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ABSTRACT

Hyperparameter optimization (HPO) is generally treated as a bi-level optimization
problem that involves fitting a (probabilistic) surrogate model to a set of observed
hyperparameter responses, e.g. validation loss, and consequently maximizing an
acquisition function using a surrogate model to identify good hyperparameter can-
didates for evaluation. The choice of a surrogate and/or acquisition function can
be further improved via knowledge transfer across related tasks. In this paper, we
propose a novel transfer learning approach, defined within the context of model-
based reinforcement learning, where we represent the surrogate as an ensemble
of probabilistic models that allows trajectory sampling. We further propose a
new variant of model predictive control which employs a simple look-ahead strat-
egy as a policy that optimizes a sequence of actions, representing hyperparameter
candidates to expedite HPO. Our experiments on three meta-datasets comparing
to state-of-the-art HPO algorithms including a model-free reinforcement learning
approach show that the proposed method can outperform all baselines by exploit-
ing a simple planning-based policy.

1 INTRODUCTION

Hyperparameter optimization (HPO) is a ubiquitous problem within the research community and an
integral aspect of tuning machine learning algorithms to ensure generalization beyond the training
data. HPO is often posed as a sequential decision-making process, however, it can be seen as a
special use-case of model-based reinforcement learning (MbRL) (Sutton,|1991a;|Henaff et al., 2017)
developed under the guise of some idiosyncratic terms.

In MbRL the objective is to train a transition model to approximate an underlying transition function
via interactions with an environment governed by some policy, e.g. random shooting (Nagabandi
et al} [2018), to improve sample efficiency and learn from more useful interactions whereby the
learned models are used as a simulator for sampling trajectories. An agent navigates the simu-
lated environment to optimize a pre-defined reward function, while the transition model remains
unchanged. Conventionally in HPO, a surrogate model is trained to estimate some black-box func-
tion, e.g. validation loss of a machine learning algorithm under investigation (Rasmussen) 2003;
Snoek et al., 2015b; Springenberg et al., 2016). An acquisition function (Wilson et al.l [2017b)) in-
teracts with the surrogate model to propose potential hyperparameters that optimize the black-box
response, viewed as a reward function. Effectively, the surrogate model is the only unknown com-
ponent for a transition model, that prevents HPO from being framed fully as MbRL problem.

In this paper, we present a novel formulation for HPO defined within the context of MbRL. Namely,
we learn an ensemble of probabilistic neural network models (Lakshminarayanan et al., [2017)) and
show that using model predictive control (MPC) (Kamthe & Deisenroth, [2018)) and a novel look-
ahead variant to navigate the simulated black-box environment, we can outperform conventional
Bayesian optimization techniques with heuristic acquisition functions in both transfer and non-
transfer learning settings. Thus, we elaborate on the importance of explicit planning in HPO that
has been largely overlooked by the community. We also formally define HPO as a Markov deci-
sion process (MDP) with a simple, yet novel, state representation as the set of previously evaluated
hyperparameters and their corresponding responses.

We argue that with a clearly defined transition model, we can replace the acquisition function with a
simple policy that maximizes the reward across the simulated trajectories, and achieve better results
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Figure 1: Motivating the effect of planning for HPO.

through proper planning, as shown in Figure[I] LookAhead MPC-5 is our look-ahead strategy with
MPC that simulates 5 states ahead. We focus here on the motivation with more details in Section[6l

Our main contributions are summarized as i) a formal definition of HPO as an MDP which does
not depend on any engineered heuristics, ii) a new transfer learning surrogate model represented
by an ensemble of probabilistic neural networks, iii) a novel acquisition function that implements
a look-ahead strategy paired with model predictive control, iv) clear motivation that highlights the
impact of planning in HPO, which to the best of our knowledge, has never been addressed before.

2 RELATED WORK

Hyperparameter optimization has been extensively studied in the community within two main set-
tings: single task (non-transfer learning) HPO and transfer learning HPO.

For single task HPO, solutions often involve estimating the hyperparameter response surface using
a (probabilistic) surrogate, such as a Gaussian process (Rasmussen, 2003} Bergstra et al., |2011),
random forests (Hutter et al.,[201 1)), Bayesian neural networks (Springenberg et al., [2016)), or some
hybrid approach (Snoek et al.l 2015a)). Hyperparameter candidates are then selected via an acquisi-
tion function (Wilson et al., [2017a), e.g. expected improvement, that satisfies some well-motivated
assumptions and utilizes the statistics from the posterior to score each hyperparameter.

