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Abstract

Retrieval-based generation models achieve001
high accuracy in open retrieval question an-002
swering by assessing rich knowledge sources003
— multiple retrieved passages and parametric004
knowledge in the language model (LM). Yet,005
little is known about how they blend informa-006
tion stored in their LM parameters with that007
from retrieved evidence documents. We study008
this by simulating knowledge conflicts (i.e.,009
where parametric knowledge suggests one an-010
swer and different passages suggest different011
answers). We find that retrieval performance012
largely decides which knowledge source mod-013
els use, and a state-of-the-art model barely014
relies on parametric knowledge when given015
multiple passages. When presented with pas-016
sages suggesting multiple answers, however,017
models use parametric knowledge to break the018
ties. We discover a troubling trend that con-019
tradictions in diverse knowledge sources af-020
fect model confidence only marginally. To-021
gether, our study helps interpreting answers022
from these models and suggests directions for023
future work.024

1 Introduction025

Traditionally, QA models have relied on retrieved026

documents to provide provenance for their an-027

swers (Chen et al., 2017). More recent stud-028

ies (Petroni et al., 2019) have shown that large029

language models are able to retain vast amounts030

of factual knowledge seen during pretraining, and031

closed-book QA systems (Roberts et al., 2020)032

build upon this foundation by memorizing facts033

from QA finetuning. Retrieval-based generation034

approaches (Izacard and Grave, 2021; Lewis et al.,035

2020) emerge as the best of both worlds – gener-036

ating free-form answers from the question paired037

with retrieved evidence documents. They further038

combine these parametric knowledge sources with039

a large number of retrieved evidence documents,040

achieving state-of-the-art performances on open re-041

Figure 1: Retrieval-based generation models use two
main knowledge sources (indicated by the red back-
ground), the retrieved evidence passages and the para-
metric knowledge. In this example, the pretrained
reader suggests PyeongChang as the answer, which
frequently co-occur with Winter Olympics, while the
evidence passages suggests two answers (Salt Lake
City/Lake Placid). We investigate for a given question
which knowledge source was the most influential to out-
put an answer.

trieval QA datasets (Joshi et al., 2017; Kwiatkowski 042

et al., 2019). 043

Understanding how retrieval-based generation 044

models combine information from parametric and 045

non-parametric knowledge sources is crucial for 046

interpreting and debugging such complex systems, 047

particularly in adversarial and complex real world 048

scenarios where these sources may conflict with 049

each other (see an example in Figure 1). This will 050

be helpful for both developers to debug such mod- 051

els and for users to estimate how much they should 052

trust an answer. Thus, we focus on the following 053

core question: when provided with numerous evi- 054

dence passages and a rich, pretrained and finetuned 055

language model, which knowledge source do mod- 056

els ground their answers in? 057

A recent study (Longpre et al., 2021) investi- 058

gated this in a limited single evidence document 059

setting. We expand this study to consider a more 060

realistic scenario, where models consider multiple 061

evidence passages (e.g., 100 passages), and observe 062

results diverging from their reported heavy reliance 063
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on parametric knowledge. We further simulate a064

setting where a subset of evidence passages are per-065

turbed to suggest a different answer to reflect the066

realistic scenario where retrieval returns a mixed067

bag of information. Such scenarios are common068

in settings where some passages are updated with069

new information, while other passages remain out-070

dated (Shah et al., 2020; Zhang and Choi, 2021).071

Such conflicts can also occur when passages are072

adversarially edited to contain false information,073

or when passages are authored by multiple people074

who have differing opinions about an answer (Chen075

et al., 2019). We find that retrieval-based genera-076

tion models are primarily extractive and are heavily077

influenced by a few most relevant documents in-078

stead of aggregating information over a large set of079

documents.080

Having identified that models mostly rely on081

evidence passages rather than parametric knowl-082

edge, we further evaluate how sensitive models083

are toward semantic perturbation to the evidence084

documents (e.g., adding negation). We simulate a085

scenario where a subset of passages suggest one086

answer, while the remaining passages reject the087

answer. We find that retrieval-based generation088

models behave similarly to extractive models, shar-089

ing their weakness of outputting answer candidates090

with high confidence, even after the context is mod-091

ified to no longer support the answer (Ribeiro et al.,092

2020). Calibration analysis reveals that a model’s093

confidence does not decrease despite contradictions094

between knowledge sources for a large subset of095

examples (30-40%).096

To summarize, we empirically test how QA097

models use diverse knowledge sources in a multi-098

passage setting. Our findings are as follows: when099

provided with a high recall retriever, models rely al-100

most exclusively on the evidence passages without101

hallucinating answers from parametric knowledge.102

When different passages suggest multiple conflict-103

ing answers, models prefer the answer that matches104

their parametric knowledge, and most of this para-105

metric knowledge comes from finetuning rather106

than pretraining. Lastly, we identify various weak-107

nesses of retrieval-based generation models, which108

tend to copy answers with high confidence even109

when there is insufficient support for them in the110

retrieved evidence. Furthermore, model confidence111

does not reflect the existence of conflicting answers112

between knowledge sources. We suggest that fu-113

ture modeling should focus on proper calibration114

Model Generative Retrieval-Based Multi-Pass

DPR X
REALM X
T5 X
RAG X X
FiD X X X

Table 1: Overview of recent open retrieval QA ap-
proaches. Generative indicates whether the model
generates the answer and, therefore, can produce an-
swers not found in the retrieved documents. Retrieval-
Based indicates whether the model uses retrieval to find
relevant passages to help produce an answer. Multi-
Passage indicates whether the system is able to model
interactions between separate evidence passages.

