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Figure 1: Our proposed Deformable Gaussian Splats Large Reconstruction Model (DGS-LRM) takes
posed monocular videos as input and predicts deformable 3D Gaussians in a single feedforward pass.
Our approach enables both novel view synthesis and 2D/3D tracking, as illustrated on the right.

Abstract

We introduce the Deformable Gaussian Splats Large Reconstruction Model (DGS-
LRM)), the first feed-forward method predicting deformable 3D Gaussian splats
from a monocular posed video of any dynamic scene. Feed-forward scene recon-
struction has gained significant attention for its ability to rapidly create digital
replicas of real-world environments. However, most existing models are limited to
static scenes and fail to reconstruct the motion of moving objects. Developing a
feed-forward model for dynamic scene reconstruction poses significant challenges,
including the scarcity of training data and the need for appropriate 3D representa-
tions and training paradigms. To address these challenges, we introduce several key
technical contributions: an enhanced large-scale synthetic dataset with ground-truth
multi-view videos and dense 3D scene flow supervision; a per-pixel deformable 3D
Gaussian representation that is easy to learn, supports high-quality dynamic view
synthesis, and enables long-range 3D tracking; and a large transformer network
that achieves real-time, generalizable dynamic scene reconstruction. Qualitative
and quantitative experiments demonstrate that DGS-LRM achieves dynamic scene
reconstruction quality comparable to optimization-based methods, while signifi-
cantly outperforming the previous predictive dynamic reconstruction method on
real-world examples. Its predicted physically grounded 3D deformation is accurate
and can be readily adapted for long-range 3D tracking tasks, achieving performance
on par with state-of-the-art monocular video 3D tracking methods.
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1 Introduction

Reconstructing a dynamic scene from a monocular video, recovering accurate geometry, appear-
ance, and motion, remains a significant challenge in computer vision and graphics. This task has
numerous applications, including visualization, augmented/virtual reality (AR/VR), and robotics.
Recent advances in this domain [46, 83, 97] have been largely driven by the development of neural
representations, such as neural radiance fields [55] and 3D Gaussian splats [38], as well as deep priors
for specific scene attributes like depth [85, 42, 48, 95, 66] and flow [75, 76, 37]. These methods tackle
dynamic scene reconstruction by optimizing particular scene representations using densely captured
images, integrating various deep priors to provide robust regularizations. Although latest methods
using variants of Gaussian splatting [38] representation achieve real-time rendering [97, 88, 23, 83],
the optimization process is often time-consuming and computationally expensive, limiting their
practical applicability.

Recent generalizable 3D feed-forward networks [85, 100, 30, 102, 94] directly predicts 3D rep-
resentations from sparse-view image inputs, achieving speeds several orders of magnitude faster
than previous optimization-based methods. Inspired by the success of foundation models in nat-
ural language processing [65] and 2D computer vision [19, 39], recent works explore training
transformer-based [77] networks on large-scale 3D [14, 15] or video datasets to enable generalizable
3D reconstruction. However, prior efforts assume static scenes, leaving the challenge of handling
dynamic scenes and accurately predicting motion still unsolved.

In this paper, we present DGS-LRM, the first feed-forward transformer designed to predict deformable
3D Gaussians from a posed monocular video. The predicted deformable 3D Gaussians can render
novel view and scene flow of dynamic scenes. We introduce three key technical innovations to
address this challenge.

First, we employ per-pixel deformable 3D Gaussians to represent predicted dynamic scenes, extending
the recent success in feed-forward static 3D Gaussians prediction methods [102, 94, 10]. For each
pixel in the target frame, our method predicts its corresponding 3D Gaussian splat and 3D scene flow
from its current timestamp to all other timestamps in the input video, enabling high-quality novel
view synthesis through warping 3D Gaussians across frames. Additionally, our representation is
robust to occlusions and discontinuities. The predicted 3D scene flow can be chained together using
sliding windows, achieving performance on par with the state-of-the-art 3D tracking method [90].

