarios. In
contrast to previous methods, we focus on knowledge development
prediction for employees with new challenges in this paper.

2.2 Graph Representation Learning
Graph representation learning is proposed to embed nodes in the
graph into a low-dimensional space for downstream applications.
Early studies on graph representation can be roughly grouped
into matrix factorization methods [1, 34] and random walk meth-
ods [8, 33]. In recent years, Graph Neural Networks (GNNs) have
emerged with the rise of deep learning [9, 22, 36]. They primarily
obey the message passing paradigm to aggregate the information of
neighboring nodes. However, the real-world graph usually comes
with multi-types of nodes and edges, which boosts the research
of Heterogeneous Graph Neural Networks (HGNNs). Some meth-
ods utilize one-hop neighbors to aggregate such as HGAT [12],
HGT [13], and HINormer [29]. They assign heterogeneous atten-
tion to either nodes or edges in original graphs. Other HGNNs
such as HAN [39], HGSL [46], and HPN [17] exploit meta-paths to
generate a new graph to learn the representations.

3 PRELIMINARY
In this section, we first describe the real-world data used in this
paper. Then, we formally illustrate the problem definition of knowl-
edge development prediction. Afterwards, we explain how the
employee-knowledge graph is constructed for knowledge develop-
ment prediction task. Table 1 shows the mathematical symbols.

3.1 Data Description
We used a set of in-firm data provided by a high-tech company,
which was automatically collected through an online KMS, span-
ning the time period of 2018 to 2020. Note that, all of the sensi-
tive information in the data has been removed or anonymized for
privacy protection. It contains the profile data including basic in-
formation about employees, knowledge data including knowledge
mastered by employees from annual talent reviews, and collabora-
tion data including collaborators and collaboration times according
to project records. More details are contained in Appendix. To ver-
ify the feasibility of knowledge development prediction task, we
analyze the distributions of future-acquired knowledge ratio and
latent flowing knowledge ratio. The statistical results of 2019 and
2020 are visualized in Figure 2. The future-acquired knowledge ratio
of an employee is the ratio of their future-acquired knowledge to
all their mastered knowledge. The average future-acquired knowl-
edge ratios are 0.396 in 2019 and 0.372 in 2020. The two figures
located above suggest that almost all employees in the data have

2
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Figure 2: The distributions of future-acquired knowledge
ratio and flowing knowledge ratio.

future-acquired knowledge. Then, flowing knowledge is defined
as the future-acquired knowledge that is possibly received from
other collaborators. We assume that if a collaborator masters this
knowledge, there is a potential for the employee to acquire this
knowledge through knowledge flow. The flowing knowledge ra-
tio of an employee is the ratio of flowing knowledge to all their
future-acquired knowledge. As shown in the figures located below,
we can observe that, for the great majority of employees, flowing
knowledge occupies more than half of their future-acquired knowl-
edge. This indicates that the acquisition of new knowledge is highly
relevant to knowledge flow in work collaborations.

3.2 Problem Definition
For an employee 𝑒𝑖 , given an employee profile feature 𝒖𝑖 , a set of
knowledge mastery state K(𝑒𝑖 ), and a set of collaboration records
C(𝑒𝑖 ), knowledge development prediction targets to predict the
future-acquired knowledge set K′ (𝑒𝑖 ). Here, K(𝑒𝑖 ) is the set of
knowledge that 𝑒𝑖 currentlymasters. C(𝑒𝑖 ) = {(𝑒 𝑗 , 𝑐𝑖 𝑗 ) |𝑒 𝑗 ∈ H (𝑒𝑖 )}
is the set of collaboration records of 𝑒𝑖 , where H(𝑒𝑖 ) is the set of
collaborators with 𝑒𝑖 , and 𝑐𝑖 𝑗 is the frequency of collaboration
between 𝑒𝑖 and 𝑒 𝑗 .

3.3 Employee-Knowledge Graph Construction
To better model the complicated relationships between knowledge
and employees, we construct an employee-knowledge graph with
knowledge mastery states and collaboration records. Specifically,
the employee-knowledge graph is defined as G = (V, E), where
V = V𝑒 ∪ V𝑘 and E = E𝑒𝑒 ∪ E𝑒𝑘 ∪ E𝑘𝑘 denote the set of nodes
and edges, respectively. In particular, we use V𝑒 and V𝑘 to denote
employee nodes and job knowledge nodes. Each edge in E𝑒𝑒 indi-
cates that employees collaborated with each other. For example, if
(𝑒 𝑗 , 𝑐𝑖 𝑗 ) ∈ C(𝑒𝑖 ), there exists an edge (𝑒𝑖 , 𝑒 𝑗 ) ∈ E𝑒𝑒 . Each edge in
E𝑒𝑘 indicates that the employee has mastered the knowledge. Anal-
ogously, if 𝑘 𝑗 ∈ K(𝑒𝑖 ), there exists an edge (𝑒𝑖 , 𝑘 𝑗 ) ∈ E𝑒𝑘 . Besides,
E𝑘𝑘 = E𝑐

𝑘𝑘
∪ E𝑝

𝑘𝑘
∪ E𝑚

𝑘𝑘
, where E𝑐

𝑘𝑘
indicates the co-occurrence

relationship between knowledge, E𝑝

𝑘𝑘
indicates the prerequisite

relationship between knowledge, E𝑚
𝑘𝑘

indicates the association
prompt relationship between knowledge. According to the method

Table 1: Mathematical symbols in the preliminary.

Symbol Description

𝑒𝑖 The employee 𝑖;
𝑘𝑖 The knowledge 𝑖;
u𝑖 The profile feature of 𝑒𝑖 ;
K(𝑒𝑖 ) The set of knowledge mastery state of 𝑒𝑖 ;
K′ (𝑒𝑖 ) The set of future-acquired knowledge of 𝑒𝑖 ;
C(𝑒𝑖 ) The set of collaboration records of 𝑒𝑖 ;
H(𝑒𝑖 ) The set of collaborators of 𝑒𝑖 ;
𝑐𝑖 𝑗 The frequency of collaboration between 𝑒𝑖 and 𝑒 𝑗 ;
G The employee-knowledge graph;
V The set of nodes in G;
V𝑒 The set of employee nodes in G;
V𝑘 The set of job knowledge nodes in G;
E The set of edges in G;
E𝑒𝑒 The set of collaboration edges in G;
E𝑒𝑘 The set of knowledge mastery edges in G;
E𝑘𝑘 The set of knowledge relationship edges in G;
E𝑐
𝑘𝑘

The set of co-occurrence relationship edges in G;
E𝑝

𝑘𝑘
The set of prerequisite relationship edges in G;

E𝑚
𝑘𝑘

The set of association prompt relationship edges in G.

in [7], we judge that knowledge has a co-occurrence relationship
when they frequently occur in the same knowledge mastery state,
and knowledge has a prerequisite relationship when one knowl-
edge occurs in the set of future-acquired knowledge and the other
knowledge occurs in the set of knowledge mastery state frequently.
The association prompt relationship is extracted based on the meta-

path in the form of 𝑘𝑖
E𝑒𝑘−→ 𝑒𝑚

E𝑒𝑒−→ 𝑒𝑛
E𝑒𝑘−→ 𝑘 𝑗 , where 𝑘𝑖 , 𝑘 𝑗 ∈ V𝑘

and 𝑒𝑚, 𝑒𝑛 ∈ V𝑒 .