Transfer learning solutions on the other hand leverage available data from experiments on related
tasks to expedite HPO. Simple solutions involve initializing the surrogate using hyperparameters
that perform well on datasets that have similar meta-features (Feurer et al.| 2014; Jomaa et al.
2021a), i.e. dataset statistics. The response surface can also be modeled jointly in a multi-task set-
ting (Bardenet et al.| |2013}; [Yogatama & Mann| 2014; [Perrone et al., 2018)). For example, [Salinas
et al.| (2020) transforms the hyperparameter response into a similar distribution and learns a shared
Gaussian Copula. Another way to achieve transfer learning is through a weighted combination of
the surrogates (Wistuba et al.| [2016; [Feurer et all 2018). More recently, it has been shown that
meta-learning an initialization of the surrogate by training to estimate the response across the train-
ing tasks, and subsequently fine-tuning to the target task improves generalization and leads to better
performance (Wistuba & Grabockal 2021} Jomaa et al.,[2021b)). Additionally one can learn a trans-
ferable acquisition function (Wistuba et al.,[2018}; Jomaa et al.,2019;|Volpp et al.,2020). Jomaa et al.
(2019) propose to learn a policy based on Deep Q-learning (Watkins & Dayan, |1992) where they
assume a temporal dependency between the hyperparameters and propose an LSTM (Hochreiter &
Schmidhuber, [1997) to model it. [Volpp et al.| (2020) propose a transferable acquisition function,
MetaBO, as a policy that is meta-trained on related tasks. As another model-free RL approach,
MetaBO is trained by interacting with the environment and observes an engineered state represen-
tation that is heavily influenced by underlying surrogates. MetaBO however is very sensitive to the
number of trials (Wistuba & Grabocka, |2021)). We discuss the proposed MDPs and their relationship
to our proposed approach in Section 4]

Model-based reinforcement learning aims to learn a model of the environment by estimating the next
state given a state-action pair. It is applied with great success in areas such as robotics and video
games. Existing methods similarly involve learning a (probabilistic) model of the dynamics (Chua
et al.,2018;Nagabandi et al., [2018}; |[Ko et al., 2007). Moreover, several methods improve the policy
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in a Dyna style approach (Sutton|, [1991al), by leveraging the generated trajectories from the model
to mitigate the distribution shift.

3 PRELIMINARIES

Hyperparameter Optimization: Let D denote the space of all datasets and A € R” the space
of hyperparameters associated with an unknown black-box function ¢(P) : A — R where ¢(P)
represents the response £(P)()\), e.g. validation loss, of a certain model under investigation trained
on a dataset D € D with hyperparameters A € A. For example, we might be interested in a
neural network model where A := R* x R} x N represents the learning rate, dropout rate, and the
number of layers, respectively. The objective of HPO is hence to find the optimal hyperparameter
configuration \* := arg minye £(P)()\) given a fixed budget of T trials.

HPO is commonly treated as sequential decision-making process, where a surrogate model 0:A—
R is iteratively fit to the history ’HIED) = { i, £(P)(\;)}:_, of evaluated hyperparameters and an
acquisition function @ : (A x R)* — A is used to select the next candidate which minimizes the
expected hyperparameter response:

argminEp,p, 6P ({1, M), (1

where (P ({Ay, ..., A¢}) i= mingeqy,.. o £ (Ai), Ai i= D({(A;, £P) (X)) }Z)) and pp is some
distribution over the available datasets. Among the variety of acquisition functions, the expected
improvement is widely adopted (Mockus, |1974). Although HPO algorithms can be applied on both
continuous and discrete search spaces, here we focus on discrete spaces because they allow for faster

training in transfer learning settings (Schilling et al.,[2016; Jomaa et al.| |2021b).

Model-based reinforcement learning: MbRL uses interactions with the environment to learn a
parameterized approximation of the underlying transition function which subsequently can be used
for planning. The learning task can be formulated as a discrete-time Markov decision process (MDP)
defined by the tuple (S, A, 7,7) with state space S, action space A, unknown transition function
7:8 x A — § and reward function r : S x A — R. The general approach in RL is to learn
the optimal policy 7 maximizing the expected cumulative discounted reward given by J(w) :=

E {Zle Yer(se,ap) | 8¢ = T(8¢_1,a4_1),a ~ w(st)} where s; € S and a; € A with discount

factor v € [0,1]. We note that the explicit reward function or an approximate reward model is
necessary for planning actions under some learned transition model. During inference, the optimal
sequence of actions is commonly presented as the solution to the following optimization problem:

T-1
arg max Z 7 (7(8¢,a1), asyr), 2

ay,...,ar =0

which leverages the transition model 7 to predict the next state s, given a state s, and action a;.

4 HYPERPARAMETER OPTIMIZATION VIA MODEL-BASED RL

In the following we formulate HPO as an MDP which in turn facilitates the use of a variety of RL
approaches to solve the problem. As a sequential decision-making process, hyperparameters A € A
are iteratively selected and evaluated forming a simple MDP. Particularly, the state space is defined

as § := (A x R)* with
sP) ((Al,ng)),...,(At,fﬁD’)) 3)

where £§D> := ¢(P)()\;) and action space A := A. The ground truth transition function 7 : S x A —
S simply appends the new observations to the previous ones,

(5”0 = (A 67, 6, (0, 6P (1)) (4)

for dataset D € D and a ground truth reward function, » := & x A — R, that returns the loss
reduction of the new hyperparameters over the best loss so far,

