
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

INTERACTIVE AGENTS TO OVERCOME
UNDERSPECIFICITY IN SOFTWARE ENGINEERING

Anonymous authors
Paper under double-blind review

ABSTRACT

AI agents are increasingly being deployed to automate tasks, often based on under-
specified user instructions. Making unwarranted assumptions to compensate for the
missing information and failing to ask clarifying questions can lead to suboptimal
outcomes, safety risks due to tool misuse, and wasted computational resources. In
this work, we study the ability of LLM agents to handle underspecified instructions
in interactive code generation settings by evaluating proprietary and open-weight
models on their performance across three key steps: (a) detecting underspecificity,
(b) asking targeted clarification questions, and (c) leveraging the interaction to
improve performance in underspecified scenarios. Our findings reveal that mod-
els struggle to distinguish between well-specified and underspecified instructions.
However, when models interact for underspecified inputs, they effectively obtain
vital information from the user leading to significant improvements in performance,
up to 74% over the non-interactive settings, underscoring the value of effective
interaction. Our study highlights critical gaps in how current state-of-the-art models
handle missing information in complex software engineering tasks and structures
the evaluation into distinct steps to enable targeted improvements.

1 INTRODUCTION

Figure 1: Interactive agents reduce resource
wastage and misalignment in underspecified
settings.

Large Language Models (LLMs) are increasingly
used as chatbots in task-oriented workflows to im-
prove productivity (Peng et al., 2023; Brynjolfsson
et al., 2023), with the user providing a task instruction
which the model completes. Due to the interactive
nature of chatbots, the performance depends on the
information provided in the user’s prompt. Users of-
ten provide non-descriptive instructions, which poses
critical challenges in successfully completing the
task (Chowdhury et al., 2024). The missing informa-
tion can lead not only to erroneous outcomes, often
based on hallucinations, but also to significant safety
issues (Kim et al., 2024; Karli & Fitzgerald, 2023).

This underspecificity can lead to more severe con-
sequences in task automation, where AI agents are
equipped with powerful tools (Wang et al., 2024b; Lu
et al., 2024; Huang et al., 2024; Zhou et al., 2024a). In
software engineering settings, agents navigate com-
plex codebases, make architectural decisions, and
modify critical systems—all while operating with
potentially incomplete instructions. When human de-
velopers face such lack of information, they engage
in clarifying dialogue to gather context (Testoni &
Fernández, 2024; Purver, 2004). However, current AI
systems proceed with incomplete understanding, leading to costly mistakes and misaligned solutions.

In this work, we systematically evaluate the interaction capabilities of commonly used open and
proprietary LLMs when addressing underspecified instructions in agentic code settings (§2). We

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

define underspecificity as missing information that would prevent an expert from being able to create
a successful solution, using the same definition as SWE-Bench Verfied annotation rubric. Previous
work on underspecificity (Chen et al., 2025; Kim et al., 2024) typically focuses on cases where only a
single detail is missing. In contrast, real-world agentic tasks often involve multiple, interdependent
gaps in specification that emerge over the course of a trajectory—spanning file locations, design
decisions, and constraints—making the problem substantially harder and motivating new evaluation
frameworks. Our work makes the following contributions:

1. Evaluating underspecificity in complex agentic tasks. We extend SWE-Bench Verified with
underspecified variants of GitHub issues and introduce an interactive evaluation framework
where agents can query a simulated user (Xu et al., 2024; Zhou et al., 2024b) holding the full
specification. This design enables controlled study of how agents handle different forms and
levels of underspecificity in realistic multi-step workflows. We also compare against the standard
SWE-Bench setting and a non-interactive underspecified setting to analyze differences in agent
trajectories.

2. Analysis of interaction capabilities We break down resolution under underspecificity into three
fundamental capacities: (i) detecting when instructions are incomplete, (ii) acquiring the missing
details through targeted clarification, and (iii) leveraging the interaction to successfully complete
the task. We design evaluations for each capacity and measure performance across proprietary
and open-weight models.

3. Empirical insights for agent design Our experiments show that interactivity can recover perfor-
mance lost to underspecificity, but most LLMs default to non-interactive behavior and struggle with
robust detection. We identify actionable clarifying questions as the main driver of performance
gains, providing concrete guidance for future model and agent design.

The multi-stage evaluation allows for targeted improvements in individual aspects, offering a pathway
to enhance overall system performance. Through our evaluations across the different settings, we
find that interactivity can boost performance on underspecified inputs by up to 74% over the non-
interactive settings, though performance varies across models (§3). LLMs default to non-interactive
behavior without explicit encouragement, and even with it, they struggle to distinguish between
underspecified and well-specified inputs. Claude Sonnet 3.5 is the only evaluated LLM that achieves
notable accuracy (84%) in making this distinction. Prompt engineering offers limited improvement,
and its effectiveness varies across models (§4). When interacting, LLMs generally pose questions
capable of extracting relevant details, but some models, such as Llama 3.1 70B, fail to obtain sufficient
specificity (§5). In summary, this study underscores the importance of interactivity in LLMs for
agentic workflows, particularly in real-world tasks where prompt quality varies significantly.

2 METHOD

2.1 DATASET

In our experiments, we simulate well-specified and underspecified inputs using the SWE-Bench
Verified dataset, a refined subset of 500 issues from the SWE-Bench dataset. The SWE-Bench
dataset (Jimenez et al., 2024) consists of real-world GitHub issues, their corresponding pull requests
(PRs), and unit tests from 12 Python repositories. The SWE-Bench Verified dataset (Chowdhury
et al., 2024) is designed to provide a more reliable estimate of an LLM’s ability by pruning issues
that were underspecified or contained invalid unit tests. The task of an LLM is to modify the state of
the repository at the time of creation of the issue and resolve it. The test cases are used to verify the
patch generated by the agent.

Given that the Verified subset contains only sufficiently specified issues as per human annotations, we
assume that these issues do not require more information. Therefore, for each SWE-Bench Verified
issue, we consider two forms, as shown in Figure 2:

1. Fully specified issue: The original and detailed GitHub issue.
2. Underspecified issue: A synthetic version generated using GPT-4o, where the model is asked to

preserve specific terminology is preserved but reduce the amount of detailed content (complete
prompt in Appendix §A.1.3).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: The three settings in order: Full, Hidden, and Interaction.