4 METHODOLOGY
In this section, we introduce the technical details of our proposed
CAHL. As illustrated in Figure 3, CAHL consists of three main
modules, i.e., Job Knowledge Embedding (JKE) to capture the co-
occurrence and prerequisite relationships between knowledge via
an association prompt attention mechanism for job knowledge rep-
resentations, Employee Embedding (EE) to aggregate the features
of mastering knowledge and work collaborators for employee rep-
resentations, and Hybrid Learning Simulation (HLS) to model the
process of collaborative learning and self learning simultaneously
to predict knowledge development for employees.

4.1 Job Knowledge Embedding
In this module, to fully harness the inherent rules of job knowledge
development and learn better job knowledge representations, we
design an association prompt attention mechanism to capture the
co-occurrence relationships and prerequisite relationships between
job knowledge.

4.1.1 Co-Occurrence Relationship. Co-occurrence knowledge refers
to the simultaneous occurrence of two job knowledge from the
same job demand. In Figure 1, “modality fusion” and “multimodal
recommendation” have a co-occurrence relationship. In this part,
we only focus on the sub-graph G𝑐

𝑘𝑘
= (V𝑘 , E𝑐

𝑘𝑘
) presenting the

3
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Figure 3: The framework overview of a Collaboration-Aware Hybrid Learning approach (CAHL), which comprises three main
components, i.e., Job Knowledge Embedding (JKE), Employee Embedding (EE), and Hybrid Learning Simulation (HLS).

co-occurrence relationships between knowledge and exploit Graph-
SAGE [9] to represent the job knowledge. The randomly initialized
embeddings for all job knowledge nodes are provided as the input.
For example, the input 𝒉0𝑐𝑖 for job knowledge 𝑘𝑖 is the random ini-
tialized embedding 𝒌𝑖 . For each layer, all job knowledge aggregates
the features of nodes in their immediate neighborhood with co-
occurrence frequency as weight. Next, the hidden and aggregated
feature vectors are concatenated to generate a co-occurrence fea-
ture with a transformation matrix and activation function. In 𝑙-𝑡ℎ
layer, co-occurrence feature vector of 𝑘𝑖 are formulated as follows:

𝒉(𝑙 )N𝑐𝑖

= 𝐴𝑔𝑔({𝑎𝑐𝑖 𝑗𝒉
(𝑙−1)
𝑐 𝑗 ,∀(𝑘𝑖 , 𝑘 𝑗 ) ∈ E𝑐

𝑘𝑘
}), (1)

𝒉(𝑙 )𝑐𝑖 = 𝑅𝑒𝐿𝑈 (W(𝑙 )
𝑐 (𝒉(𝑙−1)𝑐𝑖 ⊕ 𝒉(𝑙 )N𝑐𝑖

)), (2)

where 𝑎𝑐
𝑖 𝑗
is the normalized co-occurrence frequency of 𝑘𝑖 and 𝑘 𝑗 ,

𝒉(𝑙 )𝑐𝑖 and 𝒉(𝑙 )N𝑐𝑖

are the hidden feature vector and aggregated feature
vector of 𝑘𝑖 in 𝑙-𝑡ℎ layer, ⊕ is the concatenation operation, 𝑅𝑒𝐿𝑈 (·)
is the activation function, and 𝐴𝑔𝑔(·) is the mean aggregator. Espe-
cially, the activation function is removed in the last layer. After 𝑙𝑅
layers, we obtain the final co-occurrence feature embedding 𝒉𝑐𝑖 .

4.1.2 Prerequisite Relationship. Prerequisite refers to the relation-
ship that low-level knowledge is required as a prior condition for
mastering some high-level knowledge. As the case in Figure 1,
“recommendation” is prerequisite knowledge for “multimodal rec-
ommendation”. Analogously, it is possible that the knowledge pos-
sessed by the employee in the previous state is prerequisite knowl-
edge for some knowledge in the current state. The prerequisite
relationship of job knowledge is also extracted through statistics.
Then, the same GraphSAGE structure is applied on the sub-graph
G𝑝

𝑘𝑘
= (V𝑘 , E

𝑝

𝑘𝑘
) to learn prerequisite features for job knowledge

representations. For job knowledge 𝑘𝑖 , we adopt the random initial-
ized embedding 𝒌𝑖 as the input 𝒉0𝑝𝑖 . Then, the aggregation operation
is in the following:

𝒉
(𝑙 )
N𝑝𝑖

= 𝐴𝑔𝑔({𝑎𝑝
𝑖 𝑗
𝒉
(𝑙−1)
𝑝 𝑗

,∀(𝑘𝑖 , 𝑘 𝑗 ) ∈ E𝑝

𝑘𝑘
}), (3)

𝒉
(𝑙 )
𝑝𝑖

= 𝑅𝑒𝐿𝑈 (W(𝑙 )
𝑝 (𝒉(𝑙−1)𝑝𝑖

⊕ 𝒉
(𝑙 )
N𝑝𝑖

)), (4)

where 𝑎𝑝
𝑖 𝑗

is the normalized prerequisite frequency of 𝑘𝑖 and 𝑘 𝑗 ,

and 𝒉(𝑙 )𝑝𝑖
, 𝒉(𝑙 )N𝑝𝑖

are the hidden feature vector and aggregated feature
vector of 𝑘𝑖 in 𝑙-𝑡ℎ layer. Finally, the prerequisite feature embedding
𝒉𝑝𝑖 is generated without the activation function in 𝑙𝑅-𝑡ℎ layer.

