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WHAT MAKES CERTAIN PRE-TRAINED VISUAL REP-
RESENTATIONS BETTER FOR ROBOTIC LEARNING?
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ABSTRACT

Deep learning for robotics is data-intensive, but collecting high-quality robotics
data at scale is prohibitively expensive. One approach to mitigate this is to lever-
age visual representations pre-trained on relatively abundant non-robotic datasets.
So far, existing works have focused on proposing pre-training strategies and as-
sessing them via ablation studies, giving high-level knowledge of how pre-training
design choices affect downstream performance. However, the significant gap in
data and objective between the two stages motivates a more detailed understanding
of what properties of better pre-trained visual representations enable their com-
parative advantage. In this work, we empirically analyze the representations of
robotic manipulation data from several standard benchmarks under a variety of
pre-trained models, correlating key metrics of the representations with closed-
loop task performance after behavior cloning. We find evidence that suggests our
proposed metrics have substantive predictive power for downstream robotic learn-
ing.

1 INTRODUCTION

A longstanding goal of the application of machine learning to robotics has been to enable robots to
handle the myriad, messy conditions of the physical world. Although broad strides towards human-
like generalization have recently occurred in other domains of machine learning such as computer
vision and natural language processing (Brown et al., 2020; Radford et al., 2021), such progress
remains elusive for robotics. This is in no small part due to the confluence of two observations:
that scaling up high-quality robotics data collection (whether in sim or real) is prohibitively expen-
sive (Dasari et al., 2019), and, as Moravec’s paradox suggests, that the requisite scale for a watershed
moment in robotics may be far beyond that required for “higher-level” tasks (Moravec, 1988).

Motivated by this, there has been a flurry of recent work (Shah & Kumar, 2021; Parisi et al., 2022;
Nair et al., 2022b) studying to what extent datasets that were designed for, e.g., semantic image
understanding (Deng et al., 2009; Radford et al., 2021) or egocentric video analysis (Grauman et al.,
2022) rather than robotics can nonetheless be leveraged to improve the outcomes of robotic learning
pipelines. A prominent example of this is deploying self-supervised representations obtained via
pre-training on this data (He et al., 2020; Radford et al., 2021; Nair et al., 2022b) on downstream
imitation learning and reinforcement learning robotics tasks (Rajeswaran et al., 2017; Gupta et al.,
2019; Yu et al., 2020).

However, the significant gap in data and objective between the pre-training and downstream stages
makes the entire endeavor rather heuristic, and indeed the aforementioned works mainly focus on
proposing pre-training strategies and assessing them via their downstream robotics performance.
While comparison with regard to (proxy) stakeholder metrics such as success rate are of course
the gold standard, we lack a fine-grained understanding of what properties are are enabling the
comparative advantage of better representations. This is worth addressing: better representations
are somehow ameliorating challenging aspects of the robotic learning problem, including (for the
setting we consider) compounding covariate shift and regression to an output space (actions) that
the pre-training is entirely agnostic to. Being able to attribute improved downstream performance to
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specific properties of these representations could help us distinguish which challenges may continue
to be addressed by further scaling robotics-agnostic visual pre-training, and which need separate
solutions.

In this work, we focus on finding properties of pre-trained visual representations that matter for
downstream learning of robotic manipulation tasks. We leverage tools from the neural network rep-
resentational similarity literature and the intrinsic dimensionality literature to facilitate our empirical
analysis of 5 popular pre-trained models on 12 downstream robotic manipulation tasks, each instan-
tiated with 3 camera angles. We follow Parisi et al. (2022) and Nair et al. (2022b) in focusing on
imitation learning for the robotic learning stage. We find that:

• Representational similarity between pairs of demonstration trajectories for a task under a
pre-trained model correlates with closed-loop task success with behavior cloning under that
pre-trained model (Section 3.1).

• Representational similarity between a task’s human-defined low-dimensional state space
and a pre-trained model’s state embedding correlates with closed-loop task success with
behavior cloning under that pre-trained model (Section 3.2).

