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Abstract

The remarkable advancements in Multimodal001
Large Language Models (MLLMs) have not002
rendered them immune to challenges, particu-003
larly in the context of handling deceptive infor-004
mation in prompts, thus producing hallucinated005
responses under such conditions. To quanti-006
tatively assess this vulnerability, we present007
MAD-Bench,1 a carefully curated benchmark008
that contains 850 test samples divided into 6009
categories, such as non-existent objects, count010
of objects, spatial relationship, and visual con-011
fusion. We provide a comprehensive analy-012
sis of popular MLLMs, ranging from GPT-4V,013
Gemini-Pro, to open-sourced models, such as014
LLaVA-1.5 and CogVLM. Empirically, we ob-015
serve significant performance gaps between016
GPT-4V and other models; and previous ro-017
bust instruction-tuned models, such as LRV-018
Instruction and LLaVA-RLHF, are not effec-019
tive on this new benchmark. While GPT-4V020
achieves 75.02% accuracy on MAD-Bench, the021
accuracy of any other model in our experiments022
ranges from 5% to 35%. We further propose a023
remedy that adds an additional paragraph to the024
deceptive prompts to encourage models to think025
twice before answering the question. Surpris-026
ingly, this simple method can even double the027
accuracy; however, the absolute numbers are028
still too low to be satisfactory. We hope MAD-029
Bench can serve as a valuable benchmark to030
stimulate further research to enhance models’031
resilience against deceptive prompts.032

1 Introduction033

Recent advancements in Multimodal Large Lan-034

guage Models (MLLMs) (Liu et al., 2023b,a; Wang035

et al., 2023c; You et al., 2024; Bai et al., 2023b;036

Liu et al., 2024; Zhu et al., 2024), exemplified by037

models like GPT-4V(ision) (OpenAI, 2023) and038

Gemini (Team, 2023), mark a significant milestone039

in the evolution of AI, extending the capabilities040

1Short for MultimodAl Deception Benchmark.

Figure 1: How easy is it to fool your multimodal LLMs?
Our study found that multimodal LLMs, such as LLaVA-
1.5 (Liu et al., 2023a), can be easily deceived by prompts
with incorrect information (the 2nd question in each sub-
figure, marked in red with Hard Negative Instruction).

of large language models to the realm of visual 041

understanding and interaction. 042

However, the sophistication of MLLMs brings 043

with it unique challenges, notably, hallucination. 044

Current studies (Liu et al., 2024; Lee et al., 2023; 045

Yin et al., 2023) have been actively exploring solu- 046

tions to mitigate hallucination, especially when the 047

model tries to generate long responses. However, 048

there still remains a notable gap in the literature: 049

no work has yet been conducted to focus on com- 050

prehensively studying the robustness of MLLMs 051

when confronted with deceptive information in the 052

prompts.2 Our work aims to fill in this gap. This 053

issue is particularly critical, as it pertains to the reli- 054

ability and trustworthiness of these models in real- 055

world applications (Liu et al., 2023c), and holds 056

substantial importance for the ongoing develop- 057

ment and deployment of such AI systems. 058

To this end, we present MAD-Bench, a care- 059

2LRV-Instruction (Liu et al., 2023a) is the pioneering work
in this direction, while we aim to provide a more comprehen-
sive evaluation with hard negative instructions. Please see
Section 2 for a more detailed discussion on related work.
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fully curated benchmark that contains 850 image-060