4.1.3 Association Prompt Attention. Intuitively, the relationship be-
tween the mastering knowledge of employees and collaborators can
prompt the co-occurrence and prerequisite relationships learning
for job knowledge. As mentioned before, the association prompt
relationship is extracted based on the meta-path in the form of

𝑘𝑖
E𝑒𝑘−→ 𝑒𝑚

E𝑒𝑒−→ 𝑒𝑛
E𝑒𝑘−→ 𝑘 𝑗 , where 𝑘𝑖 , 𝑘 𝑗 ∈ V𝑘 and 𝑒𝑚, 𝑒𝑛 ∈ V𝑒 .

Thus, we first leverage the sub-graph G𝑚
𝑘𝑘

= (V𝑘 , E𝑚𝑘𝑘 ) and use 𝒌𝑖
as the input 𝒉0𝑚𝑖

to aggregate the neighboring features as follows:

𝒉(𝑙 )N𝑚𝑖

= 𝐴𝑔𝑔({𝒉(𝑙−1)𝑚 𝑗
,∀(𝑘𝑖 , 𝑘 𝑗 ) ∈ E𝑚

𝑘𝑘
}), (5)

𝒉(𝑙 )𝑚𝑖
= 𝑅𝑒𝐿𝑈 (W(𝑙 )

𝑚 (𝒉(𝑙−1)𝑚𝑖
⊕ 𝒉(𝑙 )N𝑚𝑖

)), (6)

where 𝒉(𝑙 )𝑚𝑖
and 𝒉(𝑙 )N𝑚𝑖

are the hidden feature vector and aggregated
feature vector of 𝑘𝑖 in 𝑙-𝑡ℎ layer. In this way, we generate the as-
sociation prompt feature embedding 𝒉𝑚𝑖

without the activation
function in the last 𝑙𝑅-𝑡ℎ layer. To further enhance knowledge re-
lationships learning, we invent an association prompt attention
mechanism to promote co-occurrence and prerequisite relationship
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learning. The attention weights of co-occurrence and prerequisite
features are calculated as follows:

(𝛽𝑐 , 𝛽𝑝 ) = 𝐴𝑡𝑡 (H𝑐 ,H𝑝 ,H𝑚), (7)

where 𝛽𝑐 , 𝛽𝑝 are the attention weights of co-occurrence and pre-
requisite features, 𝐴𝑡𝑡 (·) denotes the association prompt attention
mechanism, and H𝑐 , H𝑝 , and H𝑚 are co-occurrence, prerequisite,
and association prompt features of all job knowledge. For each
job knowledge, we measure the similarity between the projected
feature embedding and the association prompt embedding as the
confidence of the co-occurrence and prerequisite features. The con-
fidence scores of all co-occurrence and prerequisite embeddings
are averaged as their attention weights:

𝑤Φ =
1

|VK |
∑︁

𝑘𝑖 ∈VK

𝒉𝑇𝑚𝑖
tanh(W𝐴𝑡𝑡𝒉Φ𝑖

+ b𝐴𝑡𝑡 ), (8)

where Φ = 𝑐 or 𝑝 , VK is the set of all job knowledge nodes. We
normalize the attention weights by a softmax function:

𝛽𝑐 =
exp(𝑤𝑐 )

exp(𝑤𝑐 ) + exp(𝑤𝑝 )
, 𝛽𝑝 =

exp(𝑤𝑝 )
exp(𝑤𝑐 ) + exp(𝑤𝑝 )

. (9)

After that, we fuse the co-occurrence and prerequisite features
to obtain the final job knowledge embeddings with the attention
weights as follows:

𝒉𝑖 = 𝛽𝑐 · 𝒉𝑐𝑖 + 𝛽𝑝 · 𝒉𝑝𝑖 , (10)

where 𝒉𝑖 is the final embedding of job knowledge 𝑘𝑖 .

4.2 Employee Embedding
In this module, for the purpose of considering employee charac-
teristics in the behavior of job knowledge learning, we aggregate
the features of mastering knowledge and work collaborators to
represent the employees.

4.2.1 Knowledge Mastery State. The state of knowledge mastery
portrays the current knowledge structure of employees, which
allows inferring more accessible knowledge based on already ac-
quired knowledge. In this part, we only focus on the sub-graph
G𝑒𝑘 = (V, E𝑒𝑘 ) to learn the knowledge mastery feature of em-
ployees. First, we project the profile feature 𝒖𝑖 of employee 𝑒𝑖 for
reducing the dimension:

𝒆𝑖 = W𝑢𝒖𝑖 + b𝑢 , (11)

where 𝒆𝑖 is the projected profile feature of employee 𝑒𝑖 . We use
𝒆𝑖 as the input 𝒔0𝑘𝑖 and concatenate 𝒉 𝑗 and 𝒌 𝑗 for the aggregation.
For the employee 𝑒𝑖 , we aggregate all the transformed features of
mastering knowledge and employ multi-layer linear transformation
to update the node features:

𝒒E𝑒𝑘

𝑖
= 𝐴𝑔𝑔({WE𝑒𝑘

𝑞 (𝒉 𝑗 ⊕ 𝒌 𝑗 ) + bE𝑒𝑘
𝑞 ,∀(𝑒𝑖 , 𝑘 𝑗 ) ∈ E𝑒𝑘 }), (12)

𝒔 (𝑙 )
𝑘𝑖

= 𝑅𝑒𝐿𝑈 (W(𝑙 )
𝑒𝑘

(𝒒E𝑒𝑘

𝑖
⊕ 𝒔 (𝑙−1)

𝑘𝑖
)), (13)

where 𝒒E𝑒𝑘

𝑖
is the aggregated feature vector of 𝑒𝑖 , and 𝒔 (𝑙 )

𝑘𝑖
is the

hidden feature vector of 𝑒𝑖 in 𝑙-𝑡ℎ layer. After 𝑙𝑆 -layer transforma-
tion, 𝒔𝑘𝑖 is obtained without the activation function in the last layer.
Then, we project the knowledge mastery features into the same
space for later fusion:

𝒔G𝑒𝑘

𝑖
= WG𝑒𝑘

𝒔𝑘𝑖 + bG𝑒𝑘
, (14)

where 𝒔G𝑒𝑘

𝑖
is the final knowledge mastery feature of employee 𝑒𝑖

in the sub-graph G𝑒𝑘 .

