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Abstract
Development of efficient and high-performing
electrolytes is crucial for advancing energy stor-
age technologies, particularly in batteries. Predict-
ing the performance of battery electrolytes rely
on complex interactions between the individual
constituents. Consequently, a strategy that adeptly
captures these relationships and forms a robust
representation of the formulation is essential for
integrating with machine learning models to pre-
dict properties accurately. In this paper, we intro-
duce a novel approach leveraging a transformer-
based molecular representation model to effec-
tively and efficiently capture the representation
of electrolyte formulations. The performance of
the proposed approach is evaluated on two battery
property prediction tasks and the results show
superior performance compared to the state-of-
the-art methods.

1. Introduction
Electrolytes are critical in many fields, including energy
storage (batteries), fuel cells, sensors, and electrochemi-
cal devices. Despite their significance, designing efficient
electrolytes and accurately predicting their performance is
challenging due to the complex nature of electrolyte compo-
sitions and their interactions within battery systems (Sharma
et al., 2023). The intersection of research in electrolyte for-
mulation and machine learning (ML) represents an exciting
frontier in materials science and technology development.
Utilizing data-driven ML models allows for fast and accu-
rate analysis of diverse factors related to electrolyte compo-
sition and structure, enabling the prediction and optimiza-
tion of battery performance. Recent works on transformer-
based Large Language Models (LLMs) for chemistry such
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as (Wang et al., 2019; Chithrananda et al., 2020; Ross
et al., 2022; Yüksel et al., 2023) have demonstrated sig-
nificant strides in learning representations of chemical lan-
guage from large unlabeled corpora and have shown great
promise in molecular property prediction tasks. In most
practical applications, individual molecules are a part of
multi-constituent system, such as electrolyte formulations
in batteries, that require capturing all individual constituents
and their complex interactions to precisely predict the prop-
erty or performance of the system. Thus, in this paper we
introduce a transformer based approach suitable for multi-
constituent systems such as battery electrolyte formulations.

2. Related Works
Constitute choice and their relative compositions make elec-
trolyte formulation discovery a challenging multi-variate
design problem. Integration of machine learning into elec-
trolyte formulation research has the potential to revolution-
ize the field by speeding up the discovery and optimization
of new complex materials. Recent works such as (Kim et al.,
2023) adopt a data-driven approach using machine learning
models to predict the Coulombic efficiency (CE) of lithium
metal battery electrolytes by using elemental composition of
the electrolytes as features to the ML model. However, the
approach lacks generalizability across different formulations
and formulation constituents. Further, (Sharma et al., 2023)
introduced the Formulation Graph Convolution Network (F-
GCN) model, designed to establish connections between the
structure and composition of formulation components and
the overall properties of liquid formulations. This model
employs multiple graph convolution networks (GCNs) work-
ing in tandem to intuitively feature-engineer formulation
components dynamically. Recently MM-Molformer, a trans-
former based approach was proposed (Soares et al., 2024).
In MM-Molformer, the feature space was constructed by
concatenating the embedding from Molformer model (Ross
et al., 2022) along with the compositions of the constituents.
Though the method showed significant improvement in the
prediction results, the relation between the composition and
the respective formulants cannot be guaranteed. Further-
more, both F-GCN and MM-Molformer required dummy
featurization to maintain uniform feature size, thus making
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the model not versatile to formulations having variable num-
ber of electrolyte components. In this paper we propose a
novel approach to effectively capture the representation of
electrolyte components, proportionate to their composition
in the electrolyte formulation, to improve the performance
of property prediction of electrolytes.

3. Method
Just like any other transformer-based models, the proposed
approach also has two phases, pretraining and finetuning.
In the pretraining phase, the model is trained on large unla-
beled corpora in a self-supervised manner, with the goal of
learning a robust molecular representation. In the finetuning
phase, the molecular representation is used as input features
for specific tasks such as property prediction. However since
electrolyte formulation typically consists of two or more
constituents, we introduce a feature construction phase to
design a feature vector that captures the representation of
the formulation. In this section, we describe the proposed
approach in three parts - pretraining, feature construction,
and finetuning.

