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Figure 1: We introduce a novel human motion generation task centered on spatial audio-driven human
motion synthesis. Top row: We curate a novel Spatial Audio-Driven Human Motion (SAM) dataset,
including diverse spatial audio signals and high-quality 3D human motion pairs. Bottom row: We
develop a generative framework for human MOtion generation driven by SPatial Audio (MOSPA)
to produce high-quality, responsive human motion driven by spatial audio. We note that the motion
generation results are both realistic and responsive, effectively capturing both the spatial and semantic
features of spatial audio inputs.

Abstract

Enabling virtual humans to dynamically and realistically respond to diverse au-
ditory stimuli remains a key challenge in character animation, demanding the
integration of perceptual modeling and motion synthesis. Despite its significance,
this task remains largely unexplored. Most previous works have primarily focused
on mapping modalities like speech, audio, and music to generate human motion.
As of yet, these models typically overlook the impact of spatial features encoded in
spatial audio signals on human motion. To bridge this gap and enable high-quality
modeling of human movements in response to spatial audio, we introduce the
first comprehensive Spatial Audio-Driven Human Motion (SAM) dataset, which
contains diverse and high-quality spatial audio and motion data. For benchmarking,
we develop a simple yet effective diffusion-based generative framework for human
MOtion generation driven by SPatial Audio, termed MOSPA, which faithfully cap-
tures the relationship between body motion and spatial audio through an effective
fusion mechanism. Once trained, MOSPA can generate diverse realistic human
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motions conditioned on varying spatial audio inputs. We perform a thorough
investigation of the proposed dataset and conduct extensive experiments for bench-
marking, where our method achieves state-of-the-art performance on this task. Our
code and model are publicly available at our website.

1 Introduction

Humans exhibit varying responses to different auditory inputs within a given space. For instance,
when exposed to sharp, piercing sounds, individuals are likely to cover their ears and move away in
the direction opposite to the sound source. Conversely, when the sound is soft and soothing, they may
approach it out of curiosity or to investigate further. Therefore, generating realistic human motion
for virtual characters to respond realistically to a variety of sounds in their environment is both a
highly sought-after feature and is crucial for applications such as virtual reality, human-computer
interaction, robotics, etc.

Unfortunately, while previous studies have extensively explored motion generation from action
label [85, 29], text [93, 100, 77], music [78, 91, 46, 1], and speech [2, 97, 3, 102], human motion
generation driven by spatial audio remains unexplored to the best of our knowledge. Unlike pure
audio signals, e.g., music [70, 50, 78], speech [3, 97], the spatial audio signals not only does it encode
semantics, but it also captures spatial characteristics that significantly influence body movements,
requiring a specialized framework to accurately model motion responses to spatial audio stimuli.

To address this overlooked aspect, we propose to model the complex interactions between spatial
audio inputs and human motion using a generative model. Since there is no such dataset tailored for
this task, we first introduce the SAM dataset (Spatial Audio Motion dataset), which captures diverse
human responses to various spatial audio conditions. This dataset is meticulously curated to include
a wide range of spatial audio scenarios, enabling the study of motion conditioned on sound field
variations. The SAM dataset has a total of more than 9 hours of motion, covering 27 common spatial
audio scenarios and more than 70 audio clips. To ensure the diversity of the spatial audio, around 480
seconds of motion were captured for each audio clip at different positions in the character space. To
ensure diverse motion responses to spatial audio, we introduce 20 distinct motion types (excluding
motion genres) and 49 in total when including motion genres. We visualize samples from SAM in
the top row of Fig. 1. See Appendix A for detailed statistics.