T(SED), A) := max{0, rgir}f EED) - min{ng), . 7£§D),£(D) (N)}} %)
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To estimate both, the transition function and the reward function, as done in MbRL, the only missing

piece is a model for the validation loss, the so called surrogate model. Given /D) A R, the
transition and reward models are just: 7 : S x A — S where

#st”, ) = (A 67, 67, (2P (V) (©)
and7: S x A — R with

(s, \) := max{0, min (P —min{el?) 0P 0P\ )

In this sense, HPO using a surrogate model can be seen as a special case of MbRL, and thus all
approaches researched for MbRL can be directly applied to HPO. When learning a joint surrogate

across several datasets in D, the superscript is dropped and /D) g,

To the best of our knowledge, so far there exist two prior publications which attempt to solve HPO
using RL by defining distinct MDPs. Jomaa et al.| (2019) originally define the state as the dynamic

history of evaluated hyperparameters and their respective responses as S := (A x R)* and SED)
as defined earlier. However, they suggest that the order by which the hyperparameters are selected
impacts the decision on which action to take next, which is why they model this temporal aspect via
an LSTM in their policy, which is conditioned on some engineered meta-features. Their transition
function generates new states by appending the action and the observed response to the previous

state according to T(SED),A) = ((A1,£§D>), Cee ()\ED)Jt), (/\,E(D)()\)))). Volpp et al.| (2020)

represent the state space as S 1= (RM)* with s; := ((114(\s), 02(\i), Ais @Z)i))y;ll where 1; and
o? are the mean and variance of the posterior distribution of an underlying surrogate and 1; are
some engineered attributes. The transition function simply updates the parameters of the surrogate
based on the new observations. Both approaches define the action space as the discrete grid of

hyperparameters, A := A, whereas the reward function is computed in terms of the regret.

In strong contrast to these methods that replace the standard acquisition function with a policy
trained via model-free RL approaches, we adopt the powerful yet simple MDP proposed by Jomaa
et al.| (2019) to train a transition model that allows planning to improve HPO in the context of MbRL.

5 METAPETS ALGORITHM

In this section, we present our model-based reinforcement learning algorithm. Namely, we define the
transition function, our novel look-ahead acquisition function, and the associated training procedure.

5.1 PROBABILISTIC TRANSITION FUNCTION

Model-based reinforcement learning is mainly concerned with learning a parameterized model of the
environment which approximates the underlying dynamics, or transition function, 7 : S x A — S,
such that the next state can be estimated given the current state-action pair. Following the standard
RL notation, we denote by actions a hyperparameters ), i.e. £(”)(a) = £(P)()). Accordingly, the
choice of the model class plays an important role. A common approach to model the environment
is through Gaussian processes (GP) (Rasmussen & Kuss|, 2003} Ko et al.| [2007; [Boedecker et al.,
2014) or a mixture of GPs (Khansari-Zadeh & Billard, 201 1)) which provide uncertainty estimates for
the predictions and, more importantly, for unexplored areas. However, such models suffer from the
curse of dimensionality and thus are difficult to scale to high-dimensional domains. Deep neural net-
works on the other hand have shown great success in handling uncertainty estimation (Springenberg
et al.l 2016} |Gal & Ghahramani, 2016; |Lakshminarayanan et al., 2017), with success in predictive
modeling of images (Watter et al.,[2015)) and short-horizon control tasks for high-dimensional data.

In our case, the state is represented as the history of selected hyperparameters and their responses,
up to a given time, while the actions consist of the available hyperparameters to be evaluated.
Hence there is only one missing piece of information that is required to establish the next state,
and that is the response of the respective selected action (Figure [2). This missing element we ac-
quire by training the transition model to directly estimate the response for a given state-action pair.

4
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Specifically, we parameterize our transition function
%Q(SED), ar) : S x A — RS x RT as a probabilistic neu-
ral network with parameters 6, which takes as input the
current state-action pair (SED), a) and outputs the defin-
ing parameters of a probability distribution function, e.g.
a Gaussian distribution. The governing assumption for
this well-established approach is that the instance is de-
rived from a heteroscedastic Gaussian distribution, i.e. the
variance is not fixed between instances. Accordingly, the
network outputs the respective mean iy € Ry and vari-
ance 63 € R and is trained by minimizing the negative
log-likelihood:

ﬂ
(__
B b2

Figure 2: Architecture of the transition
function

E lOg 69(S(D)7a’)2 (K(D) (a‘) - ﬂG(S(D)aa))z
D~pp | 2 269(s(P); a)?

+ ct] . (8)

Thus, we define the predicted hyperparameter response as £(a) ~ N (fo(-, @), o> (-, a)). We then
estimate §£D> To(s; (D), a) = SEDi (a,#(a)). A simulated rollout is presented in Algorithm

The Case for Ensembles: Probabilistic neural networks can capture and model the aleatoric uncer-
tainty of the environment (e.g. observation noise) by parameterizing a suitable distribution. How-
ever, a single probabilistic network is not capable of capturing any epistemic uncertainties (e.g.
lack of a sufficient amount of data to completely determine the real dynamics). In particular, the
epistemic uncertainty vanishes in the limit of infinite data but can have a major impact in low data
regimes like HPO. For that reason, it is of major importance to account for epistemic uncertainty.

