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Abstract

Radiology report generation, predicting text
descriptions for radiological images, may face
critical challenges due to data imbalance — med-
ical tokens appear less frequently than regu-
lar tokens, and normal labels of images may
not equal to abnormal ones. However, exist-
ing studies mainly consider label imbalance
without mitigating other factors, such as token
imbalance. In this study, we jointly consider
two 1imbalance factors, label and token, deter-
mining distributions of radiology images and
language, two fundamental modalities of the
generation task. We propose a Joint Imbalance
Adaptation (JIMA) model to promote task ro-
bustness by leveraging token and label imbal-
ance. Experiments on two standard evaluation
data (IU X-ray (Demner-Fushman et al., 2015)
and MIMIC-CXR (Johnson et al., 2019)) by
automatic and human evaluations demonstrate
our significant improvements over current state-
of-the-art models. We conduct extensive abla-
tion and case analyses to examine and present
dual imbalance effects on the radiology report
generation robustness. While data imbalance
remains challenging, our approach opens new
task directions and shows promising results.

1 Introduction

Radiology report generation is a multimodal and
medical image-to-text task that generates text
descriptions for radiographs (e.g., X-ray or CT
scan), which may reduce the workloads of radiolo-
gists (Jing et al., 2018, 2019). The domain-specific
task has own unique characteristics than general
image-to-text tasks (e.g., image captioning), such
as lengthy documents, medical annotations, and
clinical terminologies. As demonstrated in Figure
1, data imbalance can significantly impact model
robustness that prevents model deployment in prac-
tice — models can easily overfit on frequent patterns.
However, encountering data imbalance to augment
the robustness of the radiology report generation

task is still in its infancy.

Two major data imbalances exist in the radiology
generation task, label and token. Label imbalance
pertains to a disproportionate ratio of normal and
abnormal diagnosis categories, which exist in radi-
ological images and text reports. For instance, in X-
ray images, normal regions dominate major areas,
and the numbers of normal and abnormal reports
may not be equal, leading to failures in disease
detection and description. As shown in Table 1,
abnormal reports are considerably longer than nor-
mal reports, with an average difference of 60.56%.
These reports are much harder to generate than
shorter reports (Lovelace and Mortazavi, 2020; Tan
et al., 2021; Wang et al., 2023).! Existing imbal-
ance learning studies of radiology report generation
primarily focus on label imbalance (Nishino et al.,
2020; Yu and Zhang, 2022). Token imbalance is a
critical challenge in generation that tokens have var-
ied occurrence frequencies, and the issue is more
critical in the medical task. Learning infrequent
tokens can be harder than frequent tokens for gen-
eration models (Gu et al., 2020; Wu et al., 2023).
Medical tokens appear less frequently than regular
ones, and the infrequent tokens may contain more
medical results, highlighting the domain-specific
uniqueness. For example, our empirical analysis in
Section 2 has demonstrated that over 80% medical
terms are infrequent tokens, while frequent tokens
can count over 82% corpus. However, to the best
of our knowledge, a joint adaptation of label and
token imbalance to enhance the robustness of radi-
ology report generation has not yet been explored.

To jointly model label and token imbalance,
we propose a Joint Imbalance Adaptation (JIMA)
model by curriculum learning (Bengio et al., 2009)
that assumes infrequent patterns are usually harder
to optimize. JIMA dynamically guides the model

!Clinical reports are also much longer than general-domain
image captions, such as MS-COCO (Lin et al., 2014).



Table 1: Data statistics summary. Variations exist in label (Normal and Abnormal %) and average report length (L).

‘ Image ‘ Report ‘ Vocab ‘ Normal % ‘ Abnormal % ‘ L ‘ Lyormal ‘ Lapnormal
1U X-ray 7,470 3,955 1,517 32.96% 67.04% 3599 | 27.76 40.72
MIMIC-CXR | 377,110 | 227,835 | 13,876 13.97% 86.03% 59.70 | 34.57 59.36
(1) IU X-ray (2) IU X-ray (3) MIMIC-CXR (4) MIMIC-CXR
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Figure 1: Baselines’ BLEU-4 on normal and abnormal samples and F1 scores on low- and high-frequent tokens.

learning process by leveraging optimization diffi-
culties, strengthening learning capability on infre-
quent samples, and alleviating overfittings on fre-
quent patterns on both label and token. To jointly
incorporate token and label imbalance, we propose
to measure optimization difficulties by leveraging
performance discrepancy across three evaluation
aspects, token F1, label F1, and BLEU-4. We incor-
porate the three metrics as a joint optimization and
design a novel Training Scheduler sampling and
sorting training instances with the multi- difficulty
scores based on performance discrepancies, which
dynamically ranks easier samples when the mod-
els’ performance decreases and vice versa. We con-
duct experiments on two publicly available datasets,
MIMIC-CXR (Johnson et al., 2019) and IU X-
ray (Demner-Fushman et al., 2015) with automatic
and human evaluations. By comparing with six
state-of-the-art baselines on overall and imbalance
performance settings, our experiments show the
promising results of our proposed approach. Our
ablation and qualitative analyses show that JIMA
can generate more coherent and precise medical
reports, balancing label and token imbalance. Our
code and data access will be available at [URL].

