
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

INTERACTIVE AGENTS TO OVERCOME
UNDERSPECIFICITY IN SOFTWARE ENGINEERING

Anonymous authors
Paper under double-blind review

ABSTRACT

AI agents are increasingly being deployed to automate tasks, often based on under-
specified user instructions. Making unwarranted assumptions to compensate for the
missing information and failing to ask clarifying questions can lead to suboptimal
outcomes, safety risks due to tool misuse, and wasted computational resources. In
this work, we study the ability of LLM agents to handle underspecified instructions
in interactive code generation settings by evaluating proprietary and open-weight
models on their performance across three key steps: (a) detecting underspecificity,
(b) asking targeted clarification questions, and (c) leveraging the interaction to
improve performance in underspecified scenarios. Our findings reveal that mod-
els struggle to distinguish between well-specified and underspecified instructions.
However, when models interact for underspecified inputs, they effectively obtain
vital information from the user leading to significant improvements in performance,
up to 74% over the non-interactive settings, underscoring the value of effective
interaction. Our study highlights critical gaps in how current state-of-the-art models
handle missing information in complex software engineering tasks and structures
the evaluation into distinct steps to enable targeted improvements.

1 INTRODUCTION

Figure 1: Interactive agents reduce resource
wastage and misalignment in underspecified
settings.

Large Language Models (LLMs) are increasingly
used as chatbots in task-oriented workflows to im-
prove productivity (Peng et al., 2023; Brynjolfsson
et al., 2023), with the user providing a task instruction
which the model completes. Due to the interactive
nature of chatbots, the performance depends on the
information provided in the user’s prompt. Users of-
ten provide non-descriptive instructions, which poses
critical challenges in successfully completing the
task (Chowdhury et al., 2024). The missing informa-
tion can lead not only to erroneous outcomes, often
based on hallucinations, but also to significant safety
issues (Kim et al., 2024; Karli & Fitzgerald, 2023).

This underspecificity can lead to more severe con-
sequences in task automation, where AI agents are
equipped with powerful tools (Wang et al., 2024b; Lu
et al., 2024; Huang et al., 2024; Zhou et al., 2024a). In
software engineering settings, agents navigate com-
plex codebases, make architectural decisions, and
modify critical systems—all while operating with
potentially incomplete instructions. When human de-
velopers face such lack of information, they engage
in clarifying dialogue to gather context (Testoni &
Fernández, 2024; Purver, 2004). However, current AI
systems proceed with incomplete understanding, leading to costly mistakes and misaligned solutions.

In this work, we systematically evaluate the interaction capabilities of commonly used open and
proprietary LLMs when addressing underspecified instructions in agentic code settings (§2). We

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

define underspecificity as missing information that would prevent an expert from being able to create
a successful solution, using the same definition as SWE-Bench Verified annotation rubric. Previous
work on underspecificity (Chen et al., 2025; Kim et al., 2024) typically focuses on cases where only a
single detail is missing. In contrast, real-world agentic tasks often involve multiple, interdependent
gaps in specification that emerge over the course of a trajectory—spanning file locations, design
decisions, and constraints—making the problem substantially harder and motivating new evaluation
frameworks. Our work makes the following contributions:

1. Evaluating underspecificity in complex agentic tasks. We extend SWE-Bench Verified with
underspecified variants of GitHub issues and introduce an interactive evaluation framework
where agents can query a simulated user (Xu et al., 2024; Zhou et al., 2024b) holding the full
specification. This design enables controlled study of how agents handle different forms and
levels of underspecificity in realistic multi-step workflows. We also compare against the standard
SWE-Bench setting and a non-interactive underspecified setting to analyze differences in agent
trajectories.

2. Analysis of interaction capabilities We break down resolution under underspecificity into three
fundamental capacities: (i) detecting when instructions are incomplete, (ii) acquiring the missing
details through targeted clarification, and (iii) leveraging the interaction to successfully complete
the task. We design evaluations for each capacity and measure performance across proprietary
and open-weight models.

3. Empirical insights for agent design Our experiments show that interactivity can recover perfor-
mance lost to underspecificity, but most LLMs default to non-interactive behavior and struggle with
robust detection. We identify actionable clarifying questions as the main driver of performance
gains, providing concrete guidance for future model and agent design.

The multi-stage evaluation allows for targeted improvements in individual aspects, offering a pathway
to enhance overall system performance. Through our evaluations across the different settings, we
find that interactivity can boost performance on underspecified inputs by up to 74% over the non-
interactive settings, though performance varies across models (§3). LLMs default to non-interactive
behavior without explicit encouragement, and even with it, they struggle to distinguish between
underspecified and well-specified inputs. Claude Sonnet 4 and Claude Sonnet 3.5 are the only
evaluated LLMs that achieve notable accuracy (89% and 84%, respectively) in making this distinction.
Prompt engineering offers limited improvement, and its effectiveness varies across models (§4).
When interacting, LLMs generally pose questions capable of extracting relevant details, but some
models, such as Llama 3.1 70B, fail to obtain sufficient specificity (§5). As models grow more
capable (e.g., from Claude Sonnet 3.5 to Claude Sonnet 4), interaction provides diminishing returns,
suggesting current training practices may not adequately leverage clarification. In summary, this
study underscores the importance of interactivity in LLMs for agentic workflows, particularly in
real-world tasks where prompt quality varies significantly.

2 METHOD

2.1 DATASET

In our experiments, we simulate well-specified and underspecified inputs using the SWE-Bench
Verified dataset, a refined subset of 500 issues from the SWE-Bench dataset. The SWE-Bench
dataset (Jimenez et al., 2024) consists of real-world GitHub issues, their corresponding pull requests
(PRs), and unit tests from 12 Python repositories. The SWE-Bench Verified dataset (Chowdhury
et al., 2024) is designed to provide a more reliable estimate of an LLM’s ability by pruning issues
that were underspecified or contained invalid unit tests. The task of an LLM is to modify the state of
the repository at the time of creation of the issue and resolve it. The test cases are used to verify the
patch generated by the agent.

Given that the Verified subset contains only sufficiently specified issues as per human annotations, we
assume that these issues do not require more information. Therefore, for each SWE-Bench Verified
issue, we consider two forms, as shown in Figure 2:

1. Fully specified issue: The original and detailed GitHub issue.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: The three settings in order: Full, Hidden, and Interaction.

2. Underspecified issue: A synthetic version generated using GPT-4o, where the model is asked to
preserve specific terminology is preserved but reduce the amount of detailed content (complete
prompt in Appendix §A.2.3).

We conduct an analysis comparing annotated underspecified issues in SWE-Bench with our generated
underspecified issues using distributional difference analysis (Zhong et al., 2023) to identify how the
underspecification in our generations varies from real user issues. Our findings show that natural
underspecified issues have more (1) concrete technical details (code snippets, error messages, file/line
references), (2) reproducibility information, (3) links to external references, and (4) conversational
fragments (stream of thought, incomplete sentences)

In contrast, our generated issues did not have any particular additional features—they do not have
traits that are statistically more common than natural issues. Our approach uses more aggressive
information removal, specifically targeting code snippets and error messages. However, there are
naturally occurring underspecified issues that are similarly vague as well. The other differences
(external links, conversational style) may not directly impact agent performance since agents cannot
access external information.

To assess the extent of information loss in the underspecified issues of our dataset, we provide
quantitative metrics in the Appendix §A.2.3. For a concrete specification of missing information
between the fully specified and the underspecified issue, we use an LLM to annotate the differences1.
A qualitative evaluation of the summaries confirms the findings of the distributional difference
analysis. We did not evaluate on naturally underspecified SWE-Bench examples because they lack the
paired ground truth (complete specifications) necessary for causal measurement of interaction impact.
Without verified correct specifications, we cannot determine whether performance improvements
result from resolving genuine underspecification versus other confounding factors.