Second, motivated by the recent trend in training LRM with pure synthetic data [91, 35], we utilize
multi-view synthetic data with ground-truth 3D scene flow as a primary supervision during training.
This contrasts with prior scene-level feed-forward reconstruction models, which are typically trained
on monocular video or RGB-D images. However, using pure photometric supervision on a monocular
video has ambiguities in motion and geometry predictions for dynamic scenes. We create a customized
large-scale dataset using Kubric [26], featuring multi-view renderings paired with per-pixel 3D scene
flow. Our results show that training on such a large-scale multi-view synthetic dataset significantly
enhances reconstruction quality and enables good generalization on real-world data as well.

Third, we employ temporal tokenization [4, 62] to compress input videos into compact, small
pixel cubes. Unlike GS-LRM [102], which tokenizes each frame independently, our approach is
computationally efficient and scales well for both training and inference. Additionally, we incorporate
discretely sampled temporally distant reference frames as inputs to leverage frames with larger camera
baselines, following [49], which effectively reduces geometric ambiguities.

Our best model achieves real-time inference on an A100 GPU while maintaining reconstruction
quality on par with optimization-based deformable Gaussian splatting methods [97], which require
hours of computation and several pre-trained models for initialization. Compared to the existing
predictive dynamic object reconstruction method [67], DGS-LRM demonstrates significantly better
generalization ability on real-world examples, improving PSNR by 3 points on [25]. Moreover,
DGS-LRM accurately reconstructs object motion. Our predicted 3D scene flow delivers competitive
quantitative performance [90] on standard point tracking benchmarks [26, 107]. More qualitative
results from DAVIS [60] further demonstrate high-quality novel-view synthesis and accurate flow
prediction, as shown in Figure 1.

2 Related Work

Dynamic reconstruction and view synthesis Early dynamic scene reconstruction methods [3, 33,
20, 57, 108] primarily focus on non-rigid mesh reconstruction, typically requiring RGBD images



as inputs. Video depth prediction methods predict consistent depth maps across video frames
[40, 54, 105, 104] by integrating monocular depth priors with strong hand-crafted regularizations.
Both of these approaches concentrate on geometry and are not equipped to support realistic novel
view synthesis. Recent advancements in dynamic view synthesis have shown significant progress
by incorporating novel neural representations, such as neural radiance fields [55] and 3D Gaussian
splats [38], into dynamic scene reconstruction. Most of these methods require multi-view videos
as inputs [52, 7, 9, 24, 44, 47, 72, 73, 79], which considerably limits their practical applicability.
Several methods [51, 22, 23, 45, 58, 59, 78, 88, 89, 97, 96, 83, 29] target the more challenging task of
monocular dynamic view synthesis. While these methods remarkably improve view synthesis quality,
they heavily rely on geometry and motion priors from pre-trained models, alongside meticulously
designed time-consuming optimization processes to achieve state-of-the-art reconstruction quality.
On the contrary, DGS-LRM aims to learn priors from a single large transformer model, enabling
efficient, generalizable dynamic scene reconstruction in a feed-forward manner. In particular, PGDVS
achieves high-quality novel view synthesis on the DyCheck [25] benchmark while significantly
reducing reconstruction time compared to many prior optimization-based methods. It leverages
off-the-shelf depth and optical flow estimators for initialization. Uniquely, it renders novel views at
different timestamps via image-space warping and aggregates results using dynamic object masks,
which produce sharp appearances. However, the method still requires hours to build its representation,
and in some challenging cases with complex motion, warping and masking errors can cause temporal
flickering artifacts. In our work, we focus on an end-to-end feedforward representation that can
deliver similar outputs while being orders of magnitude faster in inference.

Feed-forward reconstruction Many feed-forward methods can predict neural 3D representations for
novel view synthesis or geometry reconstruction. Early methods [11, 99, 81, 92] often struggle to
match the reconstruction quality of optimization-based methods and, therefore, require fine-tuning
[92, 11] to enhance their results. Recently, many works [85, 42, 13] have significantly increased
network capacity by employing large transformer networks for better 3D reconstruction. Among
these, large reconstruction models (LRMs) [30, 43, 93, 87, 80, 102] represent a family of approaches
that achieve state-of-the-art novel view synthesis quality from sparse, posed, or unposed images. The
latest LRM methods [102, 94, 98] predict pixel-aligned 3D Gaussians for realistic static scene-level
view synthesis but fail to handle dynamic objects. Several concurrent works aim to reconstruct
dynamic scene geometry [100, 48, 84] but not appearance and motion. The closest existing method
[67] predicts time-dependent 3D Gaussians to reconstruct dynamic objects. However, we observe
that it generalizes significantly worse on real-world examples, even when the dynamic objects are
segmented out in the inputs. This may be due to the limited motion and appearance diversity in its
training data and its 3D representation, which fails to model accurate scene flow. [49] achieves better
generalization by training on self-curated internet videos, but it still does not reconstruct accurate
scene flow as our model.