2 Data

We collected two publicly accessible datasets for
this study, IU X-ray (Demner-Fushman et al.,
2015) and MIMIC-CXR (Johnson et al., 2019), de-
identified chest X-ray datasets to evaluate radiol-
ogy report generation. IU X-ray (Demner-Fushman
et al., 2015), collected from the Indiana Network
for Patient Care, includes 7,470 X-ray images and
corresponding 3,955 radiology reports. MIMIC-
CXR (Johnson et al., 2019), collected from the

Beth Israel Deaconess Medical Center, contains
377,110 X-ray images and 227,827 radiology re-
ports for 65,379 patients. Each report is a text doc-
ument and associates with one or more front and
side X-ray images. Table 1 summarizes statistics of
data imbalance. We include preprocessing details
and imbalance visualizations in Appendix A.
Table 1 presents imbalance patterns in tokens
and labels. Abnormal entries are predominant in
both datasets, and MIMIC-CXR displays a more
skewed label distribution, as more abnormal sam-
ples were collected during diagnosis phases not
for screening purposes. MIMIC-CXR has a longer
average length than IU X-ray. The lengthier docu-
ments may pose a unique multimodal generation
challenge in the medical field. To conduct our anal-
ysis, we define the low and high frequency using
the top 12.5% frequent tokens. Our findings in
the Appendix A suggest a joint relation between
label and token imbalance and higher ratios of low-
frequency tokens in abnormal reports. This obser-
vation motivates us to investigate how the imbal-
ance impacts model robustness and reliability.

2.1 Imbalance Effects

We examine the potential impact of label and to-
ken imbalance on model performance. To ensure
consistency, we keep the top 12.5% to split low-
and high-frequent tokens for evaluation purposes.
The analysis includes three state-of-the-art mod-
els, R2Gen (Chen et al., 2020), WCL (Yan et al.,
2021), and CMN (Chen et al., 2021). We either use
released source codes and leave implementation
details in the Appendix D.2. We use BLEU-4 (Pap-
ineni et al., 2002) and F1 scores to measure perfor-
mance across both token (low vs high frequency)
and label (normal vs. abnormal) imbalance. We



visualize performance variations in Figure 1.

The results suggest that the models exhibit sig-
nificant difficulties in coping under label and token
imbalance. Models consistently perform worse on
abnormal reports, which are lengthier and have
more infrequent tokens than normal reports. For
example, the top 12.5% frequent tokens count >
80% tokens in two datasets, and low-frequent to-
kens have much worse performance than frequent
tokens, as infrequent tokens are harder to opti-
mize (Yu et al., 2022). However, infrequent tokens
contain higher ratios of medical terms (e.g., silhou-
ettes and pulmonary) describing health states. The
significantly varying performance highlights the
unique challenges to adapt token and label imbal-
ance. While existing work (Nishino et al., 2020)
has considered label imbalance, however, the study
did not examine the performance effects of label or
token imbalance. The findings inspire us to propose
our model Joint Imbalance Adaptation (JIMA) to
model token and label imbalance.

3 Joint Imbalance Adaptation

In this section, we present our approach Joint
Imbalance Adaptation (JIMA) using curriculum
learning. JIMA aims to augment model robustness
under label and token imbalance. As optimizing
data imbalance has been demonstrated difficulty,
deploying such a learning strategy will strengthen
model robustness and reliability. Our proposed
approach deploys curriculum learning (CL) (Wang
et al., 2022) that automatically adjusts the optimiza-
tion process by gradually selecting training data en-
tries from learning difficulty — learning from hard
to easy samples as our optimization strategy (Zhou
et al., 2020). To achieve the goal, we propose two
major CL modules, difficulty measurer and training
scheduler in Figure 2.

Difficulty measurer is to measure sample diffi-
culties. To diversify learning aspects and jointly in-
corporate imbalance factors, we deploy three mea-
surement tasks: 1) Task 1 - Label F1 promotes
generating clinically correct reports, 2) Task 2 -
Token F1 adjusts the balance between token infre-
quency and frequency, and 3) Task 3 - BLEU-4 is
to generate coherently long reports. We start with a
pre-train model (e.g., Transformer (Vaswani et al.,
2017)), which can perform well on easy samples
(e.g., normal samples and frequent tokens). The
difficulty measurer will evaluate samples’ difficul-
ties by the three metrics, label F1, token F1, and

BLEU-4. We feed the difficulty information to the
next step, Training Scheduler.

Training Scheduler aims to automatically lever-
age imbalance effects by selecting training samples
via the scores of the measurers. We design our
scheduler function, ¢(p;) as following:

_(pt _pt—l)]

xc(pe—1)),t>1
Pt—1

ey
, where p is the average performance of all training
samples, measuring the model’s learning ability.
t is the training step. Our goal is to increase the
number of easier samples when the performance

decreases and vice versa. Given decreasing perfor-
(Pt—pt—1)

c(pr) = min(1,[1

mance as an example, will be negative.

During the process, the ratio 1 — (ptpft%l‘l) > 1
will allow the model to include more easy training
data than the last step ¢(p;—1). Similarly, the sched-
uler will also feed harder samples when increasing
performance. To start our curriculum learning, we
record the samples’ average performance of the last
two regular training epochs as pp and p;, where we

empirically initialize ¢(po) as 1.

3.1 CL-Task1

Our Task 1 is to exploit imbalance patterns of re-
port labels to generate clinically accurate reports.
We measure accuracy of the generated reports by
comparing the predictions made by the label classi-
fiers in Section 2 with those of the gold truths. If
our generated reports are clinically correct, the la-
bel classifiers in Section 2 can accurately yield the
same prediction on our generated reports as golden
truth reports. In order to assess the difficulty level
of each sample, we utilize F1 score, which reflects
the degree of agreement between the predicted and
true labels. The greater the discrepancy between
the predicted and true labels indicates harder sam-
ples and vice versa. As clinical performance is a
critical metric for radiology report generation, we
utilize clinical error to sample data for Task 1. We
expect this task helps the model leverage label im-
balance, as the training scheduler can strengthen
model training on the misclassified samples.