2.2 AGENTIC FRAMEWORK

Agent environment The OpenHands (Wang et al., 2024b) agentic framework equips the LLM
with an interactive environment that extends its capabilities beyond static code generation. The
agent operates within a structured execution environment where it can iteratively refine code, plan
tasks, and run commands using integrated tools. It has the ability to edit files, break down complex
instructions into executable steps, and execute both Bash and Python scripts within a secure sandbox.
This controlled environment enables the agent to analyze execution outputs, detect and debug errors,
and refine its approach based on observed results, ensuring adaptability and correctness in solving
complex programming tasks.

1LLM annotations for underspecification are provided in the supplementary materials.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Selected models We evaluate two proprietary models from the same family—Claude Sonnet 3.5
and its successor Claude Sonnet 4 (Anthropic, 2024b; PBC, 2025)—to study how improvements
in model capabilities influence interaction behavior. We also include Claude Haiku 3.5 (Anthropic,
2024a), which shares similar training methodology but differs substantially in parameter count,
allowing us to examine the effect of model scale.

For open-weight models, we evaluate Llama 3.1 70B-Instruct (Llama team, 2024), Deepseek-
v2 (DeepSeek-AI, 2024), and Qwen 3 Coder 480B. Qwen 3 Coder achieves performance comparable
to Claude Sonnet 4 on SWE-Bench, enabling a comparison of interaction patterns between models
with similar task-solving capabilities.

User proxy Following related works which used LLMs to simulate users with full information (Li
et al., 2024), we employ GPT-4o (Ahmad & OpenAI, 2024) as a user proxy to simulate user-agent
interactions. This design choice is informed by prior work showing that LLMs can approximate
simple user behaviors and produce natural-sounding responses in controlled settings (Xu et al., 2024;
Zhou et al., 2024a). The goal is not to simulate real users but provide the information injection to the
trajectory and analyze model behaviors. The proxy receives the full issue and responds only using
information explicitly present in it, preserving the original knowledge boundaries of the issue reporter.
If a queried detail is missing, the proxy responds with I don’t have that information, thereby avoiding
hallucinations. This conservative design makes it possible to isolate the agent’s ability to detect and
recover from missing information. The full prompt is provided in §A.2.2.

2.3 STUDY DESIGN

We use three distinct settings to evaluate models across the 500 issues from SWE-Bench Verified
shown in Figure 2 and described below.

• Full: This is the traditional SWE-Bench setting. The coding agent is provided with the fully
specified task and the interaction is disabled. It represents the agent’s performance in an ideal
scenario, where the agent has access to full information.

• Hidden: A summarized version of the issue is provided to the coding agent with the user-agent
interaction disabled to mimic the lack of detail that can occur in task descriptions. We do not give
any interaction-related instructions, and all models default to non-interactive behavior. Specific
details are hidden from the coding agent.

• Interaction: The coding agent receives a summarized task, while the user proxy model receives
the fully specified task. Interaction is enabled through prompting, allowing the agent to query the
proxy for specific details. The models do not interact without an explicit prompt. In addition to the
full issue, the proxy has access to file locations that need modification and can provide them when
queried. This setup allows us to evaluate which models proactively seek navigational information
and examine how this interaction influences the success of the solution process across models.

3 RQ1: INTERACTIVE PROBLEM SOLVING

Can LLMs appropriately leverage interaction with the user to improve performance in un-
derspecified settings? Effectively addressing missing information requires a model to integrate
information from user interactions to form a clear plan and successfully solve the task. Our first
experiment holistically evaluates the model’s ability to leverage interaction and improve performance.
The model must not only process the initial task description, but also query users to extract relevant
details while filtering out irrelevant information.

3.1 EXPERIMENTAL SETUP

The hypothesis of the experiment is that different language models will exhibit varying per-
formance with interaction based on their incorporation of the provided information, leading
to different levels of improvement over the Hidden setting. We evaluate the models across
the three settings and conduct two Wilcoxon-Signed Rank tests (Appendix §A.3.1) with a sig-
nificance level of 0.05 to determine significant performance differences between the Hidden
and Interaction settings, and between the Interaction and Full settings for every model. Here,

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

we modify the prompt to make interaction with the user compulsory in the Interaction set-
ting2. Ideally, the Interaction setting should approach the performance of the full setting.

Figure 3: Resolve rates (in %) across different settings: Hidden (under-
specified issues), Interaction (underspecified issues with user interac-
tion), and Full (fully specified issues).

By default, coding agents
are restricted to 30 interac-
tion turns to produce a solu-
tion patch; however, Claude
Sonnet 4 and Qwen 3 Coder
are allocated up to 100 turns
to account for their greater
reasoning and planning ca-
pacity. In this experiment,
each model is tested in the
Hidden3, Interaction, and
Full settings to evaluate its
ability to leverage interac-
tion and optimize perfor-
mance on underspecified is-
sues. The results, as shown
in Figure 3, confirm the ex-
pected increase in resolve
rates for all models as more information becomes available to the agent. The difference between the
Hidden and Interaction settings is significant for all evaluated models (Table 4), emphasizing the
impact of interaction on task completion. The performance gap between the Interaction and Full
settings is also significant across all models, highlighting the unrealized potential. Specifically, for the
Hidden vs. Interaction settings, proprietary models show stronger evidence of a significant difference.
These results suggest that the ability to leverage interaction varies across models, with proprietary
models generally demonstrating greater effectiveness in utilizing interaction compared to open-weight
models. However, as open-weight models improve, they can even outperform proprietary models
with interaction, as demonstrated by Qwen 3 Coder.

3.2 LEVERAGING INTERACTION IN UNDERSPECIFICITY

Using interaction, the Claude Sonnet 3.5 models and Haiku 3.5 recover up to 80% of the performance
in the Full setting. However, with Deepseek, and Llama 3.1, the relative performance is lower, of
59%, and 54%, respectively. Claude Sonnet 4’s relative performance (61%) is lower than that of
its predecessor, and absolute performance with interaction is also similar. Some models achieve
higher resolve rates in the Hidden setting likely due to their superior programming acumen, or data
leakage. Better programming models can potentially extract more information from the stack trace by
reproducing the error themselves. Claude Sonnet 4 extensively explores the codebase and attempts
multiple solutions to overcome the lack of information in the Hidden setting. On the other hand,
Qwen 3 Coder displays unique behavior in this setting and relies on its internal knowledge for key
insights about missing information (example in §A.7). These correct assumptions might inflate its
performance in this setting. We observe that the Claude Haiku model achieves a performance relative
to the Full setting similar to that of Claude Sonnet 3.5, despite having inferior coding abilities. Thus,
there does not seem to be a direct correlation between the number of parameters or coding ability and
a model’s ability to leverage interaction. This hints towards better training practices that can lead to
better integration of the new information.

This experiment highlights the importance of interaction in handling underspecificity. Since many
real-world software engineering problems are underspecified, interactive systems are essential for
ensuring alignment and reducing safety risks. However, current models default to non-interactive
behavior even when faced with severe lack of information and struggle to match the performance seen
in well-specified settings. While interactive trajectories show performance gains over non-interactive
approaches for underspecified inputs, there is a wide gap to the full performance, indicating strong
potential for improvement.

2Without compulsory interaction, the model defaults to non-interactive behavior for most issues, as seen in
the Hidden setting. Full prompt in §A.2.2

3Claude Sonnet 4 is evaluated on a subset of 100/500 instances in the Hidden setting. The model compensates
for the lack of information with increased exploration and solution attempts leading to substantially higher
evaluation costs. The findings are still statistically significant (Table 4).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.3 IMPACT OF INTERACTION DETAILS ON MODEL PERFORMANCE

To better understand these differences in interaction effectiveness, we next examine what types
of information models request and how they utilize it. In the Interaction setting of the previous
experiment, the information gained can be broadly categorized into two types: informational,
which relates to the expected behavior or nature of the error, and navigational, which pertains
to the locations of the files to modify. The latter can be considered redundant information as it
can be recovered from the codebase. While informational details are typically obtained in nearly
every interaction, the models request navigational details less frequently. We measure the resolve
rates separately for instances where the model asks for navigational details and when it does not,
examining the impact on performance when models must rely only on informational details versus
when navigational details are also accessible.