Flow and tracking The majority of tracking methods aim to find correspondences in 2D image
space. Classical optical flow methods [2, 6, 5, 32, 18, 75] estimate dense 2D pixel motion between
two consecutive frames and, therefore, are not suitable for long-range tracking. Feature tracking
methods [1, 16, 53, 69] can track pixels over long ranges, but only handle sparse points. Several
efforts [71, 68] have been made to combine the merits of the two to achieve dense long-range 2D
tracking, either by concatenating consecutive 2D flows through test-time optimization [56, 82] or by
relying on data-driven approaches [17, 28, 37]. Another line of research estimates correspondences
in 3D space to mitigate issues caused by 3D-2D projection and to leverage better regularization. Most
of these approaches require RGBD images or point clouds as inputs [27, 50, 63, 86, 34, 64, 74, 76] or
test-time optimization [31, 46, 45] to jointly reconstruct geometry. SpatialTracker [90] is the closest
state-of-the-art work that predicts dense 3D scene flow from a monocular video. Experiments show
that DGS-LRM achieves comparable tracking accuracy while offering a more versatile framework
that supports high-quality novel view synthesis.

3 Methodology

In Sec. 3.1, we introduce the network architecture and the convention of DGS-LRM. Sec. 3.2 outlines
key training details. Sec. 3.3 describes synthetic training data.

3.1 DGS-LRM

Figure 2 illustrates the inputs, transformer network architecture, and the predicted 3D representation
of DGS-LRM, which we will discuss in detail.
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ray and tokenize them using the spatial-temporal tokenizer. Then, the transformers take the sampled
time tokens as input and predict per-pixel deformable Gaussians with 3D scene flow. During training,
we rendered multi-view synthetic videos using Kubric. We draw a dual-view ground-truth in each
sample at the same timestamp, rendering views, depth, and scene flows.

Network inputs. Given a monocular video sequence Z = {Iy,..., Iy} with per-frame camera
parameters C = {Cy, ...,Cn}, DGS-LRM aims to predict a deformable Gaussian splatting (DGS)
reconstruction of the visible environment. Following LRM [30], we encode camera calibrations as
Pliicker rays, where each C,, € C pairs with an image I; € Z with the same resolution (H x W). Each
pixel p of C, is a seven-dimensional vector containing a Pliicker ray and a timestamp. The timestamp
is the temporal index of the frame within the input time window {0, ..., N'}, and normalized to [0, 1].

Processing a large number of video frames using a standardized self-attention transformer requires
prohibitively large GPU VRAM. However, limiting the window size N can reduce the camera
baselines among input frames, making it more challenging for the model to reconstruct accurate
geometry. To address this issue, we follow BTimer [49] and additionally introduce optional reference
frames R = {Ry, . .., Rx } (omitting the corresponding Pliicker rays for clarity). These reference
frames aim to sample more views with larger camera baselines, which provides additional clues for
geometry reconstruction. Consequently, we sample R temporally distant from Z, and we do not
predict per-pixel deformable 3D Gaussians for these frames.

Deformable Gaussian Splats. Given posed multiview e P
images, DGS-LRM predicts a set of deformable Gaussian -~ —= O odamacs |
parameters by

G = DGS-LRM(Z,C, R) , (1

where G = {Gy, G|, Ga.1,...,Gn}. Here, [ is the tempo- ™ \ <

ral downsampling rate, and G,.; is a set of deformable . Foims 0

3D Gaussians that are pixel-aligned with a keyframe
x-1€{0,...,N}. In G,., each pixel p contains a sin-
gle Gaussian splat g,,, parametrized by 1-channel depth
dp, 3-channel RGB colors, 4-channel quaternion rotation,
3-channel scale, 1-channel opacity, and a set of 3-channel
deformation vectors f, = {fo, f1,..., fn} to warp Gaus-
sian splat g, into the target timestamp n € {0, ..., N }. Our deformation vectors only model translation.
We observe that deforming rotation will not further improve reconstruction quality, possibly because
our per-pixel Gaussian representation is dense enough. Deforming opacity, on the other hand, allows
the model to fake dynamic appearances without predicting accurate motion. To render a novel view
image at timestamp n, we warp every Gaussian splats g, in G using the corresponding deformation
vector f, to form a new set of 3D Gaussian WV, for rendering