prompt pairs spanning across six deception cate-061

gories, to systematically examine how MLLMs re-062

solve the conflicts when facing inconsistencies be-063

tween text prompts and images. We provide a com-064

prehensive analysis of popular MLLMs, ranging065

from GPT-4V (OpenAI, 2023), Gemini-Pro (Team,066

2023), to open-sourced models, such as LLaVA-067

1.5 (Liu et al., 2023a) and CogVLM (Wang et al.,068

2023c). The evaluation is fully automated via the069

use of GPT-4. Results shed light on how vulnerable070

MLLMs are in handling deceptive instructions. For071

example, Figure 1 illustrates how sensitive LLaVA-072

1.5 (Liu et al., 2023a) is to the factualness of the073

input prompt and its consistency with the image.074

When asked “is there a cat in the image?”, LLaVA-075

1.5 can successfully identify there is no cat; but076

when prompted with “what color is the cat in the077

image?”, the model will imagine there is a cat in-078

side. Empirically, we observe that GPT-4V suf-079

fers much less when compared with all the other080

MLLMs; however, the performance is still not ideal081

(GPT-4V vs. others: 75% vs. 5%-35% accuracy).082

Further, previous models that aim to mitigate hal-083

lucinations, such as LRV-Instruction (Liu et al.,084

2024) and LLaVA-RLHF (Sun et al., 2023b), are085

not effective on this new benchmark.086

Finally, we provide a simple remedy to boost087

performance, which was surprisingly found to be088

effective to double the models’ accuracy. Specifi-089

cally, we carefully design a system prompt in the090

form of a long paragraph to be prepended to the091

existing prompt, to encourage the model to think092

carefully before answering the question. This sim-093

ple approach boosts the accuracy of LLaVA-1.5094

from 10.42% to 20.56% (similar boosts for other095

models); however, the absolute numbers are still096

too low to be satisfactory. Further research is097

needed to study how to match GPT-4V’s perfor-098

mance (75.02%).099

Our contributions are summarized as follows. (i)100

We construct MAD-Bench, a new benchmark to101

comprehensively evaluate MLLMs on their capa-102

bility to resist deceiving information in the prompt.103

(ii) We provide a detailed analysis of popular104

MLLMs, and list some common causes for incor-105

rect responses. (iii) We provide a simple remedy106

to boost performance via the careful design of a107

system prompt. MAD-Bench will be open-sourced,108

and we hope this benchmark can serve as a useful109

resource to stimulate further research to enhance110

models’ resilience against deceptive prompts.111

2 Related Work 112

Multimodal Large Language Models (MLLMs). 113

MLLM has become an increasingly hot research 114

topic. Early models primarily focused on large- 115

scale image-text pre-training (Wang et al., 2022b,a; 116

Chen et al., 2022, 2023c; Li et al., 2023c; Driess 117

et al., 2023; Huang et al., 2023; Awadalla et al., 118

2023; Laurençon et al., 2023). Among them, 119

Flamingo (Alayrac et al., 2022) pioneered the in- 120

tegration of a CLIP image encoder with LLMs 121

through gated cross-attention blocks, showcasing 122

emergent multimodal in-context few-shot learning 123

capabilities, via pre-training over millions of image- 124

text pairs and interleaved image-text datasets (Zhu 125

et al., 2023). 126

On the other hand, recent research has focused 127

on visual instruction tuning (Zhu et al., 2024; Li 128

et al., 2023a; Ye et al., 2023a; Li et al., 2023b; 129

Chen et al., 2023b). Prominent examples in- 130

clude LLaVA(-1.5) (Liu et al., 2023b,a), Instruct- 131

BLIP (Dai et al., 2023), Qwen-VL (Bai et al., 132

2023a), CogVLM (Wang et al., 2023c), Emu2 (Sun 133

et al., 2023a), SPHINX (Lin et al., 2023), to name 134

a few. Besides text response generation, recent 135

works have also enabled MLLMs for referring and 136

grounding (Peng et al., 2023a; Chen et al., 2023a; 137

You et al., 2024; Wang et al., 2023d), image seg- 138

mentation (Lai et al., 2023; Zhang et al., 2023), 139

image editing (Fu et al., 2023b), image genera- 140

tion (Koh et al., 2023; Sun et al., 2023a), etc. 141

The release of proprietary systems like GPT- 142

4V (OpenAI, 2023) and Gemini (Team, 2023) has 143

elevated the research of MLLMs to new heights. 144

