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ABSTRACT
The key idea of semi-supervised semantic segmentation is to lever-
age both labeled and unlabeled data. To achieve the goal, most
existing methods resort to pseudo-labels for training. However, the
dispersed feature distribution and biased category centroids could
inevitably lead to the calculation deviation of feature distances and
noisy pseudo labels. In this paper, we propose to denoise pseudo
labels with representative prototypes. Specifically, to mitigate the
effects of outliers, we first employ automatic clustering to model
multiple prototypes with which the distribution of outliers can be
better characterized. Then, a compact structure and clear decision
boundary can be obtained by using contrastive learning. It is worth
noting that our prototype-wise pseudo segmentation strategy can
also be applied in most existing semantic segmentation networks.
Experimental results show that our method outperforms other state-
of-the-art approaches on both Cityscapes and Pascal VOC semantic
segmentation datasets under various data partition protocols.

CCS CONCEPTS
• Computing methodologies→ Image segmentation.
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1 INTRODUCTION
Semantic segmentation is a fundamental task in computer vision.
It has been widely used in many applications such as scene under-
standing, autonomous driving, etc. However, supervised semantic
segmentation requires pixel-level fine annotated data, which is
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Figure 1: Illustration of ourmotivation. (a) shows that a single
category centroid is biased in representing the distribution,
causing incorrect classification of outliers. (b) represents each
class as a set of prototypes, with which the distribution of
outliers can be better characterized.

labor-intensive and time-consuming to acquire. Therefore, semi-
supervised semantic segmentation has attracted intensive attention
in the last few years, the key idea of which is to leverage both la-
beled data and unlabeled data. Thus, how to boost the performance
of semantic segmentation by exploiting unlabeled data becomes
the key issue.

Typical solutions are to use consistency regularization [13, 21, 30]
or self-training [47, 48]. Specifically, for self-training basedmethods,
a model is trained with labeled data and is used to generate pseudo
labels of the unlabeled data with which the segmentation model is
retrained. While, consistency regularization based methods achieve
semi-supervised semantic segmentation by making the network
outputs invariant to disturbance [13, 22], such as different network
parameters [7, 20] or different data augmentations [49]. Actually,
both the consistency regularization and self-trainingmethods resort
to pseudo labeling [24], and thus the performance of these meth-
ods mainly depends on the prediction accuracy of pseudo labels.
However, without sufficient supervision, a semantic segmentation
network is typically confused in some pixels and produces noisy
pseudo labels, leading to performance decay. Thereby, pseudo la-
bels denoising plays an important role in semi-supervised semantic
segmentation methods.

There exists many prior methods[28, 32] that improve pseudo
labeling accuracy accounting confidence and uncertainty [32] as
criterion, and drop out low-confidence pixels. However, those de-
serted pixels may be still under-performing and dropped in the next
iteration. Furthermore, due to the existence of long-tailed distribu-
tion, many of the dropped pixels belong to under-performing tailed
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categories, leading to a biased learning. We can see that the exis-
tence of noisy pseudo labels boils down to the dispersed features
and biased class centroids in the unlabeled data domain. As shown
in Figure 1(a), due to the mixed and dispersed distribution of two
category spaces, a single centroid is insufficient in representing the
category, vulnerable to intra-class variation. This could inevitably
lead to the calculation deviation of feature distances. Formally, the
classification can be considered as retrieving the nearest category
centroid. Therefore, with only a single centroid for each category,
an outlier may be incorrectly classified because of the minimum
feature distance to the other category centroids. In addition, the
decision boundary lies in interlaced regions rather than low density
ones.

In this paper, we propose to denoise pseudo labels with repre-
sentative prototypes via pixel-level prototypical contrastive learn-
ing [25]. More specifically, to better characterize the distribution
of outliers especailly those lie near the border, we first employ
automatic clustering to model multiple prototypes in each cat-
egory space. We implement clustering using a transformer de-
coder [39] with a series of query embeddings to produce corre-
sponding mask embeddings, each of which refers to a prototype.
Then, a pre-defined prototype-anchored assignment strategy is ap-
plied. As shown in Figure 1(b), prototypes, i.e., sub-centroids of
classes, can better correspond to the distribution of local regions.
With additional conformable prototypes, outliers are clustered to
be discriminative from other categories. Furthermore, we combine
pseudo supervision and contrastive learning [42, 43] in a prototype-
wise manner, encouraging the network to learn a separable struc-
ture. For the sake of convenience, we denote out approach as PPS
(Prototypical Pseudo Segmentation).