We further conduct benchmarking experiments on the proposed dataset, revealing the limitations
of existing methods in this setting. To enable spatial audio-driven human motion generation, we
introduce MOSPA, a simple yet effective framework tailored for this task. In real-world scenarios,
human responses to sound are inherently influenced by spatial perception, intensity variations,
directional cues, temporal dynamics, etc. Motivated by this, we generate motion by incorporating
features extracted from the input spatial audio signals using [61]. Specifically, to capture intrinsic
features across both temporal and spatial dimensions, we mainly utilize Mel-Frequency Cepstral
Coefficients (MFCCs)[17] and Tempograms[28] to model the temporal characteristics of the audio.
Additionally, we characterize the spatial audio by analyzing the root mean square (RMS) [61] energy,
which quantifies signal intensity in audio processing.

These features enhance the effective modeling of the spatial and intensity variations of the spatial
audio. To capture the distribution of spatial audio features and human motion dynamics effectively,
we employ a diffusion-based generative model that ensures strong alignment between the two
modalities—human motion and spatial audio signals. Leveraging diffusion models, MOSPA excels
at modeling the complex interplay between spatial audio features and human motion. Besides, a
residual feature fusion mechanism is employed to model the subtle influences of spatial audio on
human movement.

Extensive evaluations on the SAM demonstrate that MOSPA achieves state-of-the-art performance
on this task, outperforming existing baselines in generating realistic and diverse motion responses to
spatial audio. Our contributions are summarized as follows:

• We introduce a novel task of spatial audio-conditioned motion generation and present the first
comprehensive dataset SAM with over 9 hours of motion across diverse scenarios.

• We conduct extensive benchmarking and propose MOSPA, a diffusion-based generative frame-
work tailored for modeling and generating diverse human motions from spatial audio.
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• We achieve the SOTA performance on motion generation conditioned on spatial audio. Our
dataset, code, and models will be publicly released for further research.

2 Related Work

Spatial Audio. Many studies have explored spatial audio modeling [98, 24, 99, 74, 37, 87, 44, 45].
For instance, [98] utilizes the natural synchronization between visual and audio modalities to learn
models that jointly parse sounds and images without manual annotations. [24] leverages unlabeled
audiovisual data to localize objects, such as moving vehicles, using only stereo sound at inference
time. [99] reason about spatial sounds with large language models. Recently, spatial audio generation
has been explored from text [74] and video [42]. [87] propose a method to model 3D spatial audio
from body motion and speech. [37] presents a framework for spatial audio generation, capable of
rendering 3D soundfields generated by human actions, including speech, footsteps, and hand-body
interactions. Despite progress on spatial-audio tasks, generating human motion from spatial audio
remains largely underexplored.
Conditional Motion Generation. Extensive efforts have been made into motion synthesis condition-
ing on user control signals [36, 72, 11, 79, 92], text [93, 100, 77, 30, 51, 53, 14], action [85, 29, 10, 39],
music [78, 91, 46, 1], speech [2, 68, 38, 97, 3, 102], past trajectories [23, 9, 4, 90, 73], etc. We refer
readers to [103] for a detailed survey of motion generation.
Text-to-Motion. Text-to-motion generation has recently gained popularity as an intuitive and user-
friendly approach to synthesizing diverse human body motions. Generative pre-trained transformer
frameworks have been utilized for text-to-motion generation [93, 57]. Subsequently, various genera-
tion techniques have been explored, including diffusion models [77], latent diffusion models [12],
autoregressive diffusion model [69, 11], denoising diffusion GANs [100], consistency models [16],
and generative masked modeling [31]. Recent advancements include the integration of motion
generation with large language models [41, 94] and investigations into the scaling laws for mo-
tion generation [58, 22]. Recently, controllable text-to-motion generation has gained attention,
enabling motion synthesis conditioned on both text prompts and control signals, e.g., target control
points [84, 79].
Music-to-Motion. Recent advancements in Music-to-Motion generation have been made [21, 70,
48, 78, 27, 88, 71]. DanceFormer [47] adopts a two-stage approach, generating key poses for beat
synchronization followed by parametric motion curves for smooth, rhythm-aligned movements.
Bailando [70] utilizes a VQ-VAE to encode motion features via a choreographic memory module.
[1] introduces a diffusion-based probabilistic model for motion generation, using a Conformer-based
architecture. EDGE [78] also applies a diffusion model for dance generation and editing. Furthermore,
multimodal approaches incorporating language and music enhance generation quality [27, 88, 15].
Speech-to-Motion. We mainly review studies on audio-driven motion (gesture) generation [97, 13,
3, 2, 102]. Early works are mostly based on GAN models [26, 54, 65, 89], while the recent at-
tempts are mainly based on the generative diffusion model [102]. For instance, [97] proposes a
generative retrieval framework leveraging a large language model to efficiently retrieve semantically
appropriate gesture candidates from a motion library in response to input speech. [2] introduces a
co-speech gesture synthesis method by employing a segmentation pipeline for temporal alignment
and disentangling speech-motion embeddings to capture both semantics and subtle variations.

