
Joint Imbalance Adaptation for Radiology Report Generation

Anonymous ACL submission

Abstract

Radiology report generation, predicting text001
descriptions for radiological images, may face002
critical challenges due to data imbalance – med-003
ical tokens appear less frequently than regu-004
lar tokens, and normal labels of images may005
not equal to abnormal ones. However, exist-006
ing studies mainly consider label imbalance007
without mitigating other factors, such as token008
imbalance. In this study, we jointly consider009
two imbalance factors, label and token, deter-010
mining distributions of radiology images and011
language, two fundamental modalities of the012
generation task. We propose a Joint Imbalance013
Adaptation (JIMA) model to promote task ro-014
bustness by leveraging token and label imbal-015
ance. Experiments on two standard evaluation016
data (IU X-ray (Demner-Fushman et al., 2015)017
and MIMIC-CXR (Johnson et al., 2019)) by018
automatic and human evaluations demonstrate019
our significant improvements over current state-020
of-the-art models. We conduct extensive abla-021
tion and case analyses to examine and present022
dual imbalance effects on the radiology report023
generation robustness. While data imbalance024
remains challenging, our approach opens new025
task directions and shows promising results.026

1 Introduction027

Radiology report generation is a multimodal and028

medical image-to-text task that generates text029

descriptions for radiographs (e.g., X-ray or CT030

scan), which may reduce the workloads of radiolo-031

gists (Jing et al., 2018, 2019). The domain-specific032

task has own unique characteristics than general033

image-to-text tasks (e.g., image captioning), such034

as lengthy documents, medical annotations, and035

clinical terminologies. As demonstrated in Figure036

1, data imbalance can significantly impact model037

robustness that prevents model deployment in prac-038

tice – models can easily overfit on frequent patterns.039

However, encountering data imbalance to augment040

the robustness of the radiology report generation041

task is still in its infancy. 042

Two major data imbalances exist in the radiology 043

generation task, label and token. Label imbalance 044

pertains to a disproportionate ratio of normal and 045

abnormal diagnosis categories, which exist in radi- 046

ological images and text reports. For instance, in X- 047

ray images, normal regions dominate major areas, 048

and the numbers of normal and abnormal reports 049

may not be equal, leading to failures in disease 050

detection and description. As shown in Table 1, 051

abnormal reports are considerably longer than nor- 052

mal reports, with an average difference of 60.56%. 053

These reports are much harder to generate than 054

shorter reports (Lovelace and Mortazavi, 2020; Tan 055

et al., 2021; Wang et al., 2023).1 Existing imbal- 056

ance learning studies of radiology report generation 057

primarily focus on label imbalance (Nishino et al., 058

2020; Yu and Zhang, 2022). Token imbalance is a 059

critical challenge in generation that tokens have var- 060

ied occurrence frequencies, and the issue is more 061

critical in the medical task. Learning infrequent 062

tokens can be harder than frequent tokens for gen- 063

eration models (Gu et al., 2020; Wu et al., 2023). 064

Medical tokens appear less frequently than regular 065

ones, and the infrequent tokens may contain more 066

medical results, highlighting the domain-specific 067

uniqueness. For example, our empirical analysis in 068

Section 2 has demonstrated that over 80% medical 069

terms are infrequent tokens, while frequent tokens 070

can count over 82% corpus. However, to the best 071

of our knowledge, a joint adaptation of label and 072

token imbalance to enhance the robustness of radi- 073

ology report generation has not yet been explored. 074

To jointly model label and token imbalance, 075

we propose a Joint Imbalance Adaptation (JIMA) 076

model by curriculum learning (Bengio et al., 2009) 077

that assumes infrequent patterns are usually harder 078

to optimize. JIMA dynamically guides the model 079

1Clinical reports are also much longer than general-domain
image captions, such as MS-COCO (Lin et al., 2014).
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Table 1: Data statistics summary. Variations exist in label (Normal and Abnormal %) and average report length (L).

Image Report Vocab Normal % Abnormal % L Lnormal Labnormal

IU X-ray 7,470 3,955 1,517 32.96% 67.04% 35.99 27.76 40.72
MIMIC-CXR 377,110 227,835 13,876 13.97% 86.03% 59.70 34.57 59.36

Figure 1: Baselines’ BLEU-4 on normal and abnormal samples and F1 scores on low- and high-frequent tokens.