With the help of the above-mentioned techniques, our method
obtains superior performance compared to existing approaches.
It is worth noting that our prototype-wise pseudo segmentation
strategy can also be applied in most existing semantic segmentation
networks. Major contributions of this paper can be summarized as
follows:

• We propose to implement clustering and model multiple
prototypes in each category space and apply pseudo super-
vision in a prototype-wise manner. By doing so, unbiased
class sub-centroids can be obtained and the distribution of
outliers can be better characterized.

• To mitigate the issue of dispersed features and enforce the
decision boundary lying in the low density regions, we take
advantage of pixel-level prototypical contrastive learning
by using the prediction as pseudo guidance for sampling of
positive and negative pairs.

• Extensive experiments have been conducted on Cityscapes
and Pascal VOC semantic segmentation datasets to demon-
strate the superiority of our method compared to the state
of the art under various data partition protocols.

2 RELATEDWORK
2.1 Semantic Segmentation
Semantic Segmentation, a pixel-level classification task, plays a
fundamental role in computer vision. Most methods follow the par-
adigm of fully convolutional network(FCN) [27]. The subsequent

work like U-net [33], aggregate information between different lay-
ers through connections from encoder to decoder. ASPP [4, 5] uses
atrous convolutions with different atrous rates to capture long-
range context avoiding losing too much spatial information during
downsampling.

Lately, due to the capacity of global receptive field, transform-
ers [36, 39] benefit the semantic segmentation. SETR [44] and
Segmenter [35] are two classical models based on vision trans-
former [10]. Moreover, MaX-DeepLab [41] andMaskFormer [8] pro-
pose to predict class-labeled masks rather than perform per-pixel
classification, which build a unified model for semantic segmenta-
tion and panoptic segmentation. ProtoSeg[46] analyses semantic
segmentation in a prototype view.

In this paper, we employ DeepLabv3+ [5] as our segmentation
module. And our formation of prototypes and clustering is similar
to MaskFormer [8], but we use different inference strategy that
constitutes a distinct concept of mask embedding.

2.2 Semi-Supervised Semantic Segmentation
Semi-supervised semantic segmentation has attracted intensive at-
tention for less demand of pixel-level finely annotations, the goal of
which is to leverage unlabeled data to boost the performance. Con-
sistency regularization and self-training are two typical paradigms
when designing the framework.
Consistency regularization.Consistency regularization[7, 20, 40]
based methods aim to obtain consistent representations in spite of
the perturbation applied to the input. Diverse network parameters
initialization or various data augmentation is commonly used for
input perturbation.

CutMix [13] make use of mask-based augmentation as the input
perturbation. GCT[20] imposes the consistency constraint upon
outputs from differently initialled segmentation models. CPS [7]
employs pseudo segmentation labels from two parallel network
with different initialization as the supervision from each other.
CCT [30] introduce feature perturbation to the out of encoder and
enforce the consistency of different outputs from multiple decoders.
Self-training. Self-training [3, 29, 34, 47, 48] leverage unlabeled
data by utilizing a segmentation network pretrained on labeled data
to produce pseudo segmentation maps with which the network is
retrained. s4GAN[29] introduces discriminator under self-training
paradigm for low-level and high-level learning. AEL [17] extends
the CutMix [13] to mitigate long-tailed distribution problem in
semi-supervised semantic segmentation.

Pseudo-labeling is commonly used in whether consistency regu-
larization or self-training paradigm. However, Without sufficient
supervision, the network produce inexact predictions. Noisy pseudo
labels may lead to poor calibration of network. Consequently, many
methods seek to how to decide the pseudo segmentation maps.

UPS [32] improves pseudo labeling accuracy accounting confi-
dence and uncertainty as criterion. PseudoSeg [49] focus on de-
signing well-calibrated structured pseudo labels for unlabeled data.
ECS [28] introduce a correction network to locate correct predic-
tions and amend incorrect ones.

In this paper, we refer to CPS [7] to design our consistency
regularization scheme with the modified prototype-wise pseudo
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supervision. Furthermore, we propose a prototype based strategy
to denoise pseudo labels.

2.3 Contrastive Learning
Contrastive learning [15, 16, 42, 43] has made significant progress in
unsupervised or self-supervised learning. It aims to push negative
samples apart and pull positive samples closer, that can reinforce
the learning of representation. Both the sampling of positive pairs
and negative pairs as well as the number of negative samples exert
an influence on the performance. SimCLR [6] enforces consistency
under different views and puts it over with big batch size. MoCo [15]
maintains and updates a memory bank using queue. SwAV [2] takes
advantage of clustering in contrastive learning. PCL [25] introduce
prototypes to help find the maximum-likelihood estimation of the
network parameters.