Since GPT-4V’s release, researchers have been ex- 145

ploring its capabilities as well as weaknesses (Zhou 146

et al., 2023; Li et al., 2023f; Liu et al., 2023e; Yang 147

et al., 2023; Cui et al., 2023). As MLLMs be- 148

come stronger, the development of more challeng- 149

ing benchmarks is essential to push the boundaries 150

of what these models can achieve. In this work, 151

we aim to design a new benchmark to evaluate 152

MLLMs’ resilience against deceptive prompts. 153

Hallucination in MLLMs. Below, we first dis- 154

cuss hallucination in LLMs, and then focus on hal- 155

lucination in MLLMs. 156

Existing work on mitigating hallucination in 157

LLMs can be roughly divided into two categories: 158

(i) prompt engineering (Si et al., 2023; Cheng et al., 159

2023; Ji et al., 2023; Jones et al., 2023; Mündler 160

et al., 2023; Vu et al., 2023), and (ii) model en- 161

hancement (Li et al., 2023d; Chuang et al., 2023; 162
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Figure 2: Examples of deceptive prompts used in the proposed MAD-Bench with example model responses.

Shi et al., 2023; Elaraby et al., 2023; Tian et al.,163

2024; Qiu et al., 2023; Leng et al., 2023). These164

studies laid solid foundations for understanding the165

causes of hallucinations, such as over-reliance on166

context, or training data biases.167

Similarly, hallucination in MLLMs is also grow-168

ing to be an important research topic (Liu et al.,169

2024). There are various categories of halluci-170

nations, such as describing objects that are non-171

existent in the input image, misunderstanding the172

spatial relationship between objects in the image,173

and counting objects incorrectly (Liu et al., 2023d).174

The two main causes of hallucination in MLLMs175

found in existing work apart from the potential is-176

sues with training data include (i) limitations in177

correctly understanding input images, and (ii) lan-178

guage model bias (Wang et al., 2023b). Various179

methods have been proposed to mitigate hallucina-180

tion in MLLMs (Lee et al., 2023; Yin et al., 2023;181

Sun et al., 2023b; Wang et al., 2023a; Liu et al.,182

2024; Zhai et al., 2023; Zhou et al., 2024; Gunjal183

et al., 2024; Liu et al., 2023b).184

Furthermore, various benchmarks have been pro-185

posed to evaluate hallucination in MLLMs. Specif-186

ically, POPE (Li et al., 2023e), M-HalDetect (Gun-187

jal et al., 2024), and GAVIE (Liu et al., 2024) eval-188

uated object hallucination. HallusionBench (Guan189

et al., 2023) evaluated both visual and language190

hallucination. MMHal-Bench (Sun et al., 2023b)191

evaluated hallucination in more aspects including192

relations, attributes, environments, etc. Bingo (Cui193

et al., 2023) studied hallucination in terms of bias 194

and interference in GPT-4V (OpenAI, 2023). 195

In this work, we aim to study how easy it is to 196

use deceptive prompts that contain information in- 197

consistent with the image to mislead MLLMs to 198

generate responses with hallucination. Note, that 199

we are not the first to study this. A similar model 200

behavior is called “sycophancy” in the LLM liter- 201

ature (Sharma et al., 2023). Fu et al. (2023a) and 202

Liu et al. (2023a) also constructed prompts with 203

deceiving information to test model robustness. De- 204

ceptive prompts are termed “negative instructions” 205

in LRV-Instruction (Liu et al., 2023a) and “text-to- 206

image interference” in the Bingo benchmark (Cui 207

et al., 2023). Different from them, we comprehen- 208

sively study MLLMs’ ability to handle deceptive 209

prompts in multiple categories. Unlike previous 210

studies (Fu et al., 2023a; Liu et al., 2023a) which 211

primarily used “Is/Are/Can” questions, we found 212

that it is relatively easy for state-of-the-art MLLMs 213

to counter deceptive information in such formats. 214

Consequently, we shifted our focus to questions 215

beginning with “What”, “How”, “Where”, etc., to 216

provide a more challenging and insightful evalua- 217

tion. 218

3 MAD-Bench 219

In this section, we present MAD-Bench, introduce 220

how we collect deceptive image-prompt pairs, as 221

well as our evaluation method. 222
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Figure 3: Examples of image-prompt pairs in the Visual Confusion category of MAD-Bench.

