

000 001 002 003 004 005 006 007 008 009 010 FROM FAITHFULNESS TO CORRECTNESS: GENERA- TIVE REWARD MODELS THAT THINK CRITICALLY

011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
Anonymous authors
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Paper under double-blind review

009 010 ABSTRACT

011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Through reinforcement learning with verifiable rewards (RLVR), large language models have achieved substantial progress in domains with easily verifiable outcomes, such as mathematics and coding. However, when applied to more complex tasks like open-domain question answering, RLVR faces significant challenges due to the difficulty of verifying correctness. The nuanced and ambiguous nature of real-world knowledge makes it difficult to reliably evaluate correctness in these settings, necessitating further abilities that extend beyond mere logical consistency to encompass an understanding and assessment of both external and internal knowledge. Recent work has primarily focused on improving faithfulness, defined as semantic alignment with supporting documents, which can cause models to rely excessively on external sources and diminish their capacity for critical assessment. To address this, we propose the Thinking-supervised Reward Model (TRM), which incorporates sentence-level thinking supervision to endow reward models with *critical thinking* abilities. Given a query, answer, and supporting documents, TRM first assesses the faithfulness of each answer sentence to the supporting documents, and then applies a reasoning step to evaluate sentence-level correctness. By structuring reward modeling as a sequence of faithfulness, reasoning, and correctness evaluations, TRM encourages models to critically assess and leverage both external and internal knowledge. Experiments on reward signals demonstrate that TRM substantially improves the identification of incorrect sentences, and incorporating TRM into policy optimization leads to significant gains in both answer correctness and usefulness. We open-source our TRM model and implementation anonymously at <https://anonymous.4open.science/r/TRM>.

033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 1 INTRODUCTION

033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Large language models (LLMs) have demonstrated impressive capabilities in step-by-step reasoning, especially when trained with reinforcement learning with verifiable rewards (RLVR) (Lambert et al., 2024; Guo et al., 2025). RLVR is highly effective in domains like mathematics and coding, where each reasoning step can be objectively verified and reward signals are unambiguous (Paul et al., 2023; Wu et al., 2023; Wang et al., 2023a; Ma et al., 2023; Khalifa et al., 2025; Zhang et al., 2025). However, this success does not easily extend to real-world tasks such as open-domain question answering, where verifying the correctness of each statement is challenging. This highlights a critical issue: language models struggle with complex reasoning unless logical connections are explicit and straightforward. Providing reward signals alone is far from sufficient for fostering genuine understanding of complex thinking patterns.

033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
For example, consider the question: “*When was the novel 1984 written?*” with supporting document: “*Novel 1984 was published in 1949*” and answer: “*1984 was written by George Orwell in 1949*”. This answer is incorrect, as the novel *1984* was actually written in 1948 but published in 1949. Simply providing a negative reward may cause the model to incorrectly judge the supporting document as false, rather than recognizing the real error—overreliance on a correct but misleading external source. Verification is challenging because errors can stem from multiple, nuanced issues such as the relevance and accuracy of supporting documents, the model’s faithfulness to those sources, and the avoidance of hallucination. While current RLVR techniques perform well in domains with clear rules, where errors primarily stem from logical reasoning, they are insufficient for complex, knowledge-intensive tasks that involve diverse and subtle types of errors.

Existing approaches to open-domain question answering often conflate the concepts of faithfulness and correctness. Faithfulness denotes semantic alignment between the generated answer and external supporting documents, whereas correctness concerns the factual accuracy of the answer. Although recent work has highlighted the importance of faithfulness (Durmus et al., 2020; Adlakha et al., 2024) and introduced methods to improve alignment with supporting documents (Zhao et al., 2024; Li et al., 2025), these solutions tend to overemphasize such documents without critically assessing their relevance or reliability. Consequently, models may rely excessively on supporting documents and fail to leverage their own internal knowledge, undermining overall answer quality.

To address this limitation, we propose the Thinking-supervised Reward Model (TRM), a sentence-level reward model designed to equip language models with *critical thinking* abilities to distinguish faithfulness from correctness and critically assess supporting documents. Given a query, answer, and supporting documents, TRM first evaluates the sentence-level faithfulness of the answer to the provided evidence. Building on the initial faithfulness assessment, TRM subsequently performs a reasoning step that explicitly examines how this assessment informs the factual correctness of each sentence, ultimately leading to a final correctness score. By structuring reward evaluation as a sequential process (*faithfulness* \rightarrow *reasoning* \rightarrow *correctness*), TRM promotes a thinking pattern that first consults external sources to evaluate faithfulness, followed by the application of internal reasoning to determine the relationship between faithfulness and correctness. This methodology encourages reward models to leverage both external and internal knowledge, thereby enabling a clearer distinction between factual correctness and document faithfulness.

We conduct two stages of experiments. First, we evaluate TRM’s ability to identify both sentence-level and answer-level errors on unseen data, demonstrating consistent improvements over outcome-supervised reward models (ORM) and process-supervised reward models (PRM). Second, we incorporate TRM into policy optimization within a reinforcement learning (RL) framework, where TRM ensures correctness and an auxiliary model addresses usefulness. Experiments on both the internal dataset and open-source out-of-distribution datasets show that our approach achieves substantial gains, improving correctness by up to 30.3% and increasing usefulness up to 35%.

Our main contributions are as follows:

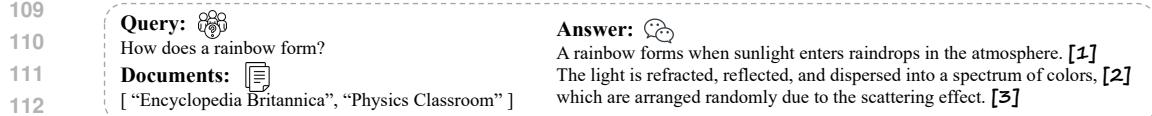
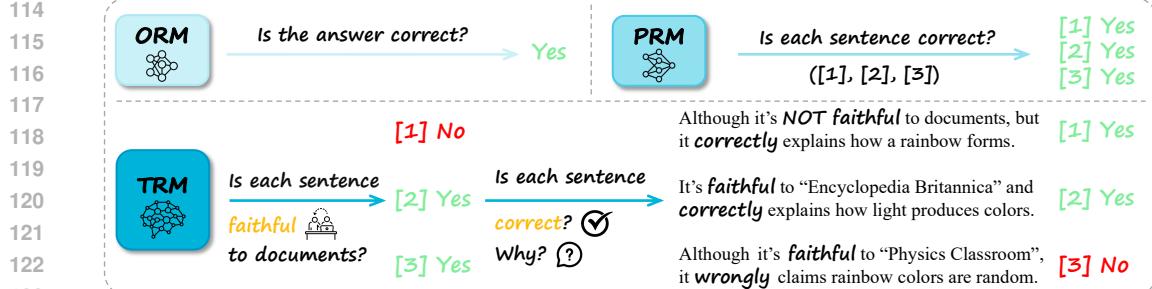
- We propose a reward modeling framework that endows models with *critical thinking* ability by adopting sentence-level *faithfulness* \rightarrow *reasoning* \rightarrow *correctness* evaluation pattern.
- We offer an effective framework to reward modeling and policy optimization for open-domain question answering tasks where verification is challenging.
- To promote further research, we open-source our thinking-supervised reward model (TRM) and its implementation for policy optimization.