Model Nav Info (%) Resolve w/o Info (%) Resolve w/ Info (%)

Claude Sonnet 4 27.75 43.75 46.55
Qwen 3 Coder 18.60 47.60 40.20
Claude Sonnet 3.5 8.96 37.94 59.52
Claude Haiku 3.5 24.67 24.78 36.94
Deepseek-v2 30.70 4.62 13.19
Llama 3.1 70B 30.28 4.28 6.34

Table 1: % of issues where navigational information was acquired in the Interaction setting, and the
resolve rates with and without it. Navigational information refers to file paths needing modification.

As seen in Table 1, requesting navigational details improves performance across most models by
providing cues beyond described behavior and errors. However, some models rely too heavily on
this information and struggle when it is missing. Smaller models like Llama 3.1 and Deepseek-
v2 request file locations more often but underperform without them. With improvements in code
localization ability, recent models like Claude Sonnet 4 and Qwen 3 Coder show lower performance
boosts with this information. Qwen 3 Coder displays a unique behavior where its performance
worsens after receiving file locations. An analysis of the trajectories reveals rigid behavior where
the model gets the information from the user, yet proceeds to re-explore the code and come across
the same information by itself, seemingly following a set protocol of approaching SWE-Bench style
issues. This suggests that while the model acknowledges the user input, it does not easily modify its
behavior, also evidenced by its need for stronger prompting to interact (§A.7). This rigid behavior
wastes interaction turns on redundant navigational information, preventing the model from asking
more valuable clarifying questions about task requirements. Claude models, particularly Sonnet
3.5, better leverage informational cues, achieving higher resolve rates even without navigational
details. Deepseek, by contrast, performs worse than its Hidden setting when file locations are
absent, highlighting its dependence. This reliance leads to wasted turns searching for errors instead
of identifying them efficiently. Llama 3.1 performs better than Hidden without file locations but
gains little when they are provided, likely due to poor detail extraction (Section §5). Ideally, LLMs
should generalize across diverse interaction types, as users may not always provide specific details,
improving robustness in real-world software engineering tasks.

Takeaway: While proprietary models like Claude Sonnet 3.5 and Haiku 3.5 effectively leverage
interaction (recovering 80% of the performance gap), recent capable models show a shift: Claude
Sonnet 4’s relative gains diminish despite stronger absolute performance, and Qwen 3 Coder rigidly
adheres to predetermined protocols even when users provide explicit guidance. These patterns
suggest that as models grow more capable, current training practices may inadequately prepare them
to dynamically integrate interactive information, highlighting the need for approaches that prioritize
adaptive behavior over task completion alone.

4 RQ2: DETECTION OF INCOMPLETE TASK SPECIFICATIONS

Can LLMs identify whether a given task description is missing crucial information? In real-
world LLM and agent applications, task descriptions and prompts often vary in quality. Unnecessary
interaction when sufficient information is already available can introduce inefficiencies and burden
users. In this work, we evaluate whether LLMs can detect missing information in software engineering

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

contexts by randomly presenting either fully-specified or underspecified issues, along with varying
interaction prompts, and analyzing their interaction behavior across these conditions.

4.1 EXPERIMENTAL SETUP

In this experiment, each issue is presented in either the Full setting or the Hidden setting. The
objective is to identify patterns in how models choose to interact based on the input type. Ideally, the
model should have a high interaction rate for the summarized inputs and a negligible interaction rate
for the well-specified inputs.

In the instructions which outline the task, we present the agent with an option to interact during its
solution trajectory and design three instructions with varying levels of encouragement to interact
with the user. We track the input type the model chooses to interact with. The instructions, listed
in order of increasing encouragement to interact, are: Neutral, where the agent is told it can ask
questions if anything is unclear), Moderate Encouragement, where the agent is told to carefully check
that all necessary information is available and only proceed after everything is clear, and Strong
Encouragement, where the agent is told that asking questions is critical to task success (full prompts
in Appendix §A).

Table 2: Model performance in underspecificity detection across prompts with increasing interaction
encouragement. FPR: false positive rate (unnecessary interaction); FNR: false negative rate (missed
necessary interaction). Ideal models have high accuracy, low FPR, and low FNR.

Model Neutral Moderate Strong

Acc ↑ FPR ↓ FNR ↓ Acc ↑ FPR ↓ FNR ↓ Acc ↑ FPR ↓ FNR ↓

Claude Sonnet 4 0.74 0.08 0.44 0.74 0.10 0.42 0.89 0.03 0.18
Qwen 3 Coder 0.50 0.00 1.00 0.50 0.00 1.00 0.50 0.00 1.00
Claude Sonnet 3.5 0.60 0.00 0.81 0.84 0.24 0.09 0.76 0.36 0.10
Claude Haiku 3.5 0.54 0.00 0.97 0.57 0.02 0.90 0.63 0.06 0.66
Deepseek-v2 0.69 0.30 0.31 0.57 0.08 0.83 0.51 0.04 0.94
Llama 3.1 70B 0.48 0.46 0.57 0.47 0.95 0.09 0.52 0.93 0.06

4.2 EFFECT OF DIFFERENT PROMPTS

Without explicit prompting, models almost never interact, even for severely underspecified inputs.
Table 2 shows that prompt engineering can modulate interaction levels, but with highly variable
effectiveness across models.

Claude family: Claude Sonnet 4 achieves the best performance with Strong Encouragement, repre-
senting substantial improvement over other models. Claude Sonnet 3.5 performs best with Moderate
Encouragement (84% accuracy), while Claude Haiku 3.5 remains hesitant to interact even with strong
prompting. The Sonnet models’ superior performance likely stems from better instruction-following
capabilities.

Open-weight models show divergent behaviors: Deepseek-v2 exhibits counterintuitive behavior,
performing best with Neutral prompting and degrading with stronger encouragement. Llama 3.1
shows excessive interaction across all prompts, interacting arbitrarily rather than strategically. Most
critically, Qwen 3 Coder completely fails to interact under any condition (100% FNR across all
prompts), achieving only chance-level accuracy (50%).

4.3 DETECTION ACROSS MODELS

While interaction levels can often be adjusted with prompting, both summarized and full issues
have equal probability of being selected for interaction as interactivity increases, particularly with
smaller models. It is a concerning finding that even with stronger encouragement one of the leading
open-weight models, Qwen 3, is rigid in its non-interactivity. Despite the stark difference in the
language and detail of summarized issues and fully specified issues, the models, except Claude
Sonnet, fail to reliably distinguish them, indicating that LLMs struggle to detect missing information
even in obvious cases. Most models, including Claude Sonnet, show big changes in the detection
behavior with prompt variations. Interestingly, the Sonnet models outperforms Haiku, likely due

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 4: Agent questions and user responses to the same underspecified input are shown for Llama
3.1 70B, Deepseek-v2, and Claude Haiku 3.5. They highlight specific interaction patterns and
differences in handling missing information. The corresponding model inputs are detailed in Table 7.

to superior instruction following capability, which helps it achieve the desired interactive trajectory.
Surprisingly, Deepseek adapts better to the task than Haiku as well as Qwen 3.