The computing process is as the following.
Given a radiology image I'mg and the correspond-
ing report Z = (zp, ..., 2) with the length [, we
extract the features from images with a visual ex-
tractor. We use ResNet101 (He et al., 2016) (fr) as
our visual extractor and obtain an image’s feature



Figure 2: JIMA has three tasks, P (e.q. 5) as token distribution prediction, Q (e.q. 3) as label prediction by generated
reports, and K (e.q 8) as regular report generation. We assign one color per task and solid arrows as workflows. The
dotted arrow yields new models (f). Frames with double solid lines freeze model parameters. fr, fx, fr, fm
refer to the visual extractor in e.q. 2, token distribution predictor in e.q. 5, transformer in e.q. 8 and memory-driven

model in e.q. 7, respectively.
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(x) from different convolutional channels,

{x1,%2,...,x5} = fr(Img) 2)

Then we generate i-th token probability distribution
Q; from image feature x and contexts by our text
generator (f7),

Qi:fT(X17X27°"aXSle?ZQ)"'aZi*l) (3)

To optimize the model, we minimize negative log-
likelihood loss (NLL) as follows,

Lypp=—Y log(si) 4)

where s; is the prediction probability of the i-th
token.

3.2 CL-Task2

The objective of Task 2 is to exploit token imbal-
ance by predicting word occurrences in a given
report. We utilize a multi-class binary schema to
denote the tokens’ occurrence and calculate the to-
ken F1 score as the difficult metrics. This approach
does not count the tokens’ frequency and assigns
the same weight to all tokens. As a result, samples
with infrequent tokens are identified as difficult and
can be used by the training scheduler to enhance
the model’s performance in handling rare tokens.

To predict token distribution, we feed the aver-
age of feature x into the Token Distribution Predic-
tor (fx) and obtain a token occurrence probability
prediction (P € RV,

P:fH(Avg({XhXQ?"'aXS})) (5)

fa |—| fx P Task2
e update
— | fr Q
Fr | o
L fr
— -
foo || fu ——K Tasi3

where V is the vocabulary. We use a feed-forward
network as our token distribution predictor since
our experimental findings suggest that employing
a complex network architecture does not lead to
improvements in performance. Samples containing
infrequent tokens are prone to obtaining lower F1
scores, and as such, the samples will be prioritized
in training data repeatedly. This approach allows
the model to devote more attention to learning from
samples containing infrequent tokens, particularly
when the model struggles to capture the underlying
patterns in such tokens. Since infrequent tokens
have much higher ratios of medical terms, leverag-
ing token imbalance will be beneficial.

Task 2 is to predict the occurrence probability of
a word in a report, which is a multi-classification
task. Therefore, we optimize the model by multi-
classification loss as follows,

Lpop =y -logo (P) + (1 —y) -log (1 - o (P))]

(6)
where o (-) is a sigmoid function. y € RIV!is the
ground truth and y; € y is represented by,

1, if i-th token in a report

Yi =
0, else

We set the threshold as 0.5 to predict whether a

token occurs in a report and choose F1 score as our
difficulty evaluator.

3.3 CL-Task3

Task 3 implements an image-to-text generation
pipeline with the objective of enhancing the flu-
ency of generated reports. In text generation train-
ing, the model typically predicts i-th tokens based



on 1-th to (i-1)-th tokens from the ground truth.
However, these tokens and ground-truth context
are not accessible during the test stage — mod-
els generate the current position token by previous
predictions, which causes the accumulation error
for long documents and decreases the generation
fluency. To narrow the generation discrepancy be-
tween the training and test period, we calculate the
BLEU-4 score generation from the beam search to
measure the model’s performance in the test mode.
BLEU-4 score matches four consecutive tokens be-
tween prediction generation and reference reports,
which can efficiently evaluate the fluency of reports.
Thus, we can improve the model’s generation flu-
ency by feeding the samples with lower BLEU-4
scores into the model’s learning. Also, we propose
a Memory-Driven module aiming to self-adjust the
current token probability distribution based on the
previous predictions instead of the ground truth.

To enable the adjustment, our Memory-Driven
takes two contextual inputs, the token occurrence
probability prediction P from Task 1 and a se-
quence token probability distribution Q from Task
2. We utilize Gated Recurrent Unit (GRU) (Cho
et al., 2014) as our memory-driven encoder to learn
a conditional token occurrence probability predic-
tion h € RY*Y, where [ is the sequence length of
a report.> The memory-driven model can capture
the implicit relationship between a conditional to-
ken occurrence probability h and a sequence token
prediction probability Q; as follows,

hi = fm(Qi, hi1), (7

Where h; € RV, We initialize hy = P and
obtain h by stacking all h;. Then, we obtain our
final probability prediction KV as follows,

K = Q x sigmoid(h) (8)

This task optimize the model by e.q 4. Finally, we
can obtain our generation (G) from K by beam
search,

G = beam_search(K)

To maximize report fluency with the foundation
of correct clinical description, we choose BLEU-4
as our difficulty evaluator on G and ground truth to

augment generation ability on lengthier documents.

We have experimented more complex models other than
GRU such as Transformer, but found GRU is the best option.

3.4 CL-Joint Optimization

We propose a joint optimization approach to inte-
grate three tasks. Algorithm 3.4 summarizes the
overall optimization process of our approach. We
set the learning rate of task 2 as « and 3 refers to
the learning rate of tasks 1 and 3. In each training
step, we sample different data for different tasks
and each task focuses on optimizing its own mod-
ule of the models. For example, we update the
visual extractor (fz) and token distribution predic-
tor parameters fy in task 2. Then we fix the visual
extractor parameters ( fr) and update transformer
parameters (f7) in task 1. Finally, we combine
the global token distribution P from task 2 and the
generation Q from task 1 to optimize the memory-
driven model (fx) in task 3.

Optimization Process of JIMA.

Require: learning rate «, 3

for each epoch do
1. Rank entries by the three diffi-
culty measurers (token F1, label F1
and BLEU-4);
2. Calculate three ¢(p;) training sched-
ulers by e.q. 1;
3. Select top ¢(p;) samples from the
ranked datasets obtained by step 1 as
training sets;
4. Sample a batch from D; and update
Task 1: f7 < fr — BV Lnor(P);
5. Sample a batch from D; and update
"l;ask 2: fr+ fr— OéanﬁBCE(Q),
fn < fu—aVy, Lpor(Q);
6. Sample a batch in D3 & update Task
3: fm < fm = BV Ly (K);

end for

Our optimization approach integrates with cur-
riculum learning to tailor joint imbalance learning
for each module (fr, fx, f7, fam). Curriculum
learning empowers the model to concentrate on
optimizing hard samples while mitigating the risk
of overfitting to easier samples. The joint opti-
mization scheme facilitates each task to manage
different module parameters optimization and learn
a transferable knowledge from the simpler to more
complex task. As a result, all modules collaborate
to enhance error reduction from previous tasks.