• For each pre-trained model, either nonlinear xor linear estimates of representational intrin-
sic dimensionality correlates with success (Section 4).

2 PRELIMINARIES

In this section, we establish the scope of our investigation, introduce artifacts we use, and ground
the process in notation. This is done for the pre-trained visual representations (Section 2.1), the
downstream robot learning algorithm and environments (Section 2.2), and the techniques we borrow
from the representational similarity analysis (Section 2.3) and intrinsic dimensionality literatures
(Section 2.4).

2.1 PRE-TRAINED MODELS

Let I = {0, . . . , 255}C×H×W denote a space of images. We consider pre-trained models of the
form f : I → Rdz that take in an image I and produce a dense vector z = f(I). Since we are
interested in pre-training on large-scale non-robotics data, we consider the following works from
the literature: R3M (Nair et al., 2022b), CLIP (Radford et al., 2021), and ImageNet (He et al.,
2016). Since R3M is generally the best-performing model, we also use two of its ablations. These
works all provide pre-trained models with the ResNet-50 (He et al., 2016) architecture3, a standard
choice for transfer learning in computer vision. Indeed, ResNet variants remain among the most
popular architectures for vision-based robotic learning (Jang et al., 2022; Sundaresan et al., 2022).
See Table 1 for the dataset and primary objective terms for each model.

Table 1: Summary of pre-trained visual representations used in our analysis.

model dataset objective terms

R3M Ego4D (Grauman et al., 2022) temporal contrastive learning (Sermanet et al., 2018)
video-language alignment (VLA; Nair et al., 2022a)
L1 representation regularization

R3M w/o VLA ” temporal contrastive learning
L1 representation regularization

R3M w/o L1 ” temporal contrastive learning
video-language alignment

ImageNet ILSVRC 2012 (Deng et al., 2009) cross-entropy using class labels

CLIP WebImageText (Radford et al., 2021) image-text contrastive learning (Zhang et al., 2020)

3CLIP uses a modified version of this architecture.
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2.2 DOWNSTREAM ROBOT LEARNING

For downstream robotic learning, we consider the imitation learning setting. For some task T , a col-
lection of N demonstration trajectories DT = (τi)

N
i=1 is provided, each consisting of observation-

action tuples τ = ((ot, at))
T
t=1, o ∈ O, a ∈ A. This is used to produce a closed-loop policy

π : O → A that imitates the demonstrations and is successful in generalizing in the environ-
ment to accomplish the task. For our analysis, we will additionally leverage the availability of
low-dimensional state information given by physical simulation: a tuple (s, o) involves processing
information in state s ∈ Rds to render observations.

In the tasks we consider, an observation o = (I, p), I ∈ I, p ∈ Rdp is itself a tuple comprising of an
image and low-dimensional robot proprioception. A frozen pre-trained visual representation is used
to produce an embedding of the image z = f(I). This is concatenated with the proprioceptive ob-
servation vector before being further processed into actions by a parametric function approximator
gϕ : Rdz+dp → A. For convenience, we will overload f : O → Rdz+dp to include the concatena-
tion; disambiguation should be clear from context. The policy π = gϕ ◦ f is thus a composition of
feature extraction and action generation.

We follow Nair et al. (2022b) in using robotic manipulation tasks sourced from three commonly
used benchmarks: 5 from Franka Kitchen (Gupta et al., 2019), 5 from MetaWorld (Yu et al., 2020),
and 2 from Adroit (Rajeswaran et al., 2017). The tasks differ in state space, environmental assets,
visual appearance, robot end-effector and action space, and functional behavior. We use the behavior
cloning data and results from Nair et al. (2022b).

2.3 REPRESENTATIONAL SIMILARITY ANALYSIS

Given a dataset D = (xi)
n
i=1, x ∈ X , let A ∈ Rn×p be the result of applying function fA : X → Rp

to D. We call A the representation of D under fA. Let B ∈ Rn×q be the representation of D under
fB .