2 THINKING-SUPERVISED REWARD MODEL

2.1 SENTENCE-LEVEL REWARD SIGNALS

We address open-domain question answering (QA) with supporting documents. In many cases, an answer’s overall quality is compromised not because every statement is incorrect, but due to the presence of specific sentences containing false or misleading information. Relying solely on outcome-supervised reward models (ORM) for training would inadvertently penalize such partially correct answers.

Prior work has shown that process-supervised reward models (PRM), which provide reward signals step by step, outperform outcome-supervised approaches in domains such as mathematics and coding (Lightman et al., 2023; Ma et al., 2023; Zhang et al., 2025). In these settings, correctness is objective and readily verifiable, making it relatively straightforward for both human annotators and LLMs to identify errors, which often take the form of explicit logical flaws or factual mistakes. Similarly, for question answering with supporting documents, we provide sentence-level supervision by assigning correctness labels to individual sentences, enabling more precise localization of relevant information. The process for constructing these supervision signals is detailed in Section 3.1.

108 **Inputs**118 **Reward Models**

124 Figure 1: The overall architecture of outcome-supervised reward model (**ORM**), process-supervised
125 reward model (**PRM**) and our thinking-supervised reward model (**TRM**). Given a query, documents,
126 and an answer, **TRM** first assesses the faithfulness of each answer sentence to the documents, then
127 evaluates its correctness through a reasoning step.

2.2 FAITHFULNESS → REASONING → CORRECTNESS

132 As our research progresses, we observe that providing models with only a final correctness signal
133 is insufficient, especially for complex samples where simply updating internal knowledge does not
134 guarantee generalization to unseen problems. This leads us to realize that our true objective is not to
135 impart specific knowledge to reward models, but rather to teach LLMs effective thinking patterns. To
136 achieve this, we manually design and implement a structured reasoning process that can be explicitly
137 learned by language models. By guiding models through each step of this thinking pattern during
138 training, we aim to foster more robust and transferable reasoning capabilities.

139 Inspired by the way humans evaluate answers, we observe that individuals typically begin by assessing
140 whether an answer matches the supporting documents—a procedure that LLMs has managed to
141 emulate. However, unlike LLMs, humans further engage in internal reflection, balancing trust in
142 supporting documents with their own knowledge—a process often characterized as *critical thinking*. To
143 formalize this distinction, we define “correctness” as the objective accuracy of an answer
144 sentence, and “faithfulness” as the extent to which an answer aligns with the supporting documents.
145 In practice, however, we find that models often conflate these two concepts. This conflation arises
146 because models tend to assume that supporting documents are always correct (Huang et al., 2024;
147 Wang et al., 2023b; Jin et al., 2024), thereby preventing them from distinguishing correctness from
148 faithfulness, which is also the major problem of existing methods.

149 To address this, we design a structured thinking process that requires the model to explicitly reason
150 from faithfulness to correctness, mirroring the critical thinking process humans use when evaluating
151 information. Specifically, for each sentence in the answer, we first ask the model to assess whether
152 the answer is faithful to the supporting documents—does it accurately reflect the evidence provided?
153 Next, based on the faithfulness judgment, the model is further prompted to use its internal knowledge
154 to assess whether the answer is factually correct through a reasoning step. Appendix C provides case
155 studies demonstrating that this guided reasoning process leads to the development of more robust
156 *critical thinking* abilities. Rather than relying solely on external sources, models begin to reflect
157 internally when judging the correctness of answer sentences. As a result, models that internalize
158 this evaluation logic achieve substantial improvements on complex question-answering tasks.

2.3 TRAINING STRATEGIES

159 Having established our framework (see Figure 1), we now describe the training strategies employed
160 to instill the desired thinking patterns in language models. We adopt a two-stage process: initial su-

162 pervised fine-tuning (SFT) to teach the explicit reasoning steps, followed by reinforcement learning
 163 (RL) to further enhance the model’s prediction abilities using both faithfulness and correctness as
 164 reward signals.

166 **Supervised Fine-tuning.** We begin by training the language model on our curated dataset, which
 167 is explicitly structured to mirror the thinking process (*Faithfulness* \rightarrow *Reasoning* \rightarrow *Correctness*)
 168 for each answer sentence. This sentence-level supervision not only enables the model to grasp the
 169 definitions of faithfulness and correctness, but also to understand how to logically progress from one
 170 to the other. For each query-answer pair, we present the model with the query, supporting documents,
 171 and the candidate answer, where the answer is segmented into sentences using predefined rules
 172 (see Appendix B.1 for details). These form the input to the model. *Faithfulness* \rightarrow *Reasoning* \rightarrow
 173 *Correctness* is used as target directly for SFT.

174 During training, we mask the input and optimize the standard negative log-likelihood (NLL) loss:

$$175 \quad \mathcal{L} = -\frac{1}{N} \sum_{i=1}^N \sum_{t=1}^{T_i} \log p_{\theta}(y_t^{(i)} | y_{<t}^{(i)}, x^{(i)}) \quad (1)$$

178 where $x^{(i)}$ denotes the input for the i -th query-answer pair, $y_t^{(i)}$ is the target token at position t , and
 179 $y_{<t}^{(i)}$ represents the preceding target tokens.

181 By exposing the model to examples that decompose the reasoning process into interpretable steps,
 182 SFT facilitates subsequent stages of training, as it guides the model to produce not only correct
 183 answers, but also develop an interpretable and reliable reasoning trajectory.

185 **Reinforcement Learning.** To further empower the model to explore novel reasoning paths beyond
 186 those demonstrated during SFT, we introduce a reinforcement learning (RL) phase as a subsequent
 187 stage of training. Conventional RL approaches for language models typically rely solely on the
 188 final correctness of an answer as the reward signal. However, our analysis of post-SFT performance
 189 highlights a key observation: when a model learns to accurately assess the faithfulness of each
 190 intermediate reasoning step, its probability of producing correct answers increases significantly (see
 191 results in Section 3.3). Building on this insight, we integrate faithfulness as an intermediate reward
 192 in addition to the correctness signal within our RL framework, with both rewards assessed at the
 193 sentence level. This dual-signal strategy encourages the model not only to arrive at correct answers,
 194 but also to do so via faithful and interpretable reasoning trajectories. In turn, this fosters both greater
 195 robustness and enhanced accuracy in label prediction.

196 Formally, for sentence k in query-answer pair i , given the faithfulness score $f(i, k)$ and correctness
 197 score $c(i, k)$, we define the reward function as

$$198 \quad r_{i,k} = c(i, k) + \alpha \cdot f(i, k), \quad (2)$$

199 where α is a hyperparameter that balances the two reward components. In our experiments, we set
 200 $\alpha = 0.5$. Additionally, due to the strong bias toward correct labels in our dataset, we provide an
 201 extra reward when both the prediction and the ground truth label are incorrect (vice versa). Detailed
 202 analysis is provided in Section 3.4. This reward is then used within the Group Relative Policy
 203 Optimization (GRPO) algorithm (Guo et al., 2025) to optimize the policy model.