A principled approach to deal with this issue is by bootstrapping models in an ensemble. An en-
semble of deterministic models, such as standard neural networks, reduces bias and epistemic un-
certainty. Therefore, to capture both, aleatoric as well as epistemic uncertainty, we employ a simple
bootstrapped ensemble of probabilistic neural networks, which has been shown to outperform single
probabilistic networks as well as other Bayesian approaches (Chua et al., 2018)).

Given such an ensemble of probabilistic transition models denoted as {75, }, we can observe a

mixture of Ng distributions, i.e. {J\/ (Me , 09 )}N = . Following |Lakshminarayanan et al.| (2017) we
aggregate the outputs as

e Zue W) and 2(ca) = <= > (63, (o) 3, ()~ si(s0) - O)

leading to a predicted hyperparameter response in the form of /(a) ~ N (1+(-,a),02(-,a)). The
explicit advantage of the ensemble approach in particular is the simple but excellent estimation of
uncertainty which constitutes one of the main performance drivers in HPO in recent years.

5.2 TRAINING THE DYNAMICS MODEL

The first step in our MbRL approach is to generate a dataset of transitions as training dataset for our
dynamics model. We denote by £ := {(Dn, N\, €P ”)()\i)}iT:Df) N_, a meta-dataset of primary

datasets, hyperparameters and their responses sampled from some unknown distribution of datasets
pp and some unknown distribution of hyperparameters py. We generate our training dataset £

from the meta-dataset by sampling a quadruple (D,,, SED") ag, P (a,)) of datasets D,,, sets of

hyperparameters and their responses as states SED ), unobserved hyperparameters as actions a;, and

the missing element from the next state sgff ) as the response to ay, i.e. £P)(a;). This is similar to

the usually used approach of implementing a random policy to generate the trajectories (Nagabandi
et al., [2018)). Although it is possible to augment the ™" with trajectories generated using MPC,
we noticed that it is i) time-consuming and ii) does not lead to a significant improvement compared
to using simple random trajectories. We conjecture that this is due to the nature of our transition
function. Specifically, because the sequence of hyperparameters selected (by any policy) does not
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immediately affect the output of the transition model, i.e. T(sgl_)i, a) = T(SED)

the output is only affected by the selected action.

,a) Va € Abut rather

Since our state s, is defined as the collection of previously evaluated hyperparameters and their
corresponding responses, we employ a deep set (Zaheer et al.,|2017) formulation to encode s; into a
fixed-size vector representation. In contrast to the common approach of conventional model-based
RL algorithms which are concerned with predicting the state difference AS;1;, we estimate the
response /() (a) to a given action a while considering the state as context information (Kim et al.,
2019)). Concretely, the transition model is defined as :

n,('f?:fQat,izg(wmb, (10)

such that 7 := fog where g ;== AXR — RN and f : AxRYs — R} xR are feed-forward neural
network models, and [ ] represents standard concatenation. Given the variety of primary datasets,
we use first-order meta-learning (Nichol et al.l [2018) to optimize the parameters of our transition
model. We summarize the training procedure in Algorithm 2]

5.3 PLANNING WITH THE LEARNED TRANSITION FUNCTION

Given the learned dynamics model, we subsequently require an approach that can effectively lever-
age the acquired information to predict the optimal sequence of hyperparameters to evaluate. For
example, Dyna-style algorithms (Suttonl [1991b) use the simulated experience to mitigate the distri-
bution shift (Luo et al.| 2019; Kurutach et al.l 2018} |Clavera et al., [2018) by integrating trajectories
that have been generated via the policy to further train the transition model.

5.3.1 MODEL PREDICTIVE CONTROL

For simplicity, here we consider the well-known approach of model-predictive control (MPC) which
has been used in many complex control scenarios (Bouffard et al.| 2012} [Lenz et al., 2015; |/Amos
et al.| 2018). Furthermore, it is easy to implement and does not require any gradient computation.

The general idea of MPC is to solve an optimization problem in a specific horizon on top of the
learned transition model to produce a sequence of actions. In particular we employ a simple random
shooting (RS) (Zhou & Yan,|2014) technique to solve the following optimization objective:

arg maxf(ég,D),at/). (11)

{ay }3::,5

Notice that since the reward is measured in terms of the regret we do not need to sum over the
rewards at each simulated state, as presented in Equation 2] but simply observe the reward at the
final state in the rollout.

The RS policy generates K random action sequences with a horizon of length H from a uniform
distribution and evaluates them via the learned transition function. Then usually only the first ac-
tion of the best candidate sequence is executed and the procedure is repeated from the new state.
Finally, we also fine-tune the transition model(s) given the newly evaluated hyperparameters on
the test datasets to mitigate the distribution shift, which is common practice in all Bayesian-based
optimization techniques.