of presenting a single answer in the presence of 115

rich, potentially conflicting, knowledge sources. 116

2 Background 117

We study open retrieval question answering, where 118

the goal is to find an appropriate answer y∗ for a 119

given question q. Systems for open retrieval QA 120

may also be provided with access to a knowledge 121

corpus consisting of a large number of passages, p, 122

which is used to help answer the question. For the 123

remainder of this paper, we use the open retrieval 124

split (Lee et al., 2019) of the NaturalQuestions 125

dataset (NQ-Open) (Kwiatkowski et al., 2019) and 126

use Wikipedia as our knowledge corpus.1 127

2.1 Model 128

We investigate two prominent retrieval-based gener- 129

ation QA models: Fusion-in-Decoder (Izacard and 130

Grave, 2021) and Retrieval Augmented Generation 131

model (Lewis et al., 2020). Both architectures have 132

reader and retriever components. They both use 133

the same dense phrase retriever (Karpukhin et al., 134

2020) which learns an embedding of question and 135

passage, and retrieves a fixed number (N ) of pas- 136

sages that are most similar to the query embedding. 137

They mainly differ in their reader architecture and 138

learning objective, which we describe below. 139

Fusion-in-Decoder (FiD) The reader model is 140

based on pretrained language model (specifically, 141

T5-large (Raffel et al., 2020)). Each retrieved pas- 142

sage, pi (i = [1, N ]), is concatenated with the 143

question, q, before being encoded by T5 to generate 144

representations, [hi1, ..., h
i
m], where m is the length 145

of the ith passage prepended with the question. All 146

1Following Lee et al. (2019), we use the English Wikipedia
dump from Dec. 20, 2018.
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N passages are then concatenated to form a sin-147

gle sequence, [h11, ..., h
1
m, ..., h

N
1 , ..., hNm], which148

the decoder interacts with using cross-attention to149

generate the answer.2150

We use trained FiD (large) checkpoint provided151

by the authors for most analysis.3 When evaluating152

models with access to different number of passages,153

we re-train FiD model (pretrained weights loaded154

from T5-large) using 1, 5, 20 and 50 passages re-155

trieved by DPR. Refer to Appendix A.2 for full156

model and training details.157

Retrieval Augmented Generation (RAG)158

RAG conditions on each retrieved evidence159

document individually to produce an answer,160

marginalizing the probability of producing an161

answer over all retrieved evidence documents.4162

By applying this constraint, RAG is able to jointly163

train the reader and retriever during finetuning, at164

the cost of ignoring interactions between evidence165

documents. FiD, in contrast, is able to model such166

interactions during decoding while the reader and167

retriever is completely disjoint.168

Recent followup work explored jointly training169

the reader and retriever in FiD (Izacard and Grave,170

2020; Sachan et al., 2021; Yang and Seo, 2020),171

showing small gains. Table 1 summarizes differ-172

ent architectures, including two prominent open173

book approaches (Karpukhin et al., 2020; Guu174

et al., 2020), one closed book approach (Roberts175

et al., 2020) and two retrieval-based generation176

approaches. As FiD shows a strong performance177

and efficiently use multiple passages at decoding178

time, we focus most of our analysis (Section 4 and179

Section 5) on FiD model.180

2.2 Model Confidence Study181

We analyze the model confidence score, asking a182

more nuanced question: is model’s confidence on183

the gold answer decreased after we perturb knowl-184

edge sources? We compare the model confidence185

on the same example before and after perturbation.186

We determine the confidence of the model using187

either (1) the generation probability of the answer188

or (2) the confidence score of separately trained an-189

2We use the version proposed in Izacard and Grave (2020),
where knowledge distillation from reader to retriever is per-
formed to enhance the retriever.

3https://github.com/facebookresearch/FiD
4RAG also presents a variant of a model that relies on

each retrieved document to generate for each token, but
shows worse performance. We use the version in https://
huggingface.co/facebook/rag-sequence-nq

Model retrieval data Extractive Abstractive
success % % EM % EM

Y 88.6 98.3 59.60 1.7 -
FiD N 11.4 82.9 - 17.1 21.3

Total 100 96.6 53.9 3.4 12.4

Y 62.5 92.9 60.2 7.0 -
RAG N 37.5 57.9 - 42.1 11.2

Total 100 79.8 43.9 20.2 9.6

Table 2: Proportion of model predictions on the NQ-
Open development set that are extractive vs. abstractive
along with their exact match accuracy (EM). Results
are split based on whether the retrieval was successful
(i.e., gold answer string is within the top K retrieved
documents (Y), or if the answer string cannot be found
in the top K passages (N)). For the FiD model, K =
100; for the RAG model, K = 5. Overall, we observe
that retrieval based generation models are primarily ex-
tractive, predicting answers strings within the retrieved
passages over 75% of the time. ‘-’ means cells that
have zero performance by definition.