While audio signals have been widely used in music- and speech-to-motion tasks, human motion
synthesis driven by spatial audio remains largely unexplored. As a result, data-driven methods are
highly constrained by limited paired data. The goal of this paper is to develop a comprehensive
dataset and a novel approach for high-quality spatial audio-driven motion synthesis.

3 SAM Dataset

We first introduce the Spatial Audio-driven Motion (SAM) dataset designed for human motion
synthesis conditioned on spatial audio. We focus on binaural audio, a common form of spatial audio
that aligns with human and (most) animal perception and can be readily applied to robotic platforms.
SAM consists of more than 9 hours of human motions with corresponding binaural audio, and more
than 4M frames, covering 27 common spatial audio scenarios and 20 common reaction types in
daily life without counting the motion genres. The majority of the audio clips are sourced from
the AudioSet [25], while only a small portion is extracted from publicly available YouTube videos
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Table 1: Statistics of the SAM dataset. The SAM dataset encompasses 27 common daily spatial audio
scenarios, over 20 reaction types excluding the motion genres, and 49 reaction types (see details in
Appendix A). The number of subjects covered in SAM is 12, where 5 of them are female and the
remaining 7 are male. It is also the first dataset to incorporate spatial audio information, annotated
with Sound Source Location (SSL). The total duration of the dataset exceeds 34K seconds.

Dataset SSL 3DJointpos/rot Model Joints Subjects Seconds

Dance with Melody [75] × ✓/× - 21 - 5640
DanceNet [104] × ✓/× - 55 2 3472
AIST++ [48] × ✓/✓ COCO/SMPL 17/24 30 18694
PopDanceSet [60] × ✓/✓ COCO/SMPL 17/24 132 12819
FineDance [49] × ✓/✓ SMPL & hand joints 52 27 52560

SAM (Ours) ✓ ✓/✓ SMPL-X 55 12 34356

(a) Look for sound source and approach upon hearing miaow at the left-hand side.

(b) Step away with ears covered upon hearing crowd yelling at the back.

(c) Run away from the sound source upon hearing gunshot at the right hand side.

(d) Walk towards the sound source upon hearing insect noise at the left-hand side.

(e) Start dancing upon hearing music in front of the character.

(f) Look for sound source upon hearing the phone ring at the left-hand side.

Figure 2: Visualization of samples from SAM with expected motions annotated. Red dots indicate
the actor’s trajectory, while the blue sphere represents the sound source. The SAM dataset ensures
high diversity by encompassing a broad spectrum of audio types and varying sound source locations.

or through manual recording. More detailed information can be found in Tab. 1 and Appendix A.
Visualization results are in Fig. 2.
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(i) Mocap environment. (ii) The speakers.

Figure 3: Spatial audio-driven human mo-
tion data collection setup. Figure 4: Statistics of action duration in the dataset.