Except instance-wise contrastive learning, there are many se-
mantic segmentation models [1, 11, 26, 45] referred to pixel-wise
contrastive learning. ReCo [26] uses hard negative pixels to perform
contrastive learning. PC2Seg [45] leverages both pixel-consistency
in the label space and pixel-contrastive in the feature space.

Similar to [25], we find that representing classes with multiple
prototypes is robust to intra-class variation. Besides, we apply con-
trastive learning in pixel-level and sample positive and negative
pairs in prototype-wise.

3 METHOD
In this section, we present the details of our proposed method. We
first describe how semantic segmentation can be formulated as
a semi-supervised problem using the consistency regularization
scheme with pseudo labels in Sec 3.2. Then, we introduce our trans-
former based formulation of prototypes modelling and clustering,
and further implement contrastive learning in a prototype-wise
manner (Sec 3.3). Afterwards, we elaborate a simple inference strat-
egy to assign prototypes to semantic categories (Sec 3.4). Moreover,
prototype activation regularization is proposed to eliminate trivial
solutions (Sec 3.5).

3.1 Preliminary
The optimization of classifier can be considered as the procedure
of approaching actual category centroids. Formally, a parametric
softmax can be viewed as the calculation of the distance from
category centroids:

𝑝𝑖 (𝑐) =
exp

(
𝒘⊤
𝑐 𝝔𝒊

)∑𝐶
𝑐′=1 exp

(
𝒘⊤
𝑐′𝝔𝒊

) , (1)

where 𝑝𝑖 (𝑐) represents the probability of the 𝑖-th pixel belonging
to the 𝑐-th class, 𝝔𝒊 is the embedding of pixel 𝑖 ,𝑾 = {(𝒘𝑐 )}𝐶

𝑐
′
=1 ∈

R𝐶×𝐷 , 𝒘𝑐 ∈ R𝐷 denotes the parameters of classifier and can be
also regarded as the coordinates of centroids in the category space.
Therefore,𝒘⊤

𝑐 𝝔 𝒊 is equal to measuring the cosine distance between
the pixel 𝑖 and the centroid 𝑐 .

3.2 Overview
Fig. 2 illustrates an overview of the proposed method. Given a la-
beled dataset D𝑙 = {(𝑥𝑙 , 𝑦𝑙 )}, where 𝑥𝑙 and 𝑦𝑙 denote an image and

its corresponding annotation, respectively, and a unlabeled dataset
D𝑢 = {𝑥𝑢 }, the goal of semi-supervised semantic segmentation is
to train a network which leverages both labeled and unlabeled data.
To handle this task, our approach resorts to consistency regulariza-
tion. Specifically, there exist two parallel segmentation networks
with the same structure but different initial parameters, i.e., 𝜃1 and
𝜃2, respectively. The segmentation procedure can be formulated as:

𝑃𝑖 = 𝜉 (ℎ(𝑋 ;𝜃𝑖 )), 𝑖 ∈ {1, 2} , (2)

where 𝑋 and 𝑃𝑖 are input images and the confidence map pre-
dicted by the 𝑖-th branch, respectively, ℎ(·) represents the segmen-
tation network producing the prototypical classificationP𝑚 = ℎ(𝑋 )
which denotes the probability of pixels belonging to each prototype,
and 𝜉 (·) represents the prototype-anchored assignment.

For labeled data, we apply the standard pixel-wise cross-entropy
loss:

L𝑠 =
1

𝐻𝑊

𝐻𝑊∑︁
𝑖=1

ℓ𝑐𝑒

(
𝒚 (𝑖,𝑘)
𝑙

,𝒑 (𝑖,𝑘)
𝑙

)
, (3)

where 𝑝 (𝑖,𝑘)
𝑙

and 𝑦 (𝑖,𝑘)
𝑙

denote the probability prediction and the
corresponding ground truth of the 𝑖-th pixel belonging to the 𝑘-
th category, respectively, 𝑘 ∈ {1, 2, · · · ,𝐶} with C denoting the
number of categories, ℓ𝑐𝑒 denotes the cross-entropy loss, and H
and W denote the height and weight of images. Besides, we exploit
the information of unlabeled data by utilizing pseudo labels based
self-supervision in a prototype-wise form which differs from pre-
vious methods. Our contrastive learning is implemented between
prototypes to learn a more compact feature space and clear decision
boundary. Along with the prototype activation regularization term
L𝑟 , our full loss is defined as:

L𝑡 = L𝑠 + 𝜆1L𝑐𝑜𝑛𝑡𝑟𝑎 + 𝜆2L𝑠𝑝 + 𝜆3L𝑟 , (4)

where 𝜆1, 𝜆2, and 𝜆3 denote the weighting coefficients, L𝑐𝑜𝑛𝑡𝑟𝑎 and
L𝑠𝑝 represent the contrastive learning loss and the self-supervision
loss, respectively.