learning process by leveraging optimization diffi-080

culties, strengthening learning capability on infre-081

quent samples, and alleviating overfittings on fre-082

quent patterns on both label and token. To jointly083

incorporate token and label imbalance, we propose084

to measure optimization difficulties by leveraging085

performance discrepancy across three evaluation086

aspects, token F1, label F1, and BLEU-4. We incor-087

porate the three metrics as a joint optimization and088

design a novel Training Scheduler sampling and089

sorting training instances with the multi- difficulty090

scores based on performance discrepancies, which091

dynamically ranks easier samples when the mod-092

els’ performance decreases and vice versa. We con-093

duct experiments on two publicly available datasets,094

MIMIC-CXR (Johnson et al., 2019) and IU X-095

ray (Demner-Fushman et al., 2015) with automatic096

and human evaluations. By comparing with six097

state-of-the-art baselines on overall and imbalance098

performance settings, our experiments show the099

promising results of our proposed approach. Our100

ablation and qualitative analyses show that JIMA101

can generate more coherent and precise medical102

reports, balancing label and token imbalance. Our103

code and data access will be available at [URL].104

2 Data105

We collected two publicly accessible datasets for106

this study, IU X-ray (Demner-Fushman et al.,107

2015) and MIMIC-CXR (Johnson et al., 2019), de-108

identified chest X-ray datasets to evaluate radiol-109

ogy report generation. IU X-ray (Demner-Fushman110

et al., 2015), collected from the Indiana Network111

for Patient Care, includes 7,470 X-ray images and112

corresponding 3,955 radiology reports. MIMIC-113

CXR (Johnson et al., 2019), collected from the114

Beth Israel Deaconess Medical Center, contains 115

377,110 X-ray images and 227,827 radiology re- 116

ports for 65,379 patients. Each report is a text doc- 117

ument and associates with one or more front and 118

side X-ray images. Table 1 summarizes statistics of 119

data imbalance. We include preprocessing details 120

and imbalance visualizations in Appendix A. 121

Table 1 presents imbalance patterns in tokens 122

and labels. Abnormal entries are predominant in 123

both datasets, and MIMIC-CXR displays a more 124

skewed label distribution, as more abnormal sam- 125

ples were collected during diagnosis phases not 126

for screening purposes. MIMIC-CXR has a longer 127

average length than IU X-ray. The lengthier docu- 128

ments may pose a unique multimodal generation 129

challenge in the medical field. To conduct our anal- 130

ysis, we define the low and high frequency using 131

the top 12.5% frequent tokens. Our findings in 132

the Appendix A suggest a joint relation between 133

label and token imbalance and higher ratios of low- 134

frequency tokens in abnormal reports. This obser- 135

vation motivates us to investigate how the imbal- 136

ance impacts model robustness and reliability. 137

2.1 Imbalance Effects 138

We examine the potential impact of label and to- 139

ken imbalance on model performance. To ensure 140

consistency, we keep the top 12.5% to split low- 141

and high-frequent tokens for evaluation purposes. 142

The analysis includes three state-of-the-art mod- 143

els, R2Gen (Chen et al., 2020), WCL (Yan et al., 144

2021), and CMN (Chen et al., 2021). We either use 145

released source codes and leave implementation 146

details in the Appendix D.2. We use BLEU-4 (Pap- 147

ineni et al., 2002) and F1 scores to measure perfor- 148

mance across both token (low vs high frequency) 149

and label (normal vs. abnormal) imbalance. We 150
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visualize performance variations in Figure 1.151

The results suggest that the models exhibit sig-152

nificant difficulties in coping under label and token153

imbalance. Models consistently perform worse on154

abnormal reports, which are lengthier and have155

more infrequent tokens than normal reports. For156

example, the top 12.5% frequent tokens count >157

80% tokens in two datasets, and low-frequent to-158

kens have much worse performance than frequent159

tokens, as infrequent tokens are harder to opti-160

mize (Yu et al., 2022). However, infrequent tokens161

contain higher ratios of medical terms (e.g., silhou-162

ettes and pulmonary) describing health states. The163

significantly varying performance highlights the164

unique challenges to adapt token and label imbal-165

ance. While existing work (Nishino et al., 2020)166

has considered label imbalance, however, the study167

did not examine the performance effects of label or168

token imbalance. The findings inspire us to propose169

our model Joint Imbalance Adaptation (JIMA) to170

model token and label imbalance.171

3 Joint Imbalance Adaptation172

In this section, we present our approach Joint173

Imbalance Adaptation (JIMA) using curriculum174

learning. JIMA aims to augment model robustness175

under label and token imbalance. As optimizing176

data imbalance has been demonstrated difficulty,177

deploying such a learning strategy will strengthen178

model robustness and reliability. Our proposed179

approach deploys curriculum learning (CL) (Wang180

et al., 2022) that automatically adjusts the optimiza-181

tion process by gradually selecting training data en-182

tries from learning difficulty — learning from hard183

to easy samples as our optimization strategy (Zhou184

et al., 2020). To achieve the goal, we propose two185

major CL modules, difficulty measurer and training186

scheduler in Figure 2.187

Difficulty measurer is to measure sample diffi-188

culties. To diversify learning aspects and jointly in-189

corporate imbalance factors, we deploy three mea-190

surement tasks: 1) Task 1 - Label F1 promotes191

generating clinically correct reports, 2) Task 2 -192

Token F1 adjusts the balance between token infre-193

quency and frequency, and 3) Task 3 - BLEU-4 is194

to generate coherently long reports. We start with a195

pre-train model (e.g., Transformer (Vaswani et al.,196

2017)), which can perform well on easy samples197

(e.g., normal samples and frequent tokens). The198

difficulty measurer will evaluate samples’ difficul-199

ties by the three metrics, label F1, token F1, and200

BLEU-4. We feed the difficulty information to the 201

next step, Training Scheduler. 202

Training Scheduler aims to automatically lever- 203

age imbalance effects by selecting training samples 204

via the scores of the measurers. We design our 205

scheduler function, c(pt) as following: 206

c(pt) = min(1, [1−(pt − pt−1)

pt−1
]×c(pt−1)), t ≥ 1

(1) 207

, where p is the average performance of all training 208

samples, measuring the model’s learning ability. 209

t is the training step. Our goal is to increase the 210

number of easier samples when the performance 211

decreases and vice versa. Given decreasing perfor- 212

mance as an example, (pt−pt−1)
pt−1

will be negative. 213

During the process, the ratio 1 − (pt−pt−1)
pt−1

> 1 214

will allow the model to include more easy training 215

data than the last step c(pt−1). Similarly, the sched- 216

uler will also feed harder samples when increasing 217

performance. To start our curriculum learning, we 218

record the samples’ average performance of the last 219

two regular training epochs as p0 and p1, where we 220

empirically initialize c(p0) as 1. 221

3.1 CL-Task 1 222

Our Task 1 is to exploit imbalance patterns of re- 223

port labels to generate clinically accurate reports. 224

We measure accuracy of the generated reports by 225

comparing the predictions made by the label classi- 226

fiers in Section 2 with those of the gold truths. If 227

our generated reports are clinically correct, the la- 228

bel classifiers in Section 2 can accurately yield the 229

same prediction on our generated reports as golden 230

truth reports. In order to assess the difficulty level 231

of each sample, we utilize F1 score, which reflects 232

the degree of agreement between the predicted and 233

true labels. The greater the discrepancy between 234

the predicted and true labels indicates harder sam- 235

ples and vice versa. As clinical performance is a 236

critical metric for radiology report generation, we 237

utilize clinical error to sample data for Task 1. We 238

expect this task helps the model leverage label im- 239

balance, as the training scheduler can strengthen 240

model training on the misclassified samples. 241

The computing process is as the following. 242

Given a radiology image Img and the correspond- 243

ing report Z = (z0, . . . , zl) with the length l, we 244

extract the features from images with a visual ex- 245

tractor. We use ResNet101 (He et al., 2016) (fR) as 246

our visual extractor and obtain an image’s feature 247
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Figure 2: JIMA has three tasks, P (e.q. 5) as token distribution prediction, Q (e.q. 3) as label prediction by generated
reports, and K (e.q 8) as regular report generation. We assign one color per task and solid arrows as workflows. The
dotted arrow yields new models (f̃ ). Frames with double solid lines freeze model parameters. fR, fH, fT , fM
refer to the visual extractor in e.q. 2, token distribution predictor in e.q. 5, transformer in e.q. 8 and memory-driven
model in e.q. 7, respectively.
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(x) from different convolutional channels,248