205 3 REWARD MODEL EXPERIMENTS

207 3.1 DATA CONSTRUCTION

209 We collect anonymized queries from Tencent WeChat search engine, which encompasses a comprehensive
 210 range of topics related to everyday knowledge. To safeguard user privacy, all data undergoes
 211 rigorous anonymization processes, removing any personally identifiable information prior to analysis.
 212 Before annotation, we employ rule-based methods to segment answers into individual sentences
 213 for finer granularity (details available in Appendix B.1). Our dataset is originally in Chinese, with
 214 all case studies and samples in this paper automatically translated into English for clarity.

215 Our data annotation process consists of two stages. In the first stage, human annotators assess
 whether each sentence is faithful to the supporting documents, labeling each sentence as either

216 Table 1: Reward model performance comparison. The best results are in bold.
217

	ORM	PRM	TRM-	TRM	TRM+	Δ
F1 Score	0.2564	0.3194	0.3238	0.3384	0.3447	+6.5%
Detection	0.3222	0.3479	0.3483	0.3643	0.3690	+5.9%

223 faithful or unfaithful based on its alignment with the source material. In the second stage, a separate
224 annotator reviews the query, supporting documents, answer, and the initial faithfulness label. This
225 annotator is responsible for verifying the factual correctness of each sentence, using but not solely
226 relying on the faithfulness labels. To ensure well-informed judgments, annotators are encouraged to
227 consult a variety of resources, including web searches, authoritative references, and domain-specific
228 databases. Additionally, annotators provide a brief rationale for their correctness decision, beginning
229 from considerations of faithfulness, which serves as the reasoning chain for the annotation.

230 This dual-stage annotation framework enables us to distinguish between several nuanced scenarios:
231

- 232 • *Faithful and Correct*: The answer aligns with supporting documents and is factually correct.
- 233 • *Unfaithful but Correct*: The answer doesn’t align with supporting documents but remains factually
234 correct. This can occur when supporting documents contain misleading information.
- 235 • *Faithful but Incorrect*: The answer aligns with supporting documents, but the content itself is
236 incorrect, possibly due inaccuracies within the source materials or outdated information.
- 237 • *Unfaithful and Incorrect*: The answer neither aligns with supporting documents nor is factually
238 correct, potentially arising from hallucinations, fabrication, or misunderstanding.

240 By disentangling faithfulness and factual correctness through this annotation process, we create a
241 rich and robust dataset. This enables the study of complex real-world scenarios where retrieved
242 evidence may be unreliable, incomplete, or contradictory, and supports the development of models
243 that can reason about both the provenance and truthfulness of information. Details of the dataset can
244 be found in Appendix A.1.

245 3.2 EXPERIMENTAL SETUP

247 **Evaluation.** It is important to note that the majority (86.86%) of answers in our dataset are la-
248 beled as correct, consequently, our primary focus is on evaluating the model’s ability to distinguish
249 incorrect answers from correct ones. This is particularly relevant since a single query may have
250 multiple fully correct answers (i.e., answers with no incorrect sentences). Our evaluation therefore
251 emphasizes the detection of incorrect content and adopts two main metrics:

- 253 • *F1 Score (Incorrect Sentences)*. We compute the F1 score specifically for sentences labeled as
254 incorrect. Since correct sentences are much more prevalent, the overall F1 score is heavily bi-
255 ased toward the correct class, making metrics such as F1 (overall) or F1 (correct) less informa-
256 tive—indeed, always predicting “correct” would yield artificially high scores.
- 257 • *Detection (Incorrect Answer)*. Given that we have both ground-truth and predicted correctness
258 labels for each sentence within an answer, we compute the proportion of incorrect sentences in
259 each answer and use this as the answer’s correctness score. We then assess whether our reward
260 model can accurately detect the worst answer (i.e., the answer with the lowest correctness score)
261 among all candidate answers for the same query.

262 More metrics including F1 (overall), F1 (correct), Recall and NDCG are reported in Appendix A.2.
263

264 **Baselines.** We compare our thinking-supervised reward model (TRM) with two baselines: the
265 outcome-supervised reward model (ORM) (Uesato et al., 2022) and the process-supervised reward
266 model (PRM) (Lightman et al., 2023). The ORM is trained based on answer-level correctness
267 scores, following the same procedure outlined previously in the evaluation. During evaluation, the
268 predicted answer-level score is uniformly assigned to each sentence when computing the sentence-
269 level F1 score. The PRM is trained with sentence-level correctness scores, employing a generative
approach to produce answer labels.

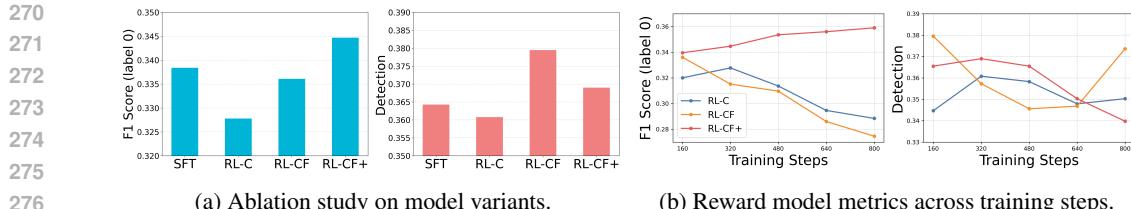


Figure 2: Analysis towards reinforcement learning.

Additionally, we include three variants of TRM for both fair comparison and ablation analysis. Since both ORM and PRM are trained solely with SFT, we denote the SFT-only variant of our model as TRM, and the variant further trained with reinforcement learning as TRM+. To investigate the contributions of different supervision signals, we introduce a variant without the reasoning path, denoted as TRM-, which serves as an ablation to assess the impact of the reasoning component.

3.3 MAIN RESULTS

As shown in Table 1, our proposed thinking-supervised reward model (TRM) consistently outperforms all baselines across all evaluation metrics. These results demonstrate the effectiveness of introducing thinking-supervised patterns into the reward model design. The improvements reported in the Δ column reflect the relative gain of TRM over the best non-TRM variant. Statistically, it is challenging to detect incorrect sentences or answers, as they tend to occur infrequently compared to correct ones.

In our ablation study, the TRM variant without explicit reasoning paths (TRM-) underperforms compared to the full TRM, confirming the importance of incorporating explicit reasoning steps into the model’s architecture. Notably, TRM- still surpasses PRM, providing direct evidence that the addition of faithfulness and mid-point thinking patterns contributes to improved judgment structure. Overall, these findings substantiate the contribution of each individual component in our thinking-supervised pattern design.

3.4 ANALYSIS

It is important to note that during continued reinforcement learning (RL) training, we employ both faithfulness and correctness as reward signals, along with an additional reward assigned for successfully predicting incorrect labels (as described in Section 2.3). To further investigate the contribution of each of these reward signals during RL, we evaluate the following four model variants:

- SFT: Model trained with supervised fine-tuning only, without reinforcement learning.
- RL-C: Model trained with supervised fine-tuning followed by reinforcement learning, using correctness as the sole reward signal.
- RL-CF: Model trained with reinforcement learning where the reward signal combines both correctness and faithfulness (weighted 2:1).
- RL-CF+: RL-CF with an additional reward for correct prediction of incorrect labels and an extra penalty for failure to predict incorrect labels.

