Eagle 2.5: Boosting Long-Context Post-Training for
Frontier Vision-Language Models

Guo Chen'-?% Zhiqi Li'2, Shihao Wang?2, Jindong Jiang?, Yicheng Liu', Lidong Lu',
De-An Huang?, Wonmin Byeon?, Matthieu Le?, Max Ehrlich?, Tong Lu'f, Limin Wang!",
Bryan Catanzaro?, Jan Kautz?, Andrew Tao?, Zhiding Yu?, Guilin Liu?'
!Nanjing University, 2NVIDIA, *Hong Kong Polytechnic University
chenguo1177@gmail.com

Abstract

We introduce Eagle2.5, a frontier vision-language model (VLM) for long-context
multimodal learning. Our work addresses the challenges in long video comprehen-
sion and high-resolution image understanding, introducing a generalist framework
for both tasks. The proposed training framework incorporates Automatic Degrade
Sampling and Image Area Preservation, two techniques that preserve contextual
integrity and visual details. The framework also includes numerous efficiency
optimizations in the pipeline for long-context data training. Finally, we propose
Eagle-Video-110K, a novel dataset that integrates both story-level and clip-level
annotations, facilitating long-video understanding. Eagle2.5 demonstrates substan-
tial improvements on long-context multimodal benchmarks, providing a robust
solution to the limitations of existing VLMs. Notably, our best model Eagle2.5-8B
achieves 72.4% on Video-MME with 512 input frames, matching the results of
top-tier commercial model such as GPT-40 and large-scale open-source models
like Qwen2.5-VL-72B and InternVL2.5-78B.

1 Introduction

Despite the significant advances in multimodal learning [+, 0, 52, 55, 97], many vision-language
models (VLMs) remain focused on short-context tasks, with long-context understanding under-
explored. This gap is particularly evident in both long video comprehension and high-resolution
image/video understanding, where the processing of extended visual contexts remains an open
challenge. Such extended contexts encompass multiple images, extended video sequences, high-
resolution media, or combinations thereof. However, the development of long-context VLM is still
in its early stages, hindered by fundamental challenges in dataset construction, architecture design,
training strategies, and computation/memory bottlenecks.

To enable long-context visual understanding, several approaches have been proposed to address the
challenge of processing extended visual inputs by designing specialized compression or selection
modules [57, 84, s , 53]. While these methods effectively circumvent the need
to extend the context length of VLMs, they often introduce additional computatlonal overhead or
capacity limitations, potentially constraining model performance. A promising research direction
is to extend the context length of LLMs to enable native long-context understanding. While prior
studies [ 10, , ©5] have explored this direction, challenges and key limitations still remain. First,
the performance of existing methods is often suboptimal, generally falling behind proprietary models.
Second, these approaches struggle to achieve consistent improvements as the amount of visual input
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increases. Lastly, the optimal training strategies for state-of-the-art long-context VLMs remain
unclear, given the complex interplay of factors such as training strategies and data recipes.

To this end, we present Eagle 2.5, a versatile
multimodal model designed to efficiently pro-
cess extensive contextual information. Unlike
models solely optimized for handling long mul-
timodal sequences without improving perfor-
mance, Eagle-2.5 benefits from increased in-
put length, leading to consistent performance
gains besides merely accommodating longer in-
puts. As shown in Fig. |, our model achieves
superior context coverage and exhibits consis-
tent performance scaling with increasing frame
counts. Notably, it attains competitive results
compared to larger models such as GPT-40 [ /7] 1 52 a8 e 128 256 384 512 768 1024
and Qwen2.5-VL-72B [5], while maintaining a Number of Frames

significantly smaller parameter footprint. Figure 1: Performance comparison of Eagle2.5

Eagle 2.5 is driven by both the advanced train- with leading vision-language models on the
ing strategy and data recipe. For training strat- Videp-MME benchmark. Eagle2.5 demonst.rates
egy, we introduce two core components for ef- Consistent improvement as the number of input
fective long-context learning: information-first frames increases.

sampling and progressive training.
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* Information-first sampling. The information-first sampling strategy ensures the preservation of
essential visual and semantic information through two mechanisms: (1) Image Area Preservation,
which optimizes tiling to retain the majority of the original image area while maintaining aspect
ratio fidelity, avoiding rigid aspect ratio constraints; and (2) Automatic Degradation Sampling
(ADS), which dynamically balances visual and textual inputs by prioritizing complete text retention
while adaptively optimizing visual content to maximize context length utilization and preserve
multimodal information.

* Progressive training. We employ a progressive mixed post-training approach, wherein context
length is incrementally expanded during training, enhancing the model’s ability to process inputs
of varying sizes. This integrated strategy significantly improves information density over static
sampling methods while ensuring consistent performance across diverse input types and lengths.

