Under review as a conference paper at ICLR 2026

INTERACTIVE AGENTS TO OVERCOME
UNDERSPECIFICITY IN SOFTWARE ENGINEERING

Anonymous authors
Paper under double-blind review

ABSTRACT

Al agents are increasingly being deployed to automate tasks, often based on under-
specified user instructions. Making unwarranted assumptions to compensate for the
missing information and failing to ask clarifying questions can lead to suboptimal
outcomes, safety risks due to tool misuse, and wasted computational resources. In
this work, we study the ability of LLM agents to handle underspecified instructions
in interactive code generation settings by evaluating proprietary and open-weight
models on their performance across three key steps: (a) detecting underspecificity,
(b) asking targeted clarification questions, and (c) leveraging the interaction to
improve performance in underspecified scenarios. Our findings reveal that mod-
els struggle to distinguish between well-specified and underspecified instructions.
However, when models interact for underspecified inputs, they effectively obtain
vital information from the user leading to significant improvements in performance,
up to 74% over the non-interactive settings, underscoring the value of effective
interaction. Our study highlights critical gaps in how current state-of-the-art models
handle missing information in complex software engineering tasks and structures
the evaluation into distinct steps to enable targeted improvements.

INTRODUCTION

Code error O

Large Language Models (LLMs) are increasingly
used as chatbots in task-oriented workflows to im-
prove productivity (Peng et al.| 2023} Brynjolfsson
et al.,2023)), with the user providing a task instruction
which the model completes. Due to the interactive
nature of chatbots, the performance depends on the
information provided in the user’s prompt. Users of-
ten provide non-descriptive instructions, which poses
critical challenges in successfully completing the
task (Chowdhury et al.| [2024). The missing informa-
tion can lead not only to erroneous outcomes, often
based on hallucinations, but also to significant safety
issues (Kim et al.| [2024; |Karli & Fitzgerald, 2023)).

This underspecificity can lead to more severe con-
sequences in task automation, where Al agents are
equipped with powerful tools (Wang et al.| [2024b; Lu
et al.}[2024;Huang et al.|[2024}|Zhou et al.| 2024a). In
software engineering settings, agents navigate com-
plex codebases, make architectural decisions, and
modify critical systems—all while operating with
potentially incomplete instructions. When human de-
velopers face such lack of information, they engage

Fernandez, 2024} |Purver, [2004). However, current Al

Hi, my code to plot points isn’t working and
I’'m getting an index error, can you fix it?

] NON-INTERACTIVE

INTERACTIVE
AGENT

¢>__
g

Running unit &

tests 3¢
Deleting unit tests

Reading file

T
‘m

Sure, | can help!
1. What file is causing the error?
2. Is there a specific case it fails?

>

Reading connect.py

’ &

Editing connect.py

&

Running unit tests ()

'The error is in the connect.py
file. It fails for 3D inputs.

All done! | have made changes to fix
the error.

[

All done! | have made changes to
fix the error.

)

No! Undo the changes, nothing is
working now

g Thanks, the error is fixed!

Figure 1: Interactive agents reduce resource
in clarifying dialogue to gather context (Testoni & Wastage and misalignment in underspecified

settings.

systems proceed with incomplete understanding, leading to costly mistakes and misaligned solutions.

In this work, we systematically evaluate the interaction capabilities of commonly used open and
proprietary LLMs when addressing underspecified instructions in agentic code settings (§2). We

Under review as a conference paper at ICLR 2026

define underspecificity as missing information that would prevent an expert from being able to create
a successful solution, using the same definition as SWE-Bench Verfied annotation rubric. Previous
work on underspecificity (Chen et al.| [2025} |[Kim et al.||2024) typically focuses on cases where only a
single detail is missing. In contrast, real-world agentic tasks often involve multiple, interdependent
gaps in specification that emerge over the course of a trajectory—spanning file locations, design
decisions, and constraints—making the problem substantially harder and motivating new evaluation
frameworks. Our work makes the following contributions:

1. Evaluating underspecificity in complex agentic tasks. We extend SWE-Bench Verified with
underspecified variants of GitHub issues and introduce an interactive evaluation framework
where agents can query a simulated user (Xu et al.| [2024; [Zhou et al., [2024b) holding the full
specification. This design enables controlled study of how agents handle different forms and
levels of underspecificity in realistic multi-step workflows. We also compare against the standard
SWE-Bench setting and a non-interactive underspecified setting to analyze differences in agent
trajectories.