Table 2: Overall performance. A are averaged percentage improvements over baselines.

Dataset Model NLG metrics CE metrics
BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4 | METEOR | ROUGE-L F1
R2Gen 4880 | 3193 | 2324 [ 17.72 2021 37.10 63.62
CMN 4553 | 2950 | 2147 | 1653 18.99 36.78 64.83
WCL 4474 | 2930 | 2149 | 16.79 2045 37.11 49.24
UXray | CMM*RL | 4940 | 3008 | 2145 | 1610 20.10 38.40 40.79
RRG 4996 | 3144 | 2211 | 17.05 18.81 33.46 49.10
TIMER 4934 | 3249 | 2384 | 1861 2038 38.25 94.52
JIMA (Ours) | 50.50 | 33.12 | 2415 | 18.88 21.16 38.56 96.58
A (%) 549 774 8.65 10.44 6.86 4.86 72.10
R2Gen 3542 [ 2199 | 1450 | 1030 13.75 27.24 54.60
CMN 3560 | 2141 | 14.07 9.91 14.18 27.14 50.50
WCL 3730 | 23.13 | 1549 | 10.70 14.40 27.39 55.58
CMM+RL | 3535 | 21.80 | 14.82 | 10.58 14.20 27.37 65.43
MIMIC-CXR RRG 3757 | 1978 | 1587 9.56 14.77 26.81 62.20
TIMER 3830 | 2249 | 1460 | 1040 14.70 28.00 75.86
JIMA (Ours) | 40.07 | 2483 | 15.66 | 10.99 15.25 29.05 78.25
A(%) 9.62 1434 533 747 6.46 6.33 31.26

4 Experiments

We design our experiments to evaluate performance
on both regular and imbalanced settings via au-
tomatic and human evaluations. The automatic
evaluation includes NLG-oriented and clinical-
correctness metrics. NLG-oriented metrics mea-
sure the similarity between generated and refer-
ence reports. Clinical correctness and human eval-
uation belong to factually-oriented metrics, and
domain-specific evaluation methods. To be con-
sistent with our baselines (Chen et al., 2020; Del-
brouck et al., 2022; Wu et al., 2023), we utilize
the F1 CheXbert (Smit et al., 2020) for the clinical-
correctness metrics. The experiments compare our
proposed approach (JIMA) and the state-of-the-art
baselines. Two of our five baselines (CMM + RL
& RRG) are designed to solve label imbalance by
improving the abnormal findings generation. We
conduct ablation and case analyses to fully under-
stand the capabilities of our proposed approach.
We include more implementation details and hyper-
parameter settings in Appendix D.2.

4.1 Baselines

To examine the validity of our method, we include
five state-of-the-art baselines under the same ex-
perimental settings: R2Gen (Chen et al., 2020),
CMN (Chen et al., 2021), WCL (Yan et al., 2021),
CMN + RL (Qin and Song, 2022), RRG (Del-
brouck et al., 2022), TIMER (Wu et al., 2023) —
and obtain from their open-sourced code reposito-
ries. Detailed baseline implementations are in the
Appendix D.2.

4.2 TImbalance Setting

We evaluate model performance under token and
label imbalance settings. For token imbalance, we
compare F1-scores of frequent and infrequent to-
kens separately. We introduce three different scales
to define frequency token sets, 1/4, 1/6, and 1/8
respectively. The splits define the top 1/4, 1/6,
and 1/8 vocabulary as frequent tokens and the rest
vocabulary as infrequent tokens. The setting is to
demonstrate the effectiveness of our approach in
adapting token imbalance. For label imbalance,
we divide our samples into a binary category, nor-
mal and abnormal. We reuse labels from the data
section and NLG metrics for evaluation.

5 Results and Analysis

In this section, we present overall performance and
report results of imbalance evaluations. We con-
duct an ablation analysis and a case study in Ap-
pendix E. Generally, JIMA outperforms the state-
of-the-art baselines by a large margin, especially
under imbalance settings. Our qualitative studies
show our method can achieve more clinically accu-
racy and generate more precisely clinical terms.

5.1 Overall Performance

Table 2 presents the performance of JIMA by NLG
and clinical-correctness metrics. JIMA outper-
forms baseline models (both imbalance and regular
methods) on BLEU scores by a large margin, con-
firming the validity of selecting training samples
by our curriculum learning method. The approach
enables the model to learn multiple times from the



Table 3: Label imbalance evaluation with binary types, normal and abnormal.