Takeaway: Models default to non-interactive behavior unless explicitly prompted, yet prompt
engineering alone proves insufficient for reliable underspecificity detection.While Claude Sonnet 4
demonstrates partial success, most models struggle to distinguish well-specified from underspecified
tasks. Particularly concerning is Qwen 3 Coder’s complete non-responsiveness to interaction prompts
(100% FNR), suggesting fundamental limitations in certain training approaches. These findings
indicate that handling underspecified tasks requires dedicated training than prompt engineering alone.

5 RQ3: QUESTION QUALITY

Can LLMs generate meaningful and targeted clarification questions that gather the necessary
information for task completion? To gather missing information from underspecified inputs, the
quality of an agent’s questions is crucial. While §3 evaluates task completion, here we focus on how
effectively models extract relevant information through their questions.

5.1 EXPERIMENTAL SETUP

We evaluate interaction quality in the Interaction setting using two complementary techniques:

1. Cosine distance: We compute the distance (1 − cos(P,Q)) between embeddings of the sum-
marized task (Ebefore) and cumulative knowledge after interaction (Eafter) using OpenAI’s text-
embedding-3-small. Higher values indicate greater information gain.

2. LLM-as-judge (GPT-4o): Scores user answers on a 1-5 scale based on specificity and novelty of
information (e.g., specific files, function behavior).

5.2 INFORMATION GAIN AND QUESTION EFFICIENCY

Figure 5: Information Gain measured using Cosine Distance

Both metrics
reveal that Llama
3.1 significantly
underperforms
(0.101 cosine
distance, 3.58/5
LLM-judge
score) compared
to other models
(Figure 5). More
interesting are the
patterns among
stronger models:
Qwen 3 Coder achieves the highest information extraction (0.179) but requires 50% more questions
than Claude Sonnet 4 (6.02 vs 4.03, Table 6), yet both achieve similar resolve rates (46% vs 41.8%,
Figure 3). Similarly, Claude Sonnet 3.5 and Haiku extract nearly identical information (0.136 vs

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.135) despite vastly different task performance (39.6% vs 26.8%). These disconnects reveal that
how models integrate information matters as much as how much they extract.

Figure 6: Information Gain measured using LLM-as-Judge

The LLM-as-
judge scores
converge around
4/5 for all ca-
pable models
(Figure 6), indi-
cating they can
elicit relevant
information
when prompted.
However, cosine
distance’s gran-
ularity reveals
efficiency differences: similar information can be obtained with vastly different question quantities
and strategies.

5.3 QUESTION-ASKING STRATEGIES

Qualitative analysis of question-answer pairs (Figure 4) reveals three distinct approaches with different
tradeoffs:

(1) Question quantity and user burden. Llama asks too few questions (2.61 avg.) with overly
general phrasing ("Are there any existing workarounds?"), yielding minimal information. Qwen 3
asks the most (6.02 avg.), extracting maximum information but risking user overwhelm. As Table 1
shows, this high volume does not translate to better performance. Qwen’s resolve rate actually
worsens with navigational information, suggesting rigid protocol-following rather than adaptive
integration.

(2) Exploration efficiency. Claude Sonnet models (3.80-4.03 questions) achieve information gain
comparable to Deepseek and Qwen (4.57-6.02 questions) by exploring the codebase first, then
asking only what cannot be independently discovered. This exploration-first strategy produces nearly
identical questions across Claude Sonnet 3.5 and 4 for some issues (Table 7), indicating consistent
training. In contrast, Deepseek and Qwen ask immediately, including questions about implementation
details recoverable from code.

(3) Answerability and specificity. Deepseek’s highly specific implementation questions often
exceed user knowledge, wasting interaction turns. Claude targets behavioral aspects and concrete
failure modes instead, better matching realistic user knowledge. Haiku follows a rigid three-question
template regardless of context, while Sonnet adapts questions based on deeper issue understanding.

Takeaway: Effective clarification balances question quantity (avoiding user overwhelm), exploration
efficiency (discovering what can be inferred before asking), and answerability (matching specificity
to user knowledge). Claude Sonnet 4 achieves comparable information gain to Qwen (0.171 vs 0.179)
with 50% fewer questions through exploration-first strategies, demonstrating that question quality
and integration matter more than extraction volume.

6 RELATED WORK

Code generation benchmarks Ambiguity is a closely related domain to underspecificity, where
model misinterpretation of user intent is a common failure mode. In both cases, clarification becomes
necessary, though the causes differ. Ambiguity stems from vague or multi-interpretable inputs, while
underspecificity arises when key information is entirely omitted. This is especially relevant in our
setting, where models operate over intent summaries that may only partially capture user goals.
Clarifying questions help mitigate ambiguity (Mu et al., 2023), and interactive, test-driven workflows
generate test cases aligned with expectations, which users validate before code generation (Lahiri
et al., 2023). Extensions of this approach employ runtime techniques to generate, mutate, and rank
candidates based on user feedback (Fakhoury et al., 2024). Although effective, these workflows can
burden users, highlighting the need to minimize intervention to essential cases.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Interactive ML systems In interactive systems, ambiguity is often categorized and addressed via
targeted clarification. Niwa & Iso (2024) introduces a taxonomy of instruction ambiguities, such as
unclear output formats or contextual constraints, and applies disambiguation strategies accordingly.
Similarly, Wang et al. (2024a) evaluates LLM behavior on ambiguous tool-use instructions, and
Feng et al. (2024) uses reinforcement learning to optimize intervention. Although these systems
successfully reduce ambiguity, underspecificity poses a subtler challenge, where there is missing
context, leading to hallucinated assumptions and requires agents to clarify.

LLMs and ambiguity Modern LLMs are not explicitly trained to resolve ambiguity via interac-
tion (Zhang et al., 2024), but instruction tuning improves their performance when guided by prompt
engineering (White et al., 2023). Ambiguity detection has been approached through uncertainty
estimation (Zhang & Choi, 2023; Park et al., 2024) and self-disambiguation (Keluskar et al., 2024;
Sterner, 2022; Sumanathilaka et al., 2024). For example, Kim et al. (2024) quantifies ambiguity
using information gain. Although inference-only methods are cost-effective, they are less robust
than training-based approaches for handling ambiguity. Chen et al. (2025) address disambiguation in
conversational settings, but typically with only a single missing detail. In contrast, we study under-
specification in complex agentic tasks, where multiple interdependent gaps can arise dynamically,
and agents may take many steps before recognizing missing information.

7 CONCLUSION, LIMITATIONS, AND FUTURE WORK

Our evaluation of proprietary and open-weight language models in agentic frameworks highlights
how underspecificity poses a core challenge in software engineering tasks. Effective performance
requires (i) detecting missing information, and (ii) acquiring it through precise, targeted interaction
before (iii) attempting a solution with the full information.

Our analysis is subject to a few scope constraints. Underspecificity detection is measured only
within the first three turns, as models rarely recover if they fail to engage early. Question quality
is approximated via latent vector changes that weigh all information equally, though models may
prioritize details differently. Finally, our simulated user proxy may be more cooperative than real
users, though we mitigate this by limiting interaction turns and focusing them tightly on the task.

Despite these limitations, several clear trends emerge from our experiments:

• With a brief round of clarification, leading proprietary models recover much of their fully-specified
performance, while earlier open-weight models lag. Recent capable models blur this distinction.
However, as models grow more capable, relative gains from interaction diminish, suggesting current
training practices inadequately prepare models to dynamically integrate interactive information.

• LLMs rarely initiate clarification unprompted, and their sensitivity to prompt framing makes them
brittle in noisy, real-world contexts.

• The most effective questions are specific, actionable, and task-level, while vague prompts or
implementation details recoverable from the codebase add little value.