3.1. Pre-training

The pre-training phase builds upon the transformer based
large scale molecular representation model proposed in
(Priyadarsini et al., 2023). A Bidirectional Auto-Regressive
Transformer (BART) (Lewis et al., 2019) is pretrained on a
mixture of 500M and 118M samples from the ZINC (Tingle
et al., 2023) and PubChem (Kim et al., 2016) datasets, re-
spectively. The dataset comprises of molecules represented
in SMILES (Simplified Molecular Input Line Entry Sys-
tem) - a molecular string representation (Weininger, 1988).
One of the drawbacks of SMILES is that it does not guaran-
tee syntactic and semantic validity of the molecule (Krenn
et al., 2022), especially when trained in autogenerative mod-
els such as BART, thus leading to a possiblity of learning
invalid representations. To overcome this drawback, we pre-
train our BART model with SELFIES (SELF-referencing

Figure 1. Pre-training model architecture

Embedded Strings). The SMILES strings are encoded to
SELFIES representation as SELFIES provides a more con-
cise and interpretable representation, making it suitable for
machine learning applications where compactness and gen-
eralization are important (Krenn et al., 2022). The encoded
SELFIES are tokenized using word level tokenization with a
vocabulary size of 3160 tokens obtained from the ZINC and
PubChem datasets. We then randomly mask 15% of the tok-
enized sequence and train the model autoregressively with a
denoising objective. In comparison to encoder-only models,
the BART model which is an encoder-decoder model has a
better representation of the molecule owing to the denois-
ing objective. Furthermore, since the model is trained on
SELFIES instead of SMILES, the molecular representation
i.e. encoder output is more robust and guarantees learning
the representation of only valid molecules. Figure 1 shows
the pretraining model architecture.

3.2. Feature construction

Figure 2. illustrates the schematic of the proposed method
to construct a feature representation for a formulation. As
seen from Figure 2.(a), the electrolyte formulation dataset
consists electrolyte components and their corresponding
concentration in the formulation. The concentrations are ex-
pressed as fractions of molar percentages. The formulations
can be comprised of a mixture of any number of compo-
nents. The first step in getting a good feature representation
of this mixture is to get the molecular representations of
the individual electrolyte components. The molecular rep-
resentation is obtained from the pretrained BART model.
Since the BART model is pretrained on SELFIES string,
the electrolyte components are first encoded into SELFIES,
tokenized and then fed to the pretrained BART model. The
output of the encoder, i.e, molecular representation for each
electrolyte component is a d dimensional vector. Next, to
capture the compositional information of each of the elec-
trolyte components that make the formulation mixture, we
scale the molecular representation of the electrolyte compo-
nent with its corresponding concentration. The scaled vec-
tors are then added to form an effective feature vector (SA)
of the formulation mixture. We hypothesize that this fea-
ture vector SA formed by the weighted linear combination
of individual molecular representations that constitute the
formulation can effectively capture overall representation
of the electrolyte formulation. If r1, r2, ..., rn represent
the molecular representation of the electrolyte components
and c1, c2, ..., cn represent their corresponding composition,
the resultant feature vector of the electrolyte formulation is
given as,

SA = c1r1 + c2r2 + ...+ cnrn

where n represents the number of electrolyte components, c
is a scalar and r ∈ Rd. Since the scaled vectors are added,
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Figure 2. Illustration of the general schematic of the proposed method. (a) shows the general format of the electrolyte formulation dataset.
(b) describes the procedure to construct the feature vector for an electrolyte formulation. (c) shows the fine-tuning model trained using the
feature vector for a given prediction task.

the resulting feature vector is also a d dimensional vector
irrespective of the number of electrolyte components that
constitute the formulation.

3.3. Fine-tuning

Finally, the feature vector (SA) obtained as a result of
Scaling Adding the molecular representations is used as
the input feature vector in the finetuning or downstream
models for tasks such as property prediction.

4. Results and Discussion
We evaluate the performance of the proposed approach on
two datasets - Li—Cu half cell and Li—I full cell in the
prediction of coulombic efficiency and specific capacities,
respectively, given the electrolyte formulation. The datasets
were randomly split in 80%-20% ratio for train and test sam-
ples. The input features are prepared as described in Section
3. We use the XGBoost algorithm (Chen & Guestrin, 2016)
to train the prediction model. The metric chosen for per-
formance evaluation is root mean squared error (RMSE),
rounded off to 3 decimal places. We used Optuna (Ak-
iba et al., 2019) for hyperparameter tuning and the results
corresponding to the best hyperparameters are reported.