3.3 Prototype Modelling and Contrastive
Learning

Consistency regularization is implemented with pseudo labels to
leverage unlabeled data to enhance the segmentation performance.
Previous methods formulate pseudo-labeling segmentation using
the cross-entropy loss as Eq. 3 based on the class-wise pseudo label
prediction 𝑦 (𝑖,𝑘) :

L𝑢 =
1

𝐻𝑊

𝐻𝑊∑︁
𝑖=1

ℓ𝑐𝑒

(
𝒚̂ (𝑖,𝑘)
𝑢 ,𝒑 (𝑖,𝑘)

𝑢

)
. (5)

However, due to the lack of efficient supervision for unlabeled data,
those previous methods suffer frommixed and dispersed feature dis-
tribution among different categories. A single category centroid is
biased in characterizing a feature distribution causing the incorrect
classification of outliers as shown in Fig. 1(a). Obviously, pseudo
labels 𝑦 (𝑖,𝑘) are so noisy that typically lead to poor network calibra-
tion. Although there already exist many works [28, 32] that attempt
to denoise pseudo labels by setting confidence or uncertainty thresh-
olds, the problem remains because most under-performing pixels
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Figure 2: An overview of our method. The overall framework consists of two parallel networks with different weights initial-
ization. The whole process can be considered as three modules: segmentation module, prototypes modelling and contrastive
learning, prototype-anchored assignment. Concretely, the segmentation module aims to produce per-pixel embedding with
the dimension d, F ∈ R𝑑×𝐻×𝑊 . Then, the transformer decoder and 𝑁𝑝 learnable query embeddings which are shared between
two parallel networks are employed in modelling prototypes, i.e., mask embeddingsM ∈ R𝑑×𝑁𝑃 . By element-wise multipli-
cation, the probability map of prototypical classification P𝑚 ∈ R𝑁𝑝×𝐻×𝑊 is produced and applied to guide the positive and
negative sampling for contrastive learning. Finally, we infer through a pre-defined prototype-anchored assignment operation
P𝑐 = 𝜉 (P𝑚).

are excluded from training. Besides, those pixels are prone to be-
ing classified into under-performing categories in datasets with
long-tailed distribution.

Motivated by above-mentioned analyses, we propose to mine
more semantic information and achieve pixel correlation in each
category space via unsupervised clustering. Our key idea is to
model multiple prototypes in each category space, with which the
distribution of outliers can be better characterized. Many exist-
ing approaches implement clustering to form centroids via some
non-parametric strategies (e.g., k-means). Here, inspired by Mask-
Former [8], we employ a transformer decoder to model prototypes
and further cluster pixels based on the feature distance. Specifically,
a feature map extracted by the backbone is fed into the multi-layer
transformer decoder alongside 𝑁𝑝 learnable query embeddings
to produce corresponding mask embeddingsM ∈ R𝑑×𝑁𝑃 , where
𝑑 is the dimension of pixel embedding and 𝑁𝑝 is the number of
prototypes. Each mask embedding is theoretically equivalent to
the cluster centroid, i.e., the prototype. We obtain the per-pixel
prototype prediction via a dot product between pixel embedding
and mask embedding, denoted as 𝑝𝑚

𝑖
= F [:, 𝑖]T ·M, 𝑖 ∈ R𝐻𝑊 . It

is equal to measure the cosine similarity of pixels and prototypes.
Here, 𝑝𝑚

𝑖
with the dimension 𝑁𝑝 represents the probability of the

𝑖-th pixel belonging to the 𝑘
′
-th(𝑘′ ∈

{
1, 2, · · · , 𝑁𝑝

}
) prototype.

Accordingly, we implement clustering to divide the category space
into several semantic parts. Following CPS [7], we implement self-
supervision to the prototypes probability map P𝑚 . Specifically,
𝑦 (𝑖,𝑘

′ ) = argmax𝑘′ ∈{1,2,· · · ,𝑁𝑝 }𝑝𝑖 , 𝑝𝑖 ∈ P𝑚 from branch 1 is taken
as pseudo labels for training branch 2, and vice versa. It can be
formulated as:

L𝑠𝑝 =
1

𝐻𝑊

𝐻𝑊∑︁
𝑖=1

ℓ𝑐𝑒

(
𝒚̂ (𝑖,𝑘′ )
1 ,𝒑 (𝑖,𝑘′ )

2

)
+ ℓ𝑐𝑒

(
𝒚̂ (𝑖,𝑘′ )
2 ,𝒑 (𝑖,𝑘′ )

1

)
, (6)

where L𝑠𝑝 is formed in a prototype-wise manner and differs from
the counterpart of CPS which is category-wise.