{x1,x2, . . . ,xS} = fR(Img) (2)249

Then we generate i-th token probability distribution250

Qi from image feature x and contexts by our text251

generator (fT ),252

Qi = fT (x1,x2, . . . ,xS , z1, z2, . . . , zi−1) (3)253

To optimize the model, we minimize negative log-254

likelihood loss (NLL) as follows,255

LNLL = −
∑

log (si) (4)256

where si is the prediction probability of the i-th257

token.258

3.2 CL-Task 2259

The objective of Task 2 is to exploit token imbal-260

ance by predicting word occurrences in a given261

report. We utilize a multi-class binary schema to262

denote the tokens’ occurrence and calculate the to-263

ken F1 score as the difficult metrics. This approach264

does not count the tokens’ frequency and assigns265

the same weight to all tokens. As a result, samples266

with infrequent tokens are identified as difficult and267

can be used by the training scheduler to enhance268

the model’s performance in handling rare tokens.269

To predict token distribution, we feed the aver-270

age of feature x into the Token Distribution Predic-271

tor (fH) and obtain a token occurrence probability272

prediction (P ∈ R|V |),273

P = fH(Avg({x1,x2, . . . ,xS})) (5)274

where V is the vocabulary. We use a feed-forward 275

network as our token distribution predictor since 276

our experimental findings suggest that employing 277

a complex network architecture does not lead to 278

improvements in performance. Samples containing 279

infrequent tokens are prone to obtaining lower F1 280

scores, and as such, the samples will be prioritized 281

in training data repeatedly. This approach allows 282

the model to devote more attention to learning from 283

samples containing infrequent tokens, particularly 284

when the model struggles to capture the underlying 285

patterns in such tokens. Since infrequent tokens 286

have much higher ratios of medical terms, leverag- 287

ing token imbalance will be beneficial. 288

Task 2 is to predict the occurrence probability of 289

a word in a report, which is a multi-classification 290

task. Therefore, we optimize the model by multi- 291

classification loss as follows, 292

LBCE = [y · log σ (P) + (1− y) · log (1− σ (P))]
(6) 293

where σ(·) is a sigmoid function. y ∈ R|V | is the 294

ground truth and yi ∈ y is represented by, 295

yi =

{
1, if i-th token in a report
0, else

296

We set the threshold as 0.5 to predict whether a 297

token occurs in a report and choose F1 score as our 298

difficulty evaluator. 299

3.3 CL-Task 3 300

Task 3 implements an image-to-text generation 301

pipeline with the objective of enhancing the flu- 302

ency of generated reports. In text generation train- 303

ing, the model typically predicts i-th tokens based 304
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on 1-th to (i-1)-th tokens from the ground truth.305

However, these tokens and ground-truth context306

are not accessible during the test stage — mod-307

els generate the current position token by previous308

predictions, which causes the accumulation error309

for long documents and decreases the generation310

fluency. To narrow the generation discrepancy be-311

tween the training and test period, we calculate the312

BLEU-4 score generation from the beam search to313

measure the model’s performance in the test mode.314

BLEU-4 score matches four consecutive tokens be-315

tween prediction generation and reference reports,316

which can efficiently evaluate the fluency of reports.317

Thus, we can improve the model’s generation flu-318

ency by feeding the samples with lower BLEU-4319

scores into the model’s learning. Also, we propose320

a Memory-Driven module aiming to self-adjust the321

current token probability distribution based on the322

previous predictions instead of the ground truth.323

To enable the adjustment, our Memory-Driven324

takes two contextual inputs, the token occurrence325

probability prediction P from Task 1 and a se-326

quence token probability distribution Q from Task327

2. We utilize Gated Recurrent Unit (GRU) (Cho328

et al., 2014) as our memory-driven encoder to learn329

a conditional token occurrence probability predic-330

tion h ∈ Rl×V , where l is the sequence length of331

a report.2 The memory-driven model can capture332

the implicit relationship between a conditional to-333

ken occurrence probability h and a sequence token334

prediction probability Qi as follows,335

hi = fM(Qi, hi−1), (7)336

Where hi ∈ R1×V . We initialize h0 = P and337

obtain h by stacking all hi. Then, we obtain our338

final probability prediction Kl×V as follows,339

K = Q ∗ sigmoid(h) (8)340

This task optimize the model by e.q 4. Finally, we341

can obtain our generation (G) from K by beam342

search,343

G = beam_search(K)344

To maximize report fluency with the foundation345

of correct clinical description, we choose BLEU-4346

as our difficulty evaluator on G and ground truth to347

augment generation ability on lengthier documents.348

2We have experimented more complex models other than
GRU such as Transformer, but found GRU is the best option.

3.4 CL-Joint Optimization 349

We propose a joint optimization approach to inte- 350

grate three tasks. Algorithm 3.4 summarizes the 351

overall optimization process of our approach. We 352

set the learning rate of task 2 as α and β refers to 353

the learning rate of tasks 1 and 3. In each training 354

step, we sample different data for different tasks 355

and each task focuses on optimizing its own mod- 356

ule of the models. For example, we update the 357

visual extractor (fR) and token distribution predic- 358

tor parameters fH in task 2. Then we fix the visual 359

extractor parameters (fR) and update transformer 360

parameters (fT ) in task 1. Finally, we combine 361

the global token distribution P from task 2 and the 362

generation Q from task 1 to optimize the memory- 363

driven model (fM) in task 3. 364

Optimization Process of JIMA.