swer calibrator, which provides a score indicating 190

the probability of the model correctly predicting 191

the answer for each example. 192

We train a binary calibrator following prior 193

work (Kamath et al., 2020; Zhang et al., 2021), 194

using gradient boosting library XGBoost (Chen 195

and Guestrin, 2016). The goal of the calibrator is 196

to enable selective question answering – equipping 197

models to decide when to abstain from answering. 198

Given an input question q and learned model Mθ, 199

the calibrator predicts whether the predicted an- 200

swer ŷ = Mθ(q) will match the annotated answer 201

y∗. While model confidence is a good proxy, prior 202

work showed that separately training a calibrator 203

shows further gains. 204

The input to the calibrator is the concatenation 205

of the generation probability and the encoder fea- 206

ture representation averaged across length, and the 207

output is a score indicating the probability of the 208

model correctly predicting the answer. We reserve 209

1K examples of NQ Open training set for validation, 210

and trained our calibrator on the remaining data. 211

Hyperparameters are selected based on AUROC on 212

validation set and reported in Appendix A.1. 213

3 When retrieval-based generation 214

models rely on parametric knowledge? 215

As an initial step investigating whether retrieval- 216

based generation models ground their answers 217

in the retrieval corpus or in the pretrained lan- 218

guage model’s parametric knowledge, we evaluate 219
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Model # Pass. % Ans. Exact Match
MRtrain / inf. ex. R Orig. Sub.

FiD 1 / 1 - - 17 47 27

FiD 1 / 1 17.8 48.5 10.1 61.1 14.1
RAG 5 / 1 16.3 62.5 10.3 65.9 13.5
RAG 5 / 5 20.4 62.5 11.6 63.7 15.3
FiD 5 / 1 19.4 72.9 2.8 74.9 3.6
FiD 5 / 5 24.5 72.9 2.5 68.8 3.5
FiD 20 / 1 18.4 83.1 1.1 73.0 1.4
FiD 20 / 20 25.1 83.1 1.4 67.0 2.1
FiD 50 / 1 17.8 86.8 0.3 82.0 0.4
FiD 50 / 50 27.7 86.8 1.0 71.5 1.4
FiD 100 / 1 18.1 88.7 0.6 81.5 0.8
FiD 100 / 100 29.5 88.7 2.5 65.3 3.8

Table 3: Exact Match / Memorization Ratio for FiD
model with different amount of passages. The results
in the first row are reported in Longpre et al. (2021),
which uses MRQA version of NQ (Fisch et al., 2019)
dataset. All other rows use NQ-Open split. We do not
report results for RAG with 1 training and 1 inference
passage, as in a single document setting it is equiva-
lent to FiD with 1 / 1 passages with the exception of
the choice in pretrained LM (T5 vs. BART). % ex.
reports the number of examples in each set, after re-
moving examples without an entity answer and where
model made incorrect predictions.

whether model generates novel answer this is not220

present in a set of evidence documents. Unlike221

extractive QA models (Seo et al., 2017), generation222

based approaches (Roberts et al., 2020; Izacard and223

Grave, 2021) do not require the evidence document224

to contain the gold answer span.225

Table 2 reports how often models generate a span226

not found in the evidence passages, split by the re-227

trieval performance on the NQ-Open development228

set (Kwiatkowski et al., 2019; Lee et al., 2019).229

We observe that models typically copy a span from230

the evidence passages, only generating novel spans231

for 3.4% of examples for FiD and 20.2% for RAG.232

Even for the small subset of examples where the233

retrieved documents do not contain answer string,234

FiD remains extractive for over 80% of such ex-235

amples. In contrast, for RAG, where retrieved doc-236

uments frequently miss the gold answer (37.5%),237

such copying behavior was less common, gener-238

ating unseen text for 42.1% of examples. These239

results suggest that models rely heavily on the re-240

trieved documents instead of parametric knowl-241

edge in LM only when the retriever performance is242

strong.243

Revisiting knowledge conflict study in Longpre244

et al. (2021) This observation stands at odds245

with the study from Longpre et al. (2021), which246

Question: When was the last time the Bills won their division?

Type Passage Answer

None Original
Entity

. . . the 1995 Bills won the AFC East

. . .
1995

Entity
Sub.

Random
(Same
Type)

. . . the 1936 Bills won the AFC East

. . .
1936

Negation . . . the 1995 Bills did not win the
AFC East . . .

-

Semantic
Pert.

Modality . . . the 1995 Bills might win the
AFC East . . .

-

Future . . . the 1995 Bills will win the AFC
East . . .