5.3.2 LOOKAHEAD MPC

Conventional acquisition functions are agnostic to the order by

which the previous hyperparameters have been selected, i.e.

a(H;) = a(¢(Hy)), where ¢ is some permutation function since

they are only concerned with the immediate improvement and do D e @ @
not account for how the optimization process evolves. MPC on the

other hand normally selects the first action from the trajectory that © © © ©

had the highest reward at the end of the rollout. This can be slightly

misleading as it implies that to arrive at the best hyperparameter Figure 3: Simulated Trajec-
tory rewards. MPC selects the

first item. LookAhead MPC
6 selects the third item.
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configuration it is necessary to sequentially evaluate bad configu-

rations. However, this is not true since the selection of hyperpa-

rameter configurations is independent and all configurations can be

selected at all times. Thus, we propose to directly select the action

that provides the highest estimated reward, i.e. lowest regret, from all the actions observed across
all the simulated trajectories (Figure [3).

5.3.3 TRAJECTORY SAMPLING

The learned transition model outputs a distribution over the next state §Ef{ To leverage the uncer-
tainty associated with the output response, we create particles by randomly sampling p variations as
§§fi’p ~ %(SED), a;) and propagate through the trajectory of every particle. At each step, the reward
is then estimated as the average of the rewards across all particles:

P
. 1 .
P8P ay) = Zr(sgD)’p,at). (12)

6 EXPERIMENTS

The experiments are designed to address the following questions: 1)Does the learned transition
model generalize to new unseen tasks? 2) What is the importance of planning when doing HPO?

6.1 META-DATASET

We evaluate our approach on three hyperparameter search spaces for feed-forward neural networks
(Jomaa et al.| [2021D)), that includes 120 UCI classification datasets (Asuncion & Newman, [2007).
We refer to the meta-datasets as Layout Md-v2, Regularization Md, and Optimization Md-v2
which include the Cartesian product of the individual hyperparameters with a total of 324, 288,
and 432 unique configurations, and 10, 7, and 12-dimensional hyperparameters, respectively. More
information is presented in Appendix

6.2 TRAINING THE TRANSITION MODEL

The transition model is trained via first-order meta-learning. Each meta-dataset is divided into 5
splits with 80 training datasets, 16 for validation and 24 for testing. We used a task batch size of 8 and
64 mini-batches per task. The number of inner iterations was set to 5. We use the ADAM (Kingma &
Ba, 2015) optimizer with a learning rate of 0.001. The hyperparameters were tuned on the validation
set and trained for 10000 outer iterations with early stopping. We trained a total of 5 distinctly
initialized models for the ensemble using Tensorflow (Abadi et al., 2016).

6.3 BASELINE MODELS

We compare against several single tasks and transfer learning baselines for HPO designed for black-
box function optimization that rely only on the hyperparameters and the corresponding response. As
such, some methods were not considered, e.g. Jomaa et al.| (2021b); [Falkner et al.| (2018). Partic-
ularly, we compare against, Random sampling (Bergstra & Bengio} [2012)), GP (Rasmussen, |2003)),
SMAC (Hutter et al., 2011), BOHAMIANN (Springenberg et al., |2016)), TST-R (Wistuba et al.,
2016), ABLR (Perrone et al., [2018)), CTS (Salinas et al.| [2020), and FSBO (Wistuba & Grabocka,
2021). A detailed overview can be found in Appendix

We denote by LookAhead MPC-HX, our approach, which employs LookAhead MPC by navigating
the simulated environment using random shooting up to the defined horizon X and then selects the
first action of the trajectory that achieves the highest reward. We sample 1000 trajectories for our
method. The models of the ensemble are iteratively fine-tuned to the new hyperparameters as all
baseline models. In Algorithm [3] we present the pseudo-code for our MetaPETS algorithm and
provide the source code in the Supplementary material.
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Layout Md-v2 Regularization Md Optimization Md-v2

Methods \Trials 15 33 50 15 33 50 15 33 50

RS 648 £0.62 6.81+038 6.78+0.17 7.11£049 7.33+£030 723+021 7.19+055 693+044 7.07+027
BOHAMIANN 6.67 £0.05 648 +026 629+0.17 651+£022 623+014 586+016 687+035 655+026 6.30£0.17
GP 628 £0.50 573+£0.19 572+£007 5484019 5324019 545+0.16 592+010 576=+0.11 553+0.16
SMAC 6.06+024 6.19+032 636+018 6224030 634+006 643+0.19 6.10+£026 6244028 6274029
CTS 5.66+025 574+034 589+022 580+030 580015 598+0.16 573+026 6.16+£028 6.18+027
ABLR 7.114+050 678 +£0.36 6.55+027 6.72+039 636+043 6.03+021 580+021 579+020 5724025
TST-R 554+023 5424017 5494013 550£0.17 548+0.09 548+0.13 5754020 559+0.15 557+0.13
MetaBO 6384+026 685+0.12 7.02+0.15 7.02+0.13 7424015 7.60+0.09 6.69+£0.15 7.00+£008 7.36=+0.08
FSBO 531+029 535+027 5314015 550+0.14 545+0.14 556+0.17 5334017 539+0.18 5.38+0.28

LookAhead MPC-3  5.18 £0.16 5.31+021 5.264+008 5.104+0.15 513+0.12 5154010 535+0.15 536+022 536=+024
LookAhead MPC-5 532 +020 5354+0.08 532+0.15 5.03+£0.14 5144022 5234011 527+015 523+027 5264023

Table 1: Average rank. We report the best results in bold and underline the second best.