Require: learning rate α, β
for each epoch do

1. Rank entries by the three diffi-
culty measurers (token F1, label F1
and BLEU-4);
2. Calculate three c(pt) training sched-
ulers by e.q. 1;
3. Select top c(pt) samples from the
ranked datasets obtained by step 1 as
training sets;
4. Sample a batch from D1 and update
Task 1: f̃T ← fT − β∇fT LNLL(P);
5. Sample a batch from D2 and update
Task 2: f̃R ← fR − α∇fRLBCE(Q),
f̃H ← fH − α∇fHLBCE(Q);
6. Sample a batch inD3 & update Task
3: f̃M ← fM − β∇fMLNLL(K);

end for
365

Our optimization approach integrates with cur- 366

riculum learning to tailor joint imbalance learning 367

for each module (fR, fH, fT , fM). Curriculum 368

learning empowers the model to concentrate on 369

optimizing hard samples while mitigating the risk 370

of overfitting to easier samples. The joint opti- 371

mization scheme facilitates each task to manage 372

different module parameters optimization and learn 373

a transferable knowledge from the simpler to more 374

complex task. As a result, all modules collaborate 375

to enhance error reduction from previous tasks. 376
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Table 2: Overall performance. ∆ are averaged percentage improvements over baselines.

Dataset Model
NLG metrics CE metrics

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L F1

IU X-ray

R2Gen 48.80 31.93 23.24 17.72 20.21 37.10 63.62
CMN 45.53 29.50 21.47 16.53 18.99 36.78 64.83
WCL 44.74 29.30 21.49 16.79 20.45 37.11 49.24

CMM + RL 49.40 30.08 21.45 16.10 20.10 38.40 40.79
RRG 49.96 31.44 22.11 17.05 18.81 33.46 49.10

TIMER 49.34 32.49 23.84 18.61 20.38 38.25 94.52
JIMA (Ours) 50.50 33.12 24.15 18.88 21.16 38.56 96.58

∆ (%) 5.49 7.74 8.65 10.44 6.86 4.86 72.10

MIMIC-CXR

R2Gen 35.42 21.99 14.50 10.30 13.75 27.24 54.60
CMN 35.60 21.41 14.07 9.91 14.18 27.14 50.50
WCL 37.30 23.13 15.49 10.70 14.40 27.39 55.58

CMM+RL 35.35 21.80 14.82 10.58 14.20 27.37 65.43
RRG 37.57 19.78 15.87 9.56 14.77 26.81 62.20

TIMER 38.30 22.49 14.60 10.40 14.70 28.00 75.86
JIMA (Ours) 40.07 24.83 15.66 10.99 15.25 29.05 78.25

∆(%) 9.62 14.34 5.33 7.47 6.46 6.33 31.26

4 Experiments377

We design our experiments to evaluate performance378

on both regular and imbalanced settings via au-379

tomatic and human evaluations. The automatic380

evaluation includes NLG-oriented and clinical-381

correctness metrics. NLG-oriented metrics mea-382

sure the similarity between generated and refer-383

ence reports. Clinical correctness and human eval-384

uation belong to factually-oriented metrics, and385

domain-specific evaluation methods. To be con-386

sistent with our baselines (Chen et al., 2020; Del-387

brouck et al., 2022; Wu et al., 2023), we utilize388

the F1 CheXbert (Smit et al., 2020) for the clinical-389

correctness metrics. The experiments compare our390

proposed approach (JIMA) and the state-of-the-art391

baselines. Two of our five baselines (CMM + RL392

& RRG) are designed to solve label imbalance by393

improving the abnormal findings generation. We394

conduct ablation and case analyses to fully under-395

stand the capabilities of our proposed approach.396

We include more implementation details and hyper-397

parameter settings in Appendix D.2.398

4.1 Baselines399

To examine the validity of our method, we include400

five state-of-the-art baselines under the same ex-401

perimental settings: R2Gen (Chen et al., 2020),402

CMN (Chen et al., 2021), WCL (Yan et al., 2021),403

CMN + RL (Qin and Song, 2022), RRG (Del-404

brouck et al., 2022), TIMER (Wu et al., 2023) —405

and obtain from their open-sourced code reposito-406

ries. Detailed baseline implementations are in the407

Appendix D.2.408

4.2 Imbalance Setting 409

We evaluate model performance under token and 410

label imbalance settings. For token imbalance, we 411

compare F1-scores of frequent and infrequent to- 412

kens separately. We introduce three different scales 413

to define frequency token sets, 1/4, 1/6, and 1/8 414

respectively. The splits define the top 1/4, 1/6, 415

and 1/8 vocabulary as frequent tokens and the rest 416

vocabulary as infrequent tokens. The setting is to 417

demonstrate the effectiveness of our approach in 418

adapting token imbalance. For label imbalance, 419

we divide our samples into a binary category, nor- 420

mal and abnormal. We reuse labels from the data 421

section and NLG metrics for evaluation. 422

5 Results and Analysis 423

In this section, we present overall performance and 424

report results of imbalance evaluations. We con- 425

duct an ablation analysis and a case study in Ap- 426

pendix E. Generally, JIMA outperforms the state- 427

of-the-art baselines by a large margin, especially 428

under imbalance settings. Our qualitative studies 429

show our method can achieve more clinically accu- 430

racy and generate more precisely clinical terms. 431

5.1 Overall Performance 432

Table 2 presents the performance of JIMA by NLG 433

and clinical-correctness metrics. JIMA outper- 434

forms baseline models (both imbalance and regular 435

methods) on BLEU scores by a large margin, con- 436

firming the validity of selecting training samples 437

by our curriculum learning method. The approach 438

enables the model to learn multiple times from the 439
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Table 3: Label imbalance evaluation with binary types, normal and abnormal.

Dataset label Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

IU X-ray

Normal

R2Gen 50.50 34.91 25.86 20.93 23.66 40.56
CMN 47.42 32.80 25.25 18.72 20.51 38.69
WCL 49.74 35.44 28.02 18.71 26.88 42.09

CMM+RL 51.68 36.65 21.99 19.47 23.63 40.05
RRG 50.03 33.76 24.81 19.89 20.43 34.39

TIMER 51.83 32.43 33.71 20.19 24.43 39.39
JIMA (ours) 52.65 32.14 24.97 18.26 23.73 41.72

Abnormal

R2Gen 42.67 27.86 18.47 12.35 15.04 30.10
CMN 35.09 21.42 14.97 11.32 14.36 29.85
WCL 32.31 19.93 13.87 10.50 13.81 30.37

CMM+RL 38.09 25.42 11.17 15.09 13.13 27.64
RRG 43.38 23.44 10.02 15.58 12.43 31.52

TIMER 44.25 26.73 15.28 10.76 15.43 33.26
JIMA (ours) 45.41 27.25 17.85 12.37 16.36 34.59