-

Text
Infilling

. . . the 1995 Bills lost the AFC East

. . .
-

Table 4: Example perturbations. Entity substitutions
modify the passage by replacing the answer entity men-
tion with another answer candidate of the same entity
type. Given the modified passage, the new answer is
the substitute entity. Semantic perturbation modifies
the main verb of the answer sentence such that the an-
swer to the question is no longer valid, without intro-
ducing a new answer candidate.

showed that models frequently rely on paramet- 247

ric knowledge, generating answers not present 248

in the evidence passage. This recent work took 249

the first step into analyzing knowledge sources in 250

retrieval-augmented generation models, investigat- 251

ing whether they rely on parametric knowledge 252

from the language model or information from re- 253

trieved passages. They simulated knowledge con- 254

flicts by substituting the existing answer with a new 255

answer candidate in the evidence passage (see Ta- 256

ble 4 for an example). The original passage is min- 257

imally changed, yet now suggests an alternative, 258

incorrect answer candidate that likely contradicts 259

with knowledge from language model. Longpre 260

et al. (2021) assumed the model has access to a 261

single evidence document. 262

We identify that the main difference in their ex- 263

perimental setup is in using a single evidence pas- 264

sage rather than multiple evidence passages. We 265

re-visit their study, as we find single document 266

setting to be unrealistic. Most open-retrieval QA 267

models (Lewis et al., 2020; Karpukhin et al., 2020; 268

Izacard and Grave, 2021) are trained with multiple 269

passage to make up for imperfect passage retrieval. 270

When the model is provided with 100 passages, the 271

correct span is available nearly 90% of the time 272

(compared up to 50% when provided one passage), 273

thus the model remains extractive. 274

Following their experimental setup, we only eval- 275

uate on examples that the model has correctly an- 276

swered (as perturbing examples where models are 277

already confused is unnecessary) and where the 278
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answer is an entity5. We then substitute every an-279

swer entity mention in all evidence passages with280

a random entity of same type.6 All manipulation281

was done only at inference time.282

We report the exact match score to the original283

annotated answer. Prior to perturbation, the exact284

match score against the original answer is 100%.285

We also report the exact match score to the substi-286

tuted answer and memorization ratio (MR):287

MR =
po

po + ps
288

where po is the fraction of examples where the289

model predicts the original answer, and ps is the290

fraction of examples predicting the substitute an-291

swer.292

Table 3 reports how models respond to entity-293

substituted contexts with a differing number of pas-294

sages available at training and inference time. In295

congruence with our prior experiments, we observe296

higher reliance on parametric knowledge as answer297

recall in the retrieved evidence decreases. Depart-298

ing from Longpre et al. (2021), we find that mem-299

orization in FiD is rare when reader is provided300

with multiple passages at training time, and FiD301

grounds its answers mostly in evidence passages302

instead of its parametric knowledge when answer303

recall is reliably high. Furthermore, when provided304

with multiple evidence passages with comparable305

answer recall, FiD exhibits far less memorization306

than RAG, suggesting that using a multi-passage307

reader that doesn’t marginalize over passages also308

inhibits memorization.309

4 Simulating Mixed Bag of Evidence310

Passages311

Having identified that retrieval-based generation312

models rely heavily on evidence passages, espe-313

cially when paired with a high-performance re-314

triever, we study how models make use of mul-315

tiple evidence passages when different passages316

suggest different answers. This happens fre-317

quently in real life, as questions can be ambiguous318

based on different, valid interpretations of ques-319

tion (Min et al., 2020) or different extra-linguistic320

contexts suggesting different answers (Zhang and321

Choi, 2021).322

5Exact numbers of filtered examples are shown in Table 3.
6The entity type is coarsely defined as person (PER), date

(DAT), numeric (NUM), organization (ORG), and location
(LOC).