4.1. Coulombic Efficiency Prediction Task

Coulombic Efficiency defined as ratio of discharge and
charge capacity, is a critical parameter in the study of bat-
tery performance and safety. The Li-Cu half cell dataset
curated by (Kim et al., 2023) contains 147 entries of liquid
electrolyte formulations along with their respective molar
percentage and coulombic efficiency. Each electrolyte for-
mulation entry comprises of 2 to 6 electrolyte components.
Logarithmic Coulombic Efficiency (LCE) is used to nu-
merically amplify the change in output with respect to the
electrolytes. Table 1 shows the RMSE of the predicted LCE

Method RMSE
Linear regression (Kim et al., 2023) 0.585
Random forest (Kim et al., 2023) 0.577
Boosting (Kim et al., 2023) 0.587
Bagging (Kim et al., 2023) 0.583
F-GCN TL (Sharma et al., 2023) 0.389
MoLFormer (Soares et al., 2024) 0.213
MM-MoLFormer (Soares et al., 2024) 0.195
BART-SA 0.148

Table 1. Comparison of RMSE of LCE prediction task
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Figure 3. Parity plots showing predicted LCE values as scatterplots
with respect to the actual values

values. The first four methods are based on elemental com-
positions proposed in (Kim et al., 2023), while F-GCN TL
is a graph convolutional network with transfer learning. The
MolFormer and MM-Molformer methods are transformer
based methods pretrained on SMILES, and the feature vec-
tor is formed by concatenation of the molecular representa-
tion. Note that F-GCN TL, Molformer and MM-Molformer
methods require dummy featurization to maintain a uniform
feature size. As seen from the table, the proposed method
BART-SA clearly outperforms existing methods with an
RMSE value of 0.148. Figure 3 shows the parity plots of
the LCE predicted and actual values. The predicted LCE
values are in close approximation to the actual values.

4.2. Specific Capacity Prediction Task

Specific Capacity is a fundamental property of batteries
that measures the amount of charge they can store per unit
mass or volume. It is a critical parameter in evaluating the
performance and suitability of different battery types for spe-
cific applications. The Li—I Full-Cell battery dataset was
experimentally obtained by (Sharma et al., 2023) for Li-I
battery coin cells with cycling tests at 1mA/cm2. The dataset
contains 125 entries of electrolyte formulations. Each elec-
trolyte formulation comprises of 2-6 components. Table 2
shows the results of the proposed BART-SA method in com-
parison with the Formulation Graph Convolution Networks
(F-GCN) with and without Transfer Learning (TL) from
(Sharma et al., 2023). The BART-SA model had the lowest

Figure 4. Parity plots showing predicted battery capacities (in
mAh/g) as scatterplots with respect to the actual values

specific capacity RMSE of 20.001 mAh/g. Figure 4 shows
the parity plot of predicted and actual battery capacities in
mAh/g. From the figure, it can be observed that while capac-
ities > 30 mAh/g are well learnt while those with near zero
specific capacities show more mispredictions. This is due to
instability of battery cells with poor performing electrolyte
formulations. Cells with capacity <30 mAh/g have high ex-
perimental uncertainties due to derogatory phenomenon like
shuttling and parasitic reactions which continue to remain
subject of investigation in LiI batteries (Giammona et al.,
2023). The ability of the model to identify high performing
electrolytes with good accuracies shows the potential of the
current model in driving discovery of electrolyte formula-
tions in high dimensional chemical space.

Method RMSE
F-GCN no-TL (Sharma et al., 2023) 39.823
F-GCN TL (Sharma et al., 2023) 20.495
BART-SA 20.001

Table 2. Comparison of RMSE of Specific Capacity prediction task

5. Conclusion
This paper introduced a novel approach leveraging a
transformer-based model to create a comprehensive feature
vector for electrolyte formulations. This was achieved by
obtaining molecular representations of individual electrolyte
components from the pretrained BART model, scaling these
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representations based on their respective concentrations in
the formulation, and summing the scaled vectors to form a
unified feature vector. This process ensured that the final
feature vector effectively captured the compositional infor-
mation of the formulation while maintaining a consistent
dimensionality. The final feature vector was used in the eval-
uation of two battery property prediction tasks. The results
showed superior performance compared to state-of-the-art
methods. The superior performance can be speculated as a
result of a better molecular representation obtained from the
BART model pretrained with SELFIES. Further scaling the
molecular representation with the concentration and adding
aids to a better representation of the mixture as a whole.
Overall, our proposed approach showed significant promise
in advancing the field of electrolyte formulation by provid-
ing a robust, scalable, and efficient method for predicting
properties.
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