MIMIC-CXR

Normal

R2Gen 40.42 26.76 19.75 15.60 17.58 32.02
CMN 41.42 27.80 20.25 15.72 17.51 33.69
WCL 39.74 25.44 18.02 13.71 16.88 32.09

CMM+RL 17.50 10.11 6.83 14.99 8.05 19.10
RRG 38.78 21.63 18.04 12.09 18.27 27.56

TIMER 40.33 27.53 19.88 14.87 17.47 33.08
JIMA (ours) 41.79 27.87 20.49 16.00 17.93 33.87

Abnormal

R2Gen 33.97 19.31 12.07 10.97 10.98 26.82
CMN 33.00 19.44 10.02 8.73 10.21 25.16
WCL 34.56 22.45 14.63 10.26 12.43 26.87

CMM+RL 27.74 10.87 5.18 3.43 6.11 16.08
RRG 17.47 9.71 5.78 3.74 8.37 17.59

TIMER 35.66 21.83 14.25 14.87 9.84 26.77
JIMA (ours) 37.81 22.46 15.26 10.28 14.56 27.38

Table 4: Results on high- and low-frequent tokens with
three different ratio splits.

IU X-ray MIMIC-CXR
Ratio Method infreq freq infreq freq

1/8

R2GEN 4.46 62.73 2.52 52.01
CMN 5.88 55.86 2.23 45.60
WCL 5.29 60.23 2.91 48.60

CMN + RL 5.19 49.36 0.21 23.64
RRG 7.28 41.94 2.50 43.57

TIMER 13.23 61.89 3.15 52.66
JIMA (ours) 14.87 62.55 3.58 53.06

1/6

R2GEN 2.80 61.62 2.02 49.86
CMN 5.75 65.12 0.85 52.02
WCL 3.72 59.26 2.13 47.88

CMN + RL 5.19 49.36 0.14 23.36
RRG 4.55 40.46 2.09 43.56

TIMER 5.93 67.79 2.02 51.72
JIMA (ours) 10.52 68.82 2.83 52.32

1/4

R2GEN 1.16 59.98 0.00 48.77
CMN 2.60 63.92 0.33 51.09
WCL 1.50 56.83 0.30 46.95

CMN + RL 5.19 49.36 0.07 23.05
RRG 2.04 38.84 0.39 41.45

TIMER 8.66 64.00 0.58 51.39
JIMA (ours) 9.77 66.23 0.94 51.92

samples with lower BLEU-4, resulting in a better 440

performance compared to the baseline models. For 441

example, JIMA shows an improvement of 6.84% 442

on average for IU X-ray and 7.10% for MIMIC- 443

CXR. We infer this is as our task 3 improves gener- 444

ated sentence’ fluency leading to the improvement 445

of BLEU-(1-4) and ROUGE-L metrics. 446

Second, Our model achieves the best perfor- 447

mance in F1 of the clinical metric. The results 448

clearly indicates the effectiveness of Task 1 (Sec- 449

tion 3.1) can enable the model to put more attention 450

on difficult samples with lower F1 scores. Addition- 451

ally, our method promotes clinical token prediction 452

as performance on infrequent tokens and medical 453

terms have been improved. For example, our gen- 454

eration significantly outperforms the baselines on 455

F1 score by 21.69% on IU X-ray and 17.73% on 456

the MIMIC-CXR average. CMN + RL performs 457

better than other baselines on IU X-ray but not on 458

MIMIC-CXR. In contrast, JIMA maintains a stable 459

performance on both IU X-ray and MIMIC-CXR. 460

We infer this as our joint imbalance adaptation has 461

more improvements than label imbalance adapta- 462

tion, which has consistent observations with our 463

ablation analysis (Section 5.4). 464
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Table 5: Ablation analysis.

Dataset Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CE - F1

IU X-ray

-task1 50.65 31.64 23.55 17.89 20.01 36.92 92.28
-task2 48.82 31.28 23.04 18.05 21.56 37.86 96.82
-task3 50.44 32.56 23.12 16.59 18.26 32.44 97.73

full 50.50 33.12 24.15 18.88 21.16 38.56 96.58

MIMIC-CXR

-task1 37.66 23.30 15.34 10.58 15.08 27.29 69.28
-task2 34.58 22.58 15.64 10.79 14.89 27.43 68.79
-task3 37.77 22.86 15.32 9.44 14.78 26.89 69.56