We introduce two perturbations – an entity sub- 323

stitution perturbation inspired by Longpre et al. 324

(2021) and adversarial semantic perturbation (Jia 325

and Liang, 2017) – both will dissuade model from 326

returning the original answer in the evidence pas- 327

sage. Table 4 presents example perturbations. We 328

will present entity substitution perturbation (Sec- 329

tion 4.1), and then present results on semantic per- 330

turbations (Section 4.2). As in section 3, we only 331

consider examples where the FiD model answers 332

correctly with the original passages and analyze 333

best FiD model trained with 100 passages. 334

4.1 Entity Substitution 335

Setting. To simulate a mixed bag of evidence pas- 336

sages, we perform partial entity substitution, chang- 337

ing answers to a subset of passages mentioning the 338

answer entity. On average, the answer entity is 339

mentioned in 16.7% of 100 retrieved evidence pas- 340

sages for NQ-open dataset. We substituted 25%, 341

50%, 75% and 100% of evidence passages that 342

contains the original gold answer span with a new 343

entity. We sample passages to substitute answer 344

entity in three ways. 345

• random: randomly sample n% of passages 346

• top-retrieval: select top n% of passages with 347

highest retrieval score 348

• top-attention: select top n% of passages where 349

reader model pays the most attention to. The 350

attention score for each passage is computed 351

as the cross-attention score on the first de- 352

coded token averaged across layers, heads and 353

the tokens in the passagage, as defined in Izac- 354

ard and Grave (2020). 355

Results. Figure 2 reports the results with differ- 356

ent amount of perturbation (i.e., how many evi- 357

dence passages are perturbed) and different sam- 358

pling of passages to substitute entity. The model 359

refrain from predicting the original answer if none 360

of the passage contains it. However, when we per- 361

turbed about half of randomly chosen passages, the 362

model favors the original answer almost twice as 363

frequently (52.5 vs. 25.1), indicating the model re- 364

lies on parametric knowledge when there are more 365

than one potential answer. 366

When we perturb the top scoring passages, ei- 367

ther by retrieval score or attention score, the model 368

changes its answer a lot more frequently. Here, 369

even perturbing only 25% of passages changes the 370

gold answer for about 30% of examples compared 371

to 8% of examples for random sampling. This sug- 372
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Figure 2: Substituting different proportion of retrieved
passages containing gold answer spans on filtered NQ
Open test set (N=2,581). We vary the sampling of re-
trieved passages to substitute answers.

% Perturbed Gen. Prob. Calibration

25 48.15% 57.07%
50 49.67% 56.30%
75 49.86% 56.84%
100 52.22% 56.95%

Table 5: The percentage of examples in which model
confidence on the correct answer dropped after pertur-
bation for partial substitution in NQ Open test set.

gests lowly ranked retrieved passages might con-373

tain the answer entity without being relevant to the374

query, which model successfully ignores.375

Confidence Study. Table 5 reports the change in376

model confidence after the random entity substitu-377

tion in the evidence passages. Repeating the results378

from Zhang et al. (2021), separately trained calibra-379

tor consistently outperforms the model’s inherent380

confidence score. Surprisingly, there is no clear381

connection between the percentage of perturbed382

passages and model confidence. One possible ex-383

planation is that the model focus on a single pas-384

sage which contains the most likely answer without385

aggregating information from multiple passages.386

To further investigate this, we substitute answers387

in all passages except top K passages, ranked by388

the attention score from the reader. Table 6 presents389

the results. If you change the answer to all passages390

except for the top scoring article, the model out-391

puts the substituted answer for about 30% of times,392

producing the original answer on about half of the393

articles (51.80%). As long as we preserve three394

top scoring articles, the model is less impacted by395

the changes in the rest of the retrieved passages,396

returning the original answer for almost 80% of397

examples. This suggests model might ignore many398

retrieved passages and focus on only a handful of399

most relevant passages.400

k Original Substitute

1 51.80 28.94
3 79.66 8.80
5 87.29 4.03

Table 6: Substituting all the passages except top k pas-
sages (k=[1,3,5]), which are selected based on passage
attention scores. On average, 16.7 passages out of 100
passages contained gold answer entity. Yet, with access
of up to 3 passages containing the gold answer span, the
FiD model can still generate the original answer 80% of
the time.

4.2 Adversarial Semantic Perturbation 401

Semantic perturbation follows earlier work on 402

counterfactual example generation with heuris- 403

tics (Ribeiro et al., 2020) which perturbs the sen- 404

tence containing the answer. We simulate four per- 405

turbations, and after each perturbation, the model 406

should refrain from returning the original answer. 407

We aim to test model’s understanding of the pas- 408

sage with such perturbation. 409

Setting. We design the four perturbations appli- 410

cable to question answering: negation, changing to 411

future tense, adding modal verb and text infilling. 412

We run a dependency parser on the sentence con- 413

taining the gold answer span.7 We filter examples 414

where the root token of answer sentence is not a 415

verb (about 40% of sentences, see Appendix A.3 416

for full statistics). Then, we apply simple rules 417

(see Appendix A.4) to modify the verb. For text 418

infilling, the only difference is that we convert the 419

root token into “[blank]" and fill in the blank using 420

language modeling (Donahue et al., 2020). When 421

passages contain multiple gold answer spans, the 422

changes are made to all of them as long as their 423

root tokens are verbs. 424

Results. We report the exact match score to the 425

original annotated answer. After the perturbation, 426

the exact match score should drop significantly, as 427

all edits invalidate the original answer. Table 7 428

showed the exact match score after semantic per- 429

turbations. The first two columns covers examples 430

where we made at least one perturbation, but not 431

all occurrence of answer string was perturbed (the 432

coverage of perturbation is 67-86%). Thus, some- 433

times the gold answer span remains in the evidence 434

passages, inducing models to return the original 435

answer. To control for this, we further reports 436

scores on examples where all evidence sentences 437

7We use StanfordNLP (Qi et al., 2018) toolkit.
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partial coverage full coverage

# passages 1 100 1 100

negation 82.49 86.80 74.71 71.26
modality 89.90 92.48 88.77 84.05
future 91.90 94.03 90.72 86.93
text-infilling 88.66 93.21 86.96 84.71

Table 7: Exact match score with the original answer af-
ter perturbation of each type: models largely disregard
the perturbation and outputs the original answer.