4.2.2 Collaboration State. Typically, collaboration records of em-
ployees indicate the collaborators and collaboration frequency.
Here, we intend to consider the features of work collaborators for
better employee representation. In this part, we concentrate on the
sub-graph G𝑒𝑒 = (V𝑒 , E𝑒𝑒 ) about collaboration state to learn the
collaboration features of employees. To begin with, the projected
profile feature of employee 𝒆𝑖 is input as 𝒔0𝑐𝑖 . Then, we concatenate
the final knowledge mastery feature and profile feature of employee
and make a transformation for them. With regard to the employee
𝑒𝑖 , all transformed features are aggregated to generate the hidden
features, and multi-layer linear transformation is adopted to update
the node features:

𝒒E𝑒𝑒

𝑖
= 𝐴𝑔𝑔({𝑐𝑖 𝑗WE𝑒𝑒

𝑞 (𝒔G𝑒𝑘

𝑗
⊕ 𝒆 𝑗 ) + bE𝑒𝑒

𝑞 ,∀(𝑒𝑖 , 𝑒 𝑗 ) ∈ E𝑒𝑒 }), (15)

𝒔 (𝑙 )𝑐𝑖 = 𝑅𝑒𝐿𝑈 (W(𝑙 )
𝑒𝑒 (𝒒E𝑒𝑒

𝑖
⊕ 𝒔 (𝑙−1)𝑐𝑖 )), (16)

where 𝒒E𝑒𝑒

𝑖
denotes the aggregated feature vector of 𝑒𝑖 , 𝑐𝑖 𝑗 denotes

the normalized collaboration frequency between 𝑒𝑖 and 𝑒 𝑗 , and 𝒔
(𝑙 )
𝑐𝑖

denotes the hidden feature vector of 𝑒𝑖 in 𝑙-𝑡ℎ layer. In 𝑙𝑆 -𝑡ℎ layer,
𝒔𝑘𝑖 is generated without the activation. Identically, we project the
collaboration feature into the same space for later fusion:

𝒔G𝑒𝑒

𝑖
= WG𝑒𝑒

𝒔𝑐𝑖 + bG𝑒𝑒
, (17)

where 𝒔G𝑒𝑒

𝑖
is the final collaboration feature vector of employee 𝑒𝑖

in the sub-graph G𝑒𝑒 .
For the purpose of fusing knowledge mastery and collaboration

features, we concatenate two types of features and make another
transformation for employee representation:

𝒔𝑖 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (W𝐹 (𝒔G𝑒𝑘

𝑖
⊕ 𝒔G𝑒𝑒

𝑖
) + b𝐹 ), (18)

where 𝒔𝑖 is the final embedding of employee 𝑒𝑖 , 𝐿𝑒𝑎𝑘𝑦𝑅𝑢𝐿𝑈 (·) is
the activation function.

4.3 Hybrid Learning Simulation
As we all know, job knowledge development results from the learn-
ing of knowledge by employees. In the real world, job knowledge
learning is in the form of hybrid learning including collaborative
learning and self learning. Inspired by this situation, we intend to
model the process of employee knowledge development via the
hybrid learning simulation.

4.3.1 Collaborative Learning. Generally, employees will learn par-
tial job knowledge that their collaborators possess during project
collaborations, which is a form of knowledge flow [6]. Furthermore,
a successful knowledge flow is influenced by the ability of employ-
ees to transfer and receive concrete job knowledge. Therefore, we
model the collaborative learning process in terms of knowledge
flow. Specifically, the outflow and inflow score functions are in-
vented to quantify an employees’ ability to transfer and receive
concrete knowledge. Collaborators can only transfer the knowledge
they have acquired. Hence, we design the mastery score function
by the dot product operation as follows:

F𝑀 (𝑒𝑖 , 𝑘 𝑗 ) =
{
𝒉𝑇𝑗 (W𝑀𝑠𝑖 + b𝑀 ),∀(𝑒𝑖 , 𝑘 𝑗 ) ∈ E𝑒𝑘 ,

0,∀(𝑒𝑖 , 𝑘 𝑗 ) ∉ E𝑒𝑘 .
(19)
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M(𝑒𝑖 ,V𝑘 ) = (F𝑀 (𝑒𝑖 , 𝑘1), F𝑀 (𝑒𝑖 , 𝑘2), ...), (20)

where F𝑀 (𝑒𝑖 , 𝑘 𝑗 ) indicates how well employee 𝑒𝑖 has mastered the
knowledge 𝑘 𝑗 and M(𝑒𝑖 ,V𝑘 ) is the |V𝑘 |-dimension mastery score
vector for all job knowledge. With the score of knowledge mastery,
we further design the outflow score function with collaborator
feature and collaboration frequency as follows:

O(𝑒𝑥 , 𝑒𝑖 ,V𝑘 ) = 𝑐𝑥𝑖 (W𝑂M(𝑒𝑥 ,V𝑘 ) + b𝑂 )
= (F𝑂 (𝑒𝑥 , 𝑒𝑖 , 𝑘1), F𝑂 (𝑒𝑥 , 𝑒𝑖 , 𝑘2), ...),

(21)

where F𝑂 (𝑒𝑥 , 𝑒𝑖 , 𝑘 𝑗 ) is the outflow score function to indicate the
probability that collaborator 𝑒𝑥 transfers the job knowledge 𝑘 𝑗 to
employee 𝑒𝑖 , 𝑐𝑥𝑖 is the normalized collaboration frequency between
𝑒𝑥 and 𝑒𝑖 , and O(𝑒𝑥 , 𝑒𝑖 ,V𝑘 ) is the |V𝑘 |-dimension outflow score
vector for all job knowledge. Usually, the contribution of knowl-
edge acquisition may come from multiple collaborators in multiple
collaborations. Considering the cumulative contribution of mul-
tiple collaborators with employee features, we specially design a
GRU-cell structure to quantify an employee’s ability to receive
knowledge for state update. The employee embedding 𝒔𝑖 is the in-
put and the cumulative contribution is treated as the hidden vector
of the GRU-cell as follows:

I(𝑒𝑖 ,V𝑘 ) = GRUcell (𝒔𝑖 ,
∑︁

(𝑒𝑥 ,𝑒𝑖 ) ∈E𝑒𝑒

O(𝑒𝑥 , 𝑒𝑖 ,V𝑘 ))

= (F𝐼 (𝑒𝑖 , 𝑘1), F𝐼 (𝑒𝑖 , 𝑘2), ...),
(22)

where F𝐼 (𝑒𝑖 , 𝑘 𝑗 ) denotes the inflow score function for employee
𝑒𝑖 to receive knowledge 𝑘 𝑗 , I(𝑒𝑖 ,V𝑘 ) denotes the |V𝑘 |-dimension
inflow score vector for all knowledge, and GRUcell (·) denotes the
GRU-cell structure. Furthermore, we set a constraint loss for knowl-
edge flow by viewing knowledge that cannot be transferred by
collaborators as negative samples. The mastery score function is
designed for negative samples in the following:

F ′
𝑀 (𝑒𝑖 , 𝑘 𝑗 ) =

{
𝒉𝑇𝑗 (W𝑀𝑠𝑖 + b𝑀 ),∀(𝑒𝑖 , 𝑘 𝑗 ) ∉ E𝑒𝑘 ,

0,∀(𝑒𝑖 , 𝑘 𝑗 ) ∈ E𝑒𝑘 ,
(23)

M′ (𝑒𝑖 ,V𝑘 ) = (F ′
𝑀 (𝑒𝑖 , 𝑘1), F ′

𝑀 (𝑒𝑖 , 𝑘2), ...), (24)

where F ′
𝑀
(𝑒𝑖 , 𝑘 𝑗 ) and M′ (𝑒𝑖 ,V𝑘 ) are the functions for negative

samples. Correspondingly, the outflow score vector for negative
samples is defined as O′ (𝑒𝑥 , 𝑒𝑖 ,V𝑘 ) in the same manner.

O′ (𝑒𝑥 , 𝑒𝑖 ,V𝑘 ) = 𝑐𝑥𝑖 (W𝑂M′ (𝑒𝑥 ,V𝑘 ) + b𝑂 )
= (F ′

𝑂 (𝑒𝑥 , 𝑒𝑖 , 𝑘1), F ′
𝑂 (𝑒𝑥 , 𝑒𝑖 , 𝑘2), ...),

(25)

Then, we devise the constraint loss to contrast positive examples
with negative examples for distinguishing knowledge flow in col-
laborations as follows:

L𝑐 = − 1
|V𝑒 |

∑︁
𝑒𝑖 ∈V𝑒

𝑆𝑜 𝑓 𝑡𝑝𝑙𝑢𝑠 (𝑅𝑒𝐿𝑈 (
∑︁

(𝑒𝑥 ,𝑒𝑖 ) ∈E𝑒𝑒

O(𝑒𝑥 , 𝑒𝑖 ,V𝑘 ))

− 𝑅𝑒𝐿𝑈 (
∑︁

(𝑒𝑥 ,𝑒𝑖 ) ∈E𝑒𝑒

O′ (𝑒𝑥 , 𝑒𝑖 ,V𝑘 ))),
(26)

whereL𝑐 is the constraint loss for knowledge flow, and 𝑆𝑜 𝑓 𝑡𝑝𝑙𝑢𝑠 (·)
is the activation function.

4.3.2 Self Learning. Employees sometimes need to independently
self-learn knowledge to satisfy their fast-changing job requirements.
Hence, it is vital to model the self learning process of employees
for knowledge development prediction. For self learning simula-
tion, we deem that employee characteristics influence knowledge
acquisition. Then, a personalized knowledge acquisition function
is developed according to the employee profiles as follows:

F𝑆 (𝑒𝑖 , 𝑘 𝑗 ) = 𝒉𝑇𝑗 (W𝑆 𝒆𝑖 + b𝑆 ), (27)

where F𝑆 (𝑒𝑖 , 𝑘 𝑗 ) indicates the probability that employee 𝑒𝑖 acquires
knowledge 𝑘 𝑗 from self learning.

Finally, the sum of the inflow score function for collaborative
learning and the personalized knowledge acquisition score function
for self learning is the output to predict the probability of acquiring
new job knowledge:

F (𝑒𝑖 , 𝑘 𝑗 ) = F𝐼 (𝑒𝑖 , 𝑘 𝑗 ) + F𝑆 (𝑒𝑖 , 𝑘 𝑗 ), (28)

where F (𝑒𝑖 , 𝑘 𝑗 ) is the output of our model.

4.4 Model Training
In training stage, we design the overall objective function with the
constraint loss L𝑐 to update the model parameters:

L = − 1
𝑛

∑︁
𝑖

∑︁
𝑗

(𝑦𝑖 𝑗 log(𝜎 (F (𝑒𝑖 , 𝑘 𝑗 )))

+ (1 − 𝑦𝑖 𝑗 ) log(1 − 𝜎 (F (𝑒𝑖 , 𝑘 𝑗 )))) + L𝑐 ,

(29)

where L is the overall objective function, 𝜎 is the sigmoid function,
and 𝑦𝑖 𝑗 is the indicator of whether employee 𝑒𝑖 will acquire job
knowledge 𝑘 𝑗 .

5 EXPERIMENT
In this section, we conduct extensive experiments on the real-world
dataset. We first describe the experimental setup and then present
the experimental results as well as analyses.

5.1 Experimental Setup
5.1.1 Dataset. We use a real-world dataset sourced from an online
KMS provided by a high-tech company, spanning the year 2018 to
2020. The dataset comprises 8,349 employees and 3,633 knowledge,
including 2,492,205 knowledge mastery records, 353,002 collabora-
tion records, 218,839 co-occurrence knowledge relationships, and
92,694 prerequisite knowledge relationships. Since knowledge data
were collected from annual records, we select a one-year time in-
terval to analyze changes in employee state. In training set, the
input contains employee samples in 2018 and the output contains
employee samples in 2019, respectively. In test set, the input con-
tains employee samples in 2019 and the output contains employee
samples in 2020, respectively.

5.1.2 Evaluation Metrics. In this task, V𝑘 contains a large amount
of knowledge. Besides, the quantity of future-acquired knowledge
per sample is uncertain. Following similar tasks [18, 25], we focus
on top predictions by varying k at 1, 3, 5, and 10 in precision at k
(P@k) and normalized discounted cumulative gain at k (N@k) to
evaluate the performance.
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Table 2: The performance of all methods for knowledge development prediction on the real-world dataset.