Overall, a gap remains between underspecified and fully specified resolution rates. Closing it will
require open-weight models to adopt stronger interaction strategies and proprietary models to engage
more proactively. As models are trained to perform longer horizon tasks, they must still be trained to
appropriately incorporate user inputs into the overall solution. Our framework provides a blueprint
for decomposing resolution into multiple steps, enabling finer-grained analysis of where models
succeed or fail. While we focus on software engineering, the methods and insights can extend to
other complex, real-world agentic tasks. Thus, our work offers both a diagnostic framework for agent
evaluation and a roadmap toward more robust, adaptive, and user-aligned agents that can thrive in
underspecified and dynamic environments.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of the presented results, this paper provides comprehensive details on
the methodology, data generation, and experimental setup. All key components of the proposed
framework are described with the intention of enabling replication by an independent research group.
The experimental setup is detailed in §2 and full prompts are provided in the Appendix §A. We have
also attached the code with the steps to reproduce and the experimental data.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

LLM USAGE

We used a large language model to assist with polishing the writing style, condensing the content,
and improving clarity. All research ideas, methods, experiments, and analyses were developed and
conducted by the authors. The LLM did not contribute to scientific content.

REFERENCES

Lama Ahmad and OpenAI. Gpt-4o system card, October 2024.

Anthropic. Claude 3.5 haiku, 10 2024a. URL https://www.anthropic.com/claude/
haiku. Accessed on January 9, 2025.

Anthropic. Introducing claude 3.5 sonnet, 6 2024b. URL https://www.anthropic.com/
news/claude-3-5-sonnet. Accessed on January 8, 2025.

Erik Brynjolfsson, Danielle Li, and Lindsey R Raymond. Generative ai at work. Working Paper
31161, National Bureau of Economic Research, April 2023. URL http://www.nber.org/
papers/w31161.

Maximillian Chen, Ruoxi Sun, Tomas Pfister, and Sercan Ö. Arık. Learning to clarify: Multi-turn
conversations with action-based contrastive self-training, 2025. URL https://arxiv.org/
abs/2406.00222.

Neil Chowdhury, James Aung, Chan Jun Shern, Oliver Jaffe, Dane Sherburn, Giulio Starace, Evan
Mays, Rachel Dias, Marwan Aljubeh, Mia Glaese, Carlos E. Jimenez, John Yang, Kevin Liu, and
Aleksander Madry. Introducing SWE-bench verified, 2024. URL https://openai.com/
index/introducing-swe-bench-verified/. Accessed on December 10, 2024.

DeepSeek-AI. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model,
2024.

Sarah Fakhoury, Aaditya Naik, Georgios Sakkas, Saikat Chakraborty, and Shuvendu K. Lahiri.
Llm-based test-driven interactive code generation: User study and empirical evaluation. IEEE
Transactions on Software Engineering, 50(9):2254–2268, September 2024. ISSN 2326-3881. doi:
10.1109/tse.2024.3428972. URL http://dx.doi.org/10.1109/TSE.2024.3428972.

Xueyang Feng, Zhi-Yuan Chen, Yujia Qin, Yankai Lin, Xu Chen, Zhiyuan Liu, and Ji-Rong Wen.
Large language model-based human-agent collaboration for complex task solving, 2024. URL
https://arxiv.org/abs/2402.12914.

Dong Huang, Jie M. Zhang, Michael Luck, Qingwen Bu, Yuhao Qing, and Heming Cui. Agentcoder:
Multi-agent-based code generation with iterative testing and optimisation, 2024. URL https:
//arxiv.org/abs/2312.13010.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024. URL
https://arxiv.org/abs/2310.06770.

Ulas Berk Karli and Tesca Fitzgerald. Extended abstract: Resolving ambiguities in LLM-enabled
human-robot collaboration. In 2nd Workshop on Language and Robot Learning: Language as
Grounding, 2023. URL https://openreview.net/forum?id=LtwuJx83Rc.

Aryan Keluskar, Amrita Bhattacharjee, and Huan Liu. Do llms understand ambiguity in text? a
case study in open-world question answering, 2024. URL https://arxiv.org/abs/2411.
12395.

Hyuhng Joon Kim, Youna Kim, Cheonbok Park, Junyeob Kim, Choonghyun Park, Kang Min Yoo,
Sang goo Lee, and Taeuk Kim. Aligning language models to explicitly handle ambiguity, 2024.
URL https://arxiv.org/abs/2404.11972.

11

https://www.anthropic.com/claude/haiku
https://www.anthropic.com/claude/haiku
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
http://www.nber.org/papers/w31161
http://www.nber.org/papers/w31161
https://arxiv.org/abs/2406.00222
https://arxiv.org/abs/2406.00222
https://openai.com/index/introducing-swe-bench-verified/
https://openai.com/index/introducing-swe-bench-verified/
http://dx.doi.org/10.1109/TSE.2024.3428972
https://arxiv.org/abs/2402.12914
https://arxiv.org/abs/2312.13010
https://arxiv.org/abs/2312.13010
https://arxiv.org/abs/2310.06770
https://openreview.net/forum?id=LtwuJx83Rc
https://arxiv.org/abs/2411.12395
https://arxiv.org/abs/2411.12395
https://arxiv.org/abs/2404.11972


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shuvendu K. Lahiri, Sarah Fakhoury, Aaditya Naik, Georgios Sakkas, Saikat Chakraborty, Madanlal
Musuvathi, Piali Choudhury, Curtis von Veh, Jeevana Priya Inala, Chenglong Wang, and Jianfeng
Gao. Interactive code generation via test-driven user-intent formalization, 2023. URL https:
//arxiv.org/abs/2208.05950.

Shuyue Stella Li, Vidhisha Balachandran, Shangbin Feng, Jonathan S. Ilgen, Emma Pierson, Pang Wei
Koh, and Yulia Tsvetkov. Mediq: Question-asking llms and a benchmark for reliable interactive
clinical reasoning, 2024. URL https://arxiv.org/abs/2406.00922.

Llama team. The llama 3 herd of models. https://ai.meta.com/research/
publications/the-llama-3-herd-of-models/, July 2024. Accessed on January
9, 2025.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai scientist:
Towards fully automated open-ended scientific discovery, 2024. URL https://arxiv.org/
abs/2408.06292.

Fangwen Mu, Lin Shi, Song Wang, Zhuohao Yu, Binquan Zhang, Chenxue Wang, Shichao Liu, and
Qing Wang. Clarifygpt: Empowering llm-based code generation with intention clarification, 2023.
URL https://arxiv.org/abs/2310.10996.

Ayana Niwa and Hayate Iso. Ambignlg: Addressing task ambiguity in instruction for nlg, 2024. URL
https://arxiv.org/abs/2402.17717.

Jeongeun Park, Seungwon Lim, Joonhyung Lee, Sangbeom Park, Minsuk Chang, Youngjae Yu, and
Sungjoon Choi. Clara: Classifying and disambiguating user commands for reliable interactive
robotic agents, 2024. URL https://arxiv.org/abs/2306.10376.

Anthropic PBC. Introducing claude 4. https://www.anthropic.com/news/claude-4,
May 2025. Accessed: 2025-11-17.

Sida Peng, Eirini Kalliamvakou, Peter Cihon, and Mert Demirer. The impact of ai on developer
productivity: Evidence from github copilot, 2023. URL https://arxiv.org/abs/2302.
06590.

Matthew Richard John Purver. The theory and use of clarification requests in dialogue. PhD thesis,
University of London King’s College, 2004.

Beckett Sterner. Explaining ambiguity in scientific language. Synthese, 200(5):354, 2022.

T. G. D. K. Sumanathilaka, Nicholas Micallef, and Julian Hough. Can llms assist with ambiguity?
a quantitative evaluation of various large language models on word sense disambiguation, 2024.
URL https://arxiv.org/abs/2411.18337.

Alberto Testoni and Raquel Fernández. Asking the right question at the right time: Human and model
uncertainty guidance to ask clarification questions. arXiv preprint arXiv:2402.06509, 2024.