Data Capture Settings. We utilize a Vicon motion capture system [56] to collect motion data
and spatial audio signals. The motion capture is performed in a semi-open cage having a space of
approximately 5m × 10m × 3m, a structure covered by rope nets, with 28 mocap cameras mounted
on the ropes and vertical supports recording at a frame rate of 120 Hz; See Fig. 3. The surrounding
walls are standard painted concrete, resulting in a setting that resembles a typical indoor environment.
In SAM, each audio clip is associated with 16 randomly sampled relative sound source locations,
defined by combinations of different speakers and spatial positions relative to the subject. For
each location, we capture three motion sequences corresponding to different reaction intensities:
dull, neutral, and sensitive, resulting in a total of 48 motion sequences, each lasting 10 seconds.
Fig. 4 shows the statistics of the approximate duration of the actions. The three
motion genres define the varying degrees of responsiveness, decreasing from sensitive
to dull. For instance, upon hearing an explosion, a dull individual might remain
largely unreactive, whereas a sensitive one may immediately flee from the sound
source. The total number of action types is 49. The percentage of action types covered
within the dull, neutral, and sensitive motion genres are 28.57%, 34.69%, and 36.73%,
respectively. To capture the binaural sound heard at the position of the actor, we employ
two microphones to record the audio at the ear positions of the actors separately; See the inset. The
two microphones are connected to a Deity PR-2 recorder [18] that has been synchronized with the
Vicon mocap system in advance using a timecode with a frame rate of 30 FPS. With this setting,
the stereo sound at the position of the actor can be recorded and has an accurate alignment with the
corresponding motion.
Data Processing. All motion and audio clips are precisely aligned. The motions are re-targeted
and converted from the original BVH format in Vicon to the SMPL-X [63] format. SMPL-X
is a parametric 3D human body model that encompasses the body, hands, and face, comprising
N = 10, 475 vertices and K = 55 joints. Given shape parameters β and pose parameters θ, the
SMPL-X model generates the corresponding body shape and pose through forward dynamics. We
extract the locations of the sound sources in each motion clip. The sound source locations are then
transformed into the local space of the character aligned with the SMPL-X local coordinate system
(a.k.a the local frame).

4 Method

We introduce MOSPA, a diffusion-based probabilistic model that serves as a baseline for this novel
task of spatial audio-driven human motion generation. First, we extract spatial audio features a using
a feature extractor [61]. During motion generation, the extracted spatial audio feature a is combined
with the sound source location s and the motion genre g as conditioning inputs. These inputs are
passed to a denoiser G, which is trained to reconstruct the original clean motion vector x̂0 by denoising
the given noisy motion vector xt at time step t. Mathematically, we have x̂0 = G(xt, t;a, s, g).

4.1 Feature Representation

The two key vectors are the audio feature vector a and the motion vector p. We carefully designed
the structure of the two vectors in MOSPA.
Spatial Audio Feature Extraction. We first extract a range of audio features that capture intensity,
temporal dynamics, and spatial characteristics. Inspired by [70], our feature set primarily includes Mel-
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frequency cepstral coefficients (MFCCs), MFCC delta, constant-Q chromagram, short-time Fourier
transform (STFT) of the chromagram, onset strength, tempogram, and beats [17, 67, 28, 61, 7, 20].
On top of these audio features, we additionally add the root mean square (RMS) energy Erms of
the audio [61], and the active frames Factive defined as Factive = Erms > 0.01 to capture the
distance information of the audio. The dimension of the audio feature vector for each ear is 1136. By
concatenating the features from both ears, we obtain a combined feature vector a of dimension 2272.
The detailed construction of the audio vector can be viewed in Appendix B.1.
Motion Representation. In this paper, we focus on body motion and leave the modeling of detailed
finger movements to future work. Therefore, we exclude all the finger joints and retain only the first
J = 25 body joints of the SMPL-X model [63]. In addition to the essential translation and joint
rotations required for human pose representation, we introduce the residual feature fusion mechanism
[30] to incorporate the global joint positions and the velocity of the joints to capture the nuanced
difference in audio and further improve the accuracy of the generated samples. Each motion vector x
is thus composed of the global positions p ∈ RT×(J×3), the local rotations r ∈ RT×(J×6) and the
velocities v ∈ RT×(J×3) of the joints (including the root), where T = 240 represents the number
of frames in each motion sequence. The joint rotations are represented in the 6d format [101] to
guarantee the continuity of the change (x0 = (p0, r0,v0),x ∈ RT×(J×12)). The dimension of each
motion vector is therefore 300.