Model P@1 P@3 P@5 P@10 N@3 N@5 N@10

Popularity 0.4405 0.4353 0.4212 0.3813 0.4366 0.4267 0.3989

GCN 0.5370±0.0014 0.4852±0.0002 0.4467±0.0004 0.3886±0.0003 0.4971±0.0003 0.4673±0.0001 0.4217±0.0002
GraphSAGE 0.5415±0.0052 0.4879±0.0013 0.4533±0.0009 0.3994±0.0008 0.5001±0.0020 0.4730±0.0014 0.4307±0.0011
GAT 0.5383±0.0022 0.4849±0.0009 0.4464±0.0007 0.3858±0.0032 0.4971±0.0008 0.4672±0.0008 0.4199±0.0021
NeuMF 0.5429±0.0053 0.4834±0.0053 0.4473±0.0045 0.3946±0.0021 0.4967±0.0054 0.4682±0.0048 0.4263±0.0030
NGCF 0.5479±0.0013 0.4861±0.0019 0.4498±0.0014 0.3977±0.0012 0.5000±0.0017 0.4711±0.0012 0.4295±0.0010
LightGCN 0.5534±0.0019 0.4937±0.0008 0.4582±0.0005 0.4032±0.0002 0.5074±0.0009 0.4792±0.0006 0.4357±0.0003
UltraGCN 0.5473±0.0031 0.4938±0.0036 0.4592±0.0029 0.4074±0.0042 0.5060±0.0034 0.4788±0.0029 0.4381±0.0033
HAN 0.5464±0.0025 0.4898±0.0032 0.4533±0.0033 0.3970±0.0039 0.5026±0.0030 0.4739±0.0031 0.4297±0.0036
HGT 0.5553±0.0019 0.4945±0.0031 0.4568±0.0062 0.4006±0.0084 0.5084±0.0022 0.4786±0.0043 0.4341±0.0063
HeCo 0.5418±0.0006 0.4860±0.0006 0.4456±0.0002 0.3801±0.0009 0.4987±0.0005 0.4674±0.0002 0.4164±0.0007
HPN 0.5555±0.0017 0.4954±0.0040 0.4620±0.0044 0.4051±0.0042 0.5082±0.0037 0.4826±0.0040 0.4394±0.0039
DiffNet 0.5555±0.0032 0.4961±0.0022 0.4615±0.0023 0.4109±0.0020 0.5094±0.0022 0.4820±0.0019 0.4418±0.0019
SEPT 0.5466±0.0025 0.4910±0.0010 0.4571±0.0014 0.4045±0.0016 0.5038±0.0011 0.4769±0.0009 0.4354±0.0009
DESIGN 0.5504±0.0035 0.4936±0.0030 0.4593±0.0029 0.4033±0.0036 0.5029±0.0014 0.4783±0.0026 0.4394±0.0019
SI-GAN 0.5529±0.0028 0.4958±0.0029 0.4617±0.0032 0.4078±0.0031 0.5075±0.0030 0.4819±0.0038 0.4389±0.0026
CAHL 0.5790±0.0010 0.5206±0.0013 0.4842±0.0004 0.4286±0.0013 0.5333±0.0011 0.5048±0.0003 0.4613±0.0010

5.1.3 ComparedMethods. We compare CAHLwith three groups of
representative and competitive baselines. First, we select the most
frequent knowledge by statistics as Popularity. Second, we compare
methods modeling the knowledgemastery state of employees by ho-
mogeneous GNN and general recommendation methods. Third, we
compare methods integrating knowledge mastery state and collab-
oration records by heterogeneous GNN and social recommendation
methods. The baselines are introduced as follows:

• Popularity: a statistical method to select the most frequent
knowledge in knowledge mastery states of all employees.

• GCN [22]: a homogeneous GNN method which designs a con-
volutional structure to aggregate neighboring features.

• GraphSAGE [9]: a homogeneous GNN method which learns
to aggregate features from a local neighborhood.

• GAT [36]: a homogeneous GNN method which integrates a
masked self-attention strategy to aggregate neighbor features
with weights.

• NeuMF [11]: a general recommendation method which com-
bines the linearity of matrix factorization and non-linearity of
neural networks for modeling user-item latent structures.

• NGCF [38]: a general recommendation method which exploits
the user-item graph structure and injects the collaborative signal
into the graph embedding process.

• LightGCN [10]: a general recommendation method which sim-
plifies the design of GCN and uses the weighted sum of the
embeddings learned at all layers as the final embedding.

• UltraGCN [28]: a general recommendation method which skips
infinite layers of message passing and resorts to approximate
the limit of infinite-layer convolutions via a constraint loss.

• HAN [40]: a heterogeneous GNN method which proposes a
novel heterogeneous GNN based on the hierarchical attention,
including node-level and semantic-level attentions.

• HGT [14]: a heterogeneous GNN method which designs node-
and edge-type dependent parameters to characterize the het-
erogeneous attention over each edge.

• HeCo [41]: a heterogeneous GNN method which captures local
and high-order structures simultaneously, and then employs
cross-view contrastive learning.

• HPN [17]: a heterogeneous GNN method which absorbs the
local semantics of nodes and injects distinguishable semantics
into node embedding in node-level aggregating and semantic
fusion mechanism to fuse them.

• DiffNet [43]: a social recommendation method which designs a
layer-wise influence propagation structure to model the latent
user embeddings evolve in the social diffusion process.

• SEPT [44]: a social recommendation method which employs
tri-training to mine self-supervision signals from other users
with the multi-view encoding.

• DESIGN [35]: a social recommendation method which proposes
a distillation enhanced social graph network by exploiting the
knowledge distillation for interaction and social graphs.

• SI-GAN [37]: a social recommendation method which inher-
ently fuses the adversarial learning enhanced social network
feature and graph interaction feature.

5.2 Experimental Results
5.2.1 Performance Comparison. The experimental results of all
methods for knowledge development prediction on the real-world
dataset are illustrated in Table 2. From the overview, CAHL achieves
the best performance on knowledge development prediction task.
Specifically, we have the following observations. First, CAHL con-
sistently outperforms all baselines in terms of all evaluation metrics.
Besides, we test the statistical significance between CAHL and all
baselines, and the results suggest that CAHL has significant im-
provements (𝑝-𝑣𝑎𝑙𝑢𝑒 < 0.001) over them. Second, in most cases,
methods that incorporate collaboration records generate better re-
sults than those that only consider knowledge mastery state. This
indicates leveraging collaboration states tomodel the characteristics
or behaviors of employees is important for knowledge development
prediction in enterprise scenarios. Third, among the methods that
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Figure 4: The ablation study on the real-world dataset.

incorporate collaboration records, CAHL obviously surpasses the
others. This shows that CAHL can effectively model employees’
knowledge flow with collaborative networks and explore multiple
relationships of job knowledge. Last, although social recommenda-
tion methods focus on collaborative networks in the workplace, the
improvement is not significant. This is because they mainly take
employee similarity into account.