For data recipe, we embrace the “diversity first, then quality” principle in curating the training
data pool. Our data recipe combines open-source data (including human-annotated data as well
as synthetic video data) with our self-curated Eagle-Video-110K dataset, specifically designed to
enhance long video understanding capabilities. We adopt a diversity-driven collection strategy, using
multiple video sources and a similarity thresholding method to identify novel clips that maximize
content diversity. Our dataset is distinguished by its dual annotation approach:

* A top-down story-level method that leverages human-annotated chapters as meaningful segments
instead of traditional shot-level segmentation, producing dense captions that form the basis for
comprehensive long-form QA pairs capturing the entire video’s narrative structure;

* A complementary bottom-up clip-level approach that generates focused QA pairs for short clips
using GPT-40 with diverse question types. To address the challenge of extending localized clip
annotations to full-length videos, we implement anchors that incorporates temporal references
and contextual elements without revealing answers, thereby letting models understand both
overarching narratives and precise spatio-temporal details within videos.

2 Related Work

Vision-language models. Advancements in large language models (LLMs) [0, |, 77] have sig-
nificantly propelled visual understanding by integrating visual features, leading to the creation of
Visual Language Models (VLMs) [57, 70, 58, ]. Open-source VLMs [55, 60, 49, 97,92, 18, 606,

, 07, 39] continue to achieve breakthroughs, often matching or exceeding the performance
of state of-the-art commercial models like GPT-4V/40 [/7] and Gemini-1.5 [£7]. The release of
open-source VLMs [49, 95, 40, 35], complete with its training data and code base, has further



accelerated research in this area. However, most current VLMs primarily focus on short-context
understanding, handling only a few images or short video clips at a time. Eagle 2.5 advances this
field by concentrating on long-context visual understanding through a comprehensive exploration and
development of training strategies and data recipes.

Long-context VLMs. Long-context VLMs were developed to address the challenges of pro-
cessing large multimodal sequences. Currently, methods for long-context VLMs fall into two
main categories. The first category involves specialized modules designed for context compres-

sion. Question-guided compressions [¢4, 57, 45, 9&] or selection [ 17, 55, ] methods extract
question -related visual cues through an additional module, while various token reduction tech-
niques [, s s , 02,02, 61] aim to minimize the visual representation before

LLM processing. The other category attempts to directly extend the context of LLMs. Works
like LongVA [120], LongVILA [! 0], and LongViTA [©5] extend the context length of LLMs to
accommodate longer multimodal sequences. While promising, these approaches often underperform
proprietary models, fail to show consistent performance improvements with increasing visual input,
and have underexplored constraints on training strategies and data recipes. Our approach focuses
on developing native long-context capabilities that enhance VLMs by exploring training data, for-
mulations, and without introducing additional compression modules or suffering from performance
inconsistencies observed in previous expansion attempts.

Long-context multimodal data. To enhance VLMs’ long-context multimodal understanding capabil-
ities, various datasets have been proposed. Some datasets focus on multimodal understanding of long
documents [29, 96, 94, 80], such as slides and papers. However, they often lack temporal understand-
ing. Other datasets [0, , 24, 82, 87, 88, s ] emphasize the temporal coherence and infor-
mation retrieval across long spans inherent in movies. Additionally, recent datasets [/, |5, 30, ]
covering domains further enhance VLMs’ long-context multimodal understanding. Regarding the
annotation methods for long-context multimodal datasets, early works [©©, 96, 94, 36, 87, 73] relied
on manual efforts. To reduce costs, some methods [£0), 24, 52, 85, R , 30,13, ] use tools like
GPT-4V [/0] and Gemini [V ] for automated or semi-automated annotation. Recent advancements
in data construction emphasize hierarchical annotation strategies [ (], which can preserve narrative
structure in long videos. These advancements reflect a trend towards creating balanced datasets that
effectively assess long-context multimodal understanding while managing creation costs.

3 Method

This section introduces the model architecture, training strategies, and data recipe of Eagle2.5.

3.1 Model Architecture

We design our proposed model as a versatile multi-
modal system capable of efficiently processing long-
context information, rather than a specialized model
solely optimized for handling extended multimodal
inputs. To ensure adaptability and generalization ==
across diverse tasks, we deliberately avoid incorpo- 3 g
rating tailored compression modules that might con- u "m"m**
strain the model’s flexibility. Following the architec-
ture of LLaVA [5¢], we employ an MLP projection
layer to align vision embeddings from SigLIP [123]
with the LLM representation space, as shown in
Fig. 2. In this work, we utilize the Qwen2.5 series models [V ]. To effectively handle any-resolution
images, we adopt the image tiling strategy, inspired by LLaVA-1.5 [°] and InternVL [10].
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Figure 2: Tiling-based general multimodal
system.

3.2 Training Strategy

Our approach contains two key components to achieve effective long-context training: first, an
information-first sampling strategy that establishes optimal sampling criteria; and second, a progres-
sive training schedule based on this strategy, which directs the entire model training process.