4.2 Framework

Figure 5: The framework of MOSPA. We perform
diffusion-based motion generation given spatial audio in-
puts. Specifically, Gaussian noise is added to the clean
motion sample x0, generating a noisy motion vector xt,
modeled as q(xt|xt−1). An encoder transformer then pre-
dicts the clean motion from the noisy motion xt, guided
by extracted audio features a, sound source location (SSL)
s, motion genre g, and timestep t.

Following [77, 11], the diffusion is
modeled as a Markov chain process
which progressively adds noise to clean
motion vectors x0 in t time steps, i.e.

q(xt|xt−1) = N (
√
αtxt−1, (1−αt)I)

(1)
where αt ∈ (0, 1). The model then
learns to gradually denoise a noisy
motion vector xt in t time steps, i.e.
p(xt−1|xt). We directly predict the
clean sample x̂0 in each diffusion step
x̂0 = G(xt, t;a, s, g), where a is the
audio features, s is the sound source lo-
cation and g is the motion genre. This
strategy, employed by [77, 11, 66, 84],
has been proved to be more efficient
and accurate than predicting the noise
ϵt, suggested by [35]. We employ an
encoder-only Transformer to reverse the
diffusion process and predict the clean
samples. The timestep, motion, and con-
ditioning signals are each projected into
the same latent dimension using sepa-
rate feed-forward networks. Random masks are applied to the audio features a and the sound source
location (SSL) s, after which all components are concatenated to form the complete token sequence
z. The tokens are positionally embedded afterward and input into a transformer to get the output ẑ.
The predicted clean sample is thus extracted from the last T tokens of ẑ by inputting it to another
feed-forward network, where T = 240 is the length of the motion; see Fig. 5.

4.3 Loss Functions

We train MOSPA using the following loss functions. A simple mean squared error (MSE) loss is
applied to the original clean sample and the predicted clean sample as the main objective: E∥x̂0 −
x0∥22. To guarantee the smooth variation on the predicted clean sample across frames, we also
apply MSE loss to the rate of change of the vectors across frames: E∥δx̂0 − δx0∥22. Combining
the two simple losses we have Ldata = E∥x̂0 − x0∥22 + E∥δx̂0 − δx0∥22. Geometric losses,
encompassing position loss and velocity loss, are also incorporated, as we rely solely on joint
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Figure 6: Qualitative comparison of state-of-the-art methods for the spatial audio-to-motion task.
We visualize motion results from five cases. MOSPA produces high-quality movements that closely
correspond to the input spatial audio. We provide Expected Motion as a description for reference.

rotations and translations in motion vectors to represent poses: Lgeo = E∥FK(x̂0)− FK(x0)∥22 +
E∥δFK(x̂0)− δFK(x0)∥22. Furthermore, foot sliding is prevented by introducing the foot contact
loss Lfoot that measures the inconsistency in the velocities of the foot joints between the ground
truth and the predicted motions.

We also incorporate trajectory loss and joint rotation loss to underscore their importance in achieving
the training objectives and accelerate the convergence of the model, defined as Ltraj = E∥ ˆtraj0 −
traj0∥22 + E∥δ ˆtraj0 − δtraj0∥22 and Lrot = E∥r̂0 − r0∥22 + E∥δr̂0 − δr0∥22 respectively, where
traj is the trajectory vector of the motion sequence and r is the joint rotations represented in the
6d format [101]. Given that trajectory and joint rotations are inherently encoded within the motion
vectors, these supplementary losses represent an overlap with the existing loss terms, effectively
amplifying the emphasis on trajectory and joint rotation accuracy through increased weighting.
Empirically, we observe that this implementation accelerates model convergence and facilitates
correct displacement direction generation in motion sequences. In sum, the total loss is given by:

L = λdataLdata + λgeoLgeo + λfootLfoot + λtrajLtraj + λrotLrot (2)

All loss weights (λ) are initialized set to 1. At epoch 5,000 of the total 6,000 training epochs, λtraj

and λrot are increased to 3, thereby intensifying the emphasis on trajectory and rotation accuracy.