5.2.2 Ablation Study. To verify the contribution of each compo-
nent in our proposed model, we design the three groups of variants
as follows: 1) removing co-occurrence relationship, prerequisite
relationship, and association prompt attention mechanism in JKE
module, i.e., w/o KC, w/o KP, and w/o KA; 2) removing knowledge
mastery state, and collaboration state in EE module, i.e., w/o EK,
and w/o EC; 3) removing collaborative learning, self learning, and
flow constraint loss in HLS module, i.e., w/o SC, w/o SS, and w/o SL.
Figure 4 shows the performance of these variants, which demon-
strate the effectiveness of each component in CAHL. Specifically,
the third group of variants shows the worst performance in most
cases, especially w/o SC. This indicates that our designed hybrid
learning simulation can bring significant improvement, and collab-
orative learning plays a crucial role in this learning process. From
the results of the second group, the performance of w/o EK drops
obviously. This is because the knowledge mastery state of employ-
ees is core feature for the prediction. Besides, the first group of
variants suggests the improvement of co-occurrence relationships
increases as k increases, since it concerns multiple knowledge.

5.2.3 Parameter Sensitivity. In JKE module and EE module, we de-
sign the 𝑙𝑅- and 𝑙𝑆 -layer aggregation for the update of knowledge
and employee features, respectively. Therefore, we conduct experi-
ments to study the impact of the number of 𝑙𝑅 and 𝑙𝑆 on the model
performance. Here, we select the range of 1 to 5 as the number
of layers for our experiments. Figure 5 shows the P@5 and N@5
scores with different numbers of network layers on the real-world
dataset. The results of this study indicate that our proposed model
performs at its best when the number of layers in both aggregation
operations is set to two. With only one layer of aggregation, the
model clearly does not take full advantage of the useful informa-
tion from the neighbors. As the number of layers increases beyond
two, the model performance decreases gradually. This is because an
increase in the number of network layers leads to over-smoothing
and introduces more noise information from multi-hop neighbors.

5.2.4 Case Study. Figure 6 shows two typical cases from the test-
ing results. Due to the limited space, we only display the top-5
collaborators with the highest outflow scores. From these cases,
we have the following observations. First, collaborative learning
is influenced by the cumulative impact of multiple collaborators,
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Figure 5: The performance of CAHL with regard to different
layer numbers, i.e., 𝑙𝑅 and 𝑙𝑆 .
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Figure 6: The typical cases generated by CAHL. CFR denotes
the ranking of collaborators in terms of frequency of collab-
oration with the employee. The weight of the edge between
employees is the outflow score.

and different collaborators exhibit varying abilities in transferring
knowledge outward. In two cases, multiple collaborators transfer
“Architecture design” to employee No.3264 and “Search algorithm”
to employee No.8176, but the weights of the edges connecting them
are different. Second, a higher frequency of collaboration does not
necessarily result in a higher probability of transferring job knowl-
edge. For example, in the right case, collaborators with the 40th
most frequent collaboration have the highest probability of trans-
ferring knowledge. Third, knowledge acquired primarily through
collaborative learning is more likely to be transferred by collabo-
rators, and vice versa. The outflow score reaches 0.544 in the left
case, while in the right case the highest score is only 0.244.

6 CONCLUSION
In this paper, we proposed a novel Collaboration-Aware Hybrid
Learning approach (CAHL) for knowledge development prediction
in workplaces. Specifically, we first learned the job knowledge repre-
sentation by an association prompt attention mechanism to capture
co-occurrence and prerequisite relationships between knowledge.
This can fully harness inherent rules of knowledge development.
Then, the features of mastering knowledge and work collaborators
were aggregated to generate employee representations. Afterwards,
we proposed to model the process of employee knowledge devel-
opment via a hybrid learning simulation, including collaborative
learning and self learning, to predict future-acquired job knowl-
edge of employees. Finally, extensive experiments conducted on a
real-world dataset clearly validated the effectiveness of CAHL.
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A APPENDIX
A.1 Dataset Description
In this paper, a set of in-firm data were provided by a high-tech com-
pany and automatically collected through an online KMS, across
a time span ranging from 2018 to 2020. For privacy protection,
all of the sensitive information in the data has been removed or
anonymized. The dataset we used includes three types of data in
the following:

• Profile data: employee’s profile vector. The basic information
of employee is transformed into the embedding vector through
an automated de-identification process in the KMS. It can be
represented as (𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒 𝐼𝐷 , 𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 ).

• Knowledge data: employee’s knowledge state. It can be repre-
sented as (𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒 𝐼𝐷 , 𝑦𝑒𝑎𝑟 , [𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒1, 𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒2, ...]).

• Collaboration data: employee’s collaboration record. It can be
denoted as (𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒 𝐼𝐷 ,𝑦𝑒𝑎𝑟 , [(𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒1, 𝑡𝑖𝑚𝑒𝑠1), (𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒2,
𝑡𝑖𝑚𝑒𝑠2), ...]).

It was easily and automatically collected through a knowledge
management system without high costs involved. Talent review
is a standard practice in knowledge management systems to label
the knowledge state from self and peers. The determination made
for mastery of knowledge is a part of the knowledge management
system, and there is a knowledge tag library in the knowledge
management system. In the annual talent review, each employee
is given knowledge tags from the knowledge tag library by him-
self/herself and his/her colleagues to indicate his/her mastery of
knowledge, which are then reviewed by his/her direct leader and
HRBP. For example, employee A can select “Tensor Factorization”
to label himself/herself, and employee B can select “Python” to label
employee A.

A.2 Difference with Education Scenario
As we mentioned before, the knowledge prediction methods for stu-
dents’ knowledge development have shown promising performance.
However, they cannot be applied directly in enterprise scenarios, be-
cause they ignore the collaborative networks and knowledge flow
in actual working environments. In the following, we explicitly
state the main difference between these two scenarios:

• The learning process of modeling. In enterprise scenarios,
project collaborations have a large impact on employee knowl-
edge acquisition, which will cause the flow of knowledge in
this process. Therefore, we mainly model the knowledge flow
in collaborative networks. While in education scenarios, exist-
ing studies often focus on students’ exercise records and model
them, since students’ knowledge acquisition mainly comes from
doing exercises instead of collaborations.

• The objects of modeling. The objects modeled in enterprise
scenarios are employees and knowledge, while in education
scenarios, students, exercises, and knowledge are all modeled.