A rich literature of techniques exists for quantitatively comparing high-dimensional neural network
representations. We adopt the convention of doing so in terms of distances (in the colloquial sense;
they don’t necessarily satisfy the triangle inequality). One family stems from the idea of first com-
puting pairwise similarity between points in each representation, before comparing these similarity
structures. This bypasses issues such as neuron correspondence. As an instance of this strategy,
we consider centered kernel alignment (CKA) as popularized by Kornblith et al. (2019). Because
the authors find that linear and radial basis function CKA perform similarly on realistically trained
neural networks, we follow in using linear CKA discrepancy for simplicity:

dlinear CKA(A,B) = 1−
∥∥A⊤B

∥∥2
F

∥A⊤A∥F ∥B⊤B∥F
, (1)

where ∥·∥F is the Frobenius norm.

Ding et al. (2021) find that CKA is undersensitive, specifically to removing all but the largest
principal components of a dataset, and propose the use of the orthogonal Procrustes discrep-
ancy (Schönemann, 1966) as a more sensitive alternative:

dProcrustes(A,B) = ∥A∥2F + ∥B∥2F − 2
∥∥A⊤B

∥∥
∗ , (2)

where ∥·∥∗ is the nuclear norm. This quantity is the solution to the orthogonal Procrustes problem

min
R

∥∥B −AR⊤∥∥2
F

s.t. R⊤R = I (3)

of aligning the representations under an orthogonal transformation. The above is written for p = q,
but unequal representation dimensionalities can be matched by the use of “dummy” dimensions. Per
standard practice, we preprocess each representation by subtracting the mean vector and dividing by
the resulting matrix’s Frobenius norm.

2.4 INTRINSIC DIMENSIONALITY

The manifold hypothesis posits that natural data exhibits low-dimensional structure embedded
within conventional representations of high ambient dimensionality. Much work has argued that
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the generalization performance of machine learning models, including neural networks, is far better
explained by intrinsic rather than ambient dimensionality (Nakada & Imaizumi, 2020; Pope et al.,
2021).

Various definitions and estimators of intrinsic dimensionality (ID) have been proposed, each with its
own characteristics and interpretation. We select two estimators that provide complementary infor-
mation on the representations. PCA-ÎD@η2 is the minimal number of principal components needed
to achieve a cumulative proportional explained variance of η2 ∈ [0, 1]. By definition, PCA-ÎD@η2

is the dimensionality of a linear subspace of the representation. To provide a nonlinear sense of ID,
we consider the two nearest neighbors estimator (TwoNN-ÎD; Facco et al., 2017). This estimator
assumes only that the dataset has locally uniform density, specifically in the range of the second-
nearest neighbor of each datapoint. This is used to derive the following relationship between ID,
the ratio µ between a datapoint’s distances to its second-nearest and nearest neighbors, and the ratio
variable’s cumulative distribution function F (µ):

TwoNN-ÎD = − log(1− F (µ))

log(µ)
. (4)

In practice, the estimate is determined by fitting ((log(µi),− log(1− F emp(µi)))
n
i=1 with a straight

line through the origin, where the empirical cumulant F emp is determined by sorting the values of
(µi)

n
i=1 in ascending order through a permutation σ, then defining F emp(µi) = σ(i)/n.

3 REPRESENTATIONAL CONSISTENCY

One long-identified challenge of offline imitation learning is the phenomenon of compounding co-
variate shift, a vicious cycle of imprudent actions and out-of-distribution observations. We hypoth-
esize that better pre-trained visual representations mitigate this issue by representing observations
in a more consistent manner. We view this as a helpful (if not necessary) condition for the policy
to generalize well, a stepping stone towards “stabilization” properties that can e.g. bring worst-case
regret bounds from quadratic down to linear in horizon (Ross & Bagnell, 2010).