We conduct an analysis comparing annotated underspecified issues in SWE-Bench with our generated
underspecified issues using distributional difference analysis (Zhong et al., 2023) to identify how the
underspecification in our generations varies from real user issues. Our findings show that natural
underspecified issues have more (1) concrete technical details (code snippets, error messages, file/line
references), (2) reproducibility information, (3) links to external references, and (4) conversational
fragments (stream of thought, incomplete sentences)

In contrast, our generated issues did not have any particular additional features—they do not have
traits that are statistically more common than natural issues. Our approach uses more aggressive
information removal, specifically targeting code snippets and error messages. However, there are
naturally occurring underspecified issues that are similarly vague as well (django_django-13952,
django_django-15744, pytest-dev_pytest-7283, sphinx-doc_sphinx-9467, sympy_sympy-12977 are
some specific examples). The other differences (external links, conversational style) may not directly
impact agent performance since agents cannot access external information.

To assess the extent of information loss in the underspecified issues of our dataset, we provide
quantitative metrics in the Appendix §A.1.3. For a concrete specification of missing information
between the fully specified and the underspecified issue, we use an LLM to annotate the differences1.
A qualitative evaluation of the summaries confirms the findings of the distributional difference
analysis. We did not evaluate on naturally underspecified SWE-Bench examples because they lack the
paired ground truth (complete specifications) necessary for causal measurement of interaction impact.
Without verified correct specifications, we cannot determine whether performance improvements
result from resolving genuine underspecification versus other confounding factors.

2.2 AGENTIC FRAMEWORK

Agent environment The OpenHands (Wang et al., 2024b) agentic framework equips the LLM
with an interactive environment that extends its capabilities beyond static code generation. The
agent operates within a structured execution environment where it can iteratively refine code, plan
tasks, and run commands using integrated tools. It has the ability to edit files, break down complex
instructions into executable steps, and execute both Bash and Python scripts within a secure sandbox.
This controlled environment enables the agent to analyze execution outputs, detect and debug errors,
and refine its approach based on observed results, ensuring adaptability and correctness in solving
complex programming tasks.

Selected models We use Claude Sonnet 3.5 (Anthropic, 2024b) as one of the proprietary models due
to its superior performance on SWE-Bench. Claude Haiku 3.5 (Anthropic, 2024a) is included as the

1LLM annotations for underspecification are provided in the supplementary materials.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

second proprietary model to investigate the impact of model parameterization, as both models likely
share similar training methodologies but differ significantly in the number of parameters. Additionally,
we evaluate Llama 3.1 70B-Instruct (Llama team, 2024) and Deepseek-v2 (DeepSeek-AI, 2024) as
two open-weight models.

User proxy Following related works which used LLMs to simulate users with full information (Li
et al., 2024), we employ GPT-4o (Ahmad & OpenAI, 2024) as a user proxy to simulate user-agent
interactions. This design choice is informed by prior work showing that LLMs can approximate
simple user behaviors and produce natural-sounding responses in controlled settings (Xu et al., 2024;
Zhou et al., 2024a). The proxy receives the full issue and responds only using information explicitly
present in it, preserving the original knowledge boundaries of the issue reporter. If a queried detail is
missing, the proxy responds with I don’t have that information, thereby avoiding hallucinations. This
conservative design makes it possible to isolate the agent’s ability to detect and recover from missing
information. The full prompt is provided in §A.1.2.

2.3 STUDY DESIGN

We use three distinct settings to evaluate models across the 500 issues from SWE-Bench Verified
shown in Figure 2 and described below.

• Full: This is the traditional SWE-Bench setting. The coding agent is provided with the fully
specified task and the interaction is disabled. It represents the agent’s performance in an ideal
scenario, where the agent has access to full information.

• Hidden: A summarized version of the issue is provided to the coding agent with the user-agent
interaction disabled to mimic the lack of detail that can occur in task descriptions. We do not give
any interaction-related instructions, and all models default to non-interactive behavior. Specific
details are hidden from the coding agent.

• Interaction: The coding agent receives a summarized task, while the user proxy model receives
the fully specified task. Interaction is enabled through prompting, allowing the agent to query the
proxy for specific details. The models do not interact without an explicit prompt. In addition to the
full issue, the proxy has access to file locations that need modification and can provide them when
queried. This setup allows us to evaluate which models proactively seek navigational information
and examine how this interaction influences the success of the solution process across models.

3 RQ1: INTERACTIVE PROBLEM SOLVING

Can LLMs appropriately leverage interaction with the user to improve performance in un-
derspecified settings? Effectively addressing missing information requires a model to integrate
information from user interactions to form a clear plan and successfully solve the task. Our first
experiment holistically evaluates the model’s ability to leverage interaction and improve performance.
The model must not only process the initial task description, but also query users to extract relevant
details while filtering out irrelevant information.

3.1 EXPERIMENTAL SETUP

Figure 3: Resolve rates (in %) across different settings: Hid-
den (underspecified issues), Interaction (underspecified is-
sues with user interaction), and Full (fully specified issues).

The hypothesis of the experiment is
that different language models will ex-
hibit varying performance with inter-
action based on their incorporation of
the provided information, leading to
different levels of improvement over
the Hidden setting. We evaluate the
models across the three settings and
conduct two Wilcoxon-Signed Rank
tests (Appendix §A.2.1) with a signif-
icance level of 0.05 to determine sig-
nificant performance differences be-
tween the Hidden and Interaction set-

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

tings, and between the Interaction and Full settings for every model. Here, we modify the prompt
to make interaction with the user compulsory in the Interaction setting2. Ideally, the Interaction
setting should approach the performance of the full setting. The coding agent has a maximum
of 30 turns to generate a solution patch. In this experiment, each model is tested in the Hidden,
Interaction, and Full settings to evaluate its ability to leverage interaction and optimize performance
on underspecified issues. The results, as shown in Figure 3, confirm the expected increase in resolve
rates as more information becomes available to the agent. While the difference between the Hidden
and Interaction settings is significant for every model (Table 4), emphasizing the impact of interaction
on the trajectory, the performance gap between the Interaction and Full settings is also significant
across all models, highlighting the unrealized potential. Specifically, for the Hidden vs. Interaction
settings, proprietary models show stronger evidence of a significant difference. These results suggest
that the ability to leverage interaction varies across models, with proprietary models demonstrating
greater effectiveness in utilizing interaction compared to open-weight models.