The results in Table 2a summarize the performance of each model variant in terms of F1 score for sentence-level incorrect label and answer-level incorrect answer detection rate. Table 2b further illustrates the evolution of these two metrics on test datasets throughout the course of reinforcement learning (RL) training. Notably, only the RL-CF+ variant consistently outperforms the SFT baseline, while RL-CF demonstrates superiority solely in answer-level detection rate, and RL-C underperforms across both metrics. We also observe that as training progresses, there is a consistent increase in sentence-level F1 score (label 0) exclusively for RL-CF+, whereas the other two variants, which lack an additional reward for incorrect labels, exhibit a consistent decrease. In contrast, the answer-level detection rate remains relatively stable across all variants. Below, we provide a detailed analysis from two perspectives: (1) Why does RL sometimes hurt performance (RL-C and RL-CF

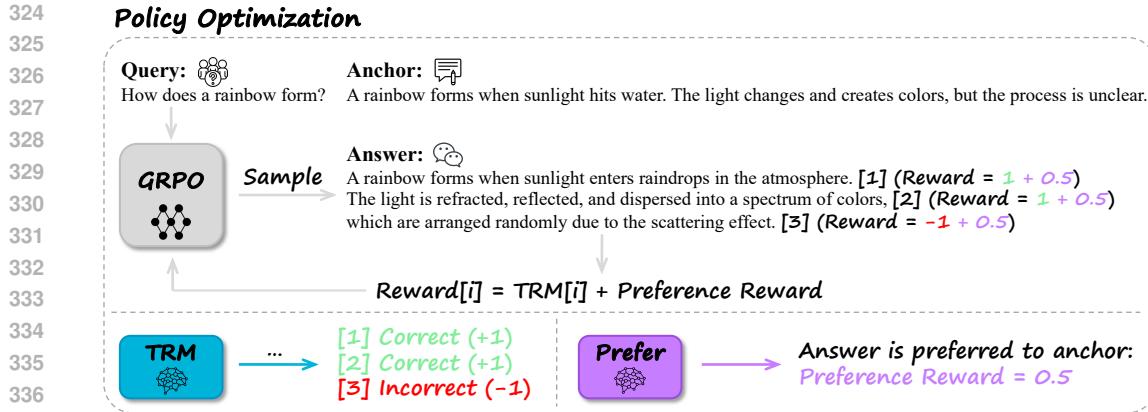


Figure 3: The overall architecture of policy optimization with the thinking-supervised reward model (**TRM**) and the preference reward model (**Prefer**). TRM provides sentence-level reward signals for correctness, while the preference reward model supplies an answer-level preference score that is broadcast to each sentence. For each sentence, these rewards are combined and then used as input to the GRPO algorithm to update the policy model.

occasionally worse than SFT)? (2) Why does introducing an additional reward for incorrect labels improve performance?

First, RL can underperform because it often overfits to training data by optimizing narrow reward signals, reducing generalization. In our sentence-level reasoning task, the path from faithfulness to correctness is mostly straightforward, with little room for exploration or alternative solutions. Unlike domains such as mathematics or coding, where multiple plausible solution paths exist and exploration is crucial, our task offers little room for RL to discover new reasoning strategies. The reasoning path may not be divergent enough, and the incorrect point is generally well-defined, leaving few alternative or wrong reasoning trajectories. As a result, attempts to force RL to explore in this constrained space can lead to spurious reasoning patterns that coincidentally produce correct answers.

Second, incorporating an additional reward for identifying incorrect labels helps to mitigate the data imbalance problem, as a large majority of sentences (86.86%) are correct labels. Without this adjustment, the reward model may overfit to the dominant class. By providing extra reward when the model correctly identifies a mistake (and penalizing it otherwise), we encourage the model to focus more on potential errors, promoting a more balanced and attentive learning process. This adjustment not only prevents overfitting to the majority class but also encourages the model to reason more carefully about where mistakes may occur, which can lead to improved detection performance.

4 POLICY OPTIMIZATION

Having demonstrated that our thinking-supervised reward model (TRM) can reliably distinguish between correct and incorrect sentences, we now proceed to evaluate its effectiveness as a reward signal for policy model training within a reinforcement learning (RL) framework. An overview is provided in Table 3.

4.1 REINFORCEMENT LEARNING FRAMEWORK

In our reinforcement learning framework, we utilize the reward model to provide feedback signals for each rollout answer generated by the policy model. Specifically, TRM is responsible for evaluating the correctness of individual answers. While it is intuitive to use TRM directly as the generative reward model, it is important to note that TRM focuses solely on correctness, which represents only one aspect of overall answer quality.

For instance, a concise answer may always be correct, yet it might lack sufficient information to be considered useful. We refer to this broader dimension as *usefulness*. To address this, we adopt

378 a common practice of combining multiple reward signals: in addition to TRM, we incorporate a
 379 preference reward model (Prefer) that captures aspects beyond correctness.
 380

381 For each query, we select an answer with a perfect TRM score as the “anchor”. The preference
 382 reward model is then used to compare the rollout answer with the anchor, providing a positive
 383 reward if the rollout is preferred, and a negative reward otherwise. The detailed prompting strategy
 384 for the preference model is described in Appendix D.

385 The final reward signal for sentence k in answer i is computed as:

$$386 \quad r_{i,k} = \text{TRM}(i, k) + \beta \cdot \text{Prefer}(g, i) \quad (3)$$

388 where $\text{TRM}(i, k)$ denotes the correctness score assigned by TRM, and $\text{Prefer}(g, i)$ is the preference
 389 score comparing answer i to the golden answer g . Hyperparameter β balances the contribution of
 390 usefulness and correctness. The combined reward signal is subsequently used within the Group
 391 Relative Policy Optimization (GRPO) algorithm (Guo et al., 2025) to optimize the policy model.

392 4.2 EXPERIMENTAL SETUP

394 **Datasets.** To rigorously evaluate our reward model, we ensure the policy model is tested on queries
 395 not seen during reward model training, thus preventing data leakage. Specifically, we curate a new
 396 dataset consisting of 9423 queries collected again from Tencent WeChat search engine. For evalua-
 397 tion, to ensure thorough assessment, we construct a challenging test set of 94 queries, each of which
 398 contains at least one incorrect answer to assess the robustness of the trained policy.

399 Although our commercial search engine offers a wide variety of question types and is regarded
 400 as a comprehensive, all-domain resource, we further evaluate the generalization capability of our
 401 reward model beyond in-domain data. To this end, we additionally assess our model on the open-
 402 domain CRUD dataset (Lyu et al., 2025), a Chinese-language dataset comprising queries, supporting
 403 documents, and reference answers. Specifically, we utilize 8618 query-answer pairs for training and
 404 reserve 100 pairs for testing.

406 **Evaluation.** As discussed in Subsection 4.1, we evaluate both *correctness* and *usefulness* of the
 407 generated answers. For correctness, we employ GPT-4.1 (OpenAI, 2024) to assess the correctness
 408 of each sentence within every answer. Specifically, we calculate the proportion of correct sentences
 409 as the answer’s score and report the average across all test samples as the final correctness metric.
 410 We also report the number of completely correct answers, defined as answers in which all sentences
 411 are judged to be correct. For our constructed challenging dataset, we manually provide GPT-4.1 with
 412 several incorrect answers for each query and explicitly indicate where the mistakes occur, thereby
 413 enabling a more accurate evaluation. In contrast, for the CRUD dataset—which features an easier
 414 test set—GPT-4.1 alone is sufficient to identify the errors without additional manual intervention.