3.1 Deception Categories223

MAD-Bench encompasses six distinct categories224

of 850 image-prompt pairs designed to test the225

resilience of MLLMs against deceptive prompts.226

Table 1 provides the statistics of each category, and227

Figure 2 shows examples of deceptive prompts.228

The selected categories are partly inspired by Liu229

et al. (2023d). Below, we detail each category.230

Count of Object. This category intentionally cites231

an incorrect quantity of visible objects in the image.232

A response fails this test if it asserts the presence233

of m instances of an object ‘A’ when, in reality, a234

different number n of object ‘A’ is present — n235

being distinct from m and not zero. The images for236

this and the subsequent four categories are sourced237

from COCO 2017 (Lin et al., 2015). Using a pub-238

lic dataset sometimes brings concerns about data239

leakage. In our case, given the special nature of240

our deceptive prompts to be introduced in the next241

section, this will not be a problem. An accurate242

response would either challenge the prompt’s in-243

consistency with the visual data and abstain from244

speculating on absent information, or seek further245

clarification to resolve any uncertainties.246

Non-existent Object. Here, the prompts query247

about objects absent from the image. Failure occurs248

when a response acknowledges these non-existent249

objects as present.250

Object Attribute. This category includes prompts251

that inaccurately describe visible objects’ attributes.252

A response fails if it attributes these incorrect char-253

acteristics to the actual objects in the image.254

Scene Understanding. This category involves255

Deception Category Count Image Source
Count of Object 188 COCO 2017
Non-existent Object 244 COCO 2017
Object Attribute 136 COCO 2017
Scene Understanding 122 COCO 2017
Spatial Relationship 132 COCO 2017
Visual Confusion 28 In the Wild

Table 1: Statistics of the 850 image-prompt pairs in
MAD-Bench.

prompts that inaccurately describe the scene encap- 256

sulating the objects in the image. A response that 257

falls into error here can be one that accurately iden- 258

tifies the actions of the objects but misconstrues 259

the scene or setting in alignment with the deceptive 260

prompt. 261

Spatial Relationship. This category presents 262

prompts that incorrectly specify the spatial dynam- 263

ics between objects that do indeed exist within the 264

image. A misstep in this category arises when a 265

response correctly recognizes the objects but mis- 266

represents their spatial relations. 267

Visual Confusion. This category is different from 268

the previous ones by employing both the prompts 269

and the images as instruments of deception, often 270

deceptive even to the human eye. This category 271

includes three types of images: (i) those depicting 272

naked-eye 3D paintings or screens, (ii) visual dis- 273

location photography, and (iii) mirror reflections. 274

Figure 3 shows an example image-prompt pair 3 in 275

each category. Here, the prompts paired with the 276

3Photo credit to Braga last1 and Tiago Silva.
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Figure 4: Illustration of the process of generating deceptive prompts in the non-existent object category using GPT-4
and COCO ground-truth captions.