3.2 LEVERAGING INTERACTION IN UNDERSPECIFICITY

Using interaction, the Claude Sonnet and Haiku agents recreate 80% of the performance in the Full
setting. However, with Deepseek and Llama 3.1, the relative performance is lower, of 59% and 54%,
respectively. Claude Sonnet 3.5’s high resolve rate in the Hidden setting is likely due to its superior
programming acumen, or data leakage. The performance is surprising, as a human would be able
to decipher little about the expectations given the summarized issue. Better programming models
can potentially extract more information from the stack trace by reproducing the error themselves.
We observe that the Claude Haiku model achieves a performance relative to the Full setting similar
to that of the Claude Sonnet model, despite having inferior coding abilities. Thus, there is no direct
correlation between the number of parameters or coding ability and a model’s ability to leverage
interaction. This hints towards better training practices that can lead to better integration of the new
information.

This experiment highlights the importance of interaction in handling underspecificity. Since many
real-world software engineering problems are underspecified, interactive systems are essential for
ensuring alignment and reducing safety risks. However, current models default to non-interactive
behavior even when faced with severe lack of information and struggle to match the performance seen
in well-specified settings. While interactive trajectories show performance gains over non-interactive
approaches for underspecified inputs, the improvement is not statistically significant, indicating
strong potential for improvement.

3.3 IMPACT OF INTERACTION DETAILS ON MODEL PERFORMANCE

Model Nav Info (%) Resolve w/o Info (%) Resolve w/ Info (%)

Claude Sonnet 3.5 8.96 37.94 59.52
Claude Haiku 3.5 24.67 24.78 36.94
Deepseek-v2 30.70 4.62 13.19
Llama 3.1 70B 30.28 4.28 6.34

Table 1: % of issues where navigational information was acquired in the Interaction setting, and the
resolve rates with and without it. Navigational information refers to file paths needing modification.

In the Interaction setting of the previous experiment, the information gained can be broadly cat-
egorized into two types: informational, which relates to the expected behavior or nature of the
error, and navigational, which pertains to the locations of the files to modify. While informational
details are typically obtained in nearly every interaction, the models request navigational details
less frequently. We measure the resolve rates separately for instances where the model asks for
navigational details and when it does not, examining the impact on performance when models must
rely only on informational details versus when navigational details are also accessible.

As seen in Table 1, requesting navigational details improves performance across all models by
providing cues beyond described behavior and errors. However, some models rely too heavily on

2Without compulsory interaction, the model defaults to non-interactive behavior for most issues, as seen in
the Hidden setting. Full prompt in §A.1.2

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

this information and struggle when it’s missing. Smaller models like Llama 3.1 and Deepseek-
v2 request file locations more often but underperform without them. Claude models, particularly
Sonnet, better leverage informational cues, achieving higher resolve rates even without navigational
details. Deepseek, by contrast, performs worse than its Hidden setting when file locations are
absent, highlighting its dependence. This reliance leads to wasted turns searching for errors instead
of identifying them efficiently. Llama 3.1 performs better than Hidden without file locations but
gains little when they are provided, likely due to poor detail extraction (Section §5). Ideally, LLMs
should generalize across diverse interaction types, as users may not always provide specific details,
improving robustness in real-world software engineering tasks.

Takeaway: Proprietary models (Claude Sonnet 3.5, Haiku 3.5) effectively exploit interaction, re-
covering nearly 80% of their fully specified performance, with Haiku improving by 74% over its
hidden setting. In contrast, open-weight models (Deepseek-v2, Llama 3.1) show limited gains.
Performance does not correlate with model size, suggesting that training practices, rather than scale,
likely determine the ability to leverage interaction.

4 RQ2: DETECTION OF INCOMPLETE TASK SPECIFICATIONS

Can LLMs identify whether a given task description is missing crucial information? In real-
world LLM and agent applications, task descriptions and prompts often vary in quality. Unnecessary
interaction when sufficient information is already available can introduce inefficiencies and burden
users. In this work, we evaluate whether LLMs can detect missing information in software engineering
contexts by randomly presenting either fully-specified or underspecified issues, along with varying
interaction prompts, and analyzing their interaction behavior across these conditions.

4.1 EXPERIMENTAL SETUP

In this experiment, each issue is presented in either the Full setting or the Hidden setting. The
objective is to identify patterns in how models choose to interact based on the input type. Ideally, the
model should have a high interaction rate for the summarized inputs and a negligible interaction rate
for the well-specified inputs.

In the instructions which outline the task, we present the agent with an option to interact during its
solution trajectory and design three instructions with varying levels of encouragement to interact
with the user. We track the input type the model chooses to interact with. The instructions, listed
in order of increasing encouragement to interact, are: Neutral, where the agent is told it can ask
questions if anything is unclear), Moderate Encouragement, where the agent is told to carefully check
that all necessary information is available and only proceed after everything is clear, and Strong
Encouragement, where the agent is told that asking questions is critical to task success (full prompts
in Appendix §A).

Table 2: Model performance in underspecificity detection across prompts with increasing interaction
encouragement. FPR: false positive rate (unnecessary interaction); FNR: false negative rate (missed
necessary interaction). Ideal models have high accuracy, low FPR, and low FNR.

Model Neutral Moderate Strong

Acc ↑ FPR ↓ FNR ↓ Acc ↑ FPR ↓ FNR ↓ Acc ↑ FPR ↓ FNR ↓

Claude Sonnet 3.5 0.60 0.00 0.81 0.84 0.24 0.09 0.76 0.36 0.10
Claude Haiku 3.5 0.54 0.00 0.97 0.57 0.02 0.90 0.63 0.06 0.66
Deepseek-v2 0.69 0.30 0.31 0.57 0.08 0.83 0.51 0.04 0.94
Llama 3.1 70B 0.48 0.46 0.57 0.47 0.95 0.09 0.52 0.93 0.06

4.2 EFFECT OF DIFFERENT PROMPTS

Experiments to detect underspecificity demonstrate that, using prompt engineering, we can control
the level of interaction with the user, as shown in Table 2. But this interactivity is not possible without
clearly specifying it in the prompt wherein without any specific mention of interaction, the models
almost never interact for any of the summarized issue inputs.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 4: Agent questions and user responses to the same underspecified input are shown for Llama
3.1 70B, Deepseek-v2, and Claude Haiku 3.5. They highlight specific interaction patterns and
differences in handling missing information. The corresponding model inputs are detailed in Table 6.

The Claude Sonnet model performs best with Moderate Encouragement, achieving the highest
overall accuracy of 84% across all variations. Its counterpart from the same model family, Claude
Haiku, is hesitant to interact even with Strong Encouragement. The Claude models show a drop in
accuracy in cases where interaction is not needed as their overall interaction increases, indicating
that the interaction fails to target underspecified inputs effectively. For the Deepseek model, we
observe that the Neutral prompt gives the best results as interactivity surprisingly decreases with
more encouragement. The accuracy in both the cases where interaction was desired and not desired
is around 70%, which shows that the model is capable of distinguishing between well-specified and
underspecified issues to some extent. The Llama model displays a greater, but arbitrary, tendency to
interact across all prompts than other models.