3.2.1 Information-First Sampling

In multimodal training, the sampling of visual content is essential. Multi-image documents typically
comprise dozens of pages with ultra-high-resolution images, while video content can vary drastically
in length - from mere seconds to hours. To effectively manage this diversity, we present information-
first sampling to promote information preservation from both visual and semantic dimensions.

Image area preservation (IAP). Traditional tiling W=2000
methods divide an image of size W x H into a rigid
rw X rp, grid of s X s tiles. While effective for han- 48
dling high-resolution inputs, these approaches often
distort the original image geometry through improper
aspect ratio handling. For example, InternVL [10]
imposes strict aspect ratio constraints that force im-
age downsampling, undermining the purpose of tiling.
To address this, we propose an area-prioritized tiling Figure 3: Image area preservation. Com-
strategy that optimizes two key objectives: pared to the tiling strategy (a) from In-

* Area Preservation: Encourage maintaining at :e.rnVLl[ . ourgnethc;dth(b) e.f f?CUlV.e ly re-
least 60% of the original area (Aorig = WH) ains a targer portion ot the original 1image,
. . . 9 especially for high-resolution inputs. This
in the tiled version (Anew = TwThS%). . . L
' Y ) . ~ensures that more comprehensive visual in
* Aspect Ratio Fidelity: Align the tiling ratio  formation is preserved, benefiting tasks that
Ty /: Tw /75 With the original aspect ratio roqg = require fine-grained details.
W/H.

For candidate tiling ratios {(r., ) | rw X rn < N}, we select the optimal configuration by:
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Anew Tt Tori
arg max |min ( ,0.6 ) -min [ —, £ D
(rw,rn) Aorig Torig Tt
Area penalty Aspect ratio alignment

This formulation imposes penalties when A,y < 0.6 A, but avoids over-rewarding configurations
where Apew > 0.6 X Agrig. The aspect ratio term reaches maximum value 1 when 7, = 74yg, decaying
symmetrically for deviations. A comparison between the strategies is shown in Fig.

Automatic degradation sampling. VLMs require careful allocation of sequence length budgets
between visual and textual inputs. Conventional vision-context-centric approaches sample visual
content (e.g., video frames) at fixed rates or with predetermined counts, risking text truncation and
suboptimal token allocation. We propose Automatic Degradation Sampling (ADS), an all-context-
centric strategy that dynamically optimizes this balance.

Given a training sample S = {Syisual, Stext } With max sequence length £.,.x, Where Syisua contains
arbitrary combinations of images, videos, and multi-page documents: 1) Compute fixed text token
length Lye; and Derive fixed visual token budget: Lyisyar = Limax — Leext- Thus, we keep the complete
textual information by constricting the visual token budget.

For visual content optimization under Lyisa1, We distinguish two types and optimize two key variables:

» Images: Optimize maximal tile count per image t to maximize spatial information of M images.
* Temporal content (video/doc): Optimize sampling count n to maximize temporal coverage.

The constrained optimization problem is formulated as:

M
ZL(t,Ii) + 256n
=1

max
1<t<12, 1<n< Nax 4=
; &)
st L(t, I;) +256n < Lyg

i=1

Where optimization variables are the tile count per image (¢) and temporal sampling count (n), with
fixed parameters including: total image instances M (calculated from input), token function L(¢, I;)



used to calculate the tokens of i-th image I; under maximal tiling number ¢, predefined upper bounds
Timax = 12 (max tiles per image) and Ny,.x = 2 x duration/1 X pages (video/doc constraints). For
temporal content, we do not use image tiling, thus the token quantity per temporal unit (frame/page)
is L(1,-) = 256.

Given that training samples typically exhibit mutually exclusive composition (predominantly im-
ages or temporal content), ADS employs a dual-phase degradation process to address the above
optimization problem:

» Temporal degradation: Initially, we fix the max tile number ¢ = 1 and focus on temporal
sampling. We target a sampling rate of 2 FPS for videos, and the usage of all images for
multi-image documents. We also require that each visual input has at least Ny,;,, frames; if this
minimum cannot be met within the visual context budget, the sample is discarded. Formally, the

maximally sampled temporal units is n* = {WJ

* Tiling degradation: After deciding the number of frames, we dynamically adjust the tiling
to maximize the use of available context. Let 7 = {12,8,6,4,2,1} represent the possible
tile configurations in decreasing order. We choose the highest tile configuration ¢* such that:
t* =max{t €T :> " Lt I;) < (Ly —n* x 256)} This strategy preserves as much visual
detail as possible while ensuring the full textual input is retained, thereby optimizing the overall
learning signal.

This dual-phase approach guarantees complete text preservation while dynamically adapting visual
resolution to available context budget, achieving superior information density compared to static
sampling strategies.

3.2.2 Post-Training Schedule

We introduce a comprehensive post-training framework consisting of two complementary strategies.
First, we establish a foundational mixed post-training approach, upon which we develop an enhanced
progressive mixed post-training strategy to substantially improve model performance across varying
context lengths.