Figure 3: A visualization of pixel-
aligned deformable 3D Gaussians are
used for novel view synthesis at arbitrary
timestamp n.

g
Wa = [JJ warp(gp, ) - @)
p
A visualization of the warping process is shown in Figure 3.

Architecture. Our model consists of three components: an input tokenizer, a transformer, and
output MLPs to project the results. The input images (both Z and R) and their corresponding
Pliicker rays are first channel-concatenated together. We use temporal tokenization, inspired by the
temporal autoencoder from MovieGen [62]. Instead of patchifying each image patch with s X s



pixels, we consider a video as a volume and patchify a cube across spatial and temporal domains
with s x s x [ pixels. This cube is turned into a token through a simple linear layer. We use
I = 4 in practice, reducing the number of tokens by four times, which significantly accelerates both
training and inference. In practice, the model is not trainable and expensive to infer without temporal
tokenization. We use a standard transformer architecture [77] with 24 multi-head self-attention blocks.
We additionally add weight normalization [70] to all parameters and observe that it can stabilize the
training. Finally, we use two-layer MLPs to project the tokens into deformable GS parameters.

3.2 Training

Photometric losses Similar to prior works [102, 94], DGS-LRM can be trained end-to-end with
photometric losses through differentiable rasterization. We sample a set of ground-truth images
Z = {ly,...,Io} with corresponding camera poses C = ¢i, ..., ¢q, and define n, € {1,..., N} as
their timestamps. To produce a predicted rendering I ¢» we first deform the predicted 3D Gaussians to
timestamp n, as Wy, , then rasterize it to the output camera pose ¢, with

I, = rasterize(Wh,,, Cq) - 3)
We then use MSE loss and perceptual loss [103] to supervise the rendered image.
Linge = ZMSE(I‘q, I,); Lipips = ZLPIPS(I_q, I,) . )
q q

Output view selection and dual-view supervision. Static scene LRMs [30, 102] sample intermediate
video frames from monocular videos as training data, which can lead to geometry and motion
ambiguity when training with dynamic monocular videos. To remove this ambiguity, we use time-
synchronized multi-view videos to train DGS-LRM.

We start with sampling two video sequences; one serves as the input Z, while we sample K frames
from the other sequence as R. For output view supervision, we empirically found that sampling
two views at the same timestamp provides significantly better training convergence. We name this
strategy dual-view sampling and show its effectiveness in Figure 7. With dual-view sampling, we
sample two different training views for each timestamp from two synchronized video sequences,
which retrieves /2 frames from each video for each training step. To ensure the inputs and outputs
of DGS-LRM have sufficient covisibility, we allow one of the output sequences to overlap with either
the input or the reference sequence.

Depth and scene flow supervisions. We apply depth supervision Lgepn to improve surface geometry

g
Ldepth:ZZHdp*dp”L Q)
P

Here, we directly supervise with pixel-aligned ground-truth depth values Jp for key frame
{0,1,21,..., N}, which we observe to be more effective compared to supervising rendered depth
maps at output views. Simply combining rendering loss and depth loss is still not enough for accurate
motion reconstruction. We often observe discontinuities in the predicted deformation trajectories.
Sometimes, the 3D Gaussian splats are even moved outside the camera frustum. Consequently, we
introduce the flow loss Ly, to regularize the point deformation. Similar to the depth loss, for every
key frame, we supervise our deformation vector f, with ground-truth deformation to every timestamp.

The flow loss is written as g
Liow :EZpr—prl : ©)
P
How to obtain ground-truth deformation vectors f,, will be detailed in Sec. 3.3.

Total loss. Finally, the whole network is end-to-end trained with the total objective
Ltotal = Lmse + )\lpips : Llpips + >\depth : Ldepth + )\ﬂow : Lﬂow ) (7)
where the \’s are weighting factors of the objectives. We use Ajpips = 0.5, Ageptn = 10, and Agow = 10.