4.3 DETECTION ACROSS MODELS

While interaction levels can be adjusted with prompting, both summarized issues and full issues
have equal probability of being selected for interaction as interactivity increases, particularly with
smaller models. Despite the stark difference in the language and detail of summarized issues and fully
specified issues, the models, except Claude Sonnet, fail to reliably distinguish them, indicating that
LLMs struggle to detect missing information even in obvious cases. All models, including Claude
Sonnet, show big changes in the detection behavior with prompt variations. Interestingly, Sonnet
outperforms Haiku, likely due to superior instruction following capability, which helps it better follow
instructions and achieve the desired interactive trajectory. Surprisingly, even Deepseek adapts better
to the task than Haiku.

Takeaway: Models generally default to non-interactive behavior unless prompted, and prompt
engineering alone cannot reliably improve detection of underspecified tasks. Some models, like
Claude Sonnet, show partial ability to identify missing information, but most struggle, highlighting
the need for dedicated training rather than prompt tweaks to handle underspecificity effectively.

5 RQ3: QUESTION QUALITY

Can LLMs generate meaningful and targeted clarification questions that gather the necessary
information to complete the task? To gather missing information from underspecified inputs, the
quality of an agent’s questions is crucial. While §3 evaluates task completion, the model performance
in the experiment is influenced by the coding ability. Here, we focus solely on the quality of
the questions posed by the agent to the user, measuring how effectively models extract relevant
information.

5.1 EXPERIMENTAL SETUP

In this experiment, we evaluate the quality of the interactions between the agent and the user in
the Interaction setting. We measure the novelty and detail level of the information obtained from
the user’s answers to evaluate the quality, quantifying the new knowledge relative to the existing
understanding of the agent. We employ two techniques to quantify the information obtained.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1. Cosine distance: We compute the cosine distance (1− cos(P,Q)) between the embeddings of the
summarized task Ebefore and the cumulative knowledge after interaction with the user Eafter using
a text embedding model. Lower distances indicate redundant user input, while higher values show
meaningful information gain. We use OpenAI’s text-embedding-3-small as our embedding model.

2. LLM-as-judge (GPT-4o): The model scores the user answers on a scale of 1 to 5, where a higher
score corresponds to more new and detailed information in the user’s response, such as specific
files causing errors or function behavior. The prompt to the model includes the summarized issue,
agent questions, and user responses for better context.

5.2 INFORMATION GAIN FROM INTERACTION

For the quantitative evaluation of the quality of the question, both the cosine distance and the LLM-
as-judge methods suggest a similar result: the Llama model performs significantly worse than the
other models, whereas the other models achieve very similar information gains, as seen in Figure 5.

The Llama model has an average cosine distance of 0.101 when the embedding of the summarized
issue is compared to the embedding of the user response appended to the summarized issue. Deepseek
achieves the highest cosine distance of 0.142, while the Claude Sonnet and Haiku models achieve
very similar cosine distances of 0.136 and 0.135.

Using LLM as a judge, we evaluate the specificity of the details present in the answers. Here again,
the Llama 3.1 model achieves a significantly worse average score of 3.58 than the other models which
see similar performance of around 4 out of 5.

Figure 5: Information Gain measured using (a) Cosine Distance Scores and (b) LLM-as-Judge Scores.

5.3 QUALITATIVE ANALYSIS OF QUESTIONS

The quantitative results can be further supported by a qualitative evaluation of the questions. Sample
question-answer pairs reflecting common trends are shown in Figure 4. The Llama model asks fewer
questions on average than other models in one message for user interaction, as seen in Table 5, and
often poses overly general questions like, Are there any existing workarounds or temporary fixes?.
These template-like questions are unproductive and less likely to gather useful information.

Deepseek, on the other hand, asks the most questions per message, allowing it to extract more
information. Its questions, such as Are there any existing tests or examples that demonstrate the
issue?, aim to extract, edge cases, documentation, or tests, and while common across multiple issues,
they are reasonable and yield valuable details. But most questions are very specific and detailed,
querying about the expected behavior. Often, due to the specificity of the question, the user might not
have the required information.

Claude Sonnet asks fewer questions than Deepseek, likely because it explores the codebase first. The
questions do not have easily discernible patterns and match the Deepseek model in specificity. The
Haiku model, in contrast, follows a consistent template, typically asking three questions regardless of
the input, although sub-questions may be present. Haiku’s questions are more keyword-driven based
on the input, while Sonnet’s are based on a deeper understanding of the issue and codebase.

Takeaway: Models that balance specificity and question quantity, such as Claude, achieve higher
information gain and interaction quality. DeepSeek benefits from detailed questioning but risks
overwhelming users, while Llama underperforms due to generic or irrelevant queries.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

6 RELATED WORK

Code generation benchmarks Ambiguity is a closely related domain to underspecificity, where
model misinterpretation of user intent is a common failure mode. In both cases, clarification becomes
necessary, though the causes differ. Ambiguity stems from vague or multi-interpretable inputs, while
underspecificity arises when key information is entirely omitted. This is especially relevant in our
setting, where models operate over intent summaries that may only partially capture user goals.
Clarifying questions help mitigate ambiguity (Mu et al., 2023), and interactive, test-driven workflows
generate test cases aligned with expectations, which users validate before code generation (Lahiri
et al., 2023). Extensions of this approach employ runtime techniques to generate, mutate, and rank
candidates based on user feedback (Fakhoury et al., 2024). Although effective, these workflows can
burden users, highlighting the need to minimize intervention to essential cases.

Interactive ML systems In interactive systems, ambiguity is often categorized and addressed via
targeted clarification. Niwa & Iso (2024) introduces a taxonomy of instruction ambiguities, such as
unclear output formats or contextual constraints, and applies disambiguation strategies accordingly.
Similarly, Wang et al. (2024a) evaluates LLM behavior on ambiguous tool-use instructions, and
Feng et al. (2024) uses reinforcement learning to optimize intervention. Although these systems
successfully reduce ambiguity, underspecificity poses a subtler challenge, where there is missing
context, leading to hallucinated assumptions and requires agents to clarify.