* Mixed post-training. Since the model needs to efficiently process multimodal inputs of diverse
lengths, maintaining consistent performance across variable context sizes is essential. Our ADS
method adaptively adjusts each training sample to the maximum sequence length L.y, providing
a frame-agnostic training paradigm. We implement a mixed training strategy with length-balanced
packing [] to optimize performance uniformly across the entire spectrum of context lengths.

* Progressive mixed post-training. For scenarios with large L.« values, balancing the distribu-
tion of long and short sequences becomes computationally intensive, and achieving optimal
performance through a single training iteration proves challenging. To address this limitation,
we propose a progressive mixed training methodology that gradually exposes the model to in-
creasingly larger L.« values, systematically enhancing its capacity to process extended contexts.
Compared to conventional mixed training, our method more effectively preserves the model’s
capabilities across different sequence lengths while safely generating diverse model variants at
intermediate training stages. In our exeriment, we sequentially set Lnax to 32K, 64K and 128K.

3.3 Data Recipe

Our data recipe begins with open-source data. We embrace the “diversity first, then quality” principle
and gather data from various open sources. This data mainly comprises high-definition multi-
image/short videos, long videos, multi-page documents, and extensive text data. We also find
that current open-source video data often lacks sufficient length. We thus propose a novel dataset,
Eagle-Video-110K, to complement the length, as shown in Fig.

3.3.1 Open-Source Long-Context Data

A model’s capability is intrinsically linked to the diversity of its training data. Thus, gathering the
most diverse data possible represents a core principle of this work, leading to two main strategies:



Category Dataset
. . . Kinetics710 [Y, ], Something-Something-v2 [75], ActivityNet [~], HACS Segment [ 0], COIN [20],
Video Classification HIREST [ 1], FineAction [ ], PortraitMode-400 [ |]
Temporal Action Localization Actlvn)_/Net [©], HACS Segment [/ 0], FineAction [0°], Ego4D-MQ [”0], COIN [©0], HIREST [127],
Perception-Test [ /7]
Charade-STA [ 1], QVHighlight [©], Ego4D-NLQ [ 0], Didemo [ ], QueryD [/°], MedVidQA [ 7],
Video Temporal Grounding Youcook?2 [ 7], FineVideo [”], ActivityNet [~], HACS Segment [ | (], FineAction [©], Ego4D-MQ [7],
COIN [V0], HIREST [ 2], Perception-Test [ /©], EgoExoLearn [ 7]
Dense Video Captioning ActivityNet [], Youcook2 [ 7], EgoExoLearn [ 7], ViTT [2°], HIREST [ 7], COIN [2(]
Temporal Segmentation Breakfast [10], ViTT [17]
Temporal Reasoning ActivityNet-RTL [ ]
. TVQA [/7], CLEVRER [!15], NextQA [/0%], SportsQA [51], LLaVA-Video [I’¢], FineVideo [”],
General Video QA VideoGPT+ [], Oops [ 1], Perception-Test [ /0], EgoTaskQA [ ], CinePile [+ ], STAR [10]
Multi-Page Document SlideVQA [©“], DUDE [Y0], MP-DocVQA [91]
. - ActivityNet [“], Youcook2 [/3”], Shot2story [*0], Vript [/ 1”], LLaVA-Video ['”], Momentos [©"],
Video Captioning FunQA [109], S-MiT [ /], LLaVA-Hound [ 27], Ego4D-HCap [ ], EgoExoLearn [} 7]
Long Text LongAlign [0], LongReward [ 5]

Table 1: Video, multi-page document, and long text dataset used in Eagle-2.5.

* Human-annotated Data: We integrate various open-source human-annotated datasets, including
established video and image-document collections such as COIN [©0] and SlideVQA [=9], which
can be directly considered as high-quality data.

* Synthetic Video Data: Considering that videos naturally contain long-context information, we
incorporate open-source synthetic video data, such as LLaVA-Video [|”¢]. These datasets are
primarily annotated automatically using state-of-the-art models including GPT-4V/4o [ 70, 771,
Claude-3 [], and Gemini-1.5 Pro [27].

Combined with short-context data, all collected open-source datasets are summarized in Tab. . For
convenience, we refer to this collective dataset as Open-Data.

3.3.2 Eagle-Video-110K

We curate Eagle-Video-110K to enhance long video understanding capabilities. Specifically, we first
collect videos using a diversity-driven strategy. We then automatically annotate these videos using
both top-down and bottom-up approaches to generate comprehensive story-level and fine-grained
clip-level annotations, as shown in Fig. 5.