415 Evaluating usefulness is more nuanced, as it is a less well-defined and inherently more relative
 416 concept. To address this, we provide an anchor answer (sampled from Qwen2.5-32B-Instruct, also
 417 referred to as “Base”) alongside the answer generated after training. We then employ GPT-4.1 to
 418 compare each answer to the anchor. To eliminate any bias arising from the order in which answers
 419 are presented to GPT-4.1—since LLMs may sometimes exhibit a preference for the first answer in
 420 a pair—we present both the anchor and the generated answer in both possible positions, conducting
 421 the evaluation twice for each pair. If GPT-4.1 consistently prefers one answer, regardless of its
 422 position, then it’s counted as a win; otherwise, it is considered a loss. If no consensus can be
 423 reached, the comparison is marked as a tie. To ensure fairness across different models, the anchor
 424 answer remains fixed. Detailed evaluation prompts are provided in Appendix D.

425 4.3 MAIN RESULTS

427 Table 2 demonstrates that the joint use of both the preference reward model (Prefer) and the thinking-
 428 supervised reward model (TRM) leads to significant improvements in both correctness and useful-
 429 ness. This can be attributed to the complementary strengths of the two reward models: preference
 430 reward model captures usefulness, while TRM focuses on correctness. Notably, for the Tencent test
 431 dataset, which deliberately includes challenging queries only, the joint model shows a substantial
 improvement in usefulness (from 33 to 43). In contrast, for the CRUD dataset, where test samples

432 Table 2: Evaluation results on the Tencent and CRUD datasets. The best results are in bold.
433

434 Data	435 Tencent						436 CRUD					
	437 Metrics	438 Correctness		439 Usefulness			440 Correctness	441 Usefulness		442 Win	443 Lose	444 Tie
445 Count		446 Score	447 Win	448 Lose	449 Tie	450 Count	451 Score	452 Win	453 Lose	454 Tie	455	
456 Base	457 48	458 0.8876	459 –	460 –	461 –	462 66	463 0.9075	464 –	465 –	466 –	467	468
469 Prefer	470 53	471 0.8672	472 34	473 28	474 32	475 76	476 0.9182	477 76	478 6	479 18	480	481
482 TRM	483 50	484 0.8878	485 33	486 27	487 34	488 84	489 0.8945	490 79	491 7	492 14	493	494
496 Joint	497 59	498 0.9158	499 43	500 20	501 31	502 86	503 0.9489	504 85	505 3	506 12	507	508

449 are chosen randomly, the joint model achieves a significant improvement in correctness (from 66 to 508). These findings demonstrate the joint model’s capacity to adapt to dataset complexity, excelling 509 in usefulness for more difficult queries and in correctness for easier ones. 510

447 5 RELATED WORK

448 5.1 REINFORCEMENT LEARNING FROM VERIFIABLE REWARDS (RLVR)

449 Reinforcement learning from verifiable rewards (RLVR) is a key technique for encouraging large 511 language models to perform step-by-step reasoning (Lambert et al., 2024; Guo et al., 2025). Recent 512 advances in reward modeling have focused on three main directions. First, process-supervised 513 reward models enhance feedback by assessing intermediate reasoning steps rather than just final 514 answers (Uesato et al., 2022; Lightman et al., 2023). Second, fine-grained reward functions better 515 capture nuanced human preferences, allowing models to align more closely with desired behaviors 516 (Wu et al., 2023; Song et al., 2025). Third, explicit reasoning supervision helps models produce 517 more coherent and robust chains of thought (Chen et al., 2025; Khalifa et al., 2025; Zhang et al., 518 2025). These approaches are particularly effective in domains with clear logic and verifiable 519 outcomes, such as mathematics and coding, but they struggle to extend to more complex, open-ended 520 domains, where our method demonstrates greater applicability. 521

462 5.2 GENERATIVE REASONING REWARD MODELS

463 Parallel to advances in reward modeling, researchers have explored leveraging chain-of-thought 522 (CoT) reasoning (Wei et al., 2022) to enhance reward model predictions. However, as CoTs do not 523 always faithfully reflect a model’s underlying reasoning process (Chen et al., 2025; Turpin et al., 524 2023), a variety of approaches have emerged to address this limitation. These include incorporating 525 intermediate reasoning steps (Paul et al., 2024), formulating reward modeling as a next-token 526 prediction task (Zhang et al., 2024), ranking CoT traces (Wu et al., 2025b), and employing external 527 verification tools (Lyu et al., 2023). In contrast, our approach provides explicit sentence-level supervision 528 and feedback at each reasoning step, ensuring that the model’s reasoning remains faithful to 529 its true thought process, thereby increasing trust in its outputs. 530

473 6 CONCLUSION

474 We have introduced the thinking-supervised reward model (TRM), a novel framework for equipping 531 language models with critical thinking abilities through structured, sentence-level reward evaluation. 532 By modeling the reward process as a sequence of faithfulness, reasoning, and correctness, TRM 533 effectively addresses the challenges of complex, open-domain tasks where verification is 534 difficult and sources of error are nuanced. Our experiments demonstrate that TRM not only improves 535 error detection at both the sentence and answer levels, but also enhances policy optimization in 536 reinforcement learning settings, leading to significant gains in correctness and usefulness. We hope 537 our open-sourced TRM and its implementation will inspire further research into more rigorous and 538 interpretable reward modeling for language models. 539

486 REFERENCES
487

488 Vaibhav Adlakha, Parishad BehnamGhader, Xing Han Lu, Nicholas Meade, and Siva Reddy. Evaluating
489 correctness and faithfulness of instruction-following models for question answering. *Transactions of the Association for Computational Linguistics*, 12:681–699, 2024.

490

491 Yanda Chen, Joe Benton, Ansh Radhakrishnan, Jonathan Uesato, Carson Denison, John Schulman,
492 Arushi Soman, Peter Hase, Misha Wagner, Fabien Roger, et al. Reasoning models don’t always
493 say what they think. *arXiv preprint arXiv:2505.05410*, 2025.

494

495 Esin Durmus, He He, and Mona Diab. Feqa: A question answering evaluation framework for
496 faithfulness assessment in abstractive summarization. *arXiv preprint arXiv:2005.03754*, 2020.

497

498 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
499 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

500

501 Yukun Huang, Sanxing Chen, Hongyi Cai, and Bhuwan Dhingra. To trust or not to trust?
502 enhancing large language models’ situated faithfulness to external contexts. *arXiv preprint
arXiv:2410.14675*, 2024.

503

504 Zhuoran Jin, Pengfei Cao, Yubo Chen, Kang Liu, Xiaojian Jiang, Jie Xin Xu, Qiuxia Li, and Jun
505 Zhao. Tug-of-war between knowledge: Exploring and resolving knowledge conflicts in retrieval-
506 augmented language models. *arXiv preprint arXiv:2402.14409*, 2024.