4.4 Implementation Details

In MOSPA, the diffusion model is a transformer-based diffusion network [11, 77, 100]. The encoder
transformer is configured with a latent dimension of 512, 8 heads, and 4 layers. We employ
AdamW [55] as the optimizer with an initial value of 1 × 10−4. The number of denoising steps
used is 1000, and the noise schedule is cosine. The training phase concludes after 6, 000 epochs.
Exceeding these recommended epoch counts may degrade model quality due to overfitting. The
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Table 2: Quantitative evaluation on the SAM, where MOSPA achieves higher alignment with the
GT motion while maintaining high diversity, as reflected by the metrics. The error bar is the 95%
confidence interval assuming normal distribution, and → means the closer to Real Motion the better.

Method R-precision ↑ FID ↓ Diversity → APD →
Top1 Top2 Top3

Real Motion 1.000±0.000 1.000±0.000 1.000±0.000 0.001 23.616±0.188 59.435

EDGE [78] 0.886±0.005 0.960±0.003 0.977±0.002 13.993 23.099±0.196 43.882
POPDG [60] 0.762±0.006 0.886±0.005 0.934±0.003 20.967 22.536±0.170 34.996
LODGE [50] 0.444±0.006 0.594±0.005 0.679±0.004 102.289 21.101±0.141 11.801
Bailando [70] 0.077±0.003 0.134±0.003 0.182±0.004 168.396 17.347±0.247 23.121

MOSPA 0.937±0.005 0.984±0.002 0.996±0.001 7.981 23.575±0.188 53.915

Table 3: Ablation study on MOSPA on the spatial audio-driven motion generation performance. The
error bar is the 95% confidence interval assuming normal distribution, and → means the closer to
real motions the better.

Latent
Dim

Head
Num

Diff
Steps Genre R-precision ↑ FID ↓ Diversity → APD →

Top1 Top2 Top3

Real Motion 1.000±0.000 1.000±0.000 1.000±0.000 0.001 23.616±0.188 59.435

512 8 1000 ✓ 0.937±0.005 0.984±0.002 0.996±0.001 7.981 23.575±0.188 53.915
256 8 1000 ✓ 0.891±0.005 0.952±0.002 0.971±0.001 9.226 23.007±0.198 55.175
512 4 1000 ✓ 0.923±0.004 0.972±0.002 0.986±0.001 9.282 23.232±0.170 56.572
512 8 100 ✓ 0.930±0.004 0.980±0.002 0.991±0.001 8.456 23.351±0.177 49.824
512 8 4 ✓ 0.934±0.004 0.989±0.002 0.998±0.001 8.387 23.474±0.192 49.507
512 8 1000 × 0.889±0.005 0.958±0.003 0.977±0.002 10.930 23.150±0.153 46.807

entire training process requires approximately 18 hours on a single RTX 4090 GPU with a batch size
of 128.

5 Experiments

Experiment Setup. We use our SAM dataset to evaluate the spatial audio-driven motion generation
task. As detailed in Sec. 3, it contains 9 hours of human motion with paired binaural audio and
corresponding sound source locations, covering 27 common spatial audio scenarios and 20 common
reaction types. The dataset is split into training, validation, and test sub-datasets at a common ratio of
8:1:1. Consequently, the training sub-dataset comprises 2,400 motion sequences, while the validation
and test sub-datasets each contain approximately 300 motion sequences. To keep fair setting [10],
the motions and the audio clips are both downsampled to the frame rate of 30 FPS. The character is
rotated to face the negative y-axis and initially translated to the origin in the world space in all motion
sequences, and the sound source locations (SSL) are transformed to the local space of the character
in every single frame.
Baselines and Metrics. Our system is the first work to receive spatial audio as input to generate
human motion results. To our best knowledge, as there is no other system achieving this, we made
adaptations on other audio2motion methods, such as EDGE [78], POPDG [60], LODGE [50] and
Bailando [70] by replacing their original audio input with our spatial audio feature as input. We
evaluated four metrics, focusing on motion quality and diversity: 1) R-precision, FID, Diversity
These three metrics are calculated using the same setup proposed by [30]. Two bidirectional GRU
are trained with a hidden size of 1024 for 1,500 epochs with a batch size of 64 to extract the audio
features and the corresponding motion features, as suggested by [30]. Detailed implementation
details of the feature extractor are provided in Appendix B.2. 2) APD [19, 33] is calculated by