Dataset | label | Model | BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4 | METEOR | ROUGE-L
R2Gen 5050 [ 3491 | 2586 | 20.93 23.66 40.56
CMN 4742 | 3280 | 2525 | 1872 20.51 38.69
WCL 4974 | 3544 | 28.02 | 1871 26.88 42.09
Normal | CMM+RL | 51.68 | 36.65 | 21.99 | 1947 23.63 40.05
RRG 5003 | 3376 | 2481 | 19.89 20.43 34.39
TIMER 51.83 | 3243 | 3371 | 2019 24.43 39.39
U X-ray JIMA (ours) | 52.65 | 32.14 | 2497 | 18.26 23.73 41.72
R2Gen 4267 | 2786 | 1847 | 1235 15.04 30.10
CMN 3509 | 2142 | 1497 | 1132 14.36 29.85
WCL 3231 | 1993 | 1387 | 1050 13.81 30.37
Abnormal | CMM+RL | 3809 | 2542 | 1117 | 15.09 13.13 27.64
RRG 4338 | 2344 | 1002 | 1558 12.43 31.52
TIMER 4425 | 2673 | 1528 | 10.76 15.43 33.26
JIMA (ours) | 4541 | 2725 | 1785 | 1237 16.36 34.59
R2Gen 4042 | 2676 | 1975 | 15.60 17.58 32.02
CMN 4142 | 2780 | 2025 | 1572 17.51 33.69
WCL 39.74 | 2544 | 18.02 | 1371 16.88 32.09
Normal | CMM+RL | 17.50 | 10.11 6.83 14.99 8.05 19.10
RRG 3878 | 2163 | 18.04 | 12.09 18.27 27.56
TIMER 4033 | 2753 | 1988 | 14.87 17.47 33.08
JIMA (ours) | 4179 | 27.87 | 2049 | 16.00 17.93 33.87
MIMIC-CXR R2Gen 3397 | 1931 | 1207 | 10.97 10.98 26.82
CMN 3300 | 1944 | 1002 | 873 10.21 25.16
WCL 3456 | 2245 | 1463 | 10.26 12.43 26.87
Abnormal | CMM+RL | 27.74 | 1087 | 5.8 3.43 6.11 16.08
RRG 1747 | 971 5.78 3.74 8.37 17.59
TIMER 3566 | 21.83 | 1425 | 14.87 9.84 26.77
JIMA (ours) | 37.81 | 2246 | 1526 | 10.28 14.56 27.38

Table 4: Results on high- and low-frequent tokens with
three different ratio splits.

IU X-ray MIMIC-CXR

Ratio Method infreq freq infreq freq
R2GEN 446 6273 252 52.01

CMN 588 5586 223 45.60

WCL 529 6023 291 48.60

1/8 CMN+RL 519 4936 021 2364
RRG 728 4194 250 43.57

TIMER 1323 61.89 3.15 52.66

JIMA (ours) 14.87 6255 3.58 53.06
R2GEN 280 61.62 2.02 49.86

CMN 575 65.12 0.85 52.02

WCL 372 5926 2.13 47.88

1/6 CMN+RL 519 4936 0.14 23.36
RRG 455 4046 2.09 43.56

TIMER 593 6779 2.02 51.72

JIMA (ours) 10.52 68.82 2.83 52.32
R2GEN 1.16 5998 0.00 48.77

CMN 2.60 6392 033 51.09

WCL 1.50 56.83 0.30 46.95

1/4 CMN+RL 519 4936 0.07 23.05
RRG 2.04 3884 039 4145

TIMER 8.66 64.00 058 51.39

JIMA (ours) 9.77 66.23 094 51.92

samples with lower BLEU-4, resulting in a better
performance compared to the baseline models. For
example, JIMA shows an improvement of 6.84%
on average for IU X-ray and 7.10% for MIMIC-
CXR. We infer this is as our task 3 improves gener-
ated sentence’ fluency leading to the improvement
of BLEU-(1-4) and ROUGE-L metrics.

Second, Our model achieves the best perfor-
mance in F1 of the clinical metric. The results
clearly indicates the effectiveness of Task 1 (Sec-
tion 3.1) can enable the model to put more attention
on difficult samples with lower F1 scores. Addition-
ally, our method promotes clinical token prediction
as performance on infrequent tokens and medical
terms have been improved. For example, our gen-
eration significantly outperforms the baselines on
F1 score by 21.69% on IU X-ray and 17.73% on
the MIMIC-CXR average. CMN + RL performs
better than other baselines on IU X-ray but not on
MIMIC-CXR. In contrast, JIMA maintains a stable
performance on both IU X-ray and MIMIC-CXR.
We infer this as our joint imbalance adaptation has
more improvements than label imbalance adapta-
tion, which has consistent observations with our
ablation analysis (Section 5.4).



Table 5: Ablation analysis.

Dataset Method | BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CE-Fl1
-task1 50.65 31.64 23.55 17.89 20.01 36.92 92.28
IU X-ray -task2 48.82 31.28 23.04 18.05 21.56 37.86 96.82
-task3 50.44 32.56 23.12 16.59 18.26 32.44 97.73
full 50.50 33.12 24.15 18.88 21.16 38.56 96.58
-task1 37.66 23.30 15.34 10.58 15.08 27.29 69.28
-task2 34.58 22.58 15.64 10.79 14.89 27.43 68.79
MIMIC-CXR -task3 37.717 22.86 15.32 9.44 14.78 26.89 69.56
full 40.07 24.83 15.66 10.99 15.25 29.05 78.25

5.2 Token Imbalance

Our method consistently outperforms baselines in
the low-frequent tokens across frequency splits
(4, ¢-and §) on IU X-ray and MIMIC-CXR. While
RRG and CMN + RL approaches have adapted la-
bel imbalance, the approaches may not be able to
adapt the token imbalance. Our approach achieves
better performance on the token imbalance.
Generating rare tokens with accuracy remains a
difficult task despite the high performance achieved
on frequent tokens. Common tokens are prone to
overfitting while rare tokens are predicted with less
precision. For example, the 0.00 score by R2GEN
on 3/4 split of the MIMIC-CXR vocabulary. Per-
formance imbalance can deteriorate the clinical
correctness of generated reports as medical termi-
nologies are usually infrequent. Nonetheless, our
joint imbalance adaptation approach has shown
considerable improvements in this area, indicating
a promising direction to enhance the robustness of
radiology report generation, a critical clinical task.