Diversity-driven video collection. We utilize

several data sources for our video collection: mmm Open-Data
Vidchapters [ | | |], MiraData [ 4], InternVid- 10 Eagle-Video-110K
10M [100], Panda-70M [!4], Vript [117],
Shot2story [30], ViTT [55], and WebVid-
10M [ 7], collectively referred to as A. Our ap-
proach prioritizes diversity, focusing on gath-

ering a wide range of video content. For the 10°
current training dataset B, we use CLIP [¢ 1] .

to extract temporal features at a rate of 1~ '° |||
frame per second. Videos from both A and 0 I 2000 000 eooo a00o 10000 13000
B are segmented into 10-second clips. We Video Duration (seconds)

perform a pooling operation on each clip’s
frames to derive a representative feature vec-
tor. Let {bl}i\fl represent the clips from B,
and {a;} ;VZ“‘l represent those from A. We calculate the pairwise cosine similarity between clips from
B and A. For each clip a; in A, we identify its maximum similarity with any clip in B: Syax(a;) =
maxi<i<nz S(bi, a;) We then introduce a similarity threshold 7 = 0.5. Clips in A with Spax(a;)
below this threshold are considered most novel relative to B: Apovel = {aj € A | Smax(a;) < 7}

Frequency (log scale)
S

Figure 4: Comparison of video duration between
open-source data and Eagle-Video-110K.

The clips in Apovel and their original videos are selected to enhance the diversity of our collection.

Story-level video data. We construct story-level annotations for long videos using a top-down
approach. Unlike existing video datasets such as Shot2story [ (0], which employs shot detection to
segment videos and construct storylines across shots, our methodology differs fundamentally. Shot-
level segmentation often results in over-segmentation, producing excessively detailed annotations
that are suboptimal for constructing coherent story-level text. Instead, we leverage human-annotated
chapters as video segments, which provide more semantically meaningful annotations. We incorporate
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Figure 5: Overview of our video annotation framework combining bottom-up clip-level and
top-down story-level approaches. The diagram illustrates our dual annotation strategy. In the
bottom-up approach (left), short video clips are processed by GPT-40 to generate clip-level QA pairs
enhanced with time anchors and textural context anchors. In the top-down approach (right), human
annotators create story-level segmentations of longer videos, which are then captioned and processed
by GPT-4 to generate comprehensive story-level QA pairs. This hierarchical methodology enables
both fine-grained temporal understanding and high-level semantic comprehension of video content.

content from ViTT [25] and Vidchapters [/ | |] among the selected videos and filter out any videos
with fewer than two chapters to ensure they serve as effective story-level sources.

* Chapter-level dense caption. For a video divided into N clips, where each clip spans from
timestamp a to b, we perform visual captioning for each segment individually. For each segment,
frames are sampled at a rate of up to 2 frames per second, with a maximum of 50 frames. These
sampled frames, together with user-provided segment titles, guide GPT-40 [ /7] in generating
detailed visual descriptions focused on the content indicated by the titles.

* Long-form QA generation. Once visual descriptions for all segments are completed, we compile
the captions for the entire video along with their corresponding time intervals and chapter titles.
This aggregated information is provided to GPT-4 [ 1], which generates diverse question-answer
pairs covering multiple question types.

Clip-level video data. Story-level video data typically emphasizes high-level semantic information
that unfolds over extended periods. However, for general queries, it is often necessary to focus on
localized spatiotemporal details. To address this need, we propose a bottom-up, computationally
efficient automatic annotation method. This approach enables the generation of short clip annotations
and facilitates the conversion of segment-level annotations into video-level ones by incorporating
temporal and contextual anchors.

* Clip-level video QA generation. We generate QA pairs for each short clip in dataset A based
on various question types. Specifically, we sample frames from each short clip at a rate of up
to 2 frames per second and input them into GPT-40. From a predefined question type pool, we
randomly select five question types and prompt the model to generate corresponding question-
answer pairs.

* Clip-to-video QA conversion. Since annotations for individual clips are designed for localized
queries, conflicts may arise when these queries are extended to the entire video. To address this
issue, we introduce two types of anchors for each clip-question pair: (1) We directly incorporate
time intervals into questions to establish temporal references; (2) Using GPT-40, we generate
textual context anchors that provide additional information without revealing the answers.

4 Experiments

4.1 Comparison with State-of-the-Art VLMs

Video benchmarks. As shown in Tab. 2, Eagle2.5-8B demonstrates strong performance across
multiple video understanding benchmarks. It achieves 74.8 on MVBench [5], 82.0 on Percep-
tion_test [ /%] and 72.2 on EgoSchema, outperforming similar-sized models like InternVL2.5-8B [”]
(72.0, -, -) and Qwen2.5-VL-8B [V7] (69.6, 70.5, 65.0). Eagle2.5-8B excels in MLVU [ 1] (77.6)
and LongVideobench [ 00] (66.4), surpassing even InternVL2.5-78B (75.7, 63.6). For VideoMME
(w/o subtitle), the performance of Eagle 2.5 (72.4) significantly surpasses models of the same size and
is extremely close to the 72B parameter model. On CG-Bench [ 1], it scores 55.8, 46.6, 45.6, 13.4
across metrics, exceeding Claude-3.5-Sonnet [7] (56.5, 40.3, 35.6, 4.17) and Gemini-1.5-Pro [¢7]