3D paintings or screens aim to deceive the MLLMs277

by portraying the objects in the two-dimensional278

artwork as three-dimensional entities. With visual279

dislocation photography, the prompts reinforce the280

optical illusions present in the images. Lastly, the281

prompts associated with mirror reflections attempt282

to deceive the MLLMs into interpreting reflections283

as tangible objects.284

3.2 Prompt Generation Method285

The process of creating deceptive prompts was286

automated by employing GPT-4, leveraging the287

ground-truth captions from the COCO dataset (Lin288

et al., 2015). We chose not to use GPT-4V for this289

task, as we later also evaluated GPT-4V on this290

benchmark, and empirically, employing GPT-4 is291

already enough for this task. To guide GPT-4 in292

generating questions that would intentionally mis-293

lead MLLMs within the specified categories, we294

crafted tailored prompts. These guiding prompts295

are provided in Appendix A.2, from Figure 16296

to 20. The process is illustrated in Figure 4, us-297

ing an example in the non-existent object category.298

Bounding box information is not used as part of the299

prompt sent to GPT-4, as empirically, we observed300

that it does not contribute to further improving the301

quality of generated prompts in our deceptive cate-302

gories. Following the generation of these deceptive303

questions, a rigorous manual filtering process is304

followed to ensure that each question adheres to305

its category’s deceptive criteria and maintains rele-306

vance to its associated image.307

3.3 Response Evaluation Method308

We use GPT-4 to evaluate generated responses from309

10 models, including (i) 6 open-sourced models:310

LLaVA-1.5 (Liu et al., 2023a), InstructBLIP (Dai311

et al., 2023), Ferret (You et al., 2024), Kosmos-312

2 (Peng et al., 2023b), mPLUG-Owl2 (Ye et al., 313

2023b), and CogVLM (Wang et al., 2023c), (ii) 2 314

additional open-sourced models that aim to reduce 315

hallucination: LLaVA-RLHF (Sun et al., 2023b) 316

and LRV-V1 (Liu et al., 2024), and (iii) 2 state- 317

of-the-art proprietary systems: Gemini-Pro (Team, 318

2023) and GPT-4V (OpenAI, 2023). 319

The number of images in the Visual Confusion 320

category is relatively small, while most of them 321

contain humans, so we did not evaluate Gemini in 322

this category as it cannot generate responses for im- 323

ages containing humans. The effect of this on other 324

categories is neglectable. Mirroring the prompt 325

generation method, we design specific prompts for 326

each deceptive category to critically assess the re- 327

sponses. Our primary metric of evaluation is bi- 328

nary, focused strictly on whether the response has 329

been misled, without considering other qualitative 330

aspects such as helpfulness. These prompts for 331

model evaluation are provided in Appendix A.3. 332

To verify the accuracy of GPT-4’s automated 333

evaluation, we randomly select 500 responses span- 334

ning the various models and deceptive categories 335

for a manual accuracy check. This validation pro- 336

cess yielded a 97.0% concordance rate with the 337

outcomes of human evaluation, underlining the re- 338

liability of our approach. 339

4 Experiments 340

4.1 Main Results 341

Results are summarized in Table 2. Notably, GPT- 342

4V’s accuracy in the Scene Understanding and 343

Visual Confusion categories is remarkably higher 344

than the others, with over 90% accuracy. This indi- 345

cates a substantial advancement in GPT-4V’s abil- 346

ity to resist deceptive information. Even LRV-V1 347

(Liu et al., 2024), whose training data includes neg- 348
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Figure 5: Example failure cases of GPT-4V (OpenAI, 2023).

Models Count of
Object

Non-existent
Object

Object
Attribute

Scene
Understanding

Spatial
Relationship

Visual
Confusion

Meta
Average

M1 Ferret (You et al., 2024) 10.16% 4.94% 5.93% 9.92% 2.29% 7.14% 6.63%
InstructBLIP (Dai et al., 2023) 0.53% 9.47% 11.11% 7.43% 3.05% 21.43% 6.86%
Kosmos-2 (Peng et al., 2023b) 5.34% 0.41% 21.48% 16.53% 3.05% 3.57% 7.70%
LLaVA-1.5 (Liu et al., 2023b) 4.81% 12.35% 11.11% 25.62% 1.53% 3.57% 10.42%

mPLUG-Owl2 (Ye et al., 2023b) 8.02% 22.22% 18.52% 38.84% 9.16% 3.58% 18.23%
CogVLM (Wang et al., 2023c) 14.97% 52.67% 34.07% 33.88% 18.32% 21.43% 32.30%

M2 LRV-V1 (Liu et al., 2024) 5.88% 7.00% 17.78% 43.80% 7.63% 21.43% 14.33%
LLaVA-RLHF (Sun et al., 2023b) 9.63% 14.00% 12.59% 38.02% 3.82% 28.57% 15.15%