2. Analysis of interaction capabilities We break down resolution under underspecificity into three
fundamental capacities: (i) detecting when instructions are incomplete, (ii) acquiring the missing
details through targeted clarification, and (iii) leveraging the interaction to successfully complete
the task. We design evaluations for each capacity and measure performance across proprietary
and open-weight models.

3. Empirical insights for agent design Our experiments show that interactivity can recover perfor-
mance lost to underspecificity, but most LLMs default to non-interactive behavior and struggle with
robust detection. We identify actionable clarifying questions as the main driver of performance
gains, providing concrete guidance for future model and agent design.

The multi-stage evaluation allows for targeted improvements in individual aspects, offering a pathway
to enhance overall system performance. Through our evaluations across the different settings, we
find that interactivity can boost performance on underspecified inputs by up to 74% over the non-
interactive settings, though performance varies across models (§3). LLMs default to non-interactive
behavior without explicit encouragement, and even with it, they struggle to distinguish between
underspecified and well-specified inputs. Claude Sonnet 3.5 is the only evaluated LLM that achieves
notable accuracy (84%) in making this distinction. Prompt engineering offers limited improvement,
and its effectiveness varies across models (§4). When interacting, LLMs generally pose questions
capable of extracting relevant details, but some models, such as Llama 3.1 70B, fail to obtain sufficient
specificity (§5). In summary, this study underscores the importance of interactivity in LLMs for
agentic workflows, particularly in real-world tasks where prompt quality varies significantly.

2 METHOD

2.1 DATASET

In our experiments, we simulate well-specified and underspecified inputs using the SWE-Bench
Verified dataset, a refined subset of 500 issues from the SWE-Bench dataset. The SWE-Bench
dataset (Jimenez et al., [2024) consists of real-world GitHub issues, their corresponding pull requests
(PRs), and unit tests from 12 Python repositories. The SWE-Bench Verified dataset (Chowdhury
et al.| 2024)) is designed to provide a more reliable estimate of an LLM’s ability by pruning issues
that were underspecified or contained invalid unit tests. The task of an LLM is to modify the state of
the repository at the time of creation of the issue and resolve it. The test cases are used to verify the
patch generated by the agent.

Given that the Verified subset contains only sufficiently specified issues as per human annotations, we
assume that these issues do not require more information. Therefore, for each SWE-Bench Verified
issue, we consider two forms, as shown in Figure

1. Fully specified issue: The original and detailed GitHub issue.

2. Underspecified issue: A synthetic version generated using GPT-40, where the model is asked to
preserve specific terminology is preserved but reduce the amount of detailed content (complete

prompt in Appendix §A.1.3).

Under review as a conference paper at ICLR 2026

Full Setting

Hidden Setting

Interaction Setting

The method ‘Header.fromsmng‘ “..creates an HDU header
from a byte string containing the entire header data.” By "byte
string” here it really means the “str’ type which on Python 2
could be raw binary data, but on Python 3 explicitly is not. It
does work on Python 3's unicode 'str's, but assumes that data
can be ASCII encoded. Its counterpart,"Header. fromfile” will

The issue involves a methad that should create a header from a
byte string, but it does not accept Python 3 bytes. It works with
Python 3's unicode strings, assuming ASCIl encoding, but the
counterpart method that handles both text and binary file
modes. A proposal is te modify the method to accept both
unicode and bytes sirings, and similarly adjust a related method.

The issue involves a method that should create a header from a
byte string, but it does not accept Pythan 3 bytes. It works with
Python 3's unicode strings, assuming ASCIl encoding, but the
counterpart method that handles both text and binary file
modes. A proposal Is to modify the method to aceept both
unicode and bytes strings, and similarly adjust a related method.

work with files opened in text or binary mode. A solution is to
change Header.fromstring to accept unicode or bytes string
types. "Card.fromstring’ likely nesds a similar treatment

User-Agent Interaction

(lremgGoaay it and
e |

(Tre methad s Headerfromstring in astropy/io/ftsiheader py.
Inputs are comectly processed in Header fromiile’.