containing the gold answer are perturbed (later two438

columns). We still observe models returning the439

original answer, similar to extractive models.8440

Confidence Study. We repeat the calibration441

study with semantic perturbation. As separately442

trained calibrator was more robust than the model443

confidence score again, we report the ratio of cal-444

ibration scores before and after the perturbation445

in Figure 3. The calibration score remain mostly446

steady after the perturbation (centered around 0).447

Slightly higher distribution lies in the negative448

x-axis, indicating the perturbations lowers the449

confidence for such examples (60-70% of exam-450

ples). The exact numbers can be found in the Ap-451

pendix A.8. Model was particularly less sensitive452

to temporal perturbation (future).453

We observe that model behaves similarly to ex-454

tractive model (Ribeiro et al., 2020), returning an455

entity answer matching the answer type with high456

confidence even when the passage no longer sup-457

ports the answer.458

5 Further Analysis459

We further examine our results, focusing on the460

quality of substitute answer in entity substitu-461

tion study and which parametric knowledge (pre-462

training vs. fine-tuning) was used.463

Improving Substitute Entities Prior464

work (Longpre et al., 2021) substitutes an-465

swer entity with another entity with same coarse466

entity type. This makes substitute entities some-467

times unreasonable, despite better than randomly468

sampling entities without type constraint. For469

example, “Heartbreak Hotel" was substituted as470

an answer to the following question “who did the471

lions play on thanksgiving last year”.472

8Further details about semantic perturbation (e.g., statistics
of percentage of valid examples after each perturbation) can
be found in the Appendix A.3.

Figure 3: The ratio of calibration score after perturba-
tion to that before perturbation, in log scale. The oc-
currences of examples of different ratio are plotted in
terms of probability density (the area under curve is
sum to 1). The distributions are bell-shaped, but shift
slightly towards negative x-axis.

Entity source AmbigQA (N=448) SituatedQA (N=55)
% per. Ori. Sub. Ori. Sub.

25 75.45 9.15 80.00 7.27
50 51.11 27.68 56.36 25.45
75 25.22 46.21 38.18 43.64

100 5.80 63.17 14.55 58.18

Table 8: Results of substituting different proportion of
100-retrieved passages on NQ Open where entities are
derived from AmbigQA and SituatedQA dataset. The
number next to the entity refers to the number of exam-
ples in this evaluation set after filtering.

We make perturbation more realistic by substitut- 473

ing with alternative answer from two datasets, Am- 474

bigQA (Min et al., 2020) and SituatedQA (Zhang 475

and Choi, 2021), which augmented existing NQ 476

open dataset. Both datasets annotated valid alter- 477

native answers for different interpretation of the 478

same question (AmbigQA) and answers belonging 479

to different temporal contexts (SituatedQA) for NQ 480

Open dataset. We sample these additional answers 481

as a new answer to inject (details in Appendix A.6). 482

Table 8 presents perturbation results with valid 483

entities sourced from AmbigQA and SituatedQA. 484

We identify a surprising trend – that model outputs 485

original answers more frequently when substituted 486

with better alternatives. This contradicts our intu- 487

ition as model should be less hesitant to choose 488

new substitute answer as they are also valid answer 489

to the question, for different contexts. We further 490

investigate this issue below. 491

Does parametric knowledge come from pre- 492

training or fine-tuning? Some memorization (2– 493

15%) remains even after all the evidence documents 494
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% per. Dataset NAO AO AO%

50% NQ (Random Entity) 62.32 68.54 85.93
50% w/ AmbigQA Entity 54.16 67.61 78.35
50% w/ SituatedQA Entity 50.00 69.77 94.55

100% NQ (Random Entity) 0.00 4.43 85.93
100% w/ AmbigQA Entity 1.59 10.16 78.35
100% w/ SituatedQA Entity 0.00 21.05 94.55

Table 9: Memorization ratio (MR of substituting differ-
ent number of passages on NQ Open No Answer Over-
lap (NAO) / Answer overlap (AO) set. AO% signifies
the percentage of examples that belong to AO set for
each subset.

are perturbed, and model is biased toward the orig-495

inal answer under partial substitution. We aim to496

identify whether it comes from pretraining or fine-497

tuning of the reader model by using the evaluation498

data splits from prior work (Lewis et al., 2021):499

questions where answers were seen (Answer Over-500

lap (AO)) and questions where answers were un-501

seen (No Answer Overlap (NAO)). If memorization502

ratio is higher on AO set compared to NAO set, we503

can hypothesize that memorization mostly happens504

during fine-tuning compared to pre-training.9505

Table 9 presents results for 50% and 100% sub-506

stitution setting.10 This study shed lights on myste-507

rious trend: there were more examples with answer508

overlap in AmbigQA/SituatedQA subset. If we per-509

turb all the evidence documents, the model exhibit510

little to no memorization on NAO portion. We can511

thus infer that memorization effect comes almost512

exclusively from fine-tuning. When accounting for513

different proportion of answer overlap examples514

in the subsets, memorization ratio is lower in Am-515

bigQA/SituatedQA NAO set. This suggests that516

model uses parametric knowledge – which answer517

candidate is more reasonable – in a subtle way,518

even when behaving as a copying model.519

6 Related Work520

Recent analysis (Lewis et al., 2021; Krishna et al.,521

2021) pointed the overlap in training and evaluation522

dataset inflates question answering performances.523

Longpre et al. (2021) showed that the reader model524

tend to memorize entity answers despite the an-525

swer mentions are substituted by another entity.526

We showed that memorization do occur when the527

model can only have access to one passage, but can528

be reduced significantly if the model is trained with529

9Earlier study (Longpre et al., 2021) in a single document
setting also report memorization is more severe in AO set.