APD(M) = 1
N(N−1)

∑N
i=1

∑N
j=1
j ̸=i

(∑L
t=1 ∥sit − sjt∥2

) 1
2

, where M = {x̂i} is the set of generated

motion sequences, N is the number of motion sequences in the set M , L is the number of frames of
each motion sequence, and sit ∈ x̂i is a state in the motion sequence x̂i.
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5.1 Comparisons

Qualitative Results. We demonstrate the qualitative comparison in Fig. 6. For the same input
spatial audio, our methods show the superiority of producing high-quality and realistic response
motion. Other methods often exhibit various limitations due to their unique model characteristics.
EDGE [78] and POPDG [60] demonstrate relatively strong performance among the four baselines,
sharing a diffusion-based foundation with MOSPA, despite differences in their encoding and decoding
mechanisms. Their shortcomings in generated samples can primarily be attributed to model size and
their strong focus on music-like audio. The bad performance of LODGE [50] is likely due to its
specialization in long-term music-like audio, resulting in deficiencies when handling short-term audio
information with abrupt feature changes. Similarly, Bailando [70] faces challenges in processing
rapidly changing spatial audio. More critically, due to its separate training process for upper and
lower body parts, Bailando occasionally produces distorted or disjointed motions when encountering
sudden changes in spatial audio. Please watch our supplementary video for more results. Furthermore,
we test MOSPA on out-of-distribution audio-source configurations. As shown in Fig. 8, it maintains
motion quality and intent alignment, demonstrating robustness to unseen spatial setups.

Quantitative Results. The quantitative results are reported in Tab. 2. MOSPA achieves the best per-
formance as shown by the lowest FID value and the highest R-precision values. Also, our generated
motions exhibit the closest diversity and APD [19] values compared with the Real Motion, demon-
strating the effectively balanced variation and precision. Bailando [70] has the worst performance
among the four baselines in practice, as illustrated by the extremely high FID. The model possibly
lacks the ability to perceive commonly heard sounds other than music and also the spatial information
of the audio. Our method, overall speaking, still demonstrates competitive performance in spatial
audio conditioned motion generation, which is proved by the low values in precision-related metrics
and the high values in diversity-related metrics.

Figure 7: User study results. MOSPA outperforms
other methods in intent alignment, motion quality,
and similarity to ground truth. The bar chart shows
the vote distribution across methods.

User Study. We conducted a user study with
25 participants to assess the perceptual qual-
ity of motion generation. Participants evaluated
five models (MOSPA, EDGE, POPDG, LODGE,
Bailando) alongside ground truth (GT), select-
ing the best motion for: 1) Human Intent Align-
ment: Does the motion align with real-world
intent? 2) Motion Quality: Which has the high-
est movement quality? 3) GT Similarity:Which
best matches the GT motion? We provided GT
motion and a textual description for reference.
As shown in Fig. 7, MOSPA outperforms all
baselines across all criteria, while LODGE and
Bailando received the fewest selections, indicat-
ing limitations in generating realistic, semanti-
cally meaningful motions. See more details in Appendix C.