Layout Md-v2 Regularization Md Optimization Md-v2

Methods \Trials 15 33 50 15 33 50 15 33 50

RS 790+ 159 5594098 4254064 854+£084 6.18+056 4514030 853+£089 540+039 4.644032
BOHAMIANN 805+039 4784017 355+022 7.59+039 430+£028 2.644+040 8.64+090 5.19+048 3.75+0.16
GP 790 £1.06 4254026 3.12+018 6.05+027 346+030 2494019 695+037 4.51+017 3.3840.20
SMAC 7.56 £036 4.68+047 3.66+028 731+£077 481+£038 3.73+044 696+042 4.61+£033 3.69+043
CTS 6.39+£054 4054064 3324038 656+£059 3.824+024 3.004£029 6.67+£026 4.59+039 3.5840.22
ABLR 9.01 £0.88 5.60+0.75 426+044 7.99+057 4984052 3.53+£033 7.30+£033 4.68+0.56 3.64+0.55
TST-R 670 £036 390+036 291+£033 651+£039 388+£029 273+£039 6.78+£021 4.13+£023 3.21+0.10
MetaBO 724 +£037 4724032 3864028 7.71+£0.11 5724020 5014021 8.63+£041 583+024 5134019
FSBO 6.41+£050 3.60+031 2.48+029 599+057 3.18+0.14 232+£026 6.06+037 3.90+030 3.04+041

LookAhead MPC-3  6.154+049 3.65+042 2604032 5504039 295+024 1.87+0.14 6.18+0.73 4.15+£039 3.16£0.30
LookAhead MPC-5  6.25+0.51 3904021 285+038 5.34+£009 2974029 1914018 6.15+047 3.77+£067 2954047

Table 2: Average normalized regret. We report the best results in bold and underline second best.

6.4 EVALUATION METRICS

We report two performance metrics to evaluate the effectiveness of the different baselines: normal-
ized regret that represents the distance between the response of the evaluated hyperparameters and
the optimal performance for each dataset, and the rank that measures the relative performance of
each method compared to the rest of the baselines at each trial. The rank is computed at the task
level and is agnostic to the heterogeneous ranges of the target response surfaces, thus can better
signify the difference in performance.

6.5 RESULTS AND DISCUSSION

We report in Tables[T|and [2] the average rank and normalized regret, respectively, over 5 runs for 50
trials with three different seeds per run for all methods. Each transfer learning approach had access
to the same training datasets and all models were initialized via the same three seeds to fit the initial
surrogate. Overall, our LookAhead method outperforms the baselines across all meta-datasets. We
use the horizon of H3 and H5 in this section, and study the contribution of LookAhead and the
importance of planning in Section [6.6]

LookAhead MPC-3 and LookAhead MPC-5 demonstrate clear gains in the average rank with con-
sistent performance against the baselines. Looking at the normalized regret, FSBO outperforms our
model in some cases, e.g. Layout Md-v2, however, the associated average rank is still lower. This
can be attributed to the fact that different tasks have heterogeneous response distributions. When
there is a clear contradiction between the rank and the normalized regret, this signifies that the mar-
gin of difference of the normalized regret on the few tasks where FSBO shows stronger performance,
is higher than where it has lost.

Comparing LookAhead MPC-3 and LookAhead MPC-5, we notice that a shorter horizon is suffi-
cient to explore smaller search spaces. Albeit, early exploration in the form of longer horizons can
still turn out to be more favorable, e.g in Regularization Md.

It is also worth mentioning that MetaBO, the model-free RL approach, is the worst across all meta-
datasets. This is attributed to the asymptotic degradation of the performance with the increasing
number of trials, as pointed out in Wistuba & Grabockal (2021)). Contrary to MetaBO, which relies
on an underlying surrogate to generate the state which is bound by a fixed grid, our approach is



Under review as a conference paper at ICLR 2022

Layout Md-v2 Regularization Md Optimization Md-v2
6.2
6.2
6.0
6.0 \
5.8 /
5.8 N
-~ .
55.6 5 { v
« 54 \ f\/
5.4 g
/ - 5.2 \/
5.2 Lo

5.0

—

4.8

10 20 30 40 5 10 20 30 40 5 o 10 20 30 40 5
Number of Trials Number of Trials Number of Trials
—— MPC-1 (vanilla) LookAhead MPC-3 (vanilla) ~ —— MPC-3 (vanilla) ~—— LookAhead MPC-5 (vanilla) ~—— MPC-5 (vanilla)
MPC-1 LookAhead MPC-3 MPC-3 LookAhead MPC-5 MPC-5
Layout Md-v2 Regularization Md Optimization Md-v2

2.60

Rank

2.50 R Tt I SE e

0 10

40 5 10 40 5 10 40 5

20 30 20 30 20 30
Number of Trials Number of Trials Number of Trials

—— MPC-3 MPC-5

Figure 4: (top) Investigating the impact of planning and LookAhead across different horizons; (bot-
tom) Increasing the number of sampled trajectories improves planning (solid lines— 1000 trajecto-
ries vs. dashed lines — 100 trajectories).

agnostic to the size of the grid and improves with more trials, leading to an improved state represen-
tation.