Scene normalization. We found that inconsistent scene scales in training and inference can cause
instability and generalization issues. We use a normalization approach similar to MegaSaM [48] for
both training and inference. We first use a monocular metric depth estimator [61] to identify the scale
of the scene and then normalize the scene scale so that the disparity of the 20th depth percentile is
equal to 2. Such a scene scale is applied to camera poses, ground-truth depths, and scene flows.



3.3 Training Data Creation

Due to limited real-world posed monocular videos that contain diverse dynamics with sufficient
ground truths (3D scene flow, multi-view images) to address the motion ambiguity, we primarily train
our DGS-LRM on a self-generated Kubric [26] dataset. We also explored combining it with various
real-world videos for training but did not observe major improvements.

Customized Kubric. We follow the MOVi-E setting, using the Kubric engine [26] to create synthetic
dynamic scenes. These scenes contain diverse objects being tossed around, simulated by a physics
engine. To ensure that our video is closer to real-world monocular dynamic videos [25], we decrease
the default maximum camera trajectory length from 8 meters to 0.5 meters to improve the model’s
generalization ability. We generate the dataset with 4 synchronized cameras. We first sample one
camera, then sample 3 other cameras relative to the first one, with distances ranging from 4 to 16
meters. All these cameras share the same look-at points so that they can have sufficient co-visibility.
To further reduce the sim-to-real domain gap, we apply additional domain randomizations. For each
scene, we add motion blur to one of the cameras and make sure the camera is never being sampled as
the output supervision but only as the input. We also sample varying focal lengths for each camera,
ranging from 25mm to 55mm.

Scene Flow Extraction. We extract ground-truth 3D scene flow following MegaSaM [48]. The
Kubric engine supports rendering per-pixel object coordinates, which specify the location where the
ray cast from the camera intersects the object surface. Moreover, Kubric also records the per-frame
object trajectory and rotations during physics simulation. Given that Kubric only contains rigid
objects, we can retrieve the 3D scene flow for every pixel at every timestamp by combining the 2
attributes together.

However, 3D scene flow has an O(N x M x P x 3) space complexity. In practice, using N = 24,
M = 6,and P = 512 x 512 results in 0.84 GB data for one camera. Loading a batch of such data in
each iteration would exhaust the memory and data I/O. Fortunately, we observe that the scene flow is
significantly sparse, where the majority of points in the scene are stationary. By storing 3D scene
flow as sparse tensors, we reduce the memory and I/O cost by 80%.

3.4 Flow Chaining

Our DGS-LRM is trained to handle short video clips (1s). Theoretically, it can be trained to handle
longer videos, but this is computationally expensive in practice. However, we can chain multiple
sequences of scene flows together to achieve long-range tracking, which we will detail below.

Given two sequences with predicted scene flows, the flow chaining first set the end frame of the first
video as the first frame of the second video. We deform the two independent deformable GS into
the same timestamp. Then, we find a nearest neighbor for each scene flow to temporally chain two
flows into one. The nearest neighbor is measured by two distance quantities: the distance between
the deformed GS, and the direction similarity between the momentary scene flow. For the first video,
the momentary scene flow is the relative scene flow between the last two timestamps; for the second
video, it is the relative scene flow between the first two timestamps. The two distance quantities
result in a six-value vector, and we measure the distance between these vectors with a simple L1
distance. We use Faiss [21] to efficiently compute such distance with GPU support. After computing
all pair-wise distances between the scene flows from the first video and the scene flows from the
second video, we index the nearest neighbor and temporally chain each pair of flows into one.

However, as some points in one video may be completely invisible in the second video (such as
moving outside the frustum), some flows in one video may not have a valid match in the other video.
We use a threshold to filter out such cases and concatenate these unmatched scene flows with zero
values, meaning the points remain stationary after it loses track. These lost tracked scene flows are
still evaluated when we compare them with the 3D tracking methods in Table 2. We also provide an
idealized evaluation where these unmatched scene flows are excluded from the evaluation, marked as
Flow Valid (FV) in Table 2.