full 40.07 24.83 15.66 10.99 15.25 29.05 78.25

5.2 Token Imbalance465

Our method consistently outperforms baselines in466

the low-frequent tokens across frequency splits467

(14 ,
1
6 , and 1

8 ) on IU X-ray and MIMIC-CXR. While468

RRG and CMN + RL approaches have adapted la-469

bel imbalance, the approaches may not be able to470

adapt the token imbalance. Our approach achieves471

better performance on the token imbalance.472

Generating rare tokens with accuracy remains a473

difficult task despite the high performance achieved474

on frequent tokens. Common tokens are prone to475

overfitting while rare tokens are predicted with less476

precision. For example, the 0.00 score by R2GEN477

on 3/4 split of the MIMIC-CXR vocabulary. Per-478

formance imbalance can deteriorate the clinical479

correctness of generated reports as medical termi-480

nologies are usually infrequent. Nonetheless, our481

joint imbalance adaptation approach has shown482

considerable improvements in this area, indicating483

a promising direction to enhance the robustness of484

radiology report generation, a critical clinical task.485

5.3 Label Imbalance486

We report NLG evaluations on label imbalance487

(normal vs. abnormal) in Table 3. JIMA signifi-488

cantly outperforms baseline models both on nor-489

mal and abnormal splits, which demonstrates its490

effectiveness under label imbalance. JIMA also491

performs better than the label imbalance methods,492

RRG and CMM+RL, indicating that the joint imbal-493

ance adaptation is a promising direction to improve494

model robustness. It is worth noting that models495

generally perform better on normal samples than496

on abnormal ones. We infer this for two reasons:497

1) abnormal reports contain more infrequent med-498

ical tokens, and 2) abnormal reports are longer,499

as discussed in Section 2. JIMA shows more im-500

provements on abnormal samples over baselines501

while maintains a similar performance on samples502

with normal labels. The observations suggest that503

our approach can successfully learn from lengthier 504

documents with more medical tokens. 505

5.4 Ablation Analysis 506

To measure each task’s contribution, we report ab- 507

lation analysis in Table 5. Overall, our full model 508

performs best in most evaluations. However, when 509

we remove Task 1, there is a significant decrease 510

in clinical metrics (F1). This task is crucial as it 511

allows JIMA to focus on learning from samples 512

with low clinical correctness. Without Task 1, the 513

model treats all samples equally, resulting in fail- 514

ure to capture useful features from complex sam- 515

ples. Furthermore, removing Task 2 leads to a 516

decrease in BLEU-1, as this task augments sam- 517

ples with low token F1 scores. We infer that Task 2 518

is highly relevant to BLEU-1 since they both mea- 519

sure single token accuracy. This task optimizes the 520

model by promoting infrequent tokens through e.q. 521

1, making it important in improving the BLEU-1 522

score. Similarly, removing Task 3 results in a de- 523

cline in BLEU-4 score, which indicates that JIMA 524

can reduce the generation discrepancy between the 525

training and test period. These results demonstrate 526

strong evidence that our proposed joint adaptation 527

approach can effectively learn from multiple imbal- 528

ance settings. 529

6 Conclusion 530

In this study, we have illustrated the critical chal- 531

lenges of label and token imbalance. We proposed 532

a curriculum learning-based model to jointly adapt 533

label and token imbalance. Our diverse analysis 534

can demonstrate the effectiveness of our approach 535

(JIMA) on radiology report generation. Extensive 536

experiments and ablation analysis show that JIMA 537

leads to significant improvements in handling token 538

and label imbalance. Appendix presents implemen- 539

tations, data analysis, and results to allow for full 540

replication. 541
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7 Limitations542

Limitations should be fully acknowledged before543

fully interpreting this study, as no research can be544

fully perfect. Our study conducts experiments on545

English data without multilingual coverage. We546

expect to extend our study to other languages in the547

future when we have publically available datasets.548

However, releasing and accessing new clinical data549

can face privacy and ethical challenges as we also550

discuss in our Appendix. The second challenge is551

the large-scaled human evaluation. Our study in-552

vited an expert from a medical institution. Having553

annotations from one expert may face subjective554

effects. However, limited fund prevents us to scale555

our human evaluations. For example, the last au-556

thor requested evaluations from multiple clinicians,557

while most of them said they were “very busy”.558

We expect to extend our human evaluations in our559

future work. Finally, we are also aware of other560

evaluation metrics, such as RadGraph (Jain et al.,561

2021) and CheXpert (Irvin et al., 2019). However,562

additional metrics may only be applicable to the563

MIMIC-CXR or have overlapped with our exist-564

ing method, such as CheXpert and CheXbert (Smit565

et al., 2020). We have included diverse metrics,566

including NLG, clinical correctness, and human567

evaluations. To keep consistency with our state-568

of-the-art baselines, we utilize a similar evaluation569

schema. Having consistent observations between570

our human and automatic evaluations may also571

prove our evaluation validity.572
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We extract labels of each data entry and follow 853

baseline studies (Chen et al., 2020, 2021; Qin and 854

Song, 2022) to preprocess the report documents 855

to ensure comparisons under same settings. In or- 856

der to ensure data format consistency, we include 857

and infer two primary labels of radiology reports, 858

normality and abnormality. To obtain labels for 859

IU X-ray, we build a supervised classifier using 860
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BioBert-PubMed200kRCT (Deka et al., 2022) to861