3.1 INTRAMODEL TRAJECTORY CONSISTENCY
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Figure 1: Correlation between intramodel trajectory consistency and behavior cloning (BC) success rate for 36
downstream manipulation tasks under 5 pre-trained models. Left: a moderate positive correlation of r(175) =
0.49, p = 3.3×10−12 (two-sided) is measured between intramodel trajectory consistency under the orthogonal
Procrustes distance and behavior cloning success rate. Right: consistency measurements with linear CKA
exhibited undersensitivity to the variation in the data, with an interquartile range of 0.001 for a codomain of
[−1, 0].

To evaluate this hypothesis, we need concrete notions of representational consistency. We first
choose to consider the expected representational similarity between pairs of demonstration observa-
tion trajectories for the same task under the same pre-trained model. This involves making the as-
sumption that for every task there is correspondence amongst demonstration observations recorded
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at the same time step. Concretely, for a task T and a pre-trained representation f , we evaluate
intramodel trajectory consistency

cintramodel(d, T , f) = −Eτi,τj∼DT

[
d
(
f
(
(oi,t)

T
t=1

)
, f

(
(oj,t)

T
t=1

))]
(5)

where d is a measure of representational dissimilarity. We use dProcrustes and dlinear CKA as introduced
in Section 2.3.

In Figure 1, we plot cintramodel(d, T , f) against the success rate on task T of a policy trained via
behavior cloning with frozen pre-trained representation f . Different points involve a different task,
camera angle, or pre-trained representation. For cintramodel(dProcrustes), we observe a moderate posi-
tive correlation with strong statistical significance: r(175) = 0.49, p = 3.3× 10−12 (two-sided). It
is also worth noting that the correlation is stronger in the region where trajectory consistency and
success rate are both high. For cintramodel(dlinear CKA), we observe undersensitivity, echoing obser-
vations from prior work (Ding et al., 2021). Due to this, we do not view the linear CKA analysis
as providing evidence for or against the hypothesis and omit it from the rest of the analysis in this
section.
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Figure 2: Stratifying cintramodel(dProcrustes) data in Figure 1 by pre-trained model. Relatively consistent moderate
positive correlations between this quantity and downstream behavior cloning success rate appear for every pre-
trained model.

Franka Kitchen MetaWorld Adroit
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r(73) = 0.43, p = 1.3× 10−4
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Figure 3: Stratifying cintramodel(dProcrustes) data in Figure 1 by downstream task domain. The positive correlation
is moderate for the Franka Kitchen domain and strong for the MetaWorld domain. It is weaker and has low
statistical significance for the Adroit domain.

As our data is heterogeneous, it is important to determine whether this correlation is an artifact of
aggregation à la Simpson’s paradox. Figure 2 presents the above results stratified by pre-trained
model. We observe relatively consistent moderate positive correlations for every pre-trained model
with statistical significance. Figure 3 stratifies by downstream task domain. We again see consistent
positive correlations for every domain with statistical significance. Interestingly, there is substantial
variation in the strength of the correlations amongst domains. Figure 10 further stratifies the data by
downstream task. The small sample size per task results in the correlation analysis for most tasks
having dubious individual statistical significance. Nevertheless, out of the 12 tasks, 9 suggest mod-
erate or weak positive correlation, and 3 suggest weak negative correlation. Overall, the aggregate,

5



Published at NeurIPS 2022 Foundation Models for Decision Making Workshop

by-model, and by-domain correlation analyses support the hypothesis. Indeed, because the repre-
sentations are used for downstream learning, we can say that higher downstream behavior cloning
performance is partially explained by intramodel trajectory consistency.