Model MVBench Perception_test EgoSchema | MMB-Video MLVU‘LVBench Video-MME CG-Bench HourVideo | Charade-STA
Val fullset Val Val w/o subtitle w subtitle |Clue Long Open mloU|Dev Test mloU

Closed-Source Models

GPT-40-0806 [ /7] - - - 1.63 - 66.7 71.9 77.2 58.6 449 392 573 | - - 35.7

Claude-3.5-Sonnet [ ] - - - - - - 60.0 629 [56.5 403 356 4.17| - - -

Gemini-1.5-Pro [ 7] - - 72.2 1.30 - 64.0 75.0 81.3 50.9 37.8 28.7 3.85(37.2 374

Gemini-2.5-Pro [ 1] - - - - 81.2 69.2 87.0 - - - - - - - -

Seedl.5-VL [¢] 743 - - - 81.8 64.6 71.6 - - - - - - - 64.7

Publicly Available Models

MiniCPM-V2.6-8B [ 1] - - - - - - 60.9 63.7 |444 299 263 227

LongVILA-8B [17] 67.1 58.1 67.7 - - 57.1 60.1 65.1 475 343 266 -

InternVL2.5-8B [ 7] 72.0 - 1.68 68.9 60.0 64.2 66.9 - - -

LLaVA-Video-8B [19] 58.6 67.9 57.3 - 70.8 582 63.3 69.7 - - - - - - -

Qwen2.5-VL-8B [] 69.6 70.5 65.0 179 70.2 56.0 65.1 71.6  |445 355 241 248 | - - 43.6

VideoChat-Flash-8B [*0] | 74.0 76.2 - - 74.6 64.7 65.3 69.7 |52.8 43.1 37.5 1.49 -

InternVL2.5-78B [17] 76.4 - - 1.97 75.7 63.6 72.1 74.0 59.5 442 342 390 -

Qwen2.5-VL-72B [5] 0.4 73.2 76.2 2.02 /4.6 60. 3.3 79.1 50.9

LLaVA-Video-72B [ | 64.1 743 65.6 - 74.4 61.9 70.6 76.9 - - - - - - -

Eagle2.5-8B 74.8 82.0 72.2 1.94 71.6 66.4 724 75.7 558 46.6 45.6 134 |44.5 41.8 65.9

Table 2: Comparison with SOTA models on Various Video Benchmarks. We sample each video
at 2 FPS by default and disable tiling, and limit the minimum sampling frame number to 8 frames.
Among them, the maximum frame number of Video-MME is 512, and the others are 256. Perception-
Test turns on tiling to enable high-resolution testing.

DocVQA ChartQA InfoVQA TextVQA OCRBench MMstar RWQA AI2D MMMU MMB; ; MMVet HallB MathVista| Avg

Model Test Test Test Val Test Test Test  Test Val Test Test  Test Test-Mini | Score
Closed-Source Models

GPT-40-0806 [ /7] 92.8 85.7 79.2 714 736 64.7 754 846  69.1 83.1 69.1  55.0 63.8 749
Claude-3.5-Sonnet [ ] 95.2 90.8 743 74.1 788 65.1 60.1 812 683 80.9 70.1 555 67.7 74.0
Gemini-1.5-Pro [7] 93.1 87.2 81.0 78.8 754 59.1 675 79.1 622 74.6 640 456 63.9 71.7
Publicly Available Models

MiniCPM-V2.6-8B [ 7] 90.8 824 - 80.1 852 57.5 65.0 82.1 49.8 78.0 60.0 48.1 60.6 -
LLaVA-One-Vision-8B 7] 875 80.0 68.8 - 622 61.7 66.3 814 488 80.9 575 316 63.2 -
InternVL2.5-8B [ /] 93.0 84.8 71.6 79.1 822 628 70.1 845 56.0 83.2 62.8 50.1 64.4 73.1
Qwen2.5-VL-8B [7] 95.7 87.3 82.6 84.9 864 63.9 685 839 586 82.6 67.1 529 68.2 75.6
LLaVA-One-Vision-72B [49] 91.7 83.7 749 741 66.1 719 85.6 56.6 84.5 60.6 47.5 68.4
LLaMa-3.2-90B-Vision [20] 90.1 85.5 - - 783 55.3 - - 60.3 77.3 64.1 44.1 57.3 -
Eagle2.5-8B 94.1 87.5 80.4 837 869 66.2 767 845 558 81.7 629 547 67.8 75.6

Table 3: Comparison with SOTA models on Various Image Benchmarks. The avg score is
computed as the average of all benchmark scores, with OCRBench score divided by 10.

(50.9, 37.8, 28.7, 3.85). With 44.5 on HourVideo [ /0] dev set and 41.8 on test set, all surpassing
Gemini-1.5-Pro [©7]. Finally, on Charade-STA [” ], Eagle 2.5 outperforms other models significantly,
demonstrating strong temporal perception capabilities. Eagle2.5-8B shows effective long-form video
understanding, highlighting its robust visual reasoning using less parameters.