LLMs and ambiguity Modern LLMs are not explicitly trained to resolve ambiguity via interac-
tion (Zhang et al., 2024), but instruction tuning improves their performance when guided by prompt
engineering (White et al., 2023). Ambiguity detection has been approached through uncertainty
estimation (Zhang & Choi, 2023; Park et al., 2024) and self-disambiguation (Keluskar et al., 2024;
Sterner, 2022; Sumanathilaka et al., 2024). For example, Kim et al. (2024) quantifies ambiguity
using information gain. Although inference-only methods are cost-effective, they are less robust
than training-based approaches for handling ambiguity. Chen et al. (2025) address disambiguation in
conversational settings, but typically with only a single missing detail. In contrast, we study under-
specification in complex agentic tasks, where multiple interdependent gaps can arise dynamically,
and agents may take many steps before recognizing missing information.

7 CONCLUSION, LIMITATIONS, AND FUTURE WORK

Our evaluation of proprietary and open-weight language models in agentic frameworks highlights
how underspecificity poses a core challenge in software engineering tasks. Effective performance
requires (i) detecting missing information, and (ii) acquiring it through precise, targeted interaction
before (iii) attempting a solution with the full information.

Our analysis is subject to a few scope constraints. Underspecificity detection is measured only
within the first three turns, as models rarely recover if they fail to engage early. Question quality
is approximated via latent vector changes that weigh all information equally, though models may
prioritize details differently. Finally, our simulated user proxy may be more cooperative than real
users, though we mitigate this by limiting interaction turns and focusing them tightly on the task.

Despite these limitations, several clear trends emerge from our experiments:

• With a brief round of clarification, leading proprietary models recover much of their fully-specified
performance, while open-weight models continue to lag, revealing a significant interaction gap.

• LLMs rarely initiate clarification unprompted, and their sensitivity to prompt framing makes them
brittle in noisy, real-world contexts.

• The most effective questions are specific, actionable, and task-level, while vague prompts or
implementation details recoverable from the codebase add little value.

Overall, a gap remains between underspecified and fully specified resolution rates. Closing it will
require open-weight models to adopt stronger interaction strategies and proprietary models to engage
more proactively. Our framework provides a blueprint for decomposing resolution into multiple
steps, enabling finer-grained analysis of where models succeed or fail. While we focus on software
engineering, the methods and insights can extend to other complex, real-world agentic tasks. Thus,
our work offers both a diagnostic framework for agent evaluation and a roadmap toward more robust,
adaptive, and user-aligned agents that can thrive in underspecified and dynamic environments.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of the presented results, this paper provides comprehensive details on
the methodology, data generation, and experimental setup. All key components of the proposed
framework are described with the intention of enabling replication by an independent research group.
The experimental setup is detailed in §2 and full prompts are provided in the Appendix §A. We have
also attached the code with the steps to reproduce and the experimental data.

LLM USAGE

We used a large language model to assist with polishing the writing style, condensing the content,
and improving clarity. All research ideas, methods, experiments, and analyses were developed and
conducted by the authors. The LLM did not contribute to scientific content.

REFERENCES

Lama Ahmad and OpenAI. Gpt-4o system card, October 2024.

Anthropic. Claude 3.5 haiku, 10 2024a. URL https://www.anthropic.com/claude/
haiku. Accessed on January 9, 2025.

Anthropic. Introducing claude 3.5 sonnet, 6 2024b. URL https://www.anthropic.com/
news/claude-3-5-sonnet. Accessed on January 8, 2025.

Erik Brynjolfsson, Danielle Li, and Lindsey R Raymond. Generative ai at work. Working Paper
31161, National Bureau of Economic Research, April 2023. URL http://www.nber.org/
papers/w31161.

Maximillian Chen, Ruoxi Sun, Tomas Pfister, and Sercan Ö. Arık. Learning to clarify: Multi-turn
conversations with action-based contrastive self-training, 2025. URL https://arxiv.org/
abs/2406.00222.

Neil Chowdhury, James Aung, Chan Jun Shern, Oliver Jaffe, Dane Sherburn, Giulio Starace, Evan
Mays, Rachel Dias, Marwan Aljubeh, Mia Glaese, Carlos E. Jimenez, John Yang, Kevin Liu, and
Aleksander Madry. Introducing SWE-bench verified, 2024. URL https://openai.com/
index/introducing-swe-bench-verified/. Accessed on December 10, 2024.

DeepSeek-AI. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model,
2024.

Sarah Fakhoury, Aaditya Naik, Georgios Sakkas, Saikat Chakraborty, and Shuvendu K. Lahiri.
Llm-based test-driven interactive code generation: User study and empirical evaluation. IEEE
Transactions on Software Engineering, 50(9):2254–2268, September 2024. ISSN 2326-3881. doi:
10.1109/tse.2024.3428972. URL http://dx.doi.org/10.1109/TSE.2024.3428972.

Xueyang Feng, Zhi-Yuan Chen, Yujia Qin, Yankai Lin, Xu Chen, Zhiyuan Liu, and Ji-Rong Wen.
Large language model-based human-agent collaboration for complex task solving, 2024. URL
https://arxiv.org/abs/2402.12914.

Dong Huang, Jie M. Zhang, Michael Luck, Qingwen Bu, Yuhao Qing, and Heming Cui. Agentcoder:
Multi-agent-based code generation with iterative testing and optimisation, 2024. URL https:
//arxiv.org/abs/2312.13010.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024. URL
https://arxiv.org/abs/2310.06770.

Ulas Berk Karli and Tesca Fitzgerald. Extended abstract: Resolving ambiguities in LLM-enabled
human-robot collaboration. In 2nd Workshop on Language and Robot Learning: Language as
Grounding, 2023. URL https://openreview.net/forum?id=LtwuJx83Rc.

10

https://www.anthropic.com/claude/haiku
https://www.anthropic.com/claude/haiku
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
http://www.nber.org/papers/w31161
http://www.nber.org/papers/w31161
https://arxiv.org/abs/2406.00222
https://arxiv.org/abs/2406.00222
https://openai.com/index/introducing-swe-bench-verified/
https://openai.com/index/introducing-swe-bench-verified/
http://dx.doi.org/10.1109/TSE.2024.3428972
https://arxiv.org/abs/2402.12914
https://arxiv.org/abs/2312.13010
https://arxiv.org/abs/2312.13010
https://arxiv.org/abs/2310.06770
https://openreview.net/forum?id=LtwuJx83Rc


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Aryan Keluskar, Amrita Bhattacharjee, and Huan Liu. Do llms understand ambiguity in text? a
case study in open-world question answering, 2024. URL https://arxiv.org/abs/2411.
12395.