3.2 MODEL-STATE CONSISTENCY

In a simulated robotics context, there is in some sense a reference representation: the implicitly
defined inverse model from observations to low-dimensional state. As this representation is human-
engineered to be sufficient yet compact for a given task, we can obtain another notion of representa-
tional consistency:

cmodel-state(d, T , f) = −d
(
f
(
(oi)

T |DT |
i=1

)
, (si)

T |DT |
i=1

)
, (6)

that is, for a given task T and pre-trained visual model f we measure the negative representational
distance d between the representation of the task’s observations under f and the corresponding
low-dimensional states. We leverage this correspondence to concretize the notion of consistency,
in the sense that variation in the representation should be commensurate to variation in the state.
The assumption of this correspondence is much less objectionable compared to the time-locked
correspondence between demonstration trajectories assumed for intramodel trajectory consistency.
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Figure 4: Correlation between model-state consistency and behavior cloning (BC) success rate for 36 down-
stream manipulation tasks under 5 pre-trained models. Left: a moderate positive correlation of r(178) =
0.43, p = 2.2×10−9 (two-sided) is obtained with the orthogonal Procrustes distance. Right: consistency mea-
surements with linear CKA exhibited undersensitivity to the variation in the data, with an interquartile range of
0.008 for a codomain of [−1, 0].
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Figure 5: Stratifying cmodel-state(dProcrustes) data in Figure 4 by pre-trained model. Relatively consistent moderate
positive correlations between this quantity and downstream behavior cloning success rate appear for every pre-
trained model.

4 REPRESENTATIONAL INTRINSIC DIMENSIONALITY

While we have demonstrated some encouraging evidence for our representation consistency hypoth-
esis, the consistency metrics we use in the previous section are degenerate in the following sense:
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Franka Kitchen MetaWorld Adroit
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Figure 6: Stratifying cmodel-state(dProcrustes) data in Figure 4 by downstream task domain. The positive correlation
is moderate for the Franka Kitchen domain and strong for the MetaWorld domain. There is a weak negative
correlation with weak statistical significance for the Adroit domain, but this data solely lies in the relatively
inconsistent region of the x-axis. Figure 7 reveals that the two constituent tasks each exhibit negligible corre-
lation, further weakening the significance of the domain’s negative correlation.
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Figure 7: Stratifying cmodel-state(dProcrustes) data in Figure 4 by downstream task. Remarkably consistent positive
correlations are seen for tasks in the Franka Kitchen and MetaWorld domains. Resolving the Adroit domain
into its constituent tasks reveals that the weak negative correlation at the domain level is more accurately a
negligible correlation.

trivial representations such as the zero function achieve perfect consistency, yet obviously would
not facilitate downstream learning. To complement the previous analysis, we measure the intrinsic
dimensionality (ID) of the same downstream demonstration data under pre-trained visual represen-
tations; trivial representations are detectable by ID estimates near zero.
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We consider the following two ID estimates. Trajectory ID estimates the average ID along a demon-
stration trajectory:

ÎDtrajectory(ÎD, T , f) = Eτ∼DT

[
ÎD

(
f
(
(ot)

T
t=1

))]
(7)

and task ID estimates the ID of all demonstration data for a task:

ÎDtask(ÎD, T , f) = ÎD
(
f
(
(oi)

|DT |T
i=1

))
(8)

To obtain a more meaningful quantity that facilitates comparison between tasks of varying visual
and functional complexity, we normalize both quantities by the task ID using low-dimensional state
to obtain relative ID:

relative ÎDtrajectory/task(ÎD, T , f) =
ÎDtrajectory/task(ÎD, T , f)

ÎDtrajectory/task(ÎD, T , state)
(9)

For the base ID estimators ÎD use both TwoNN-ÎD and PCA-ÎD@0.95. As TwoNN-ÎD can be
sensitive to outliers (Facco et al., 2017), when using it we discard the top 0%, 5%, or 10% of the
regression data, chosen by resulting R2.
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Figure 8: The TwoNN-ÎD estimator gives a nonlinear notion of ID that results in moderate statistically sig-
nificant correlations between relative task ID and downstream behavior cloning success rate for R3M and its
variants. The correlation is not significant for the other two models.
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Figure 9: The PCA-ÎD@0.95 estimator gives a linear notion of ID that results in moderate statistically signif-
icant correlations between relative trajectory ID and downstream behavior cloning success rate for CLIP and
ImageNet. The correlation is not significant for R3M and its variants.