6.6 ABLATION

We further investigate the effect of LookAhead on MPC with different horizons and trajectory sam-
ples to evaluate the impact of planning under such conditions. Moreover, we compare against a
vanilla version, that does not involve fine-tuning the transition model to the observations of the
target dataset. We summarize the performance in Figures [ and share the following insights: i)
Fine-tuning plays a crucial role in improving performance. Contrary to existing MbRL solutions
that evaluate a policy’s performance on the environment which the transition model has been trained
to estimate, we evaluate our policy on new environments, i.e. new tasks, with varying response sur-
faces. We notice that with a few gradient update steps, (LookAhead) MPC-X outperforms the vanilla
variant. ii) Using LookAhead MPC is better than standard MPC. This reinforces the notion that via
proper planning the evaluation of bad hyperparameter configurations can be avoided. iii) Increasing
the number of sampled trajectories leads to a better outcome. This is to be expected, considering
that for random shooting, we sample a fixed number of trajectories to evaluate. At any given trial ¢,
the number of possible trajectories for a horizon H on a grid of size N is (N}; t), so for a horizon
H = 1, we default to maximization over the grid.In Appendix [D] we further discuss the effect of
various plausible dynamics by bootstrapping different sets of models as part of the ensemble.

7 CONCLUSION

In this paper, we present a novel solution for HPO within the context of MbRL. Specifically, we de-
sign a new surrogate as an ensemble of neural networks, which is initialized through meta-learning
and thus can adapt quickly to new target datasets with few observations. We propose a novel acqui-
sition function based on model predictive control that utilizes a simple lookahead strategy to select
good hyperparameter candidates from simulated trajectories. To the best of our knowledge, we are
the first to investigate the impact of planning on HPO and present an extensive ablation study that
motivates research in that direction.
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A ALGORITHM

Algorithm 1 Simulated Rollout
Require: state sgD)
B5? o
$0) (D)
for h=0t0o H D)
fig, 55 < To(3, 4 h>an)
é(ah> ~ NA([W’ &3)
R+ RUW(apn))
~(D A(D 5
S§+i)1+1 A St+1)1 (an, £(an))
return 17

, rollout horizon H, transition model 7y, actions (ah){fzo

R A A S o

Meta-learning has found resounding success in the research community as an initialization scheme,
which allows for fast adaption to new domains. We want to emphasize that during meta-training the
meta-test datasets are not observed and in that way remain strictly held out.

Algorithm 2 Model-based Reinforcement Learning

1: Require: training meta-dataset £"", parameters 6, learning rate 7, inner update steps v, meta-
batch size n, minimum history length 7;,,¢n, maximum history length 7, ax

2: while not converged do

3 t ~ Unif ([Tinin, Tinax))

4 Dy,...,D, ~Unif([1,...,N])

5 fori =1tondo

6: (sgDi), at,E(Di)(at)) ~ Unif (£ | D, t)

7 91 «— 0

8 for j =1tovdo

9 0; 0, +nVy (pg(sgDi) | sEDi), at))

0

1:

Update § < 6 +n >°" | (6, — 0)
return 0

B META-DATASET

A meta-dataset is a collection of hyperparameters, typically defined on a discretized grid (Schilling
et al.| 2016} Jomaa et al.l 2019), associated with a model under investigation, that have been eval-
uated offline by training the model with the mentioned hyperparameters on numerous primary
datasets, and reporting some observed evaluation metric, e.g. validation loss.

We evaluate our approach on three hyperparameter search spaces for feed-forward neural networks
(Jomaa et al.| [2021D)), that includes 120 UCI classification datasets (Asuncion & Newman, [2007).
Jomaa et al.| (2021b)) propose a pruning strategy that eliminates redundant configurations. Specifi-
cally, they drop certain hyperparameter combinations, e.g. non-J layouts with 1 hidden layer, which
we see here as unnecessary. Therefore we do not prune Layout Md and Optimization Md and refer
to the meta-datasets as Layout Md-v2, Regularization Md, and Optimization Md-v2 where each
meta-dataset includes the Cartesian product of the individual hyperparameters with a total of 324,
288, and 432 unique configurations, respectively.