10See Appendix A.7 for 25% and 75% substitution setting.

multiple passages. Concurrent work (Pan et al., 530

2021) investigates QA models’ robustness to mis- 531

information by providing contradicting contexts. 532

Their finding echoes our finding that model is sen- 533

sitive to frequency of answer span occurrences in 534

the evidence passages. Our work further introduce 535

alternative valid answers for the first time and care- 536

ful sampling of evidence passage for perturbation. 537

Recent works evaluated robustness by minimally 538

perturbing input examples (Kaushik et al., 2020; 539

Gardner et al., 2020) to identify models that are 540

invariant under distributional shift. Prior work ex- 541

plored automatically generating such perturbed in- 542

put (counterfactual data) with heuristics (Ribeiro 543

et al., 2020) or learned models (Wu et al., 2021; 544

Bartolo et al., 2020; Paranjape et al., 2021). Our 545

perturbation methods are rule-based similar to 546

Ribeiro et al. (2020), but designed specifically for 547

QA task. 548

7 Conclusion 549

We summarize our findings here: 550

1. Do models ground their answers from re- 551

trieved document or parametric knowledge? 552

(Section 3) Current SoTA model ground its 553

answer mostly from retrieved passages, when 554

trained with a high recall retriever (Table 2, 3). 555

2. How does model use multiple passages when 556

different passages suggest different answers? 557

(Section 4.1) Model mostly use a few, most 558

relevant passages (Table 6), and use paramet- 559

ric knowledge to break ties (Figure 2, Table 9). 560

3. How does model behave if some passages are 561

perturbed not to support an answer? (Sec- 562

tion 4.2) Model largely ignores semantic per- 563

turbations and outputs potential answer entity 564

in the retrieved passages (Table 7). 565

4. How is the model’s confidence score affected 566

by knowledge conflicts? Confidence score 567

is not very sensitive to knowledge conflicts 568

(Table 5, Figure 3), and separately trained cal- 569

ibrator offers some improvements. 570

5. Does parametric knowledge come from fine- 571

tuning or pre-training? Fine-tuning (Table 9). 572

We find retrieval-based generation models are 573

primarily extractive even though they can gener- 574

ate novel answers. Being extractive also links to 575

models’ ignorance of semantic perturbations. Mod- 576

els show limited ability to aggregate conflicting 577

information among its rich knowledge sources, en- 578

couraging future work in this domain. 579
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neg. /modal. negation- text-
#Passages / fut. polyjuice infilling

%Ex. 1 61.14% 57.38% 62.43%
100 89.55% 88.18% 89.68%

%Cov. 1 85.77% 82.90% 86.07%
100 66.93% 61.12% 68.25%

%Ex. 1 51.87% 46.39% 53.23%
(100% Cov.) 100. 15.13% 11.89% 16.06%

Table 10: Data statistics for different perturbations
schemes. The first two rows are the numbers of exam-
ples, shown in percentage out of the examples that FiD
can answer correctly. The third and fourth rows shows
the percentage of gold answer span covered (valid for
perturbation) in the chosen examples. The last two
rows shows the percentage of valid examples we could
get if all the gold answer spans are perturbed.

A Appendix771

A.1 Calibrator Hyperparameter772

We use 100 boosting rounds, subsample ratio of773

0.5 and learning rate of 0.5. The same subsample774

ratio is applied for constructing each tree, for each775

level and for each split.776

A.2 Model and Training Details777

The Fusion-in-Decoder(FiD) model consist of
a retriever and a reader module. The re-
triever (Karpukhin et al., 2020) is a BERT bi-
encoder model, which calculate the similarity be-
tween the question q and each of the passages {pi}
in the knowledge source and output the most sim-
ilar ones. The similarity is computed as the dot
product of the encoded vectors

EQ(q)
TEP (pi)