Wenxuan Wang, Juluan Shi, Chaozheng Wang, Cheryl Lee, Youliang Yuan, Jen tse Huang, and
Michael R. Lyu. Learning to ask: When llms meet unclear instruction, 2024a. URL https:
//arxiv.org/abs/2409.00557.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
Brennan, Hao Peng, Heng Ji, and Graham Neubig. Openhands: An open platform for ai software
developers as generalist agents, 2024b. URL https://arxiv.org/abs/2407.16741.

Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry Gilbert, Ashraf Elnashar,
Jesse Spencer-Smith, and Douglas C Schmidt. A prompt pattern catalog to enhance prompt
engineering with chatgpt. arXiv preprint arXiv:2302.11382, 2023.

12

https://arxiv.org/abs/2208.05950
https://arxiv.org/abs/2208.05950
https://arxiv.org/abs/2406.00922
https://ai.meta.com/research/publications/the-llama-3-herd-of-models/
https://ai.meta.com/research/publications/the-llama-3-herd-of-models/
https://arxiv.org/abs/2408.06292
https://arxiv.org/abs/2408.06292
https://arxiv.org/abs/2310.10996
https://arxiv.org/abs/2402.17717
https://arxiv.org/abs/2306.10376
https://www.anthropic.com/news/claude-4
https://arxiv.org/abs/2302.06590
https://arxiv.org/abs/2302.06590
https://arxiv.org/abs/2411.18337
https://arxiv.org/abs/2409.00557
https://arxiv.org/abs/2409.00557
https://arxiv.org/abs/2407.16741


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Frank F. Xu, Yufan Song, Boxuan Li, Yuxuan Tang, Kritanjali Jain, Mengxue Bao, Zora Z. Wang,
Xuhui Zhou, Zhitong Guo, Murong Cao, Mingyang Yang, Hao Yang Lu, Amaad Martin, Zhe Su,
Leander Maben, Raj Mehta, Wayne Chi, Lawrence Jang, Yiqing Xie, Shuyan Zhou, and Graham
Neubig. Theagentcompany: Benchmarking llm agents on consequential real world tasks, 2024.
URL https://arxiv.org/abs/2412.14161.

Michael J. Q. Zhang and Eunsol Choi. Clarify when necessary: Resolving ambiguity through
interaction with lms, 2023. URL https://arxiv.org/abs/2311.09469.

Tong Zhang, Peixin Qin, Yang Deng, Chen Huang, Wenqiang Lei, Junhong Liu, Dingnan Jin, Hongru
Liang, and Tat-Seng Chua. Clamber: A benchmark of identifying and clarifying ambiguous
information needs in large language models, 2024. URL https://arxiv.org/abs/2405.
12063.

Ruiqi Zhong, Peter Zhang, Steve Li, Jinwoo Ahn, Dan Klein, and Jacob Steinhardt. Goal driven
discovery of distributional differences via language descriptions, 2023. URL https://arxiv.
org/abs/2302.14233.

Xuhui Zhou, Hyunwoo Kim, Faeze Brahman, Liwei Jiang, Hao Zhu, Ximing Lu, Frank Xu,
Bill Yuchen Lin, Yejin Choi, Niloofar Mireshghallah, Ronan Le Bras, and Maarten Sap. Haicosys-
tem: An ecosystem for sandboxing safety risks in human-ai interactions. arXiv, 2024a. URL
http://arxiv.org/abs/2409.16427.

Xuhui Zhou, Hao Zhu, Leena Mathur, Ruohong Zhang, Haofei Yu, Zhengyang Qi, Louis-Philippe
Morency, Yonatan Bisk, Daniel Fried, Graham Neubig, and Maarten Sap. Sotopia: Interactive
evaluation for social intelligence in language agents, 2024b. URL https://arxiv.org/
abs/2310.11667.

A APPENDIX

A.1 AGENT FRAMEWORK

In this work, we use the OpenHands agent framework for conducting our experiments. OpenHands is
a single agent system that has access to tools such as bash terminal, file system, code execution, and
browsing (disabled during evaluation). In the SWE-Bench setting, the agent is provided with the issue
alongside a detailed prompt which conveys the steps to follow such as exploration, clarification, etc.
(as detailed in Appendix A.1.2). Equipped with the above-mentioned tools, the agent interacts with
the repository environment inside a Docker container with the required dependencies provided by
SWE-Bench. The agent has a maximum number of steps to complete the solution. If finishing early,
the agent can call the FinishAction. Upon completion, a git_patch is extracted from the modified files
which is later applied to a new environment instance, and the tests associated with the task are run to
verify the solution.

A.2 EXPERIMENTAL DESIGN

A.2.1 FULL SETTING

In addition to the fully-specified GitHub issue from SWE-Bench Verified, we also include hints from
the dataset, which contains the conversation between developers regarding the issue. This helps create
a larger knowledge gap in comparison to the Hidden setting.

13

https://arxiv.org/abs/2412.14161
https://arxiv.org/abs/2311.09469
https://arxiv.org/abs/2405.12063
https://arxiv.org/abs/2405.12063
https://arxiv.org/abs/2302.14233
https://arxiv.org/abs/2302.14233
http://arxiv.org/abs/2409.16427
https://arxiv.org/abs/2310.11667
https://arxiv.org/abs/2310.11667


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Prompt for Full Setting

I’ve uploaded a Python code repository in the directory
/workspace/{workspace_dir_name}. Consider the following PR description:
<pr_description>{instance.full_issue}</pr_description>
Here are some additional hints: <hints>{instance.hints_text}</hints>
Can you help me implement the necessary changes to the repository so that the requirements
specified in the PR description are met?
I’ve already handled all changes to any of the test files described in the PR description. This
means you DON’T need to modify the testing logic or any of the tests!
Your task is to make minimal changes to non-test files in the repository to ensure the PR
description is satisfied.
Follow these steps to resolve the issue:

1. As a first step, explore the repo to familiarize yourself with its structure.
2. Create a script to reproduce the error and execute it with python <filename.py>

using the BashTool to confirm the error.
3. Edit the source code in the repo to resolve the issue.
4. Rerun your reproduce script to confirm the error is fixed.
5. Consider edge cases and make sure your fix handles them as well.

Your thinking should be thorough, and it’s fine if it’s very long.

A.2.2 INTERACTION SETTING

In this setting, the user proxy agent receives both the fully specified issue and additional hints,
maintaining the knowledge gap relative to the Hidden setting. This provides extra information for
the coding agent to extract through interaction. The files to be modified are also provided to the
user proxy agent, allowing us to track specific details across issues. Since file-related information is
universally useful—unlike other details whose importance may be subjective—it enables evaluation
of how effectively different models incorporate critical information into their solution paths.

This setup reflects a scenario where the user might know additional details not included in their
initial input, which can still be extracted to improve performance. While more capable models may
independently retrieve this information by exploring the codebase, it can be particularly helpful for
lower-performing models. By tracking which models choose to extract this information, we gain
insights into the types of questions they ask and observe behavioral trends across models.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Prompt for Interaction Setting with Mandatory Interaction

I’ve uploaded a Python code repository in the directory
/workspace/{workspace_dir_name}. Consider the following PR description:
<pr_description>{instance.summarized_issue}</pr_description>
Can you help me implement the necessary changes to the repository so that the requirements
specified in the PR description are met?
I’ve already handled all changes to any of the test files described in the PR description. This
means you DON’T need to modify the testing logic or any of the tests!
Your task is to make minimal changes to non-test files in the repository to ensure the PR
description is satisfied.
I have not provided all the necessary details about the issue and I have some hidden details
that are helpful. Please ask me specific questions using non-code commands to gather the
relevant information that I have to help you solve the issue. Ensure you have all the details
you require to solve the issue.
You have a limited number of turns. Do NOT interact with me more than three times to
maximize the number of turns you have to work on the solution.
Follow these steps to resolve the issue:

1. As a first step, look at the issue and ask me questions to get all the necessary details
about the issue. You can also ask me questions if you run into a problem in later
steps.