507

508 Muhammad Khalifa, Rishabh Agarwal, Lajanugen Logeswaran, Jaekyeom Kim, Hao Peng, Moon-
509 tae Lee, Honglak Lee, and Lu Wang. Process reward models that think. *arXiv preprint
arXiv:2504.16828*, 2025.

510

511 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint
arXiv:1412.6980*, 2014.

512

513 Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
514 man, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers
515 in open language model post-training. *arXiv preprint arXiv:2411.15124*, 2024.

516

517 Jiazheng Li, Hanqi Yan, and Yulan He. Drift: Enhancing llm faithfulness in rationale generation via
518 dual-reward probabilistic inference. In *The 63rd Annual Meeting of the Association for Compu-
519 tational Linguistics: ACL 2025*, 2025.

520

521 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
522 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In *The Twelfth
523 International Conference on Learning Representations*, 2023.

524

525 Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apidianaki,
526 and Chris Callison-Burch. Faithful chain-of-thought reasoning. In *The 13th International Joint
527 Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter
528 of the Association for Computational Linguistics (IJCNLP-AACL 2023)*, 2023.

529

530 Yuanjie Lyu, Zhiyu Li, Simin Niu, Feiyu Xiong, Bo Tang, Wenjin Wang, Hao Wu, Huanyong
531 Liu, Tong Xu, and Enhong Chen. Crud-rag: A comprehensive chinese benchmark for retrieval-
532 augmented generation of large language models. *ACM Transactions on Information Systems*, 43
(2):1–32, 2025.

533

534 Qianli Ma, Haotian Zhou, Tingkai Liu, Jianbo Yuan, Pengfei Liu, Yang You, and Hongxia Yang.
Let’s reward step by step: Step-level reward model as the navigators for reasoning. *arXiv preprint
arXiv:2310.10080*, 2023.

535

536 OpenAI. Gpt-4.1: Openai’s most capable model. <https://openai.com/index/gpt-4-1/>,
537 2024. Accessed: 2025-08-24.

538

539 Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beatriz Borges, Antoine Bosselut, Robert West,
and Boi Faltings. Refiner: Reasoning feedback on intermediate representations. *arXiv preprint
arXiv:2304.01904*, 2023.

540 Debjit Paul, Robert West, Antoine Bosselut, and Boi Faltings. Making reasoning matter: Measur-
 541 ing and improving faithfulness of chain-of-thought reasoning. *arXiv preprint arXiv:2402.13950*,
 542 2024.

543 Mingyang Song, Zhaochen Su, Xiaoye Qu, Jiawei Zhou, and Yu Cheng. Prmbench: A fine-grained
 544 and challenging benchmark for process-level reward models. *arXiv preprint arXiv:2501.03124*,
 545 2025.

546 Qwen Team. Qwen2 technical report. *arXiv preprint arXiv:2407.10671*, 2024.

547 Miles Turpin, Julian Michael, Ethan Perez, and Samuel Bowman. Language models don't always
 548 say what they think: Unfaithful explanations in chain-of-thought prompting. *Advances in Neural*
 549 *Information Processing Systems*, 36:74952–74965, 2023.

550 Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
 551 Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
 552 outcome-based feedback. *arXiv preprint arXiv:2211.14275*, 2022.

553 Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
 554 Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. *arXiv*
 555 *preprint arXiv:2312.08935*, 2023a.

556 Yike Wang, Shangbin Feng, Heng Wang, Weijia Shi, Vidhisha Balachandran, Tianxing He, and
 557 Yulia Tsvetkov. Resolving knowledge conflicts in large language models. *arXiv preprint*
 558 *arXiv:2310.00935*, 2023b.

559 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 560 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 561 *neural information processing systems*, 35:24824–24837, 2022.

562 Junyu Wu, Weiming Chang, Xiaotao Liu, Guanyou He, Tingfeng Xian, Haoqiang Hong, Boqi
 563 Chen, Hongtao Tian, Tao Yang, Yunsheng Shi, Feng Lin, Ting Yao, and Jiatao Xu. Wechat-
 564 yatt: A scalable, simple, efficient, and production ready training library, 2025a. URL <https://arxiv.org/abs/2508.07970>.

565 Mingyan Wu, Zhenghao Liu, Yukun Yan, Xinze Li, Shi Yu, Zheni Zeng, Yu Gu, and Ge Yu. Rankcot:
 566 Refining knowledge for retrieval-augmented generation through ranking chain-of-thoughts. *arXiv*
 567 *preprint arXiv:2502.17888*, 2025b.

568 Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane Suhr, Prithviraj Ammanabrolu, Noah A Smith,
 569 Mari Ostendorf, and Hannaneh Hajishirzi. Fine-grained human feedback gives better rewards for
 570 language model training. *Advances in Neural Information Processing Systems*, 36:59008–59033,
 571 2023.

572 Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh
 573 Agarwal. Generative verifiers: Reward modeling as next-token prediction. *arXiv preprint*
 574 *arXiv:2408.15240*, 2024.

575 Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
 576 Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
 577 reasoning. *arXiv preprint arXiv:2501.07301*, 2025.

578 Yilun Zhao, Lyuhao Chen, Arman Cohan, and Chen Zhao. Tapera: Enhancing faithfulness and
 579 interpretability in long-form table qa by content planning and execution-based reasoning. In *Pro-
 580 ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume*
 581 *I: Long Papers)*, pp. 12824–12840, 2024.

582

583

584

585

586

587

588

589

590

591

592

593

594
595

A DATA AND PERFORMANCE ANALYSIS

596
597

A.1 REWARD MODEL DATASET

598
599
600
We detail the dataset used for the reward model, which is sourced from Tencent WeChat search
engine. Table 3. includes the number of queries, answers, sentence counts as well as the proportion
of correct and incorrect sentences (reported as percentages).601
602
Table 3: Tencent dataset for reward model603
604
605
606
607
608
609

	Query	Answer	Sentences		
			count	positive (%)	negative (%)
Overall	2133	8648	93322	86.86%	13.14%
Training	1919	7784	84068	86.75%	13.25%
Testing	214	864	9254	87.86%	12.14%

610
611

A.2 PERFORMANCE

612
613
614
615
616
617
As discussed in Section 3.2, we report the F1 score for incorrect sentences and the detection of
incorrect answers. It is important to highlight that our dataset is highly imbalanced, with a signifi-
cantly larger proportion of correct sentences. Accordingly, our primary objective is to demonstrate
the ability to effectively improve the labeling of incorrect sentences while maintaining competitive
performance on correct ones. To this end, we evaluate the metrics summarized below in Table 4,
considering both correct and incorrect answers/sentences:618
619
620
621
622
623
624
625
626
627
628
• *F1 Score (All Sentences)*. We report the F1 score across all sentences, regardless of correctness.
• *F1 Score (Correct Sentences)*. We report the F1 score for correct sentences only.
• *Recall*. We report the recall score across all sentences to demonstrate that our model does not
result in false detection issues while excelling at identifying incorrect labels.
• *Normalized Discounted Cumulative Gain (NDCG)*. We report the NDCG@4 score for each query
(with 4 answers per query in the test set) based on ranked correctness scores. Since most an-
swers are fully correct, NDCG remains consistently high with minimal variation, as top-ranked
answers often receive perfect scores. Thus, even small NDCG differences can reflect significant
improvements due to the limited answers and prevalence of perfect scores.629
Table 4: Additional reward model performance comparison. The best results are in bold.630
631
632
633
634
635