where EQ is the question encoder and EP is the778

passage encoder.779

The reader module is a pretrained T5-large (Raf-780

fel et al., 2020), an encoder-decoder model con-781

taining 770M parameters. Each passage is con-782

catenated with the question and truncated to 250783

word pieces. For our experiments finetuning FiD,784

we train the reader module with 1, 20, and 50 ev-785

idence passages. To train the reader, we use the786

AdamW optimizer (Loshchilov and Hutter, 2018)787

and a learning rate of 5 · 10−5 with linear warmup788

of 8000 steps followed by linear decay to zero. The789

total training steps is 300k, and the final model790

checkpoint is selected based on exact match score791

on NQ Open development set. We only use batch792

size of 1 due to memory constraints. The models793

take roughly 7 GPU days to train on a Quadro RTX 794

8000 machine. 795

A.3 Perturbation Coverage 796

As mentioned in Section 4, if the root token of 797

the answer sentence is not a verb, then we ignore 798

that sentence, and thus some examples would be 799

excluded. The first row shows the percentage of 800

valid examples after applying the rules mentioned 801

in Section 4. We consider it valid example if one 802

of the gold answer span can be perturbed. The cor- 803

responding percentage of perturbed gold answer 804

spans is shown in the third row. A small portion 805

of gold answer spans remain unchanged after per- 806

forming the perturbation. For the second and fourth 807

row it shows the same except the model has access 808

to 100 passages. The percentage of valid examples 809

are much higher since we consider the example 810

valid if one of the gold answer spans in any of the 811

passages can be perturbed. The last two rows show 812

the percentage of examples where all gold answer 813

spans in all the retrieved passages can be perturbed. 814

A.4 Technical Details on Semantic 815

Perturbations 816

For perturbation schemes except text infilling, we 817

first identify the root token’s part-of-speech tag. If 818

it is in one of [VB, VBP, VBZ], then we treat it as 819

the present tense, and modify the verb accordingly. 820

(e.g. V→ "does not V"/"do not V" for negation, 821

V→ "may V" for modality, V→ "will V" for fu- 822

ture tense) The lemmatized verb forms after "will" 823

and "may" are obtained by the "WordNetLemma- 824

tizer" class in nltk11. We also identify ["is", "am", 825

"are"] and modify the verbs into their correspond- 826

ing forms. If the part-of-speech tag is VBD, then it 827

is in past tense and the root token is modified simi- 828

larly to present tense. Lastly, if the part-of-speech 829

tag is VBN or VBG, then it is present/past partici- 830

ple or gerund. We then identify the be-verbs and/or 831

["had", "have", "has"], and perform modifications 832

accordingly. 833

A.5 Model Tested on NQ Open Subset 834

Both AmbigQA and SituatedQA annotate subsets 835

of NQ Open. To ensure identical data distribution 836

and isolate the effect of different substitute answers, 837

we report results of random entity substitution on 838

AmbigQA set and SitutatedQA set respectively. 839

We present the results in Table 11. For AmbigQA 840

11https://www.nltk.org/modules/nltk/stem/wordnet.html
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Random Entity AmbigQA Entity Random Entity SituatedQA Entity
% (on AmbigQA set) (on SituatedQA set)

Perturbed Original Substitute Original Substitute Original Substitute Original Substitute

25 74.90 6.37 75.45 9.15 76.74 4.65 80.00 7.27
50 51.79 24.70 51.11 27.68 55.81 16.28 56.36 25.45
75 27.88 43.03 25.22 46.21 46.51 13.95 38.18 43.64

100 2.39 65.34 5.80 63.17 4.65 39.53 14.55 58.18

Table 11: Entity substitution results on subsets of NQ-Open. We perform random entity substitution on the Am-
bigQA and SituatedQA sets for fair comparisons between different sources of substitute answers.

% NQ Open AmbigQA SituatedQA
perturbed Original Substitute Original Substitute Original Substitute

25 67.35 9.51 72.16 7.21 66.67 0.00
50 45.50 27.51 40.20 34.02 33.33 33.33
75 21.85 48.84 22.68 41.23 0.00 66.67

100 0.00 68.12 1.03 63.92 0.00 66.67

Table 12: Exact match score of substituting different number of passages on NAO sets.

% Exact Match
perturbed Original Substitute

25 80.00 7.27
50 60.00 25.45
75 41.82 43.64

100 18.18 60.00

Table 13: Results of substituting different number of
passages on SituatedQA. The substitute answer is ran-
domly selected from the SituateQA answer set and is
not in the original ansewr set.

subset, different substitute entity types (random or841

alternative valid entity) do not seem to affect the re-842

sults too much. However, the model seems to bias843

toward the substitute answer more with valid alter-844

native entity substitutions on SituatedQA subset,845

indicating the parametric knowledge of model do846

know which answers are more likely to be correct.847

One possible explanation is that AmbigQA answers848

do not always take the same form as the original849

ones (e.g. 76th season and 1995 in Table 4).850

A.6 Answer Entity Sampling Details851

When substituting with AmbigQA answers, we852

consider only the examples with multiple valid an-853

swers. For each example, we randomly sample854

one answer not in the original answer set of NQ as855

the substitute answer. For substitution with Situat-856

edQA answers, we select the most recent answer857

as substitute answer. We also include the result858

of randomly sample an answer from SituatedQA859

answer set in Table 13.860

Change Type Gen. Prob. Calibration

negation 65.94% 70.28%
modality 62.75% 66.34%
future 58.87% 62.92%
text-infilling 60.56% 64.36%

Table 14: The percentage of examples in which model
confidence dropped after perturbation; i.e., the model
confidence when predicting the original example is
higher than the perturbed example. Model confidence
is measured with generation probability/calibration.

A.7 Full Results on No Answer Overlap Set 861

Table 12 contain the full results on NAO set for NQ 862

Open, AmbigQA, and SituateQA. 863

A.8 Confidence Study Full Results 864

Table 14 contains the full results for confidence 865

study on adversarial semantic perturbation. 866
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