M3 Gemini-Pro (Team, 2023) 13.37% 20.99% 38.52% 25.62% 14.50% N/A† 21.79%
GPT-4V (OpenAI, 2023) 71.66% 81.07% 71.11% 94.21% 50.38% 96.43% 75.02%

Table 2: Main results on MAD-Bench. M1 denotes open-sourced models. M2 denotes additional open-sourced
models that aim to reduce hallucination. M3 denotes state-of-the-art proprietary systems. (†) Gemini-Pro cannot
respond to images containing humans, and most images in the Visual Confusion category contain humans, thus
we skip the evaluation of Gemini-Pro on this category. No response due to humans in the image in the other five
categories only occurred six times, and we neglected those when evaluating Gemini’s accuracy. The meta average
of accuracy is weighted by the amount of data in each category.

ative instructions specifically designed to reduce349

hallucination in model responses, does not have350

satisfactory performance in face of deceptive infor-351

mation in our prompts. This is likely because (i) the352

way we design our prompts presents a larger chal-353

lenge to MLLMs than the “Is/Are/Can”-style nega-354

tive instructions in Liu et al. (2024), as our prompts355

are designed intentionally to sound confident in356

the deceptive information, and (ii) their method357

doesn’t sufficiently generate diverse enough nega-358

tive prompts.359

Interestingly, we observe that models that sup-360

port bounding box input and output (i.e., Ferret361

(You et al., 2024) and Kosmos-2 (Peng et al.,362

2023b)) achieve poor performance on this bench-363

mark. We hypothesize that these models attempt364

to ground objects as best as they can as they are365

trained on positive data, therefore, they tend to366

ground non-existent objects as they are mentioned367

in the prompts, thus performing poorer than other368

models on our benchmark. Example responses369

from each model are provided in Appendix A.1370

from Figure 9-15.371

Overall, GPT-4V demonstrates superior perfor-372

mance across all metrics compared to the other373

models. GPT-4V has a more sophisticated under-374

standing of visual data and is less prone to being375

misled by inaccurate information. This could be 376

attributed to more advanced training, better archi- 377

tecture, or more sophisticated data processing ca- 378

pabilities. The results underscore the potential of 379

GPT-4V in applications where accuracy in inter- 380

preting visual and contextual data is critical, despite 381

the challenges of deceptive information. That be- 382

ing said, GPT-4V still fails in many cases, with two 383

examples shown in Figure 5. 384

4.2 Detailed Analysis 385

Our examination of how the model reacts to de- 386

ceptive prompts has uncovered a range of common 387

causes for incorrect responses. Figure 6 illustrates 388

representative instances of errors corresponding 389

to each identified category of mistakes, using Fer- 390

ret (You et al., 2024) as the running example. 391

Inaccurate object detection. State-of-the-art 392

MLLMs generally perform well in object detec- 393

tion if not fed deceptive prompts. However, in face 394

of a deceptive prompt mentioning objects invisi- 395

ble in the image, these models may erroneously 396

identify other objects as those mentioned in the 397

prompt. 398

Redundant object identification. A notable issue 399

arises when the model fails to accurately discern 400
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Figure 6: Examples of mistakes made by Ferret (You et al., 2024) in face of deceptive prompts. We use Ferret
responses for these examples here, as Ferret provides bounding boxes that unveil error types straightforwardly.