5.2 Ablation Study

We conducted ablation studies on the latent dimension, the number of attention heads, the diffusion
step number, and the masking of motion genre, with results summarized in Tab. 3. All ablation
experiments maintained consistent training epoch counts throughout.
Latent Dimension. The default latent dimension of MOSPA’s encoder transformer is 512. In our
study, reducing it to 256 slightly increases the APD [19] value but also degrades the R-precision and
the FID, leading to an overall decline in model performance, as seen in row 1 and row 2 in Tab. 3.
Number of Attention Heads. We reduced the number of attention heads in MOSPA ’s encoder
transformer from 8 to 4, observing degradation in almost all of the metrics except a slight improvement
in APD [19]. This reduction compromises overall model performance without yielding significant
improvements in training efficiency, as seen in row 1 and row 3 in Tab. 3.
Number of Diffusion Steps. We evaluated MOSPA with varying diffusion step numbers, reducing
it from 1000 to 100 and further to 4, as detailed in rows 1, 4, and 5 of Tab. 3. Fewer steps slightly
degrade the performance as shown by the increase in FID and degradation in diversity, thereby
lowering the upper limit of the power of the model.

9



Figure 8: Test of MOSPA on out-of-distribution spatial audios. Descriptions of motions are provided
for reference.

Figure 9: Spatial audio-driven physically simulated humanoid robot control based on [34]. Descrip-
tions of expected motion are provided for reference.
Genre Masking. Masking motion genres leads to a degradation in model performance across all
metrics, as demonstrated in row 1 and 6 of Tab. 3. Motion genres are required to provide a guidance
for the model on the intensity of the expected motions.

Table 4: Ablation study on the effect of MFCC [17] and tempogram
[28] features.

MFCC Tempogram R-precision ↑ FID ↓
Top-1 Top-2 Top-3

✓ ✓ 0.937±0.005 0.984±0.002 0.996±0.001 7.981
× ✓ 0.907±0.004 0.967±0.002 0.983±0.002 9.070
✓ × 0.917±0.004 0.982±0.002 0.994±0.001 10.786

We evaluate the contribution of
the extracted audio features by
conducting an ablation study
on the effectiveness of MFCC
[17] and tempogram [28] fea-
tures. As shown in Tab. 4,
improvements in FID and R-
precision—two key metrics for
assessing generative quality and correspondence—demonstrate their significance in model.

6 Conclusion

This introduces a novel task for enabling virtual humans to respond realistically to spatial auditory
stimuli. We present a comprehensive SAM dataset, capturing human movement in response to
spatial audio, and propose MOSPA, a diffusion-based generative model with an attention-based
fusion mechanism. Once trained, MOSPA synthesizes diverse, high-quality motions that adapt to
varying spatial audio inputs with binaural recording. Extensive evaluations show MOSPA achieves
state-of-the-art performance on this task. Limitations and Future Works. Physical Correctness:
While MOSPA generates diverse and semantically plausible motions, it lacks physical constraints,
which may lead to physically implausible artifacts. Integrating physics-based control methods [19,
59, 76, 40, 95, 96, 62, 82] could improve motion realism and embodiment fidelity (see Fig. 9 for
spatial audio-driven humanoid robot control). Body Modeling: This work focuses on body motion
and omits finer-grained components such as hand gestures and facial expressions supported by
SMPL-X [63]. Extending the model to full-body motion generation [57, 52, 86, 64, 5]—including
hand motions—remains an important direction for future research. Scene Awareness: The current
framework does not incorporate awareness of surrounding environments or physical scene geometry,
limiting its ability to produce scene-consistent or contact-aware motions. Future extensions could
integrate scene representations or affordance prediction [14, 80, 83, 8, 81] with spatial audio signals
to enhance human motion generation.
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Stated in Sec. 6

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [No]
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Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Stated in Sec. 5
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The dataset and the codes will be released after acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Stated in Sec. 5
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Stated in Sec. 5
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Stated in Sec. 5, with one GPU (Nvidia RTX 4090 GPU).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Stated in Sec. 6.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We follow the original license of previous work.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: Stated in Sec. 5.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: Research with human subjects has been known and approved by the authors’
university and supervisor.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
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Justification: Editing (e.g., grammar, spelling, word choice)
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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