A.3 Model Configuration
All weight matrices and random embeddings are initialized by the
Xavier initializer with a uniform distribution. We set the dimension
of initialized embeddings as 64. The dimension of input profile

feature embeddings is 189. 𝑙𝑅 and 𝑙𝑆 are set as 2. The dimensions
of co-occurrence and prerequisite hidden vectors are 512, and the
dimension of other hidden vectors is 64. The dimension of all final
feature embeddings is 64. The mini-batch method is adopted with
the batch size of 256. We use Adam optimizer [21] with a learning
rate of 0.001. The number of training epochs is 150. We repeat the
experiments five times and report the average results. Our model
is implemented with the deep learning framework PyTorch. The
experiments are conducted on a server with two Intel(R) Xeon(R)
Gold 6258R CPU @ 2.70GHz, and four NVIDIA GeForce RTX 2080
Ti GPUs. The code and data samples for CAHL are available at
https://anonymous.4open.science/r/CAHL for reproducibility.

A.4 Baseline Descriptions and Settings
We compare the proposed CAHL with several representative and
state-of-the-art methods. The baseline settings are introduced in
the following:

• GCN [22]: All weight matrices and random embeddings are
initialized by the Xavier initializer with a uniform distribution.
We set the dimension of initialized embeddings as 64. The di-
mension of hidden vectors is 64 and the layer number is 2. The
mini-batch method is adopted with the batch size of 256. We
use Adam optimizer with a learning rate of 0.001. The number
of training epochs is 10.

• GraphSAGE [9]: All weight matrices and random embeddings
are initialized by the Xavier initializer with a uniform distri-
bution. We set the dimension of initialized embeddings as 64.
The dimension of hidden vectors is 64 and the layer number
is 2. The mini-batch method is adopted with the batch size of
256. We use Adam optimizer with a learning rate of 0.001. The
number of training epochs is 50.

• GAT [36]: All weight matrices and random embeddings are ini-
tialized by the Xavier initializer with a uniform distribution. We
set the dimension of initialized embeddings as 64. The dimension
of hidden vectors is 64 and the layer number is 2. The number
of attention heads is 2. The mini-batch method is adopted with
the batch size of 256. We use Adam optimizer with a learning
rate of 0.001. The number of training epochs is 50.

• NeuMF [11]: All weight matrices and random embeddings are
initialized using the normal distribution with a mean of zero
and standard deviation of 0.01. The embedding size is 64. The
numbers of hidden units in MLP are [128, 64]. The mini-batch
method is adopted with the batch size of 2048. We use Adam
optimizer with a learning rate of 0.001. The number of training
epochs is 10.

• NGCF [38]: All weight matrices and random embeddings are
initialized by the Xavier initializer with a normal distribution.
We set the dimension of initialized embeddings as 64. The di-
mension of hidden vectors is 64. The node dropout ratio is
0.0, and the message dropout ratio of 0.1. In the loss function,
𝜆 = 1𝑒−5. The mini-batch method is adopted with the batch size
of 2048. We use Adam optimizer with a learning rate of 0.001.
The number of training epochs is 50.

• LightGCN [10]: All weight matrices and random embeddings
are initialized by the Xavier initializer with a uniform distribu-
tion. We set the dimension of initialized embeddings as 64. The
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layer number is 2. In the loss function, 𝜆 = 1𝑒−5. The mini-batch
method is adopted with the batch size of 2048. The number of
training epochs is 50.

• UltraGCN [28]: All weight matrices and random embeddings
are initialized by the Xavier initializer with a uniform distribu-
tion. We set the dimension of initialized embeddings as 64. We
adopt L2 regularization with 1𝑒−4 weight and set the learning
rate to 1𝑒−4, the batch size to 2048, the negative sampling ratio
to 200, and the size of the neighbor set to 10. We use Adam
optimizer with a learning rate of 0.001. The number of training
epochs is 50.

• HAN [40]: All weight matrices and random embeddings are
initialized by the Xavier initializer with a uniform distribution.
We set the dimension of initialized embeddings as 64. The num-
ber of attention heads is 2. The dimension of the semantic-level
attention vectors is 64. The mini-batch method is adopted with
the batch size of 256. We use Adam optimizer with a learning
rate of 0.001. The number of training epochs is 50.

• HGT [14]: All weight matrices and random embeddings are
initialized by the Xavier initializer with a uniform distribution.
We set the dimension of initialized embeddings as 64. We use
64 as the hidden dimension. The number of attention heads
is 8. The layer number is set as 2. The mini-batch method is
adopted with the batch size of 256. We use Adam optimizer with
a learning rate of 0.001. The number of training epochs is 50.

• HeCo [41]: All weight matrices and random embeddings are
initialized by the Xavier initializer with a uniform distribution.
We set the dimension of initialized embeddings as 64. 𝜏 = 0.8,
𝜆 = 0.5. The layer number is 1. The mini-batch method is
adopted with the batch size of 256. We use Adam optimizer
with a learning rate of 0.001. The number of training epochs is
100.

• HPN [17]: All weight matrices and random embeddings are
initialized by the Xavier initializer with a uniform distribution.
We set the dimension of initialized embeddings as 64. The layer
number is 2 and 𝛾 = 0.5. The number of attention heads is 2.
The dimension of the semantic-level attention vectors is 64. The
mini-batch method is adopted with the batch size of 256. We
use Adam optimizer with a learning rate of 0.001. The number
of training epochs is 150.

• DiffNet [43]: All weight matrices and random embeddings are
initialized by the Xavier initializer with a uniform distribution.
We set the dimension of initialized embeddings as 64. The layer
number is 2. In the loss function, 𝜆 = 1𝑒−5. The mini-batch
method is adopted with the batch size of 2048. We use Adam
optimizer with a learning rate of 0.001. The number of training
epochs is 30.

• SEPT [44]: All weight matrices and random embeddings are
initialized by the Xavier initializer with a uniform distribution.
We set the dimension of initialized embeddings as 64. The layer
number is 2. Besides, 𝜏 = 0.1, 𝜌 = 0.3, 𝐾 = 10, 𝛽 = 1𝑒−7,
𝜆 = 1𝑒−5. The mini-batch method is adopted with the batch size
of 2048. We use Adam optimizer with a learning rate of 0.001.
The number of training epochs is 50.

• DESIGN [35]: All weight matrices and random embeddings are
initialized by the Xavier initializer with a uniform distribution.
The embedding size is fixed to 64. We optimize the model using

Adam optimizer with a learning rate of 0.001, where the batch
size is fixed to 512. The number of training epochs is 50.

• SI-GAN [37]: All weight matrices and random embeddings are
initialized by the Xavier initializer with a uniform distribution.
The embedding size is fixed to 64. We optimize the model us-
ing Adam optimizer with a learning rate of 0.001, where the
batch size is set to 512. In order to avoid over-fitting, dropout is
adopted with a rate of 0.5. For the diffusion model, we set the
layer number to 2 and 3 respectively. The number of training
epochs is 50.
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