Image benchmarks. As shown in Tab. 3, Eagle2.5-8B demonstrates competitive performance across
diverse image understanding benchmarks. It achieves strong results on document understanding (94.1
on DocVQA [71]), chart interpretation (87.5 on ChartQA [/0]), and general information extraction
(80.4 on InfoVQA [ /7], 83.7 on TextVQA [20]). The model also performs well in optical character
recognition with 869 on OCRBench [05], comparable to other models in its category. Eagle2.5-8B
shows balanced capabilities across multimodal general perception and reasoning tasks, scoring 66.2
on MMstar [ 7], 76.7 on RWQA [107], and 81.7 on MMB; ; [0“], and 62.9 on MM Vet [ | | ©]. Tts
performance extends to knowledge domain (55.8 on MMMU [ 9], 84.5 on AI2D [7]), visual
hallucination benchmark (54.7 on HallB [~ /]), and mathematical reasoning (67.8 on MathVista [6:]).
Overall, Eagle2.5-8B achieves a competitive 75.6 average score, demonstrating its effectiveness as a
versatile vision-language model that balances performance across various visual understanding tasks.

4.2 Ablation Studies

In this section, we conduct experiments on various benchmarks to evaluate our method. We mainly
design experiments to study the following questions.

Q1: How do video and image data influence each other’s benchmarks? Tab. 4 studies the impact
of long context data on the image benchmark performance. We compare the image benchmark
performance without training with long-context data and with training long-context data under
different L,,.x. The results show that increasing the long-context data, under our training recipe,
does not harm the short-context images and even slightly benefits it. To assess the impact of image
data and pre-training on video benchmarks, we conduct a comparison using the £, = 32K model.



Training & Data recipe

DocVQA ChartQA InfoVQA TextVQA OCRBench MMstar RWQA AI2D MMMU MMB; ; MM Vet HallB MathVista| Avg

Val Test Val Val Val Test  Test Test Val EN-Val Test Test Test-Mini|Score
Eagle2.5-S2 92.6 88.3 78.8 84.6 868 66.5 744 855 540 855 573 534 651 74.8
Eagle2.5-S2+Eagle2.5-S2, L,ax = 32K 92.3 86.6 71.6 82.8 861 66.7 759 837 555 84.8 63.6 554 68.3 753
Eagle2.5-S2+Eagle2.5-S2, Lyax = 64K 92.5 87.0 78.4 83.9 865 668 76.8 839 557 85.2 633 552 67.3 75.6
Eagle2.5-S2+Eagle2.5-S2, L. = 128K 93.2 87.5 78.5 83.7 869 662 767 845 558 855 629 547 678 |757

Table 4: Impact of long-context data on performance of image benchmarks.

- . MVBench MLV U Video-MME . |mfovQA DocVQA TextVQA[ PT MLVU Video-MME
Training & Data recipe . Recipe R
Val  w/o subtitle Val Val Val Val Val w/o subtitle
S1-82 704 674 649 baseline | 77.6 923 828 [763 715 65.4
$1-+81.5—+S2 (OD+EV-110K) 729 709 652 wioIAP | 762 919 824 |[733 712 64.9
S1—81.5—5S2 (Image+OD+EV-110K)|  73.1 715 654 wlo ADS| 770 92.1 82.8 [75.5 70.1 65.0
Table 5: The impact of image data and pretraining  Table 6: The impact of information-first sam-

pling on performance of image and video bench-
marks. The baseline is equipped with IAP and
ADS strategy. “PT” is short for PereptionTest.

on the performance of video benchmarks. S1/51.5
denotes the stage-1 and stage-1.5 similar to Ea-
gle2 [3]. “OD” is short for Open-Data.

For each benchmark, we sampled at 2FPS, ensuring a maximum of 32 frames. As shown in Tab. 5,
extensive image pre-training significantly enhances performance on short video benchmarks like
MVBench, as well as on the relatively simple long video benchmark, MLVU. However, for the more
challenging and held-out long video benchmark, Video-MME, the improvements are less pronounced.

Q2: The effect of information-first sampling on performance? Tab. 6 illustrates the impact of the
information-first sampling strategy on image and video tasks. Without the Image Area Preservation
strategy, high-resolution image benchmarks like InfoVQA and fine-grained video benchmarks such
as Perception-test suffer significant performance degradation. The effect on other benchmarks is less
pronounced. While the Automatic Degradation Sampling strategy offers convenience for processing
various visual inputs, experiments indicate that omitting it poses a risk. The vision-context-centric
strategy may truncate supervision signals, leading to performance loss.