4 Experiments

Hyperparameters. We train our method with 64 H100 GPUs with 80GB VRAM. For all variants
of DGS-LRM, we use N = 24 input frames with temporal sampling rate [ = 4, which results in
6 keyframes after temporal tokenization. We use K = 4 for reference views and set the number
of output views per scene to () = 8. For training efficiency, we first train the model at 256 x256



Table 1: Monocular Dynamic View Syn- Table 2: 3D Tracking on PointOdyssey [107]. DGS-
thesis on DyCheck [25]. DGS-LRM outper- LRM reconstructed 3D deformation field is compa-
forms LRM-based LAGM [67], and is com- rable to state-of-the-art 3D tracking methods. FC is
parable to optimization-based novel-view flow chaining that combines scene flows from mul-
synthesis methods with a substantially faster tiple segments. FV is fully visible, which evaluates
reconstruction time. DynMask applies a dy- only the tracking points not occluded for more than
namic mask to evaluate the foreground only. 24 frames (DGS-LRM input length).

Method Frames PSNR ATE-3D () d0.1 (1) d0.2 (1)
Method Time (s) DynMask mPSNR (1) mLPIPS ({)

Chained RAFT3D [76] 120 N/A 0.70 0.12 0.25
D3DGS [97]  1-3 hours X 11.92 0.66 Lifted CoTracker [37] 120 N/A 0.77 0.51 0.64
PGDVS [106] 3 hours X 15.88 0.34 SpatialTracker [90] 120 N/A 0.22 0.59 0.76
Ours 0.495 sec X 14.89 0.42 Ours (FC) 120  27.77 0.21 0.57 0.68
L4GM [67] 4.8 sec v 5.84 0.67 Ours (Native) 24 27.77 0.11 0.72 0.84
Ours 0.495 sec v 11.97 0.51 Ours (FC + FV) 120 27.77 0.15 0.64 0.75

Time B

Time A

Time B

Inputs D3DGS PGDVS L4AGM Ours GT Inpl;ts ‘ D3DGS PGDVS L4AGM Ours GT
Figure 4: DyCheck iPhone dataset. Our DGS-LRM outperforms D3DGS [97] and does not have

warping artifacts as in PGDVS [106]. Both methods fail to recover the geometry and the repetitive
motion of the windmill. We mask out the zero covisible regions with black pixels.

resolution and then fine-tune it at 512x512 resolution. We render the Kubric dataset according to
these two setups and create 40,000 scenes (each with 4 synchronized cameras) for both resolutions.
For the first stage of training, we use a batch size of 15 per GPU, train for 40k iterations with a
learning rate of 4e — 4, and then decay to 1e — 6 with a cosine learning rate scheduler. For the second
stage, we use a batch size of 8 per GPU, train for 20k iterations with a learning rate of 1e — 4, and then
decay to 1e — 6 with a cosine learning rate scheduler. For both stages, we use a learning rate warm-up
for 500 iterations, which linearly ramps up the learning rate from O to the initial learning rate. Similar
to GS-LRM, we apply the common practice to save GPU VRAMs using xFormers [41], deferred
backpropagation [101], gradient checkpointing [12], and BF16 mixed-precision training [36].

4.1 Novel Dynamic View Synthesis

We evaluate DGS-LRM on DyCheck [25] and DAVIS [8]. DGS-LRM requires the input to be a
temporally continuous video with a non-stationary camera, and cannot process teleporting cameras
with discrete poses. Due to the lack of real-world benchmarks with multiple non-stationary and
synchronized cameras, our quantitative evaluation is limited to DyCheck. We use the iPhone subset of
DyCheck, which includes two synchronized novel-view cameras for reconstruction metrics evaluation.
The iPhone subset contains 7 long monocular videos, 200-400 frames each. In addition, DyCheck
also labels the covisibility between training and novel-view cameras and evaluates the masked version
of reconstruction metrics. For fair comparison, all methods use the same structure-from-motion
depth for initialization or scene normalization. DAVIS provides a large and diverse set of in-the-wild
monocular videos to test the method’s generalization. We use MegaSaM [48] to create the camera
poses for DAVIS. We only evaluate qualitative results, as DAVIS does not have novel-view cameras.
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Figure 5: DAVIS dataset. DGS-LRM outperforms D3DGS in synthesizing thin details and can
predict consistent dynamic motion trajectories (visualized in color).