	ORM	PRM	TRM-	TRM	TRM+
F1 (overall)	0.7274	0.8680	0.8715	0.8652	0.8648
F1 (correct)	0.8331	0.9268	0.9289	0.9240	0.9237
Recall	0.7743	0.8677	0.8713	0.8635	0.8630
NDCG	0.9036	0.9052	0.9047	0.9086	0.9091

636
637
638
639
640
Notably, TRM variants achieve better overall performance than ORM and PRM. However, accu-
rately predicting correct labels is relatively easy, since consistently predicting “correct” naturally
leads to high scores on these metrics. The primary focus here is to demonstrate our method enjoys
a low false detection rate and does not significantly compromise its ability to predict correct labels.641
642

B IMPLEMENTATION DETAILS

643
644
645
646
647
We use Qwen2.5-32B-Instruct (Team, 2024) as the backbone architecture for our policy model. For
all reward models, we employ DeepSeek-R1-Distill-Qwen-32B (Guo et al., 2025) as the underly-
ing model. We select the checkpoint that achieves the highest detection rate of incorrect answers.
Both supervised fine-tuning (SFT) and reinforcement learning (RL) are performed using the Tencent
Wechat-YATT training framework (Wu et al., 2025a).

648
649

B.1 THINKING-SUPERVISED REWARD MODEL

650
651
652
653
654
655
656
657

Sentence separation. The sentence separation process first divides each answer into segments using regular expressions that identify common sentence-ending punctuation marks. The script then further processes these segments to recognize and group structured elements such as headings, numbered lists, and bullet points, ensuring that these are treated as cohesive units rather than being split incorrectly. For every identified sentence or section, the original text is preserved and paired with an order label. In the final step, the script inserts explicit sentence order markers (e.g., [Sentence 1]) into the answer text, producing a version where each sentence or section is clearly delineated and labeled. The processed results are then saved for downstream analysis or annotation.

658
659
660
661
662
663
664

Supervised Fine-tuning. We perform supervised fine-tuning (SFT) for our TRM using the dataset described in Appendix A. Training is conducted with a batch size of 32 for 4 epochs on 128 NVIDIA H20 GPUs. We employ tensor parallelism, pipeline parallelism, and data parallelism with degrees of 8, 4, and 4, respectively. Each epoch requires approximately one hour of training. The Adam optimizer (Kingma & Ba, 2014) is utilized, with an initial learning rate of 3×10^{-6} , a minimum learning rate of 1×10^{-7} , and 200 warm-up steps.

665
666
667
668
669
670
671

Reinforcement Learning. We perform reinforcement learning (RL) on our TRM following supervised fine-tuning. RL is conducted with a batch size of 128 for 800 steps on 128 NVIDIA H20 GPUs, with each training session requiring approximately 24 hours. We employ tensor parallelism, pipeline parallelism, and data parallelism with degrees of 8, 4, and 4, respectively. The Adam optimizer is used, with an initial learning rate of 5×10^{-8} , a minimum learning rate of 5×10^{-9} , 20 warm-up steps, and a KL-loss coefficient (β) of 0.01. For sampling, we use a rollout batch size of 32 and apply top- k sampling ($k = 40$) for decoding, with the temperature parameter set to 1.0.

672
673

B.2 POLICY OPTIMIZATION

674
675
676
677
678
679
680
681

We perform reinforcement learning (RL) on the policy model using both the TRM and the preference reward model, with a reward weighting ratio of 1:2. RL is conducted with a batch size of 128 for 2240 steps on 128 NVIDIA H20 GPUs. Each training session requires approximately 72 hours for Tencent dataset and 24 hours for CRUD dataset. We employ tensor parallelism, pipeline parallelism, and data parallelism with degrees of 8, 4, and 4, respectively. The Adam optimizer is used, with an initial learning rate of 1×10^{-7} , a minimum learning rate of 5×10^{-9} , 20 warm-up steps, and a KL-loss coefficient (β) of 0.01. For sampling, we use a rollout batch size of 32 and apply top- k sampling ($k = 40$) for decoding, with the temperature parameter set to 1.0.

682

C CASE STUDIES

683
684
685
686
687
688
689
690

To highlight the unique strengths of our TRM in fostering critical thinking within LLMs, we present representative case studies for each of the following scenarios: (i) faithful and correct, (ii) faithful but incorrect, (iii) unfaithful but correct, and (iv) unfaithful and incorrect. Since including all document answers and sentence-level reasoning would be prohibitively lengthy, we selectively present only the most illustrative segments for each example. For clarity, the original texts (in Chinese) have been translated into English.

691

C.1 FAITHFUL AND CORRECT

692
693
694

QUERY: What is the highest alcohol content of vodka?

695
696
697

DOCUMENTS: The highest alcohol content of vodka is 96%, found in rectified vodka from Poland (Spirytus Rektyfikowany). Most vodkas are typically 40-60% alcohol. Vodka is a distilled spirit made from fermented grains, known for its clean and pure taste ...

698
699
700

ANSWER: Vodka can reach a maximum alcohol content of 96%, most notably in the Polish Spirytus Rektyfikowany ...

701

GROUND TRUTH: The sentence is faithful to the source information and accurately describes the highest alcohol content of vodka and the specific product.

702 **TRM:**
 703 {
 704 “Faithfulness Score”: 1,
 705 “Reason for Correctness Score”: “The sentence is faithful to the source, factually accurate
 706 and complete, describing the highest strength, representative brand, characteristics, and uses of
 707 vodka, without any errors or omissions.”,
 708 “Correctness Score”: 1
 709 }
 710
 711

712 C.2 FAITHFUL BUT INCORRECT

713 **QUERY:** How should the penalty for breach be calculated when the seller refuses to deliver goods?

714 **DOCUMENTS:** ... In cases where the seller fails to deliver goods, according to the provisions of
 715 the E-Commerce Law, the seller should compensate the consumer an amount ranging from three to
 716 ten times the payment made by the consumer ...

717 **ANSWER:** ... In cases of non-delivery, the E-Commerce Law purportedly requires compensation of
 718 three to ten times the purchase amount ...

719 **GROUND TRUTH:** The compensation standard should be based on the contract terms or actual
 720 losses, not three to ten times the amount. The sentence content contradicts the legal regulations.

721 **TRM:**
 722 {
 723 “Faithfulness Score”: 1,
 724 “Reason for Correctness Score”: “The sentence cites the ‘E-Commerce Law’ and mentions a
 725 specific compensation ratio, but the ‘E-Commerce Law’ does not explicitly stipulate a specific
 726 ratio, so there is a factual error.”,
 727 “Correctness Score”: 0
 728 }

729 C.3 UNFAITHFUL BUT CORRECT

730 **QUERY:** How many calories are in 100g of ham sausage?

731 **ANSWER:** 100 grams of ham sausage contains about 212 kcal. Note that the calorie content may
 732 vary by brand, and as a processed meat product, its calories depend on ingredients and production
 733 methods ...

734 **GROUND TRUTH:** The information is correct. Although there is no direct source, the answer is
 735 reasonable, consistent with the fact that ham sausage is relatively high in calories, and includes a
 736 reminder to consume in moderation.