After obtaining prototypes, we implement contrastive learning
among them. Specifically, we first project the original feature map
F into a low dimensional feature mapF𝑝 via a non-linear projector
Φ. Then, we depend on the prototype prediction P𝑚 to guide the
sampling of positive and negative pairs as shown in Fig. 3.
Positive sampling.With pseudo labels𝑦 (𝑖,𝑘

′ ) , we take those pixels
belonging to the same prototypes from both branch 1 and branch

2 as positive samples: V =

{
𝒗𝑘
𝑖
| 𝑦 (𝑖,𝑘) = 𝑘

}𝑁𝑝

𝑘=1
. Unlike previous

works that put pixels of the same category together as the positive
samples, we aim to encourage the network to learn a compact
structure in each cluster space.
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Figure 3: Prototypical contrastive learning. We employ the
prototype prediction as pseudo labels to guide the sampling
of positive and negative pairs. Pixel embeddings with the
same color belong to the same prototype.

Negative sampling. There are two strategies for negative sam-
pling, the first one is to sample pixels from different categories as
negative pairs. For the second one, apart from those pixels sampled
via the above strategy, we also take the part belonging to the same
category but different prototypes as negative pairs with the insight
to enforce the decision boundary lying in a low density region. In
our method, we choose the second strategy, and the negative pair

can be formulated as: O =

{
𝒐𝑘
𝑖
| 𝑦 (𝑖,𝑘) ≠ 𝑘

}𝑁𝑝

𝑘=1
.

Afterwards, pixel-level contrastive learning is applied based on
the positive and negative pairs sampled above, which can be defined
as:

Lcontra =

𝑁𝑝∑︁
𝑘=1

𝑛∑︁
𝑖=1

− log
exp

(
𝒗𝑘
𝑖
· 𝒗𝑘

𝑖
′ /𝜏

)
exp

(
𝒗𝑘
𝑖
· 𝒗𝑘

𝑖
′ /𝜏

)
+∑𝑟

𝑗=0 exp
(
𝒗𝑘
𝑖
· 𝒐𝑘

𝑗
/𝜏
) ,
(7)

where 𝑖 ≠ 𝑖
′
, 𝑛 and 𝑟 denote the numbers of positive and negative

samples, respectively, and 𝜏 is a temperature hyper-parameter.

3.4 Prototype-Category Assignment
Given the prototypical prediction map P𝑚 , the prediction of cate-
gories can be obtained by the summation of corresponding proto-
types:

𝑝
(𝑖,𝑘)
𝑐 = 𝑓 (

∑︁
𝑛
′ ∈𝑁

𝑝
(𝑖,𝑘′ )
𝑚 (𝑛

′
)) (8)

𝑓 (𝑥) = softmax(𝜓 (sigmoid(𝑥))), (9)
where 𝑁 represents the corresponding prototypes assigned to cate-
gory 𝑘 (we assign the same amount of prototypes for each category,
so 𝑁𝑝 = 𝑛 ×𝐶), and𝜓 (𝑡) = 𝑡

1−𝑡 . Eq. 8 indicates that we align pro-
totypes to categories in a fixed many-to-one form. Given the final
prediction, the supervised loss in Eq. 3 is applied for labeled data.

It is worth noting that our prototype-wise prediction P𝑚 is
different from MaskFormer’s mask prediction which is category-
level or instance-level on account of the disparate inference im-
plementation. Our method also differs from the superpixel-based
approaches [19, 31] which focus on pixels correlation in local re-
gions.

3.5 Prototype Activation Regularization
Due to the under-constrained prototype modelling together with
the prototype-anchored assignment strategy, the proposed model is
prone to giving trivial solutions. In our method, we apply prototype
activation regularization to mitigate the problem. Specifically, in
each iteration, we randomly sample one of prototypes with the
same category label to produce the final inference result, which
can be formulated as:

𝑝
(𝑖,𝑘)
𝑐 [ 𝑗] = 𝑝

(𝑖,𝑘′ )
𝑚 [𝑛𝑗 + random(n)], 𝑗 ∈ [1, 𝑐], (10)

where 𝑛 represents the number of prototypes per category. We
penalize those inactive prototypes using the cross-entropy loss
with both labels and pseudo labels:

L𝑟 =
1

𝐻𝑊

𝐻𝑊∑︁
𝑖=1

ℓ𝑐𝑒

(
𝒚 (𝑖,𝑘) ,𝒑 (𝑖,𝑘)

𝑐

)
. (11)

Data Augmentation. Besides the commonly used data augmenta-
tion strategies such as random flipping and scaling, we also apply
the CutMix [13] augmentation in our approach following CPS [7].
Unless otherwise specified, results reported in this paper are ob-
tained under the settings with CutMix.