5.3 Label Imbalance

We report NLG evaluations on label imbalance
(normal vs. abnormal) in Table 3. JIMA signifi-
cantly outperforms baseline models both on nor-
mal and abnormal splits, which demonstrates its
effectiveness under label imbalance. JIMA also
performs better than the label imbalance methods,
RRG and CMM+RL, indicating that the joint imbal-
ance adaptation is a promising direction to improve
model robustness. It is worth noting that models
generally perform better on normal samples than
on abnormal ones. We infer this for two reasons:
1) abnormal reports contain more infrequent med-
ical tokens, and 2) abnormal reports are longer,
as discussed in Section 2. JIMA shows more im-
provements on abnormal samples over baselines
while maintains a similar performance on samples
with normal labels. The observations suggest that

our approach can successfully learn from lengthier
documents with more medical tokens.

5.4 Ablation Analysis

To measure each task’s contribution, we report ab-
lation analysis in Table 5. Overall, our full model
performs best in most evaluations. However, when
we remove Task 1, there is a significant decrease
in clinical metrics (F1). This task is crucial as it
allows JIMA to focus on learning from samples
with low clinical correctness. Without Task 1, the
model treats all samples equally, resulting in fail-
ure to capture useful features from complex sam-
ples. Furthermore, removing Task 2 leads to a
decrease in BLEU-1, as this task augments sam-
ples with low token F1 scores. We infer that Task 2
is highly relevant to BLEU-1 since they both mea-
sure single token accuracy. This task optimizes the
model by promoting infrequent tokens through e.q.
1, making it important in improving the BLEU-1
score. Similarly, removing Task 3 results in a de-
cline in BLEU-4 score, which indicates that JIMA
can reduce the generation discrepancy between the
training and test period. These results demonstrate
strong evidence that our proposed joint adaptation
approach can effectively learn from multiple imbal-
ance settings.

6 Conclusion

In this study, we have illustrated the critical chal-
lenges of label and token imbalance. We proposed
a curriculum learning-based model to jointly adapt
label and token imbalance. Our diverse analysis
can demonstrate the effectiveness of our approach
(JIMA) on radiology report generation. Extensive
experiments and ablation analysis show that JIMA
leads to significant improvements in handling token
and label imbalance. Appendix presents implemen-
tations, data analysis, and results to allow for full
replication.



7 Limitations

Limitations should be fully acknowledged before
fully interpreting this study, as no research can be
fully perfect. Our study conducts experiments on
English data without multilingual coverage. We
expect to extend our study to other languages in the
future when we have publically available datasets.
However, releasing and accessing new clinical data
can face privacy and ethical challenges as we also
discuss in our Appendix. The second challenge is
the large-scaled human evaluation. Our study in-
vited an expert from a medical institution. Having
annotations from one expert may face subjective
effects. However, limited fund prevents us to scale
our human evaluations. For example, the last au-
thor requested evaluations from multiple clinicians,
while most of them said they were “very busy”.
We expect to extend our human evaluations in our
future work. Finally, we are also aware of other
evaluation metrics, such as RadGraph (Jain et al.,
2021) and CheXpert (Irvin et al., 2019). However,
additional metrics may only be applicable to the
MIMIC-CXR or have overlapped with our exist-
ing method, such as CheXpert and CheXbert (Smit
et al., 2020). We have included diverse metrics,
including NLG, clinical correctness, and human
evaluations. To keep consistency with our state-
of-the-art baselines, we utilize a similar evaluation
schema. Having consistent observations between
our human and automatic evaluations may also
prove our evaluation validity.
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Figure 3: Frequent and infrequent token distributions
conditioning on report label.
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baseline studies (Chen et al., 2020, 2021; Qin and
Song, 2022) to preprocess the report documents
to ensure comparisons under same settings. In or-
der to ensure data format consistency, we include
and infer two primary labels of radiology reports,
normality and abnormality. To obtain labels for
IU X-ray, we build a supervised classifier using
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BioBert-PubMed200kRCT (Deka et al., 2022) to
extract the binary labels on the Medical Subject
Heading (MESH)? and RadLex* labels (normal
and abnormal). To obtain labels for MIMI-CXR,
we utilize CheXbert (Smit et al., 2020) to extract
the binary categories, disease types and “no find-
ing”. We define “no finding” as normality and
disease types as abnormality. In this study, we con-
ducted text preprocessing by utilizing the Natural
Language Toolkit (NLTK) (Loper and Bird, 2002)
to lowercase and tokenize documents. Furthermore,
we removed redundant spaces, empty lines, serial
numbers, and punctuation marks from the docu-
ments. We visualize the distributions of frequent
(ranked in the top 12.5% of the vocabulary) and
infrequent tokens in Figure 3.

B Ethic, Privacy, and IRB

We follow data agreement and training to access the
two radiology report datasets. To protect user pri-
vacy, we ensure proper data usage and experiment
with de-identified data. Our experiments do not
store any data and only use available multimodal
entries for research demonstrations. Due to privacy
and ethical considerations, we will not release any
clinical data associated with patient identities. In-
stead, we will release our code and provide detailed
instructions to replicate our study. This study only
uses publicly available and de-identified data. Our
study focuses on computational approaches and
does not collect data from human subjects. Our
institutional IRB determines that IRB approval is
not required for this study.

C Related Work

Radiology report generation is a domain-
specific image-to-text task that has two major di-
rections, retrieval- (Endo et al., 2021; Jeong et al.,
2023) and generation-based (Chen et al., 2020; Qin
and Song, 2022; Kale et al., 2023). The retrieval-
based approach compares similarities between an
input radiology image and a set of report candi-
dates, ranks the candidates, and returns the most
similar one (Liu et al., 2021; Endo et al., 2021;
Jeong et al., 2023; Wang et al., 2023; Delbrouck
et al., 2023). In contrast, our study focuses on the
generation-based task, which automatically gener-
ates a precise report from an input image. The task
has domain-specific characteristics in the clinical

3https ://www.nlm.nih.gov/mesh/meshhome.html
*https://radlex.org/
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field. The clinical data contains many infrequent
medical terminologies and longer documents than
image captioning from general domains (Lin et al.,
2014). As radiology report generation can reduce
the workloads of radiologists, generating highly
qualified and precise can be a critical challenge,
especially under the imbalance settings. Differing
from previous work, we aim to promote model ro-
bustness and reliability under imbalance settings,
which have been rarely studied in the radiology
report generation.