In Figures 8 and 9, we plot relative task ID with TwoNN-ÎD and relative trajectory ID with
PCA-ÎD@@0.95, respectively, against downstream task performance after behavior cloning. We
remark that there is a bifurcation between i) R3M and its variants and ii) CLIP and ImageNet for
both analyses. Furthermore, the two analyses are complementary: for any pre-trained model, either
the nonlinear or the linear estimate of ID yields significant moderate correlation with downstream
performance, but not both. Altogether, this suggests that the representations of R3M and its vari-
ants are better described by a nonlinear manifold, and that those of CLIP and ImageNet are better
described by a linear subspace. This may be related to the fact that CLIP and ImageNet are trained
under “higher-level“ semantic objectives compared to R3M. The positive correlations between the
suitable ID estimate for each model and downstream success suggests that some of the failure cases
may be due to undersensitivity to task-critical features in the raw observations. This makes sense
considering the significant gap between the pre-training data for each model and downstream do-
mains.
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5 RELATED WORK

Most of the pertinent prior work has already been introduced to set context for this work in Sec-
tions 1, and 2.

While Zhang et al. (2022) also empirically analyze self-supervised visual representations and present
correlations between representation properties and downstream decision-making, our work is dis-
tinct in several respects. They consider a single domain (Atari) for both pre-training and downstream
learning, whereas we consider a variety of pre-training domains for downstream robotic manipula-
tion. Their focus is on reinforcement learning, whereas ours is on imitation learning. Their empirical
analysis of visual representations is based on linear probing, whereas ours does not involve training
any additional parameters.

Seo et al. (2022) learn visual world models from action-free robotic manipulation videos and as-
sess transfer to robotic manipulation and locomotion tasks in held-out benchmarks. The breadth of
data in their pre-training is relatively limited and their transfer process involves stacking an action-
conditional module before model-based reinforcement learning, a pipeline much more complex than
simple behavior cloning.

More broadly, we are inspired by the subfield of BERTology (Rogers et al., 2020), in which creative
hypotheses about the inner workings of BERT (Devlin et al., 2018) are proposed and assessed; the
work of Huh et al. (2016), which investigates the importance of dataset composition for transfer in
computer vision; and Naitzat et al. (2020), who investigate the role of geometry and topology in the
success of high-dimensional neural network representations .

6 DISCUSSION

In this work, we investigated properties of pre-trained visual representations that explain down-
stream robotic manipulation performance after imitation learning under the representations. The
representational consistency and representational intrinsic dimensionality metrics we proposed ap-
pear to correlate moderately and significantly with downstream success rate. R3M and its variants
yielded consistent behavior for all of our analyses. This suggests that the success of R3M lies not
within any variant’s particular cocktail of objective terms, but rather the temporal contrastive learn-
ing on a diverse dataset that they all partake in.

Since the representational metrics proposed in this work moderately correlate with downstream
success, and since the direction of causality is established by the use of the representations for
downstream learning, our analysis could potentially be leveraged as a starting point for predicting
downstream learning outcomes and diagnosing failure cases.

There are several limitations to the analysis conducted in this work. Though we took care to interpret
the analyses at multiple resolutions, it remains possible that the primary source of the correlations
we observe is a confounder not accounted for. The fact that we used models, data, environments, and
results from prior work hopefully mitigates concerns regarding inapplicability and cherry-picking,
but it could also be fruitful to consider going beyond artifacts from prior work, e.g. designing new
probing tasks aimed at further elucidating properties of these representations relevant to robotics.

On that note: this paper is work in progress. We plan to continue by generating data representing
various kinds of distribution shifts in the downstream task environments and investigating whether
the tools presented above can be used to engineer a transfer procedure that results in a robust policy.
We thank the reviewers in advance for any comments and feedback about this work.
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A REPRESENTATIONAL CONSISTENCY: ADDITIONAL RESULTS

Franka Kitchen MetaWorld Adroit
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Figure 10: Stratifying cintramodel(dProcrustes) data in Figure 1 by downstream task.
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