4 EXPERIMENTS
4.1 Setup
Datasets. PASCAL VOC 2012 [12] is a widely-used semantic seg-
mentation dataset including annotations of 20 object classes and 1
background class. There are 1,464, 1,449, and 1,456 images for train-
ing, validation, and testing, respectively. And the full augmented
set [14] includes 10,582 images and we use it as training set for
the common practice. Cityscapes [9] consists of 5,000 images with
finely annotations of 19 semantic classes. There are 2,975, 500, and
1,525 images for training, validation, and testing, respectively.

Following the common practice, 1/2, 1/4, 1/8, and 1/16 training
images are randomly sampled as the labeled data and the remaining
images are regarded as unlabeled data. We set the crop size as
512 × 512 in PASCAL VOC 2012 and the crop size as 800 × 800 in
Cityscapes.
Evaluation. For all partition protocols, we adopt mean Intersection-
over-Union (mIoU) as the evaluation metric and report results on
the PASCAL VOC 2012 val set and Cityscapes val set.
Implementation details. We use ResNet-101 pre-trained on Ima-
geNet [23], and DeepLab v3+ [5] as our backbone and segmentation
module separately. We initialize the weights of two parallel net-
works differently except the backbone. Following CPS[7], we use
the stochastic gradient descent (SGD) optimizer with the weight
decay 0.0005 and the momentum 0.9. We set the initial learning
rate as 0.01 for PASCAL VOC 2012 and 0.02 for Cityscapes, respec-
tively, and employ a poly learning rate policy where the initial

learning rate is multiplied by
(
1 − 𝑖𝑡𝑒𝑟

𝑚𝑎𝑥_𝑖𝑡𝑒𝑟

)0.9
. In addition, we

adopt Sync-BN [18] for stable training.

4.2 Quantitative Results
In Tab. 1 and Tab. 2, we report our results on Cityscapes val set
and PASCAL VOC 2012 val set under different partition protocols
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Figure 4: Comparison with the supervised baseline on (a)
PASCAL VOC 2012 and (b) Cityscapes under 1/16, 1/8, 1/4, 1/2
partition protocols.

and show improvements over the baseline. Besides, we make com-
parison with several recently-proposed semi-supervised semantic
segmentation methods, including Mean Teacher (MT) [37], Cross-
Consistency Training (CCT) [30], Guided Collaborative Training
(GCT) [20], CutMix [13], Cross Pseudo Supervision (CPS) [7], and
Adaptive Equalization Learning (AEL) [17]. For fair comparison, the
supervised baseline and all these methods are implemented using
ResNet-101 and DeepLabv3+. The results of all other methods are
from AEL [17] except CPS [7].
Comparison with the supervised baseline. in Fig. 4, we com-
pare our method with the supervised only baseline. On the PAS-
CAL VOC 2012 dataset, our method outperforms the baseline by
+8.95%, +5.63%, +3.39%, and +3.08% under 1/16, 1/8, 1/4, and 1/2 par-
tition protocols, respectively. On the Cityscapes dataset, our method
achieves the improvements by +11.23%, +6.42%, +4.96%, and +3.61%,
respectively. There is greater superiority over the baseline with
fewer training data available, which verifies the effectiveness of our
semi-supervised semantic segmentation paradigm.
Comparison with state-of-the-art methods. Compared to re-
cent semi-supervised semantic segmentation approaches, ourmethod
achieves state-of-the-art performance both on Cityscapes and PAS-
CAL VOC 2012 under various partition protocols as shown in Tab.
1 and Tab. 2. We also report the gain of performance over the semi-
supervised baseline in brackets, i.e., CPS[7] which employs cross
pseudo supervision as the consistency regularization strategy. Our
method consistently promotes the baseline, achieving the improve-
ments of +2.81%, +1.78%, +1.83%, +1.82% on Cityscapes and +1.48%,
+1.22%, +1.1%, +0.94% on PASCAL VOC 2012 under various parti-
tion. It turns out that the network can benefit from our engineered
prototypes modelling and contrastive learning.