Hyuhng Joon Kim, Youna Kim, Cheonbok Park, Junyeob Kim, Choonghyun Park, Kang Min Yoo,
Sang goo Lee, and Taeuk Kim. Aligning language models to explicitly handle ambiguity, 2024.
URL https://arxiv.org/abs/2404.11972.

Shuvendu K. Lahiri, Sarah Fakhoury, Aaditya Naik, Georgios Sakkas, Saikat Chakraborty, Madanlal
Musuvathi, Piali Choudhury, Curtis von Veh, Jeevana Priya Inala, Chenglong Wang, and Jianfeng
Gao. Interactive code generation via test-driven user-intent formalization, 2023. URL https:
//arxiv.org/abs/2208.05950.

Shuyue Stella Li, Vidhisha Balachandran, Shangbin Feng, Jonathan S. Ilgen, Emma Pierson, Pang Wei
Koh, and Yulia Tsvetkov. Mediq: Question-asking llms and a benchmark for reliable interactive
clinical reasoning, 2024. URL https://arxiv.org/abs/2406.00922.

Llama team. The llama 3 herd of models. https://ai.meta.com/research/
publications/the-llama-3-herd-of-models/, July 2024. Accessed on January
9, 2025.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai scientist:
Towards fully automated open-ended scientific discovery, 2024. URL https://arxiv.org/
abs/2408.06292.

Fangwen Mu, Lin Shi, Song Wang, Zhuohao Yu, Binquan Zhang, Chenxue Wang, Shichao Liu, and
Qing Wang. Clarifygpt: Empowering llm-based code generation with intention clarification, 2023.
URL https://arxiv.org/abs/2310.10996.

Ayana Niwa and Hayate Iso. Ambignlg: Addressing task ambiguity in instruction for nlg, 2024. URL
https://arxiv.org/abs/2402.17717.

Jeongeun Park, Seungwon Lim, Joonhyung Lee, Sangbeom Park, Minsuk Chang, Youngjae Yu, and
Sungjoon Choi. Clara: Classifying and disambiguating user commands for reliable interactive
robotic agents, 2024. URL https://arxiv.org/abs/2306.10376.

Sida Peng, Eirini Kalliamvakou, Peter Cihon, and Mert Demirer. The impact of ai on developer
productivity: Evidence from github copilot, 2023. URL https://arxiv.org/abs/2302.
06590.

Matthew Richard John Purver. The theory and use of clarification requests in dialogue. PhD thesis,
University of London King’s College, 2004.

Beckett Sterner. Explaining ambiguity in scientific language. Synthese, 200(5):354, 2022.

T. G. D. K. Sumanathilaka, Nicholas Micallef, and Julian Hough. Can llms assist with ambiguity?
a quantitative evaluation of various large language models on word sense disambiguation, 2024.
URL https://arxiv.org/abs/2411.18337.

Alberto Testoni and Raquel Fernández. Asking the right question at the right time: Human and model
uncertainty guidance to ask clarification questions. arXiv preprint arXiv:2402.06509, 2024.

Wenxuan Wang, Juluan Shi, Chaozheng Wang, Cheryl Lee, Youliang Yuan, Jen tse Huang, and
Michael R. Lyu. Learning to ask: When llms meet unclear instruction, 2024a. URL https:
//arxiv.org/abs/2409.00557.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
Brennan, Hao Peng, Heng Ji, and Graham Neubig. Openhands: An open platform for ai software
developers as generalist agents, 2024b. URL https://arxiv.org/abs/2407.16741.

11

https://arxiv.org/abs/2411.12395
https://arxiv.org/abs/2411.12395
https://arxiv.org/abs/2404.11972
https://arxiv.org/abs/2208.05950
https://arxiv.org/abs/2208.05950
https://arxiv.org/abs/2406.00922
https://ai.meta.com/research/publications/the-llama-3-herd-of-models/
https://ai.meta.com/research/publications/the-llama-3-herd-of-models/
https://arxiv.org/abs/2408.06292
https://arxiv.org/abs/2408.06292
https://arxiv.org/abs/2310.10996
https://arxiv.org/abs/2402.17717
https://arxiv.org/abs/2306.10376
https://arxiv.org/abs/2302.06590
https://arxiv.org/abs/2302.06590
https://arxiv.org/abs/2411.18337
https://arxiv.org/abs/2409.00557
https://arxiv.org/abs/2409.00557
https://arxiv.org/abs/2407.16741


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry Gilbert, Ashraf Elnashar,
Jesse Spencer-Smith, and Douglas C Schmidt. A prompt pattern catalog to enhance prompt
engineering with chatgpt. arXiv preprint arXiv:2302.11382, 2023.

Frank F. Xu, Yufan Song, Boxuan Li, Yuxuan Tang, Kritanjali Jain, Mengxue Bao, Zora Z. Wang,
Xuhui Zhou, Zhitong Guo, Murong Cao, Mingyang Yang, Hao Yang Lu, Amaad Martin, Zhe Su,
Leander Maben, Raj Mehta, Wayne Chi, Lawrence Jang, Yiqing Xie, Shuyan Zhou, and Graham
Neubig. Theagentcompany: Benchmarking llm agents on consequential real world tasks, 2024.
URL https://arxiv.org/abs/2412.14161.

Michael J. Q. Zhang and Eunsol Choi. Clarify when necessary: Resolving ambiguity through
interaction with lms, 2023. URL https://arxiv.org/abs/2311.09469.

Tong Zhang, Peixin Qin, Yang Deng, Chen Huang, Wenqiang Lei, Junhong Liu, Dingnan Jin, Hongru
Liang, and Tat-Seng Chua. Clamber: A benchmark of identifying and clarifying ambiguous
information needs in large language models, 2024. URL https://arxiv.org/abs/2405.
12063.

Ruiqi Zhong, Peter Zhang, Steve Li, Jinwoo Ahn, Dan Klein, and Jacob Steinhardt. Goal driven
discovery of distributional differences via language descriptions, 2023. URL https://arxiv.
org/abs/2302.14233.

Xuhui Zhou, Hyunwoo Kim, Faeze Brahman, Liwei Jiang, Hao Zhu, Ximing Lu, Frank Xu,
Bill Yuchen Lin, Yejin Choi, Niloofar Mireshghallah, Ronan Le Bras, and Maarten Sap. Haicosys-
tem: An ecosystem for sandboxing safety risks in human-ai interactions. arXiv, 2024a. URL
http://arxiv.org/abs/2409.16427.