737 **TRM:**
 738 {
 739 “Faithfulness Score”: 0,
 740 “Reason for Correctness Score”: “There is no direct source in the original text, but the content
 741 is correct and aligns with common knowledge.”,
 742 “Correctness Score”: 1
 743 }

744 C.4 UNFAITHFUL AND INCORRECT

745 **QUERY:** What is the purpose of teaching how to sketch a cube?

756 **ANSWER:** ... By using the structural features of a cube, students can master techniques for combining square and round forms, providing a foundational skill for drawing more complex subjects like figures and scenes ...

759 **GROUND TRUTH:** The answer contains factual errors, a cube does not help master the combination
760 of square and round forms, and the information is not faithful to the original text.

762 **TRM:**

763 {

764 “Faithfulness Score”: 0,

765 “Reason for Correctness Score”: “The answer is not faithful to the source, and its claims about
766 building skills for complex forms are incorrect.”,

767 “Correctness Score”: 0

768 }

771 D PROMPTS

773 In this section, we detail all prompts utilized throughout our experiments, including those for training
774 reward models, guiding policy models, and evaluating responses via LLM-as-a-Judge. For clarity,
775 the original texts (in Chinese) have been translated into English.

777 D.1 PROMPTS FOR THINKING-SUPERVISED REWARD MODEL

779 You will receive information in the following format:

780 {
781 "query": // user query
782 "now_time": // time of query
783 "search_result": // retrieved original text
784 "answer_order": // the answer is split into sentences:
785 "
786 Sentence content 0 [Sentence 0]
787 Sentence content 1 [Sentence 1]
788 ...
789 "
790 }

791 Please follow these steps:

793 1. For each sentence in `answer_order` (marked as [Sentence i]), perform:

794 (a) Judge whether the sentence is faithful to the source text:

- 796 • Faithful: The content aligns with the source, or is a reasonable summary, inference, or
797 suggestion. Sentences without substantive information are also considered faithful.
- 798 • Unfaithful: The content does not match the source or includes information not men-
799 tioned and cannot be reasonably inferred.

800 (b) Judge the correctness, classified as:

- 801 • Faithful and correct: Professional terms, data, specific conclusions, or cited opinions
802 supported by the source.
- 803 • Faithful but incorrect: The source itself is wrong, outdated, contains conflicting infor-
804 mation, or contains common-sense errors.
- 805 • Unfaithful but correct: Reasonable summary, general knowledge, or reasonable infer-
806 ence based on the source and common sense.
- 807 • Unfaithful and incorrect: Fabricated information, excessive speculation, contradiction,
808 etc. Only mark as incorrect if it cannot be reasonably inferred from context or common
809 sense.

810 2. Output the results in the following List format:

```

810
811     [
812         // For each sentence, use this format
813         {
814             "Faithfulness Score": 0 or 1, // 0: unfaithful, 1: faithful
815             "Correctness Reason": "",
816             "Correctness Score": 0 or 1 // 0: incorrect, 1: correct
817         }
818     ]

```

Notes:

- The order of sentences in the output List must exactly match the order in `answer_order`.
- Output only the final List, nothing else.

D.2 PROMPTS FOR POLICY MODEL

You will receive information in the following format:

```

826
827     {
828         "query": // user question
829         "search_result": // retrieved original text
830     }

```

Please answer the “query” based on the “search_result”. Follow these requirements:

- Understand Intent: Before answering, thoroughly analyze and understand the core intent of the user’s question to ensure your answer directly addresses the user’s needs.
- Complete Information: The answer should cover all key information, ensuring thorough and comprehensive content with no omissions.
- Clear Expression: Use concise and fluent language, avoid repetition and redundancy, and ensure the answer is easy to understand.
- Logical Structure: Present the answer in a clear and organized manner. Use bullet points, lists, or paragraphs as appropriate to structure the content logically.
- Reference the Original Text: Base your answer primarily on the “search_result”; when necessary, make reasonable inferences using your own knowledge.

Please process the following content according to the above rules:

D.3 PROMPTS FOR CORRECTNESS EVALUATION

You are a professional and meticulous QA annotator. Your task is to analyze factual errors in the “Answer to be Evaluated” based on the “Question”, “References”, and your own model knowledge.

Input Information:

```

851
852     {
853         "Question": The question or task to be answered.
854         "References": Reference materials related to the question.
855         "Answer to be Analyzed": The answer containing errors.
856     }

```

Analysis Requirements:

1. Analyze the factual errors in each sentence of the “Answer to be Analyzed”, sentence by sentence.
2. Only analyze factual errors; do not consider issues of expression, structure, logic, or missing content.
3. Carefully check each sentence, and point out even the slightest factual errors. If there is a suspected factual error, mark and explain the uncertainty—do not ignore any possible factual errors due to uncertainty.

864 4. After the analysis, calculate the error ratio (number of erroneous sentences / total number of
 865 sentences) and output it in float format.
 866

867 Output the result in the following JSON format (strictly follow the requirements, do not output
 868 anything extra):
 869

```
870 {
  871   "Error Analysis": [
  872     // Error analysis for each sentence
  873   ],
  874   "Error Ratio": // float format
  875 }
```

876 Please process the following content according to the above rules:
 877

D.4 PROMPTS FOR USEFULNESS EVALUATION

880 You are acting as a senior QA evaluator. Your task is to determine the preference order ("partial
 881 order") between "Answer 1" and "Answer 2" based on the "Question" and your internal model
 882 knowledge.
 883

884 Input Information:

```
885 {
  886   "Question": // The question or task to be answered
  887   "Answer 1": // The first answer
  888   "Answer 2": // The second answer
  889 }
```

890 [Usefulness Definition]

- 892 • 0 points – Poor: The answer provides information irrelevant to the question's requirements.
- 894 • 1 point – Flawed: Cases include:
 - 895 – (Missing Key Points): The answer provides information that only partially meets the ques-
 896 tion's needs;
 - 897 – (Redundant Information): The answer meets the requirements but also contains information
 898 not directly useful for the question;
 - 899 – The answer is a specific answer to a general question (e.g., question: national policy; answer:
 900 local policy);
 - 901 – The answer is a general answer to a specific question (e.g., question: local policy; answer:
 902 national policy).
- 904 • 2 points – Satisfactory: The answer provides information that meets the question's requirements,
 905 with no significant irrelevant content.
- 906 • 3 points – High Quality: The answer provides information that fully meets the question's require-
 907 ments, with no redundant information.

908 Instructions:

- 910 1. Based on your understanding, first analyze the specific intention and focus of the "Question", as
 911 well as any possible extension needs.
- 913 2. According to the usefulness definition, provide a comparative analysis of "Answer 1" and "An-
 914 swer 2".
- 915 3. Clearly indicate which answer is overall better (i.e., the "partial order" relationship).

917 Output the results in the following JSON format (strictly follow the requirements, do not output
 anything extra):

```
918 {  
919     "Usefulness Comparative Analysis": "",  
920     "Final Partial Order": "Answer 1" or "Answer 2"  
921 }  
922
```

923 Please process the following content according to the above rules:

```
924  
925  
926  
927  
928  
929  
930  
931  
932  
933  
934  
935  
936  
937  
938  
939  
940  
941  
942  
943  
944  
945  
946  
947  
948  
949  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
970  
971
```