Besides, we also make comparison on PASCAL VOC 2012 with
only 732, 366, 183, 92 images available, respectively, in Tab. 3. Our
method consistently outperforms the baseline by +1.75%, +1.74%,
+1.9%, +1.89% under various partition protocols. Our method still
performs better with few supervision.

4.3 Qualitative Results
Fig. 5 visualizes the activation of prototypes, demonstrating that
prototypes capture some certain discriminative patterns. In Fig. 5(a),
some prototypes focus on tiny parts like the feet and belly of the
bird. Fig. 5(b) shows that prototypes can capture local and global
information separately. As shown in Fig. 5(c), the activation maps

Method 1/16(186) 1/8(372) 1/4(744) 1/2(1488)

MT [37] 68.05 73.56 76.66 78.39
CCT [30] 69.32 74.12 75.99 78.10
CutMix [13] 72.13 75.83 77.24 78.95
GCT [20] 66.75 72.66 76.11 78.34
CPS [7] 74.72 77.62 79.21 80.21
AEL [17] 75.83 77.90 79.01 80.28

PPS(ours) 76.20(+1.48) 78.84(+1.22) 80.31(+1.1) 81.15(+0.94)
Table 1: Comparison with state-of-the-art methods on
Cityscapes val set under different partition protocols. All
the methods are based on DeepLabv3+ with ResNet-101.

Method 1/16(662) 1/8(1323) 1/4(2646) 1/2(5291)

MT [37] 71.29 73.33 76.61 78.08
CCT [30] 71.86 73.78 76.51 77.40
CutMix [13] 73.56 73.96 77.58 78.12
GCT [20] 70.90 73.29 76.66 77.98
CPS [7] 74.48 76.44 77.68 78.64
AEL [17] 77.20 77.57 78.06 80.29

PPS(ours) 77.29 (+2.81) 78.22(+1.78) 79.51(+1.83) 80.46(+1.82)

Table 2: Comparison with state-of-the-art methods on PAS-
CAL VOC 2012 val set under different partition protocols. All
the methods are based on DeepLabv3+ with ResNet-101.

Method #labeled images
732 366 183 92

CCT [30] 62.10 58.80 47.60 33.10
MT [37] 69.16 63.01 55.81 48.70
GCT [20] 70.67 64.71 54.98 46.04

CutMix [13] 69.84 68.36 63.20 55.58
PseudoSeg [49] 72.41 69.14 65.50 57.60

CPS [7] 75.88 71.71 67.42 64.07
PPS(ours) 77.63(+1.75) 73.45(+1.74) 69.32(+1.9) 65.96(+1.89)

Table 3: Comparison for few-supervision scenarios. We re-
port the results of all other methods from CPS [7]

of some prototypes are complementary. Specially, some prototypes
concentrate on contours or indistinguishable regions, which typi-
cally contain pixels that are hard to be classified. Those pixels are
prone to be away from centroids in the feature space, such as the
mis-classified outliers in Fig. 1(a). With extra prototypes built in the
category space, outliers can be clustered and assigned to a correct
semantic label.

Furthermore, we compare the qualitative results of our method
with the supervised baseline and AEL [17]. As we can see from Fig.
6, our method achieves a more precise classification. We also visual-
ize the pixel representation using T-SNE [38] as shown in Fig. 7. For
better visualization, we only present five categories. Fig. 7(a) shows
the distributions of pixel representation for the semi-supervised
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(a)  

(b)  

(c)  

Figure 5: Activation map of prototypes. We only visualize three prototypes per category here. The second to fourth columns
refer to prototypes assigned to objects and the fifth to seventh columns refer to prototypes belonging to background category.

(a) Image  (b) Ground Truth (c) SupOnly (d) AEL (e) Ours 

Figure 6: Qualitative results on PASCAL VOC 2012 and comparison with the supervised only baseline and AEL [17]. Orange
bounding boxes show some regions that our method can make a better prediction.

baseline, where pixel features of the categories in red, blue, and
green are interlaced and dispersive. It can be observed from Fig.
7(b) that, through the modelling of prototypes and the implementa-
tion of prototypical contrastive learning, the distributions of pixel
representation in the category space are compact and the decision
boundaries lie in low-density regions. Fig. 7(c) demonstrates that
multiple prototypes can capture and characterize the distribution
of outliers and are robust to intra-class variation.

4.4 Ablation Study
To validate the effectiveness of each module of our method, we
conduct ablation studies for these modules, including the multi-
prototypemodelling (MPM), prototypical contrastive learning (PCL),
and prototype activation regularization (PAR). Experiments are con-
ducted on PASCAL VOC 2012 under the 1/16 partition protocol if
not specified. We report the results on val set as shown in Tab. 4.