extract the binary labels on the Medical Subject862

Heading (MESH)3 and RadLex4 labels (normal863

and abnormal). To obtain labels for MIMI-CXR,864

we utilize CheXbert (Smit et al., 2020) to extract865

the binary categories, disease types and “no find-866

ing”. We define “no finding” as normality and867

disease types as abnormality. In this study, we con-868

ducted text preprocessing by utilizing the Natural869

Language Toolkit (NLTK) (Loper and Bird, 2002)870

to lowercase and tokenize documents. Furthermore,871

we removed redundant spaces, empty lines, serial872

numbers, and punctuation marks from the docu-873

ments. We visualize the distributions of frequent874

(ranked in the top 12.5% of the vocabulary) and875

infrequent tokens in Figure 3.876

B Ethic, Privacy, and IRB877

We follow data agreement and training to access the878

two radiology report datasets. To protect user pri-879

vacy, we ensure proper data usage and experiment880

with de-identified data. Our experiments do not881

store any data and only use available multimodal882

entries for research demonstrations. Due to privacy883

and ethical considerations, we will not release any884

clinical data associated with patient identities. In-885

stead, we will release our code and provide detailed886

instructions to replicate our study. This study only887

uses publicly available and de-identified data. Our888

study focuses on computational approaches and889

does not collect data from human subjects. Our890

institutional IRB determines that IRB approval is891

not required for this study.892

C Related Work893

Radiology report generation is a domain-894

specific image-to-text task that has two major di-895

rections, retrieval- (Endo et al., 2021; Jeong et al.,896

2023) and generation-based (Chen et al., 2020; Qin897

and Song, 2022; Kale et al., 2023). The retrieval-898

based approach compares similarities between an899

input radiology image and a set of report candi-900

dates, ranks the candidates, and returns the most901

similar one (Liu et al., 2021; Endo et al., 2021;902

Jeong et al., 2023; Wang et al., 2023; Delbrouck903

et al., 2023). In contrast, our study focuses on the904

generation-based task, which automatically gener-905

ates a precise report from an input image. The task906

has domain-specific characteristics in the clinical907

3https://www.nlm.nih.gov/mesh/meshhome.html
4https://radlex.org/

field. The clinical data contains many infrequent 908

medical terminologies and longer documents than 909

image captioning from general domains (Lin et al., 910

2014). As radiology report generation can reduce 911

the workloads of radiologists, generating highly 912

qualified and precise can be a critical challenge, 913

especially under the imbalance settings. Differing 914

from previous work, we aim to promote model ro- 915

bustness and reliability under imbalance settings, 916

which have been rarely studied in the radiology 917

report generation. 918

Imbalance learning aims to model skewed data 919

distributions. The primary focus of imbalance 920

learning is on class or label imbalance, such as 921

positive or negative reviews in sentiment analy- 922

sis (Li et al., 2022). While previous studies pro- 923

posed new objective functions (e.g., focal-loss (Lin 924

et al., 2020)) or oversampling (Chawla et al., 2002), 925

those methods may not be applicable to our primary 926

generation unit, token, which has large vocabu- 927

lary sizes and extreme sparsity. In terms of radi- 928

ology report generation, reports may have disease- 929

related labels. Recent studies have augmented 930

model robustness by balancing performance be- 931

tween disease and normal by reinforcement learn- 932

ing (Nishino et al., 2020; Yu and Zhang, 2022). 933

However, those methods ignore a fundamental chal- 934

lenge of generation task, token imbalance – a long- 935

tail distribution. The token imbalance can be even 936

more critical for the clinical domain, as medical 937

tokens appear less frequently than regular tokens 938

in radiology reports. Our study makes a unique 939

contribution to the radiology report generation that 940

jointly incorporates token and label imbalance via 941

curriculum learning. 942

D Experiment 943

D.1 Baselines 944

R2Gen (Chen et al., 2020) is a transformer-based 945

model with ResNet101 (He et al., 2016) as the vi- 946

sual extractor. To capture some patterns in medical 947

reports, R2Gen proposes a relational memory to en- 948

hance the transformer so that the model can learn 949

from the patterns’ characteristics. Furthermore, 950

R2Gen deploys a memory-driven conditional layer 951

normalization to the transformer decoder facilitat- 952

ing incorporating the previous step generation into 953

the current step. 954

CMN (Chen et al., 2021) is a novel extension 955

to the transformer architecture that facilitates the 956

alignment of textual and visual modalities. The 957
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cross-modal memory network record the shared958

information of visual and textual features. The959

alignment process is carried out via memory query-960

ing and responding. The model maps the visual and961

textual features into the same representation space962

in memory querying and learns a weighted repre-963

sentation of these features in memory responding.964

WCL (Yan et al., 2021) utilizes the R2Gen965

framework and incorporates a weakly supervised966

contrastive loss. Specifically, WCL leverages the967

contrastive loss to enhance the similarity between968

a given source image and its corresponding target969

sequence. Furthermore, the model enhances its970

ability to learn from difficult samples by assigning971

more weights to instances sharing common labels.972

CMM + RL (Qin and Song, 2022) is a cross-973

modal memory-based model with reinforcement974

learning for optimization. CMM + RL designs a975

cross-modal memory model to align the visual and976

textual features and deploy reinforcement learning977

to capture the label imbalance between abnormality978

and normality. The author uses BLEU-4 as a re-979

ward to guide the model to generate the next word980

from the image and previous words.981

RRG (Delbrouck et al., 2022, 2023) aims982

to generate clinically correct reports by weakly-983

supervised learning of the entities and relations984

from reports. RRG is a BERT-based model with985

Densenet-121 (Huang et al., 2017) as a visual ex-986

tractor. RRG leverages RadGraph (Jain et al., 2021)987

to extract the entities and relation labels in a report.988

RRG utilizes reinforcement learning to optimize989

the model. The reward assesses the consistency990

and completeness of entities and the relation set991

between generated reports and reference radiology992

reports. RRG addresses label imbalance issues by993

maximizing the reward of predicting more compli-994

cated entities and relations in abnormal samples.995

TIMER (Wu et al., 2023) aims to decrease the996

over-fitting of frequent tokens by introducing un-997

likelihood loss to punish the error on these tokens.998

The tokens set of unlikelihood loss is dynamically999

adjusted by maximizing the average F1 score on1000

different frequency tokens.1001

D.2 Implementation Details1002

In our model architecture, we set the transformer1003

structure with 3 layers and 8 attention heads, 5121004

dimensions for hidden states. The memory-driven1005

model is a single-layer GRU network with a hidden1006

size equal to vocabulary size. We set the α learning1007

rate as 4e − 4 and β learning rate as 1e − 5 and1008

decay them by a 0.8 rate per epoch for all datasets. 1009

The pre-training epoch is 30 in IU X-ray and 10 in 1010

MIMIC-CXR. Then we adopt curriculum learning 1011

to optimize our pre-trained model. The maximum 1012

training epoch is 70 for the IU X-ray and 50 for the 1013

MIMIC-CXR datasets. We keep the learning rate 1014

the same as in the pre-trained stage. 1015

For all baselines, we set the maximum train- 1016

ing epoch as 100 and 60 for IU X-ray and the 1017

MIMIC-CXR datasets, respectively. Also, we use 1018

the same preprocessing, optimizer, batch size, max- 1019

imum length of training data, sampling method, 1020

and machine learning framework in all exper- 1021

iments. Specifically, we optimize models by 1022

ADAM (Kingma and Ba, 2015) with 16 batch 1023

sizes. The maximum length of training data is 1024

60. In the test stage, we generate tokens by beam 1025

search (Sutskever et al., 2014) with 3 beam sizes 1026

for all experiments. All implementations are on 1027

PyTorch (Paszke et al., 2019). In implementing 1028

baselines, we keep all the model architecture and 1029

optimization parameters the same as in their papers. 1030

In R2Gen, CMN, and RRG, we generate reports 1031

by using the code and the pre-trained models pub- 1032

lished by the authors. For the other baselines (WCL 1033

& CMM+RL & TIMER), we use the released code 1034

to train and generate reports. 1035

We personalize the following setting in baselines. 1036

In WCL, we use the basic contrastive learning loss 1037

without assigning a hardness weight to different 1038

samples in IU X-ray dataset. Because the file mea- 1039

suring the similarity among different samples is 1040

inaccessible. We set the contrastive embedding 1041

size as 256 and the weight of contrastive loss is 1042

0.2. In CMM + RL, the reinforcement learning re- 1043

ward is based on evaluation metrics and we select 1044

BLEU-4 in this case. 1045

D.3 Evaluation Metrics 1046

Automatic Evaluation includes seven evaluation 1047

methods from two major categories, NLG and Clin- 1048

ical metrics. We first evaluate our model and the 1049

baseline models on natural language generation 1050

(NLG) metrics, including BLEU (-1, -2, -3, and 1051

-4) (Papineni et al., 2002), METEOR (Denkowski 1052

and Lavie, 2011) and ROUGE-L (Lin, 2004). 1053

BLEU score measures the precision of prediction 1054

with a penalty for the reference-to-prediction length 1055

ratio. METEOR computes the harmonic mean of 1056

unigram precision and recall. Unlike BLEU, which 1057

considers only single words, METEOR incorpo- 1058

rates a penalty to account for the importance of 1059
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word order. ROUGE-L takes into account sentence-1060