distinct objects referenced in the prompt within the401

image. This often results in the erroneous identifi-402

cation of a single object as multiple entities, leading403

to repetitive descriptions as if there were several404

distinct objects present.405

Inference of non-visible objects. The model oc-406

casionally attributes characteristics or actions to407

objects that are not visible in the image. This408

phenomenon appears to stem from the language409

model’s reliance on its internal knowledge base to410

fabricate descriptions for objects mentioned in the411

prompt but absent in the visual data. Intriguingly,412

this occurs even when the model does not question413

the accuracy of its visual recognition capabilities,414

confidently affirming its findings while simultane-415

ously describing non-existent objects.416

Inconsistent reasoning. Throughout the response417

generation process, we observe the MLLMs oscil-418

lating between adhering to the deceptive informa-419

tion in the prompts and relying on their recognition420

of the actual content in the input image. Sentences421

in the generated response contradict each other.422

This inconsistency highlights a fundamental chal-423

lenge in the model’s decision-making process.424

5 A Simple Remedy to Boost Performance425

In this section, we introduce a simple yet effec-426

tive method to enhance the robustness of MLLMs427

against deceptive prompts while ensuring output428

alignment with the corresponding input images.429

This enhancement is realized through the integra-430

tion of an additional paragraph into the system’s431

Figure 7: The additional paragraph prepended to the
deceptive prompts to boost performance.

prompt, which is either prepended directly to the 432

existing prompt, or incorporated differently, de- 433

pending on the specific model. 434

We composed this additional paragraph with the 435

help of GPT-4, as shown in Figure 7. It encour- 436

ages the model to think twice or step by step before 437

answering the question. The model performance 438

after the incorporation of this prompt modification 439

is presented in Table 3. For example, for LLaVA- 440

1.5, it boosts the performance by +10.14%, though 441

the absolute accuracy is still too low to be satis- 442

factory. For GPT-4V, which already achieves an 443

accuracy of 75.02%, using the proposed simple 444

method can further boost the accuracy to 84.74%. 445

Figure 8 provides examples to illustrate the capabil- 446

ity of mPLUG-Owl2 (Ye et al., 2023b), LLaVA-1.5 447

(Liu et al., 2023b) and Gemini-Pro (Team, 2023) 448
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Figure 8: Model responses of mPLUG-Owl2 (Ye et al., 2023b), Gemini-Pro (Team, 2023), and LLaVA-1.5 (Liu
et al., 2023b) before and after modifying the test prompt. The (*) symbol denotes the enhanced model.

Models Count of
Object

Non-existent
Object

Object
Attribute

Scene
Understanding

Spatial
Relationship

Visual
Confusion

Meta
Average

LLaVA-1.5* 6.38% (+1.57%) 24.69% (+12.34%) 32.59% (21.48%) 24.79% (-0.83%) 17.56% (16.03%) 17.86% (14.29%) 20.56% (+10.14%)
LLaVA-RLHF* 8.56% (-1.07%) 33.61% (+19.61%) 26.67% (+14.08%) 22.13% (-15.89%) 19.08% (+15.26%) 32.14% (+3.57%) 23.01% (+7.86%)
mPLUG-Owl2* 20.32% (+12.30%) 76.54% (+54.32%) 46.67% (+24.15%) 60.33% (+21.49%) 26.72% (+17.56%) 42.86% (+39.28%) 48.15% (+29.92%)
Gemini-Pro* 31.55% (+18.18%) 65.43% (+44.44%) 46.67% (+8.15%) 58.68% (+33.06%) 36.64% (+22.14%) N/A† 48.95% (+27.16%)
GPT-4V* 82.35% (+10.69%) 82.72% (+1.65%) 88.89% (+17.78%) 95.90% (+1.69%) 75.57% (+25.19%) 92.86% (-3.57%) 84.74% (+9.72%)

Table 3: Results on MAD-Bench after modifying the test prompt. (†) Gemini-Pro cannot respond to images
containing humans, and most images in the Visual Confusion category contain humans, thus we skip the evaluation
of Gemini-Pro in this category. This simple approach is only tested on models that support and suit this method.
The numbers outside of the brackets denote the absolute accuracy, and the numbers inside the brackets denote the
performance gain compared to the original models.