-

In Table 1 and Figure 4, we show that our DGS-LRM outperforms the baseline predictive method,
L4GM [67], while performing comparably to the state-of-the-art optimization-based reconstruction
methods, which all take hours to complete. L4GM is designed for 4D object reconstruction without
reconstructing explicit deformation. As L4GM only reconstructs dynamic foreground objects, we
label the foreground mask following [83], then reconstruct and evaluate the masked region only.
In Figure 4, both D3DGS [97] and L4AGM often resolve a wrong scene scale or semi-transparent
geometries, PGDVS [106] often creates broken geometry due to warping, while our method can
handle them well. Neither D3DGS nor PGDVS can correctly resolve the repetitive and fine-grained
deformations in the paper windmill scene. In addition, all optimization baseline methods are optimized
with the entire sequence, while our DGS-LRM only uses a 24-frame continuous clip and 4 reference
frames to reconstruct the scene. The 4 reference frames are selected [—96, —48, 48, 96] frames apart
from the main input sequence, and we increase the number of frames in the opposite direction when
meeting the start or end of the sequence. In addition, the covisibility labeling of DyCheck is dedicated
to methods optimizing with the full video sequence, which is disadvantageous to DGS-LRM with a
small input window.

In Figure 5, we show that DGS-LRM can perform well even on in-the-wild videos. Compared with
D3DGS [97], we can correctly reconstruct the thin geometries of the bike wheels and challenging
scenes with water deformation. In flow visualizations, we illustrate that DGS-LRM effectively tracks
the complex deformations in hand motion and wheel turning while maintaining consistent flow in the
train’s rigid body movements. For visual clarity, we randomly downsample the per-pixel dense flows
into sparse flows and then mask out the background flows using the object mask provided by DAVIS.

4.2 3D Tracking

An accurate deformable 3D reconstruction should have a 3D deformation field aligned to the phys-
ically grounded 3D tracking trajectories. In Table 2 and Figure 6, we evaluate the quality of the
reconstructed scene flow on the PointOdyssey benchmark [107]. PointOdyssey includes 13 videos
(ranging from 1,000 frames to 4,000 frames) of synthetic scenes with humanoid and animal meshes
articulated with transferred real-world motions. We compare DGS-LRM with the state-of-the-art Spa-
tialTracker [90] and two baselines proposed in it. DGS-LRM with flow chaining achieves comparable
performance with SpatialTracker and performs better than other baselines. In Figure 6, we found
that SpatialTracker struggles on texture-less surfaces, where the tracking points drift over time in the
regions with similar textures. In contrast, as DGS-LRM prediction involves a total reconstruction of
the object geometry with accurate depth prediction, it can better track points in completely texture-less
areas. For instance, the point registration on the ear root of the rabbit and the knee of the humanoid.
As discussed in Sec 3.4, the chaining process involves failures when some points are completely
invisible in a video segment. Therefore, we provide two additional variants: the native tracking
performance without chaining (marked as Native) and an oracle case where we omit the flows with a
significant discontinuity (threshold by L1 distance 0.1 meters) during the chaining process, which is
marked as FC + FV. While not directly comparable to SpatialTracker, these two variants show the
actual quality of the predicted scene flows without the impairment caused by flow chaining.
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Figure 6: Qualitative comparisons to SpatialTracker[90] on the PointOdyssey dataset. DGS-
LRM shows better performance and consistency in texture-less areas. Spatial Tracker predicts certain
tracks inconsistent with the object’s moving direction. Such as several tracking points drift and
collide in the humanoid’s knee.

Table 3: Ablation Study. We show that each component
contributes to the final performance. Note that the study is
conducted with low-resolution models trained at 256 X256
resolution. (TT: temporal tokenization. DV: dual-view
sampling. SF: scene flow loss. RF: reference frames.)

Method DyCheck Kubric-MV (Test) 0.05

0 5000 10000 15000 20000 25000 30000 35000 40000

mPSNR (1) mLPIPS () mPSNR (1)  mLPIPS ({)

w/o TT ?401\21 gg)i\;l OOM OOM Figure 7: Dual view supervision (blue
wlo DV 7 . 25.77 0.171 . .
w/o SF 1229 0.423 2506 0.189 curve)'prowdes better training conver-
wlo RE 13.91 0.438 24.69 0.186 gence in Perceptual Loss (LPIPS) com-
Full 14.67 0412 26.05 0.161 pared to its counterpart ( curve).