level structure similarity naturally and identifies1061

the longest co-occurring in sequence n-grams au-1062

tomatically. Clinical metrics is a domain-specific1063

evaluation method to measure the factual complete-1064

ness and consistency of generated reports. We use1065

CheXbert (Smit et al., 2020) to extract the labels1066

of ground truth and prediction and evaluate clinical1067

efficacy (CE) metrics by F1. We do not present1068

clinical F1 score in the label imbalance experiment1069

since we can not access recall in separate normal1070

and abnormal sample sets.1071

Human Evaluation To verify the factual correct-1072

ness, we invite a radiological professional from1073

a medical institution to perform evaluation using1074

Google Forms. First, we randomly select 50 test1075

instances per dataset from IU X-ray and MIMIC-1076

CXR respectively. We choose CMM+RL as our1077

targeting comparison, as the model achieves com-1078

paratively better performance than other baselines1079

by automatic metrics. In evaluation, we show the1080

X-ray images, corresponding ground truth reports,1081

and two generated reports (one from our model and1082

the other from CMM+RL) to the expert without1083

disclosing their sources. The expert selects a better1084

description from two candidate reports or chooses1085

the “Same” option if both reports are of similar1086

quality.1087

E Result Analysis1088

E.1 Human Evaluation1089

We present our human evaluation results in Table 6,1090

which shows a consistent result with automatic1091

evaluation results. Generally, JIMA outperforms1092

the baseline with 11 reports in total. Notably, our1093

approach exhibits significant improvements in ab-1094

normal samples. Even though JIMA has only one1095

more vote than the baseline in normal samples, our1096

model secures ten more votes in abnormal samples.1097

This is because abnormal samples have lengthier1098

reports on average and encompass more medical en-1099

tities, indicating that our approach generates more1100

clinically precise reports. Furthermore, our human1101

evaluation is consistent with the automated evalua-1102

tion results shown in Table 2.1103

E.2 Case Study1104

To verify our model’s effectiveness in generating1105

clinically correct descriptions, we perform a case1106

study in this section and present the result in Fig 4.1107

Table 6: Human evaluation. “Same" means two gener-
ated reports have the same quality by the clinician.

Dataset Label CMM+RL Same JIMA (Ours)

IU X-ray
Normal 6 12 6

Abnormal 4 10 12

MIMIC-CXR
Normal 6 15 7

Abnormal 5 10 7

Overall
Normal 12 27 13

Abnormal 9 20 19
All 21 47 32

We select four samples from IU X-ray and MIMIC- 1108

CXR datasets and compare the normal and abnor- 1109

mal samples’ performance separately. The correct 1110

pathological and anatomical entity predictions are 1111

remarked in blue color. Generally, our predictions 1112

cover more than 90% entities in reference reports. 1113

Compared to normal samples, abnormal samples 1114

have longer descriptions and contain more com- 1115

plex entities. These entities usually are rare in 1116

corpus and suffer under-fitting from models. There- 1117

fore, models underperform in abnormal samples. 1118

However, JIMA can capture most of the entities 1119

in all kinds of samples and achieve similar per- 1120

formance in both normal and abnormal samples, 1121

which proves our model’s effectiveness in improv- 1122

ing the factual completeness and correctness of 1123

generated radiology reports. 1124
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Figure 4: Qualitative comparison between JIMA and CMM+RL. We highlight correct predictions of pathological
and anatomical entities in blue color.

Label Baseline JIMA Ground Truth 

Normal 

the lungs are clear . the cardiomediastinal 
silhouette is within normal limits . no acute 
osseous abnormalities . 

in comparison with the study of from an 
outside institution there is little change . 
cardiac silhouette is within normal limits 
and there is no evidence of acute 
pneumonia vascular congestion or pleural 
effusion . 

in comparison with the study of there is 
little change and no evidence of acute 
cardiopulmonary disease . no pneumonia 
vascular congestion or pleural effusion .  

the cardiomediastinal silhouette and 
pulmonary vascularity are within 
normal limits in size . the lungs are 
clear of focal airspace disease 
pneumothorax or pleural effusion . 
there are no acute bony findings .  

the heart size and pulmonary 
vascularity appear within normal 
limits . the lungs are free of focal 
airspace disease . no pleural effusion or 
pneumothorax is seen . 

the lungs and pleural spaces show no 
acute abnormality . heart size and 
pulmonary vascularity within normal 
limits .  

Abnormal 

as compared to the previous radiograph 
there is no relevant change . extensive 
emphysematous lung parenchymal 
destruction in both upper lobes right 
more than left . subsequent distortion 
of vascular and airway structures at the 
lung bases . no pulmonary edema . no 
pneumonia . borderline size of the 
cardiac silhouette .  

as compared to the previous radiograph 
there is no relevant change . low lung 
volumes with areas of atelectasis at 
both lung bases . no new parenchymal 
opacities . no larger pleural effusions . 
no pneumothorax . 

as compared to the previous radiograph 
there is no relevant change . low lung 
volumes with minimal atelectasis at the 
lung bases . no evidence of 
pneumonia . no pulmonary edema . no 
pleural effusions . normal size of the 
cardiac silhouette . 

dual lead left-sided pacemaker is stable 
in position with leads extending to the 
expected positions of the right atrium 
and right ventricle . the patient is status 
post median sternotomy . there is 
minimal left base atelectasis . no focal 
consolidation pleural effusion or 
evidence of pneumothorax is seen . the 
cardiac and mediastinal silhouettes are 
stable . no displaced fracture is seen .  

frontal and lateral views of the chest 
were obtained . dual-lead left-sided 
pacemaker is again seen with leads 
extending to the expected positions of 
the right atrium and right ventricle . the 
lungs are clear without focal 
consolidation . no pleural effusion or 
pneumothorax is seen . the cardiac and 
mediastinal silhouettes are stable . 

frontal and lateral views of the chest 
were obtained . dual-lead left-sided 
pacemaker is again seen with leads 
extending to the expected positions of 
the right atrium and right ventricle . no 
focal consolidation pleural effusion or 
evidence of pneumothorax is seen . the 
cardiac and mediastinal silhouettes are 
unremarkable .  
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