2. Then, it might be a good idea to explore the repo to familiarize yourself with its
structure.

3. Create a script to reproduce the error and execute it with python
<filename.py> using the BashTool to confirm the error.

4. Edit the source code in the repo to resolve the issue.
5. Rerun your reproduce script to confirm the error is fixed.
6. Think about edge cases and make sure your fix handles them as well.

Your thinking should be thorough, and it’s fine if it’s very long.

Prompt to User Proxy

You are a GitHub user reporting an issue. Here are the details of your issue and environment:
Issue: {issue}
Hints: {hints}
Files relative to your current directory: {files}
Your task is to respond to questions from a coder who is trying to solve your issue. The coder
has a summarized version of the issue you have. Follow these rules:
1. If the coder asks a question that is directly related to the information in the issue you have,
provide that information.
2. Always stay in character as a user reporting an issue, not as an AI assistant.
3. Keep your responses concise and to the point.
4. The coder has limited turns to solve the issue. Do not interact with the coder beyond 3
turns.
Respond with I don’t have that information if the question is unrelated or you’re unsure.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Metric Mean Median Std Dev

ROUGE-1 Recall 0.179 0.159 0.102
ROUGE-L Recall 0.111 0.094 0.069
Entity Recall 0.085 0.030 0.141
BERTScore F1 -0.111 -0.127 0.194

Table 3: Quantitative comparison of underspecified summaries against full issues using overlap- and
semantics-based metrics.

A.2.3 HIDDEN SETTING

Prompt for Hidden Setting

I’ve uploaded a Python code repository in the directory
/workspace/{workspace_dir_name}. Consider the following PR description:
<pr_description>{instance.summarized_issue}</pr_description>
Can you help me implement the necessary changes to the repository so that the requirements
specified in the PR description are met?
I’ve already taken care of all changes to any of the test files described in the PR description.
This means you DON’T need to modify the testing logic or any of the tests!
Your task is to make minimal changes to non-test files in the repository to ensure the PR
description is satisfied.
Follow these steps to resolve the issue:

1. As a first step, it might be a good idea to explore the repo to familiarize yourself
with its structure.

2. Create a script to reproduce the error and execute it with python
<filename.py> using the BashTool to confirm the error.

3. Edit the source code in the repo to resolve the issue.
4. Rerun your reproduce script to confirm the error is fixed.
5. Consider edge cases and make sure your fix handles them as well.

Your thinking should be thorough, and it’s fine if it’s very long.

Prompt For Summarizing GitHub Issues

I have several issues from GitHub related to code specifications. Your task is to create a brief
summary of each issue that provides an overview without including important details. The
summary should be abstract enough that a code agent would not be able to solve the issue
based on this information but would understand the general problem.
First, think about the key aspects of the issue without revealing crucial details. Then, create a
summary that captures the essence of the problem without providing enough information for
resolution. Use the <summary> and </summary> tags around your generated summary.
The output should be in the form: <summary> ... </summary>
Here is the issue: {issue}

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

LLM Underspecification Analysis prompt

Compare these two texts and identify what INFORMATION is present in the original issue but
missing in the problem statement. Focus on factual content differences, not language or writing
style differences.
Original GitHub Issue:
{original_issue}

Summarized Problem Statement:
{problem_statement}

Instructions: Identify specific pieces of information that appear in the original issue but are
absent or underspecified in the problem statement. Focus ONLY on informational content -
ignore differences in:

• Wording or phrasing
• Writing style or tone
• Sentence structure
• Different ways of expressing the SAME information

For example:
• DO include: “Error message ’FileNotFoundError’ is missing” (different information)
• DO NOT include: “Less detailed explanation of the bug” (same information, different

wording)
List each missing piece of information as a separate numbered item. Be specific and concrete.
Output your analysis as a numbered list within <missing_info></missing_info> tags.

A.3 STATISTICAL METHODS

A.3.1 WILCOXON SIGNED-RANK TEST

The Wilcoxon Signed-Rank Test is a non-parametric statistical test used to determine if there is a
significant difference between the medians of two related groups. Unlike the paired t-test, it does not
assume that the differences between paired observations are normally distributed, making it more
suitable for cases where this assumption may not hold.

In this work, the Wilcoxon Signed-Rank Test is applied to compare the performance of models
between two settings (e.g., Hidden vs. Interaction, Interaction vs. Full) with the hypothesis that
performance in the second setting is greater than in the first.

Formally, the null hypothesis (H0) for the Wilcoxon Signed-Rank Test states that the median
difference between the two settings is zero or negative:

H0 : d̃ ≤ 0

where d̃ represents the median of the paired differences. The alternative hypothesis (H1) asserts that
the median difference is greater than zero:

H1 : d̃ > 0

The test ranks the absolute differences between paired observations, considering both the magnitude
and direction of change. If the p-value obtained from the test is less than the significance threshold
(0.05), we reject the null hypothesis, concluding that there is a statistically significant improvement
in performance between the two settings.
A.3.2 COMPUTE REQUIREMENTS

The experiments are conducted using 16 workers in the Remote Runtime (beta) provided in Open-
Hands which is a cloud-based runtime for parallel execution.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Model Comparison p-value

Llama 3.1 70B Hidden vs Interaction 0.0023
Interaction vs Full 3.87e-06

Claude Haiku 3.5 Hidden vs Interaction 2.18e-14
Interaction vs Full 1.65e-09

Claude Sonnet 3.5 Hidden vs Interaction 8.55e-19
Interaction vs Full 1.28e-12

Deepseek-v2 Hidden vs Interaction 0.0023
Interaction vs Full 2.87e-07

Qwen 3 Coder Hidden vs Interaction 6.87e-17
Interaction vs Full 5.46e-26

Claude Sonnet 4 Hidden vs Interaction 0.03225
Interaction vs Full 9.0e-29

Table 4: Wilcoxon signed-rank test results for Hidden vs Interaction and Interaction vs Full settings
across models.

A.4 NATURALLY UNDERSPECIFIED ISSUES

A.5 UNDERSPECIFICITY DETECTION PROMPTS

• Neutral: Ensure you have all the necessary information to proceed. If any part of the issue
is unclear or lacks critical details, ask concise, targeted questions to clarify. If everything is
clear, you can move ahead without asking unnecessary questions.

• Moderate Encouragement: Before attempting a solution, carefully check whether all key
information is provided. If there’s any ambiguity or missing details that could impact your
work, don’t hesitate to ask questions. Your goal is to gather the information needed for an
accurate and efficient solution. Only skip asking questions when you are absolutely sure all
details are complete.

• Strong Encouragement: Your success depends on having all relevant details to solve the
issue effectively. Whenever you encounter unclear or missing information, proactively ask
questions to fill those gaps. Even minor ambiguities can affect the outcome, so always
prioritize clarifying questions. Avoid questions only when you are 100% certain no further
clarification is needed.

A.6 QUESTION QUALITY ANALYSIS

Cosine Distance(P,Q) = 1− P ·Q
∥P∥∥Q∥

(1)

where:

• P = {p1, p2, . . . , pN} represents the embedding vector of the updated knowledge (Eafter).
• Q = {q1, q2, . . . , qN} represents the embedding vector of the initial knowledge (Ebefore).
• N = 1536 is the dimensionality of the embedding space.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

instance_id Issue Discussion
django_django-
13952

Migrate signals verbose stdout emissions
are not capturable. The migrate command
takes a -verbosity flag that is passed
down to emit_pre_migrate_signal
and emit_post_migrate_signal
functions but these are not provided which
stdout the output should be directed to.
This makes testing migrate -v2 through
call_command pollute sys.stdout when
it should be directed to the provided std-
out as discovered in https://github.
com/django/django/pull/13890#
pullrequestreview-579320176.