Imbalance learning aims to model skewed data
distributions. The primary focus of imbalance
learning is on class or label imbalance, such as
positive or negative reviews in sentiment analy-
sis (Li et al., 2022). While previous studies pro-
posed new objective functions (e.g., focal-loss (Lin
et al., 2020)) or oversampling (Chawla et al., 2002),
those methods may not be applicable to our primary
generation unit, token, which has large vocabu-
lary sizes and extreme sparsity. In terms of radi-
ology report generation, reports may have disease-
related labels. Recent studies have augmented
model robustness by balancing performance be-
tween disease and normal by reinforcement learn-
ing (Nishino et al., 2020; Yu and Zhang, 2022).
However, those methods ignore a fundamental chal-
lenge of generation task, token imbalance — a long-
tail distribution. The token imbalance can be even
more critical for the clinical domain, as medical
tokens appear less frequently than regular tokens
in radiology reports. Our study makes a unique
contribution to the radiology report generation that
jointly incorporates token and label imbalance via
curriculum learning.

D Experiment

D.1 Baselines

R2Gen (Chen et al., 2020) is a transformer-based
model with ResNet101 (He et al., 2016) as the vi-
sual extractor. To capture some patterns in medical
reports, R2Gen proposes a relational memory to en-
hance the transformer so that the model can learn
from the patterns’ characteristics. Furthermore,
R2Gen deploys a memory-driven conditional layer
normalization to the transformer decoder facilitat-
ing incorporating the previous step generation into
the current step.

CMN (Chen et al., 2021) is a novel extension
to the transformer architecture that facilitates the
alignment of textual and visual modalities. The


https://www.nlm.nih.gov/mesh/meshhome.html
https://radlex.org/

cross-modal memory network record the shared
information of visual and textual features. The
alignment process is carried out via memory query-
ing and responding. The model maps the visual and
textual features into the same representation space
in memory querying and learns a weighted repre-
sentation of these features in memory responding.

WCL (Yan et al., 2021) utilizes the R2Gen
framework and incorporates a weakly supervised
contrastive loss. Specifically, WCL leverages the
contrastive loss to enhance the similarity between
a given source image and its corresponding target
sequence. Furthermore, the model enhances its
ability to learn from difficult samples by assigning
more weights to instances sharing common labels.

CMM + RL (Qin and Song, 2022) is a cross-
modal memory-based model with reinforcement
learning for optimization. CMM + RL designs a
cross-modal memory model to align the visual and
textual features and deploy reinforcement learning
to capture the label imbalance between abnormality
and normality. The author uses BLEU-4 as a re-
ward to guide the model to generate the next word
from the image and previous words.

RRG (Delbrouck et al.,, 2022, 2023) aims
to generate clinically correct reports by weakly-
supervised learning of the entities and relations
from reports. RRG is a BERT-based model with
Densenet-121 (Huang et al., 2017) as a visual ex-
tractor. RRG leverages RadGraph (Jain et al., 2021)
to extract the entities and relation labels in a report.
RRG utilizes reinforcement learning to optimize
the model. The reward assesses the consistency
and completeness of entities and the relation set
between generated reports and reference radiology
reports. RRG addresses label imbalance issues by
maximizing the reward of predicting more compli-
cated entities and relations in abnormal samples.

TIMER (Wu et al., 2023) aims to decrease the
over-fitting of frequent tokens by introducing un-
likelihood loss to punish the error on these tokens.
The tokens set of unlikelihood loss is dynamically
adjusted by maximizing the average F1 score on
different frequency tokens.

D.2 Implementation Details

In our model architecture, we set the transformer
structure with 3 layers and 8 attention heads, 512
dimensions for hidden states. The memory-driven
model is a single-layer GRU network with a hidden
size equal to vocabulary size. We set the « learning
rate as 4e — 4 and S learning rate as le — 5 and
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decay them by a 0.8 rate per epoch for all datasets.
The pre-training epoch is 30 in IU X-ray and 10 in
MIMIC-CXR. Then we adopt curriculum learning
to optimize our pre-trained model. The maximum
training epoch is 70 for the IU X-ray and 50 for the
MIMIC-CXR datasets. We keep the learning rate
the same as in the pre-trained stage.

For all baselines, we set the maximum train-
ing epoch as 100 and 60 for IU X-ray and the
MIMIC-CXR datasets, respectively. Also, we use
the same preprocessing, optimizer, batch size, max-
imum length of training data, sampling method,
and machine learning framework in all exper-
iments. Specifically, we optimize models by
ADAM (Kingma and Ba, 2015) with 16 batch
sizes. The maximum length of training data is
60. In the test stage, we generate tokens by beam
search (Sutskever et al., 2014) with 3 beam sizes
for all experiments. All implementations are on
PyTorch (Paszke et al., 2019). In implementing
baselines, we keep all the model architecture and
optimization parameters the same as in their papers.
In R2Gen, CMN, and RRG, we generate reports
by using the code and the pre-trained models pub-
lished by the authors. For the other baselines (WCL
& CMM+RL & TIMER), we use the released code
to train and generate reports.

We personalize the following setting in baselines.
In WCL, we use the basic contrastive learning loss
without assigning a hardness weight to different
samples in IU X-ray dataset. Because the file mea-
suring the similarity among different samples is
inaccessible. We set the contrastive embedding
size as 256 and the weight of contrastive loss is
0.2. In CMM + RL, the reinforcement learning re-
ward is based on evaluation metrics and we select
BLEU-4 in this case.