Xuhui Zhou, Hao Zhu, Leena Mathur, Ruohong Zhang, Haofei Yu, Zhengyang Qi, Louis-Philippe
Morency, Yonatan Bisk, Daniel Fried, Graham Neubig, and Maarten Sap. Sotopia: Interactive
evaluation for social intelligence in language agents, 2024b. URL https://arxiv.org/
abs/2310.11667.

A APPENDIX

A.1 EXPERIMENTAL DESIGN

A.1.1 FULL SETTING

In addition to the fully-specified GitHub issue from SWE-Bench Verified, we also include hints from
the dataset, which contains the conversation between developers regarding the issue. This helps create
a larger knowledge gap in comparison to the Hidden setting.

12

https://arxiv.org/abs/2412.14161
https://arxiv.org/abs/2311.09469
https://arxiv.org/abs/2405.12063
https://arxiv.org/abs/2405.12063
https://arxiv.org/abs/2302.14233
https://arxiv.org/abs/2302.14233
http://arxiv.org/abs/2409.16427
https://arxiv.org/abs/2310.11667
https://arxiv.org/abs/2310.11667


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Prompt for Full Setting

I’ve uploaded a Python code repository in the directory
/workspace/{workspace_dir_name}. Consider the following PR description:
<pr_description>{instance.full_issue}</pr_description>
Here are some additional hints: <hints>{instance.hints_text}</hints>
Can you help me implement the necessary changes to the repository so that the requirements
specified in the PR description are met?
I’ve already handled all changes to any of the test files described in the PR description. This
means you DON’T need to modify the testing logic or any of the tests!
Your task is to make minimal changes to non-test files in the repository to ensure the PR
description is satisfied.
Follow these steps to resolve the issue:

1. As a first step, explore the repo to familiarize yourself with its structure.
2. Create a script to reproduce the error and execute it with python <filename.py>

using the BashTool to confirm the error.
3. Edit the source code in the repo to resolve the issue.
4. Rerun your reproduce script to confirm the error is fixed.
5. Consider edge cases and make sure your fix handles them as well.

Your thinking should be thorough, and it’s fine if it’s very long.

A.1.2 INTERACTION SETTING

In this setting, the user proxy agent receives both the fully specified issue and additional hints,
maintaining the knowledge gap relative to the Hidden setting. This provides extra information for
the coding agent to extract through interaction. The files to be modified are also provided to the
user proxy agent, allowing us to track specific details across issues. Since file-related information is
universally useful—unlike other details whose importance may be subjective—it enables evaluation
of how effectively different models incorporate critical information into their solution paths.

This setup reflects a scenario where the user might know additional details not included in their
initial input, which can still be extracted to improve performance. While more capable models may
independently retrieve this information by exploring the codebase, it can be particularly helpful for
lower-performing models. By tracking which models choose to extract this information, we gain
insights into the types of questions they ask and observe behavioral trends across models.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Prompt for Interaction Setting with Mandatory Interaction

I’ve uploaded a Python code repository in the directory
/workspace/{workspace_dir_name}. Consider the following PR description:
<pr_description>{instance.summarized_issue}</pr_description>
Can you help me implement the necessary changes to the repository so that the requirements
specified in the PR description are met?
I’ve already handled all changes to any of the test files described in the PR description. This
means you DON’T need to modify the testing logic or any of the tests!
Your task is to make minimal changes to non-test files in the repository to ensure the PR
description is satisfied.
I have not provided all the necessary details about the issue and I have some hidden details
that are helpful. Please ask me specific questions using non-code commands to gather the
relevant information that I have to help you solve the issue. Ensure you have all the details
you require to solve the issue.
You have a limited number of turns. Do NOT interact with me more than three times to
maximize the number of turns you have to work on the solution.
Follow these steps to resolve the issue:

1. As a first step, look at the issue and ask me questions to get all the necessary details
about the issue. You can also ask me questions if you run into a problem in later
steps.

2. Then, it might be a good idea to explore the repo to familiarize yourself with its
structure.

3. Create a script to reproduce the error and execute it with python
<filename.py> using the BashTool to confirm the error.

4. Edit the source code in the repo to resolve the issue.
5. Rerun your reproduce script to confirm the error is fixed.
6. Think about edge cases and make sure your fix handles them as well.

Your thinking should be thorough, and it’s fine if it’s very long.

Prompt to User Proxy

You are a GitHub user reporting an issue. Here are the details of your issue and environment:
Issue: {issue}
Hints: {hints}
Files relative to your current directory: {files}
Your task is to respond to questions from a coder who is trying to solve your issue. The coder
has a summarized version of the issue you have. Follow these rules:
1. If the coder asks a question that is directly related to the information in the issue you have,
provide that information.
2. Always stay in character as a user reporting an issue, not as an AI assistant.
3. Keep your responses concise and to the point.
4. The coder has limited turns to solve the issue. Do not interact with the coder beyond 3
turns.
Respond with I don’t have that information if the question is unrelated or you’re unsure.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Metric Mean Median Std Dev

ROUGE-1 Recall 0.179 0.159 0.102
ROUGE-L Recall 0.111 0.094 0.069
Entity Recall 0.085 0.030 0.141
BERTScore F1 -0.111 -0.127 0.194

Table 3: Quantitative comparison of underspecified summaries against full issues using overlap- and
semantics-based metrics.

A.1.3 HIDDEN SETTING

Prompt for Hidden Setting

I’ve uploaded a Python code repository in the directory
/workspace/{workspace_dir_name}. Consider the following PR description:
<pr_description>{instance.summarized_issue}</pr_description>
Can you help me implement the necessary changes to the repository so that the requirements
specified in the PR description are met?
I’ve already taken care of all changes to any of the test files described in the PR description.
This means you DON’T need to modify the testing logic or any of the tests!
Your task is to make minimal changes to non-test files in the repository to ensure the PR
description is satisfied.
Follow these steps to resolve the issue:

1. As a first step, it might be a good idea to explore the repo to familiarize yourself
with its structure.

2. Create a script to reproduce the error and execute it with python
<filename.py> using the BashTool to confirm the error.

3. Edit the source code in the repo to resolve the issue.
4. Rerun your reproduce script to confirm the error is fixed.
5. Consider edge cases and make sure your fix handles them as well.

Your thinking should be thorough, and it’s fine if it’s very long.