Contains concrete
technical details
(function names,
flags), a specific
reproducibility sce-
nario (migrate
-v2 via
call_command),
and an external
reference link.

sympy__sympy-
11794

ASCII printing for Singularity Function. Imple-
mentation of ASCII printing for Singularity Func-
tions is needed.

Minimal descrip-
tion with no code
snippets or re-
production steps,
showing that some
natural issues are
similarly vague
despite lacking
explicit technical
context.

sphinx-doc__sphinx-
7234

Support for @singledispatch functions. It
would be nice if there was some mechanism
to automagically pick up the overloads to
a @functools.singledispatch function
and list them together.

Includes conver-
sational phrasing
(stream-of-thought
style) and refer-
ences to a specific
Python mechanism,
reflecting natural
issue-writing pat-
terns.

Table 5: Examples of naturally occurring issues and their characteristic features relevant to under-
specification analysis.

Table 6: Average number of questions asked per interaction.

Model Avg. # Questions

Claude Sonnet 4 4.03
Qwen 3 Coder 6.02
Claude Sonnet 3.5 3.80
Claude Haiku 3.5 3.49
Deepseek-v2 4.57
Llama 3.1 70B 2.61

19

https://github.com/django/django/pull/13890#pullrequestreview-579320176
https://github.com/django/django/pull/13890#pullrequestreview-579320176
https://github.com/django/django/pull/13890#pullrequestreview-579320176


1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 7: Examples of questions and their responses across different models reflecting general patterns.

Model Summarized issue Selected questions Answers
Llama 3.1
70B

The InheritDocstrings
metaclass fails to handle properties
due to reliance on function checks
that miss properties.

1. Any known workarounds or temporary
fixes?

2. Is the issue property-specific or gen-
eral?

1. I don’t have that information.
2. It seems to be a general problem with

how the metaclass handles properties.

Deepseek
Chat

Same issue with property handling
in InheritDocstrings. 1. What is the purpose and

current implementation of
InheritDocstrings?

2. Are there existing tests that demon-
strate the issue?

1. It ensures docstrings are in-
herited from the parent. Uses
inspect.isfunction, which
fails for properties.

2. I don’t have that information.
Claude Haiku
3.5

Same issue with improper
property handling by
InheritDocstrings.

1. Where is the metaclass located in the
repo?

2. What is the specific incorrect behavior?

1. It is in
astropy/utils/misc.py.

2. Properties redefined without doc-
strings don’t inherit from the base.

Qwen 3 Coder Same issue with improper
property handling by
InheritDocstrings.

1. Which classes/modules show the is-
sue?

2. By “properties,” do you mean ‘@prop-
erty‘?

3. Any tests that already capture the is-
sue?

1. Happens in classes using the metaclass,
e.g., in ‘astropy/utils/misc.py‘.

2. Yes, this refers to Python’s ‘@prop-
erty‘.

3. I don’t have that information.

Claude Sonnet
3.5

A method fails with Python 3
byte input, unlike its counterpart
that handles both text and binary
modes.

1. Which method has this issue?
2. Example of a failing byte string input?

1. The method is
Header.fromstring.

2. No specific example, but it should con-
tain full header data as bytes.

Claude Sonnet
4

Same issue with byte input.
1. Which class/method fails on byte-

string input?
2. Example of a byte string that should

work but doesn’t?

1. The failing method is
‘Header.fromstring‘.

2. No concrete example, just any full
header as a byte string.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

A.7 QWEN 3 CODER

Example Qwen 3 thought process in Hidden setting

Trajectory message (verbatim):
Let me research what the proper RFC standard is. According to RFC 2616 Section 3.3.1:

"Recipients of timestamps SHOULD accept all three HTTP-date formats,
regardless of the form in which they were sent. For the purposes of HTTP,
the preferred format is IMF-fixdate. The other formats are included for
compatibility with past and future implementations."

And regarding two-digit years:
"HTTP/1.1 clients and servers that parse the date value MUST accept
all three formats... All HTTP date/time stamps MUST be represented in
Greenwich Mean Time (GMT), without exception. For the purposes of
HTTP, GMT is exactly equal to UTC (Coordinated Universal Time)... The
use of three digit years (e.g. 893) or five digit-plus years (e.g. 17763) is
explicitly not allowed."

But more importantly, let me check what the actual standard practice is. Looking at common
implementations and standards:

1. POSIX/C Standard: Often uses 69–99 → 1969–1999, 00–68 → 2000–2068
2. RFC 2616 Recommendation: Strongly discourages two-digit years but acknowl-

edges backward compatibility
3. Modern Practice: Many systems use a 50-year sliding window or fixed windows

Let me check what the actual issue is referring to. Looking at the existing test and the problem
description more carefully, I think the issue is that the current cutoff of 70 is arbitrary and
doesn’t follow established standards.
Let me check if there are any references or comments in the code that indicate what the
intended behavior should be.

Comments: This trajectory message shows Qwen 3 Coder relying heavily on its internal
knowledge of RFC standards and POSIX conventions, making specific assumptions about
the intended behavior without extensive code exploration. The model directly assumes the
cutoff value of 70 is problematic and implements a solution that proves correct. While this
could indicate strong pretraining on software engineering standards, this pattern of solving
issues through confident assertion rather than exploratory debugging is uncommon in the
Hidden setting and may inflate its performance relative to models that must discover solutions
through code analysis.

Qwen 3 Coder Interaction Prompt Modification

For Qwen 3 Coder, we modified the interaction prompt to include a mandatory clarification
step, on top of existing interaction instructions. This phase requires the model to output
only clarifying questions and wait for responses before proceeding with the problem-solving
phases. This modification was necessary because Qwen 3 Coder exhibited a rigid adherence to
non-interactive SWE-Bench protocols, often bypassing interaction opportunities even when
critical information was missing. The mandatory clarification phase forces the model to engage
with the user before attempting implementation.

This modification ensures fair comparison in RQ1, which evaluates task success with
interaction. Without it, Qwen 3 Coder defaults to non-interactive behavior, invalidating
cross-model comparison. RQ2 (detection) and RQ3 (question quality) measure different
capabilities and remain unaffected.

A.8 INFORMATION GAIN

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Llama 3.1 Deepseek Haiku 3.5 Sonnet 3.5 Sonnet 4 Qwen 3

0.1

0.2

0.3

0.4

0.5

Re
co

ve
ry

 D
ist

an
ce

 (F
ul

l 
 P

S+
An

sw
er

)

Figure 7: Recovery distance (1 - cosine similarity between full issue and post-interaction knowledge)
shows minimal variation across models, failing to capture the extraction efficiency differences
revealed by our original metric. This occurs because the full issue contains substantial information
(formatting, links, conversational fragments) that is unnecessary for task completion. Models that ask
fewer, targeted questions can obtain critical information without recovering irrelevant details, yet
are penalized by this metric. In contrast, our extraction-based metric (Figure 5) better captures these
differences.

22


	Introduction
	Method
	Dataset
	Agentic framework
	Study design

	RQ1: Interactive problem solving
	Experimental setup
	Leveraging interaction in underspecificity
	Impact of interaction details on model performance

	RQ2: Detection of incomplete task specifications
	Experimental setup
	Effect of different prompts
	Detection across models

	RQ3: Question quality
	Experimental setup
	Information gain and question efficiency
	Question-asking strategies

	Related Work
	Conclusion, Limitations, and Future Work
	Appendix
	Agent framework
	Experimental design
	Full setting
	Interaction setting
	Hidden setting

	Statistical methods
	Wilcoxon Signed-Rank test
	Compute Requirements

	Naturally underspecified issues
	Underspecificity detection prompts
	Question Quality Analysis
	Qwen 3 Coder
	Information Gain