to withstand deceptive prompts when supported by449

modifications made to the test prompt.450

Overall, the addition of prompts to resist decep-451

tive information appears to bolster the performance,452

enabling MLLMs to handle deception better and453

interpret scenes more accurately. This suggests454

that strategic prompt design could be a valuable455

approach to enhancing the robustness of AI mod-456

els against attempts to mislead or confuse them.457

Note, that the implementation has not been fully458

optimized, and some MLLMs do not support this459

method due to reasons such as limitation of input460

sequence length. The goal here is to demonstrate461

that it is feasible to enhance performance with min-462

imal effort.463

Future Direction. We underscore several potential464

avenues for future research, detailed below.465

• Training data. Create a subset of training data466

with deceptive prompts similar to what we have467

in the MAD-Bench, create correct responses, and468

train the MLLM to resist deception.469

• Check consistency between image and prompt.470

Identify and interpret elements in the image, such471

as objects, colors, and spatial relationships. Then, 472

analyze the question to understand its content and 473

intent. Compare the two to identify any discrep- 474

ancies before generating a response. 475

• Focus on factual information. Ensure that the 476

response sticks to information factually derived 477

from the image. Refrain from making speculative 478

assumptions or inferences that go beyond the 479

scope of the image and the question. 480

6 Conclusion 481

In this study, we introduce MAD-Bench, a new 482

benchmark comprising 850 image-prompt pairs, 483

meticulously categorized into six distinct types of 484

deceptive scenarios, to evaluate the robustness of 485

state-of-the-art MLLMs against deceptive prompts. 486

Our findings indicate a notable vulnerability in 487

these models. Though GPT-4V achieves the best 488

performance, it still exhibits substantial room for 489

improvement. We hope our new benchmark can 490

stimulate further research to enhance models’ re- 491

silience against deceptive prompts. 492

8



Limitation493

When designing deceptive questions for our bench-494

mark, we included a variety of categories to in-495

crease the diversity of the questions as a start-496

ing point. However, there are unlimited scenarios497

where MLLMs can be deceived. The additional498

piece of prompt added to boost model performance499

in Section 5 serves the purpose of demonstrating500

that simple efforts can improve the robustness of501

MLLMs in face of deceptive information. It is not502

optimized, thus not showing the maximum capabil-503

ity of this method.504
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A Appendix846

A.1 Examples of Responses from MLLMs to847

Deceptive Prompts848

In Figures 9-15, we show examples of how MLLMs849

respond to deceptive prompts, and observe that850

there is a large gap between GPT-4V and other851

MLLMs on resisting deceptive prompts.852

A.2 Prompts Used to Generate Deceptive853

Prompts using GPT-4854

Count of Object Illustrated in Figure 16.855

Non-existent Object Illustrated in Figure 17.856

Object Attribute Illustrated in Figure 18.857

Scene Understanding Illustrated in Figure 19.858

Spatial Relationship Illustrated in Figureble 20.859

Visual Confusion Due to the special nature of860

this category, all the prompts are human written861

instead of using GPT-4.862

A.3 Prompts Used to Evaluate Responses 863

from MLLMs Using GPT-4 864

The prompts used to evaluate responses from the 865

first five categories are listed in Figure 21. Due to 866

the special nature of the Visual Confusion category, 867

responses in this category are evaluated manually. 868

12



Figure 9: Example of how MLLMs respond to deceptive prompts in the Count of Object category.
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Figure 10: Example of how MLLMs respond to deceptive prompts in the Non-existent Object category.
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Figure 11: Example of how MLLMs respond to deceptive prompts in the Object Attribute category.

Figure 12: Example of how MLLMs respond to deceptive prompts in the Scene Understanding category.
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Figure 13: Example of how MLLMs respond to deceptive prompts in the Spatial Relationship category.
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Figure 14: Example of how MLLMs respond to deceptive prompts in the Visual Confusion category.
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Figure 15: Example of how MLLMs respond to deceptive prompts in the Visual Confusion category.
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Figure 16: Prompt used to generate deceptive questions for the Count of Object category using GPT-4.

Figure 17: Prompt used to generate deceptive questions for the Non-existent Object category using GPT-4.

Figure 18: Prompt used to generate deceptive questions for the Object Attribute category using GPT-4.

19



Figure 19: Prompt used to generate deceptive questions for the Scene Understanding category using GPT-4.

Figure 20: Prompt used to generate deceptive questions for the Spatial Relationship category using GPT-4.
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Figure 21: Prompts Used to Evaluate Responses from MLLM Using GPT-4.
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