Effectiveness of multi-prototype modelling. Benefiting from
the utilization of multi-prototype modelling, the network achieves
a performance lift of +1.2% (see Tab. 4). Besides, the ablation study
conducted for the number of prototypes per category in Tab. 5
demonstrates that the gain of performance is brought by our multi-
prototype strategy but not the introduction of the transformer
decoder. It turns out that the multiple sub-center enhances the
representative ability and makes our network perform better in
pseudo segmentation.
Effectiveness of prototypical contrastive learning.As shown in
Tab. 4, our prototypical contrastive learning (PCL) based on pseudo
prediction further boosts the performance by +0.45% and +0.82%
under the settings with or without regularization, respectively. This
is mainly due to the fact that PCL enforces the network separating
different categories from each other and the decision boundary
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（a）Baseline （b）Ours (category space) （c）Ours (prototype space)

Figure 7: T-SNE [38] visualization of pixel representation with five classes in view. (a) and (b) present the distribution of baseline
and our method in category space. (c) shows the result in prototype space under three prototypes per category setting.

MPM PCL PAR mIoU

74.48
✓ 75.68
✓ ✓ 76.13
✓ ✓ 76.47
✓ ✓ ✓ 77.29

Table 4: Ablation study on the effectiveness of different mod-
ules in our method.

lying in low-density regions. Moreover, it reinforces the learning
of discriminative patterns.
Effectiveness of prototype activation regularization. Further
improvements can be observed with the prototype activation reg-
ularization by +1.16% (see Tab. 4). This module penalizes those
inactive prototypes and prevents the network from degradation.

4.5 Parameter Study
We evaluate the performance of our methods with different num-
bers of prototypes per category and report results in Tab. 5 and
Tab. 6. When 𝑛 = 1, there is only a single centroid in each cate-
gory space and the network degrades to the baseline. As we can
see, the increase of the prototype number can bring improvements
due to the stronger representation capacity. However, too many
prototypes are redundant and may boot the pressure for the net-
work to distinguish among different prototypes. In addition, it will
lead to sparse distribution in the feature space. Therefore, the best
hyper-parameter is 𝑛 = 5 for PASCAL VOC 2012 and 𝑛 = 7 for
Cityscapes. Unless otherwise specified, our method is configured
with the above-mentioned optimal hyper-parameters by default to
conduct other experiments.

In addition, Tab. 7 investigates the influences of the weights of
different losses, including the contrastive learning loss, the self-
supervision loss, and the prototype activation regularization term.
We can see that the self-supervision loss is less influential for the
segmentation performance. Experimentally, We choose the settings
of 𝜆1 = 0.5, 𝜆2 = 1.5, 𝜆3 = 0.01 as our default hyper-parameters.

5 CONCLUSION
In this paper, we investigated the cause of noisy pseudo labels in
semi-supervised semantic segmentation and proposed to build mul-
tiple prototypes in the category space to mitigate effects of outliers.

num_prototypes/category 1 3 5 7 9

mIoU 74.29 75.94 77.29 77.03 76.74
Table 5: Parameter study 1 conducted on PASCAL VOC 2012
under 1/16 partition: the number of prototypes per category.

num_prototypes/category 1 3 5 7 9

mIoU 74.68 75.12 75.93 76.20 76.04
Table 6: Parameter study 2 conducted on Cityscapes under
1/16 partition: the number of prototypes per category.

𝜆1 mIoU 𝜆2 mIoU 𝜆3 mIoU
0.2 76.47 0.5 75.94 0.005 76.67
0.5 76.95 1 76.87 0.01 76.94
0.8 76.21 1.5 77.03 0.05 76.02
1.5 74.57 2 76.53 0.1 75.78
2 74.65 3 76.35 0.2 74.52

Table 7: Ablation study on hyper-parametesr, 𝜆1: the weight
of L𝑐𝑜𝑛𝑡𝑟𝑎 , 𝜆2: the weight of L𝑠𝑝 , 𝜆3: the weight of L𝑟

Besides, we implemented contrastive learning in a prototype-wise
manner to learn a compact distribution of feature space and the
distinct boundary between prototypes. We also employed prototype
activation regularization to keep the proposed model from trivial
solutions. Experimental results showed that our method achieved
state-of-the-art performance on several widely-used datasets. Fur-
thermore, the proposed prototypes modelling is a general strategy
for semi-supervised semantic segmentation frameworks. In the fu-
ture, we are planing to apply our method to handle other tasks,
such as supervised or weakly supervised semantic segmentation.
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