D.3 Evaluation Metrics

Automatic Evaluation includes seven evaluation
methods from two major categories, NLG and Clin-
ical metrics. We first evaluate our model and the
baseline models on natural language generation
(NLG) metrics, including BLEU (-1, -2, -3, and
-4) (Papineni et al., 2002), METEOR (Denkowski
and Lavie, 2011) and ROUGE-L (Lin, 2004).
BLEU score measures the precision of prediction
with a penalty for the reference-to-prediction length
ratio. METEOR computes the harmonic mean of
unigram precision and recall. Unlike BLEU, which
considers only single words, METEOR incorpo-
rates a penalty to account for the importance of



word order. ROUGE-L takes into account sentence-
level structure similarity naturally and identifies
the longest co-occurring in sequence n-grams au-
tomatically. Clinical metrics is a domain-specific
evaluation method to measure the factual complete-
ness and consistency of generated reports. We use
CheXbert (Smit et al., 2020) to extract the labels
of ground truth and prediction and evaluate clinical
efficacy (CE) metrics by F1. We do not present
clinical F1 score in the label imbalance experiment
since we can not access recall in separate normal
and abnormal sample sets.

Human Evaluation To verify the factual correct-
ness, we invite a radiological professional from
a medical institution to perform evaluation using
Google Forms. First, we randomly select 50 test
instances per dataset from IU X-ray and MIMIC-
CXR respectively. We choose CMM+RL as our
targeting comparison, as the model achieves com-
paratively better performance than other baselines
by automatic metrics. In evaluation, we show the
X-ray images, corresponding ground truth reports,
and two generated reports (one from our model and
the other from CMM+RL) to the expert without
disclosing their sources. The expert selects a better
description from two candidate reports or chooses
the “Same” option if both reports are of similar
quality.

E Result Analysis

E.1 Human Evaluation

We present our human evaluation results in Table 6,
which shows a consistent result with automatic
evaluation results. Generally, JIMA outperforms
the baseline with 11 reports in total. Notably, our
approach exhibits significant improvements in ab-
normal samples. Even though JIMA has only one
more vote than the baseline in normal samples, our
model secures ten more votes in abnormal samples.
This is because abnormal samples have lengthier
reports on average and encompass more medical en-
tities, indicating that our approach generates more
clinically precise reports. Furthermore, our human
evaluation is consistent with the automated evalua-
tion results shown in Table 2.

E.2 Case Study

To verify our model’s effectiveness in generating
clinically correct descriptions, we perform a case
study in this section and present the result in Fig 4.

14

Table 6: Human evaluation. “Same" means two gener-
ated reports have the same quality by the clinician.

Dataset Label CMM+RL | Same | JIMA (Ours)
Normal 6 12 6
UXray | Apnormal 4 10 12
Normal 6 15 7
MIMIC-CXR |\ hormal 5 10 7
Overall Normal 12 27 13
era Abnormal 9 20 19
All 21 47 32

We select four samples from IU X-ray and MIMIC-
CXR datasets and compare the normal and abnor-
mal samples’ performance separately. The correct
pathological and anatomical entity predictions are
remarked in blue color. Generally, our predictions
cover more than 90% entities in reference reports.
Compared to normal samples, abnormal samples
have longer descriptions and contain more com-
plex entities. These entities usually are rare in
corpus and suffer under-fitting from models. There-
fore, models underperform in abnormal samples.
However, JIMA can capture most of the entities
in all kinds of samples and achieve similar per-
formance in both normal and abnormal samples,
which proves our model’s effectiveness in improv-
ing the factual completeness and correctness of
generated radiology reports.



Figure 4: Qualitative comparison between JIMA and CMM+RL. We highlight correct predictions of pathological
and anatomical entities in blue color.

Label Baseline JIMA Ground Truth
the lungs are clear . the cardiomediastinal in comparison with the study of from an in comparison with the study of there is
silhouette is within normal limits . no acute | outside institution there is little change . little change and no evidence of acute
osseous abnormalities . cardiac silhouette is within normal limits cardiopulmonary disease . no pneumonia
and there is no evidence of acute vascular congestion or pleural effusion .
pneumonia vascular congestion or pleural
effusion .

Normal the cardiomediastinal silhouette and the heart size and pulmonary the lungs and pleural spaces show no
pulmonary vascularity are within vascularity appear within normal acute abnormality . heart size and
normal limits in size . the lungs are limits . the lungs are free of focal pulmonary vascularity within normal
clear of focal airspace disease airspace disease . no pleural effusion or | limits .
pneumothorax or pleural effusion . pneumothorax is seen .
there are no acute bony findings .
as compared to the previous radiograph | as compared to the previous radiograph | as compared to the previous radiograph
there is no relevant change . extensive | there is no relevant change . low lung | there is no relevant change . low lung
emphysematous lung parenchymal volumes with areas of atelectasis at volumes with minimal atelectasis at the
destruction in both upper lobes right both lung bases . no new parenchymal | lung bases . no evidence of
more than left . subsequent distortion opacities . no larger pleural effusions . | pneumonia . no pulmonary edema . no
of vascular and airway structures at the | no pneumothorax . pleural effusions . normal size of the
lung bases . no pulmonary edema . no cardiac silhouette .
pneumonia . borderline size of the
cardiac silhouette .

Abnormal | dual lead left-sided pacemaker is stable | frontal and lateral views of the chest frontal and lateral views of the chest
in position with leads extending to the | were obtained . dual-lead left-sided were obtained . dual-lead left-sided
expected positions of the right atrium pacemaker is again seen with leads pacemaker is again seen with leads
and right ventricle . the patient is status | extending to the expected positions of | extending to the expected positions of
post median sternotomy . there is the right atrium and right ventricle . the | the right atrium and right ventricle . no
minimal left base atelectasis . no focal | lungs are clear without focal focal consolidation pleural effusion or
consolidation pleural effusion or consolidation . no pleural effusion or evidence of pneumothorax is seen . the
evidence of pneumothorax is seen . the | pneumothorax is seen . the cardiac and | cardiac and mediastinal silhouettes are
cardiac and mediastinal silhouettes are | mediastinal silhouettes are stable . unremarkable .
stable . no displaced fracture is seen .
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