4.3 Ablation Study

In Table 3, we show that each proposed components contribute to the final performance. The ablation
is conducted at the 256 X256 resolution training stage, and we compare the rendering quality on the
DyCheck benchmark. The temporal tokenization enables training at scale by significantly reducing
the memory consumption. In Figure 7, we show that the dual-view sampling improves the training
convergence on Kubric and leads to a better performance on our additionally rendered Kubric holdout
test set (with new objects and HDRIs unseen during training). The scene flow objective and reference
frames both significantly boost the performance by a large margin. In practice, we found the scene
flow loss significantly improves the rigidity of the deformation, and the reference frames help solve
the scene scale and depth by triangulating with distant views.

In the right table, we evaluate static GS-LRM on DyCheck

. ) S Method PSNR  LPIPS
dataset, quantitatively showing the significance of model- -

ing the deformation. Additionally, despite our DGS-LRM ~_ S5-LRM (static) 1302 0444
only emits 3D Gaussians at down-sampled keyframes, we = DGS-LRM (keyframes) 1504 0419

DGS-LRM (non-keyframes) 14.84 0.421

show that the performance gap between the keyframes and 5o tu (all) 1489 0.420

non-keyframes are negligible.

5 Conclusion and Limitations

We introduce DGS-LRM, the first feed-forward network capable of predicting deformable 3D
Gaussians from a posed monocular video in real-time. The predicted deformable Gaussians enable
novel-view rendering, geometry reconstruction, and 3D scene flow estimation in world space. We train
DGS-LRM on a large-scale multi-view rendered synthetic dataset and show that it generalizes well
to real-world videos of varying complexity. Unlike prior monocular deformable 3D reconstruction
methods, which require lengthy optimization to reconstruct and fuse priors from multiple individual
networks, we demonstrate the potential of predicting deformable 3D Gaussians end-to-end and
learning dynamic scene priors within a single network.

Limitations. DGS-LRM has a few limitations that can be explored in future works. As the model is
trained with temporally continuous video, it cannot handle discrete image frames. Our predicted scene
flow cannot handle extremely large motion in the scene, which may stem from the motion distribution
of the physically simulated synthetic dataset. Although our flow chaining enables continuous 3D
tracking, it still causes a noticeable jump in appearances for novel view synthesis. The input video
baseline and distribution significantly influence the quality of novel view rendering quality. As the
view deviates from the input trajectory, artifacts gradually intensify in the rendered images as well.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We propose a feed-forward framework for deformable 3DGS reconstruction.
We benchmark our model on the commonly used benchmarks to show its effectiveness and
generalization. We also evaluate the scene flow quality on a benchmark to show the quality
and continuity of our deformation.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We include such a discussion in the last section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: This paper does not propose new theories or mathematical proofs.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We reported all the architectural design, training data creation, and hyper-
parameters with our best effort. Other unspecified hyperparameters follow the originally
released codes or papers of the cited works.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

17



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: The code release requires additional review. We will put our best effort into
releasing the codes and the pretrained model.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, we put our best effort into including all the implementation and experiment
setting details. We followed the previous proposed evaluation protocol as closely as possible.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Our framework involves large-scale and resource-intensive training. It is
infeasible to report a meaningful error margin with multiple individually trained models.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, we report the GPUs for training the model and execution time. However,
we do not keep track of the past experiments, thus challenging to report meaningful total
resource consumption throughout the project.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We put our best effort into complying with NeurIPS Code of Ethics and all
privacy concerns.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work improves the inference speed of deformable 3D reconstruction,
which aims to recreate a real-world environment. Our method does not allow altering
content or spreading fake information. We comply with privacy considerations, our training
data does not include human or unlicensed data.
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11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our dataset is purely synthetic without unlicensed content. Our model is a
reconstruction model that preserves the real-world information without any alteration.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We utilize pure synthetic data during training. The Google Scanned Objects
(GSO) assets are licensed under CC-BY 4.0. The PolyHaven HDRI is licensed under CCO.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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13.

14.

15.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We only provide alterations to an existing simulation engine. We do not
include additional data or propose new datasets.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We did not use human-related data for model training.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our research does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We did not use LLM in developing the research. The only potential use of
LLM is grammatical error correction after writing is completed.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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