Q3: The impact of different post-training . . MVBench MLVU Video-MME
2 . . Training & Data recipe .
schedules? Tab. 7 illustrates the performance im- Val  wlo sbutitle
pact of progressive mixed training fr.or_n 32Kt . 4K, Open-Data 70 745 681
64K compared to direct 64K mixed training on the 4k open-Data 713 740 679
video benchmarks. The results demonstrate that  32x—;64K, Open-Data+EV-110K| 739  75.1 68.8

progressive training outperforms direct 64K mixed
training, possibly due to two reasons: 1) Direct
64K hybrid training disperses samples across the
64K space, diluting the focus on shorter contexts.
2) Some longer samples are challenging to learn without a gradual learning process that transitions
from easy to difficult. Fig. 6 shows the effect of progressive mixed training on the Video-MME
benchmark. It reveals that as progressive training advances, the model’s capacity to process more
frames is gradually enhanced.

Q4: The impact of Eagle-Video-110K data on
performance? We assess the impact of Eagle-
Video-110K on model performance. Table
shows that it improves several long and short video
benchmarks. Figure 6 demonstrates that training
with Eagle-Video-110K enhances the model’s abil-
ity to process many frames (> 128 frames) by
incorporating long videos absent from the open-
source training dataset.

Table 7: The impact of Eagle-Video-110K
dataset and different post-training schedules on
the performance of video benchmarks.
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5 Conclusion

Figure 6: The impact of Eagle-Video-110K
dataset and different post-training schedules on
the performance of Video-MME.

In this work, we present Eagle 2.5, an advanced
vision-language model family designed for long-
context multimodal understanding. Through inno-
vative training approaches - including information-first sampling and progressive mixed post-training
- combined with our dual-annotated Eagle-Video-110K dataset, we significantly enhance long-context



comprehension capabilities. Eagle 2.5 achieves leading performance on video and high-resolution
image benchmarks, matching larger models like GPT-4V and Gemini 1.5 Pro despite its smaller
size. With advanced training strategies and diverse data, Eagle 2.5 sets a strong foundation for future
research, paving the way for efficient and versatile VLMs in complex real-world scenarios.

Limitations. The training of Eagle2.5 required substantial computational resources, specifically a
cluster of 128 H100 GPUs. This high resource demand may limit the reproducibility and accessibility
of our approach for researchers or practitioners without access to large-scale GPU infrastructure.
Future work could explore more resource-efficient training strategies or model architectures to reduce
computational requirements.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the main claims: Eagle2.5 is a
frontier vision-language model (VLM) for long-context multimodal learning, introducing
a generalist framework for both long video comprehension and high-resolution image
understanding. The paper claims the introduction of two new techniques (Automatic
Degrade Sampling and Image Area Preservation), a new dataset (Eagle-Video-110K), and
substantial improvements on long-context benchmarks, with performance matching or
surpassing top-tier commercial and open-source models. These claims are supported by
the theoretical and experimental sections, and the scope is well-aligned with the results
presented in the paper.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification:
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

« If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper does not present new theoretical results, formal theorems, or proofs.
The work is empirical and methodological, focusing on architectural and data innovations,
so this criterion does not apply.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides detailed descriptions of the model architecture, training
strategies, data recipes, and benchmark evaluation protocols. It specifies the datasets used,
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* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

» Depending on the contribution, reproducibility can be accomplished in various ways.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
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(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: There is no explicit statement in the main paper about releasing code or
data, nor are URLs or instructions provided for accessing the Eagle2.5 model, Eagle-
Video-110K dataset, or scripts to reproduce experiments. The paper summarizes data
sources and contributions but does not provide open access or reproducibility instructions as
supplemental material.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides extensive details about the experimental setup, including
data splits, sampling rates, frame counts, tiling parameters, and training schedules (e.g.,
progressive training with specified context lengths). Tables specify which datasets are used
for which tasks, and ablation studies clarify the impact of different settings. Hyperparameters
and optimizer choices are not exhaustively listed, but the level of detail is sufficient for
understanding and contextualizing the results.

Guidelines:

* The answer NA means that the paper does not include experiments.
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* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The paper reports benchmark scores and ablation results in tables but does
not include error bars, confidence intervals, or statistical significance tests for the reported
results. There is no discussion of variability, standard deviation, or the statistical robustness
of the findings.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper does not provide information about the compute resources used
for training or evaluation (e.g., type of GPUs, number of nodes, training time, or memory
requirements). This information is absent from both the main text and tables.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
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10.

11.

Answer: [Yes]

Justification: There is no indication that the research violates the NeurIPS Code of Ethics.
The paper uses publicly available datasets or those curated by the authors, and there is no
evidence of unethical practices in data collection, model training, or evaluation.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper does not include a discussion of broader societal impacts, either
positive or negative. There is no section or paragraph addressing potential misuse, fairness,
privacy, or security implications of releasing a powerful long-context VLM or dataset.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: The paper does not describe any safeguards for responsible release of the

model or dataset, nor does it discuss filtering for unsafe content or mechanisms to prevent
misuse of the released assets.

Guidelines:
» The answer NA means that the paper poses no such risks.
* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring

that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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12.

13.

14.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification:
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces Eagle-Video-110K as a new dataset but does not provide
documentation, access instructions, or details about licensing, consent, or terms of use for
the new asset.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:

Guidelines:
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16.

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification:
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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