The aforementioned hyperparameters are encoded as follows:

C BASELINES

1. Random sampling (Bergstra & Bengio} 2012),
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Algorithm 3 MetaPETS Algorithm

1:

_
e

11:

12:
13:
14:
15:

16:

R A A ol

Require: target dataset D; training meta-dataset £ rain trapsition model 7y, parameters 6, learn-
ing rate 7, inner update steps v, meta-batch size n, minimum history length 7;,,;,,, maximum
history length 7, initial budget b, total budget B, planning horizon H, lookahead indicator
2, vanilla indicator w

Initialize 6 randomly

0 < Algorithm (Sm‘i“, 6,m,v, n)

ag, . . ., ap ~ Unif(A)

67 (a0, (67, (@, 7))

a* < argming, (P)(a;)
fori =0to B do

Sample sequence of actions (a}, ). randomly
Perform simulated rollout, R <+ Algorithm sl()fzg, H, 7, (ai)H_)
aé if z = 0 (selects first action from sequence)
a; < ; . .
argmin g Otherwise (selects best action from sequence)
. {ai if £P)(a;) < £P)(a*)
a .
a*  otherwise
ifw=20 do
while not converged (Comment: Fine-tuning)
fort =0tob+1

0 < 0+nVe (po(st | star+1))
D D
ss2) 0 s U Gaq, £(ar)

17: return a*

Table 3: Hyperparameter search space for the meta-datasets.

Hyperparameter Layout Md-v2  Regularization Md Optimization Md-v2
Activation RelLU, SeLU ReLU, SeLU, LeakyReLU ReLU, SeL.U, LeakyReLU
Neurons 4,8,16,32 4,8,16,32 4,8,16

Layers 1,3,5,7 1,3,5,7 3,5,7

Layout 0,<,>,0,A | <,>,0,

Dropout 0,0.5 0,0.2,0.5 0

Normalization False False, True False

Optimizer ADAM ADAM ADAM, RMSProp, GD

. GP (Rasmussen, 2003) is a hyperparameter tuning strategy that relies on a Gaussian process

as a surrogate model with squared exponential kernels (Matern 5/2 kernel) with automatic
relevance determination,

. SMAC (Hutter et al.,|2011)) utilizes random forests instead of Gaussian processes to repre-

sent the surrogate model,

. BOHAMIANN (Springenberg et al.,[2016) is based on Bayesian neural networks that are

trained via stochastic gradient Hamiltonian Monte Carlo,

. TST-R (Wistuba et al., [2016)) is an ensemble approach where the Gaussian process sur-

rogate of the target task is weighted with surrogates of the training datasets based on the
ranking similarity of the evaluated hyperparameters,

. ABLR (Perrone et al.| 2018)) is a multi-task Bayesian linear regression approach that opti-

mizes a shared feature extractor across the training datasets as an initialization strategy for
the target task,

. CTS (Salinas et al.,|2020) trains a Gaussian Copula process (Wilson & Ghahramanil, 2010)

jointly over the training datasets mapped to a shared output distribution using quantile-
transformations. Hyperparameter candidates are selected via Thompson Sampling,
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Table 4: Hyperparameter Encoding

Hyperparameter Encoding
Activation One-hot encoding
Neurons Scalar

Layers Scalar

Layout One-hot encoding
Dropout Scalar
Normalization Scalar

Optimizer One-hot encoding

8. FSBO (Wistuba & Grabocka, 2021)) uses deep Kernel Gaussian processes (Wilson et al.,
2015) to estimate the response of the target dataset. The parameters are initialized via
meta-learning the joint response surface over the training datasets.

D EVALUATING VARIOUS STATE PROPAGATION DYNAMICS

In the main experiment, we predict plausible state trajectories using a bootstrap of B = 5 models
in the ensemble. We investigate here the impact of changing the models in the ensemble, i.e. boot-
strapping subsets of these models, to understand the stability and robustness of probabilistic neural
networks. We propose as a variant EX, where we re-sample at every trial uniformly at random
a different subset of B = X models. Effectively, we would be continually re-sampling from the
approximate marginal posterior of plausible dynamics. We summarize the results in Figure 5]

Layout Md-v2 Regularization Md Optimization Md-v2
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Figure 5: Investigating the performance of MPC under various dynamics.

We notice primarily that increasing that bootstrapping more models generally leads to better perfor-
mance. In Layout Md-v2, MPC-3 and MPC-3 (E3) are better than MPC-3 (E1), especially at the
early stages. We also notice that increasing the horizon leads to worse results. The same behavior is
noticeable with Optimization Md-v2. Although MPC-5 in Regularization Md is better than the rest,
discussed in Section [6.6] we notice that with the increasing number of trials, re-sampling a single
probabilistic neural network starts to deteriorate.

E LIMITATIONS

The proposed MetaPETS algorithm is designed as a transfer learning solution for HPO. The transi-
tion model is trained on a set of correlated source tasks to approximate the joint response surface.
One of the limitations of this approach is that it does not work properly in non-transfer learning
settings due to the lack of abundant data for training the surrogate throughout the HPO process. It is
possible however to design another experimental protocol where a transition model is trained to es-
timate a partially observable search space on a particular dataset ( i.e. no transfer learning required),
however, planning and navigation would have to be done in the unexplored search space.
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