Prompt For Summarizing GitHub Issues

I have several issues from GitHub related to code specifications. Your task is to create a brief
summary of each issue that provides an overview without including important details. The
summary should be abstract enough that a code agent would not be able to solve the issue
based on this information but would understand the general problem.
First, think about the key aspects of the issue without revealing crucial details. Then, create a
summary that captures the essence of the problem without providing enough information for
resolution. Use the <summary> and </summary> tags around your generated summary.
The output should be in the form: <summary> ... </summary>
Here is the issue: {issue}

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

LLM Underspecification Analysis prompt

Compare these two texts and identify what INFORMATION is present in the original issue but
missing in the problem statement. Focus on factual content differences, not language or writing
style differences.
Original GitHub Issue:
{original_issue}

Summarized Problem Statement:
{problem_statement}

Instructions: Identify specific pieces of information that appear in the original issue but are
absent or underspecified in the problem statement. Focus ONLY on informational content -
ignore differences in:

• Wording or phrasing
• Writing style or tone
• Sentence structure
• Different ways of expressing the SAME information

For example:
• DO include: “Error message ’FileNotFoundError’ is missing” (different information)
• DO NOT include: “Less detailed explanation of the bug” (same information, different

wording)
List each missing piece of information as a separate numbered item. Be specific and concrete.
Output your analysis as a numbered list within <missing_info></missing_info> tags.

A.2 STATISTICAL METHODS

A.2.1 WILCOXON SIGNED-RANK TEST

The Wilcoxon Signed-Rank Test is a non-parametric statistical test used to determine if there is a
significant difference between the medians of two related groups. Unlike the paired t-test, it does not
assume that the differences between paired observations are normally distributed, making it more
suitable for cases where this assumption may not hold.

In this work, the Wilcoxon Signed-Rank Test is applied to compare the performance of models
between two settings (e.g., Hidden vs. Interaction, Interaction vs. Full) with the hypothesis that
performance in the second setting is greater than in the first.

Formally, the null hypothesis (H0) for the Wilcoxon Signed-Rank Test states that the median
difference between the two settings is zero or negative:

H0 : d̃ ≤ 0

where d̃ represents the median of the paired differences. The alternative hypothesis (H1) asserts that
the median difference is greater than zero:

H1 : d̃ > 0

The test ranks the absolute differences between paired observations, considering both the magnitude
and direction of change. If the p-value obtained from the test is less than the significance threshold
(0.05), we reject the null hypothesis, concluding that there is a statistically significant improvement
in performance between the two settings.
A.2.2 COMPUTE REQUIREMENTS

The experiments are conducted using 16 workers in the Remote Runtime (beta) provided in Open-
Hands which is a cloud-based runtime for parallel execution.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Model Comparison p-value

Llama 3.1 70B Hidden vs Interaction 0.0023
Interaction vs Full 3.87e-06

Claude Haiku 3.5 Hidden vs Interaction 2.18e-14
Interaction vs Full 1.65e-09

Claude Sonnet 3.5 Hidden vs Interaction 8.55e-19
Interaction vs Full 1.28e-12

Deepseek-v2 Hidden vs Interaction 0.0023
Interaction vs Full 2.87e-07

Table 4: Wilcoxon signed-rank test results for Hidden vs Interaction and Interaction vs Full settings
across models.

A.3 UNDERSPECIFICITY DETECTION PROMPTS

• Neutral: Ensure you have all the necessary information to proceed. If any part of the issue
is unclear or lacks critical details, ask concise, targeted questions to clarify. If everything is
clear, you can move ahead without asking unnecessary questions.

• Moderate Encouragement: Before attempting a solution, carefully check whether all key
information is provided. If there’s any ambiguity or missing details that could impact your
work, don’t hesitate to ask questions. Your goal is to gather the information needed for an
accurate and efficient solution. Only skip asking questions when you are absolutely sure all
details are complete.

• Strong Encouragement: Your success depends on having all relevant details to solve the
issue effectively. Whenever you encounter unclear or missing information, proactively ask
questions to fill those gaps. Even minor ambiguities can affect the outcome, so always
prioritize clarifying questions. Avoid questions only when you are 100% certain no further
clarification is needed.

A.4 QUESTION QUALITY ANALYSIS

Cosine Distance(P,Q) = 1− P ·Q
∥P∥∥Q∥

(1)

where:

• P = {p1, p2, . . . , pN} represents the embedding vector of the updated knowledge (Eafter).
• Q = {q1, q2, . . . , qN} represents the embedding vector of the initial knowledge (Ebefore).
• N = 1536 is the dimensionality of the embedding space.

Table 5: Average number of questions asked per interaction.

Model Avg. # Questions

Claude Sonnet 3.5 3.80
Claude Haiku 3.5 3.49
Deepseek-v2 4.57
Llama 3.1 70B 2.61

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 6: Examples of questions and their responses across different models reflecting general patterns.

Model Summarized issue Selected questions Answers
Llama 3.1
70B

The InheritDocstrings
metaclass fails to handle properties
due to reliance on function checks
that miss properties.

1. Any known workarounds or temporary
fixes?

2. Is the issue property-specific or gen-
eral?

1. I don’t have that information.
2. It seems to be a general problem with

how the metaclass handles properties.

Deepseek
Chat

Same issue with property handling
in InheritDocstrings. 1. What is the purpose and

current implementation of
InheritDocstrings?

2. Are there existing tests that demon-
strate the issue?

1. It ensures docstrings are in-
herited from the parent. Uses
inspect.isfunction, which
fails for properties.

2. I don’t have that information.
Claude Haiku
3.5

Same issue with improper
property handling by
InheritDocstrings.

1. Where is the metaclass located in the
repo?

2. What is the specific incorrect behavior?

1. It is in
astropy/utils/misc.py.

2. Properties redefined without doc-
strings don’t inherit from the base.

Claude Sonnet
3.5

A method fails with Python 3
byte input, unlike its counterpart
that handles both text and binary
modes.

1. Which method has this issue?
2. Example of a failing byte string input?

1. The method is
Header.fromstring.

2. No specific example, but it should con-
tain full header data as bytes.

18


	Introduction
	Method
	Dataset
	Agentic framework
	Study design

	RQ1: Interactive problem solving
	Experimental setup
	Leveraging interaction in underspecificity
	Impact of interaction details on model performance

	RQ2: Detection of incomplete task specifications
	Experimental setup
	Effect of different prompts
	Detection across models

	RQ3: Question quality
	Experimental setup
	Information gain from interaction
	Qualitative analysis of questions

	Related Work
	Conclusion, Limitations, and Future Work
	Appendix
	Experimental design
	Full setting
	Interaction setting
	Hidden setting

	Statistical methods
	Wilcoxon Signed-Rank test
	Compute Requirements

	Underspecificity detection prompts
	Question Quality Analysis