Codebase () Codebase) Codebase €)
[) README.rst) main py o s/ [README st) main.py [[README.1st [mainpy
. uils/ [requirements txt i utils/ [requirements.txt W utils/ [requirements.txt
17 Generated PR 11 Generated PR I Generated PR
i W/ -
LS [) byte_headerpy LS
[card.py core.py = [card.py
[header.py [header.py [header.py
[Unit Tests [E1 Unit Tests [E) Unit Tests
/ test_module_not_found « test_module_not_found «/ test_module_not_found
+f test_pastebin_keyword o test_pastebin_keyword o/ test_pastebin_keyword
+/ test_unicode_literal _conversion X test_unicode_literal _conversion «/ test_unicode_literal_conversion
All tests passed Some tests failed All tests passed
42 tests passe: 16 tests passed, 8 tests failed, 18 tests skipped 42 tests passed

Figure 2: The three settings in order: Full, Hidden, and Interaction.

We conduct an analysis comparing annotated underspecified issues in SWE-Bench with our generated
underspecified issues using distributional difference analysis (Zhong et al.,2023) to identify how the
underspecification in our generations varies from real user issues. Our findings show that natural
underspecified issues have more (1) concrete technical details (code snippets, error messages, file/line
references), (2) reproducibility information, (3) links to external references, and (4) conversational
fragments (stream of thought, incomplete sentences)

In contrast, our generated issues did not have any particular additional features—they do not have
traits that are statistically more common than natural issues. Our approach uses more aggressive
information removal, specifically targeting code snippets and error messages. However, there are
naturally occurring underspecified issues that are similarly vague as well (django_django-13952,
django_django-15744, pytest-dev_pytest-7283, sphinx-doc_sphinx-9467, sympy_sympy-12977 are
some specific examples). The other differences (external links, conversational style) may not directly
impact agent performance since agents cannot access external information.

To assess the extent of information loss in the underspecified issues of our dataset, we provide
quantitative metrics in the Appendix §A:T.3] For a concrete specification of missing information
between the fully specified and the underspecified issue, we use an LLM to annotate the differenceﬂ
A qualitative evaluation of the summaries confirms the findings of the distributional difference
analysis. We did not evaluate on naturally underspecified SWE-Bench examples because they lack the
paired ground truth (complete specifications) necessary for causal measurement of interaction impact.
Without verified correct specifications, we cannot determine whether performance improvements
result from resolving genuine underspecification versus other confounding factors.

2.2 AGENTIC FRAMEWORK

Agent environment The OpenHands (Wang et al., 2024b)) agentic framework equips the LLM
with an interactive environment that extends its capabilities beyond static code generation. The
agent operates within a structured execution environment where it can iteratively refine code, plan
tasks, and run commands using integrated tools. It has the ability to edit files, break down complex
instructions into executable steps, and execute both Bash and Python scripts within a secure sandbox.
This controlled environment enables the agent to analyze execution outputs, detect and debug errors,
and refine its approach based on observed results, ensuring adaptability and correctness in solving
complex programming tasks.

Selected models We use Claude Sonnet 3.5 (Anthropic, 2024b)) as one of the proprietary models due
to its superior performance on SWE-Bench. Claude Haiku 3.5 (Anthropicl 2024a) is included as the

"LLM annotations for underspecification are provided in the supplementary materials.

Under review as a conference paper at ICLR 2026

second proprietary model to investigate the impact of model parameterization, as both models likely
share similar training methodologies but differ significantly in the number of parameters. Additionally,
we evaluate Llama 3.1 70B-Instruct (Llama team) 2024)) and Deepseek-v2 (DeepSeek-Al, |2024) as
two open-weight models.

User proxy Following related works which used LLMs to simulate users with full information (L1
et al.,|2024), we employ GPT-40 (Ahmad & OpenAl, [2024) as a user proxy to simulate user-agent
interactions. This design choice is informed by prior work showing that LLMs can approximate
simple user behaviors and produce natural-sounding responses in controlled settings (Xu et al., 2024}
Zhou et al., |2024a)). The proxy receives the full issue and responds only using information explicitly
present in it, preserving the original knowledge boundaries of the issue reporter. If a queried detail is
missing, the proxy responds with I don’t have that information, thereby avoiding hallucinations. This
conservative design makes it possible to isolate the agent’s ability to detect and recover from missing
information. The full prompt is provided in §A.T.2]

2.3 STUDY DESIGN

We use three distinct settings to evaluate models across the 500 issues from SWE-Bench Verified
shown in Figure [J]and described below.

e Full: This is the traditional SWE-Bench setting. The coding agent is provided with the fully
specified task and the interaction is disabled. It represents the agent’s performance in an ideal
scenario, where the agent has access to full information.

* Hidden: A summarized version of the issue is provided to the coding agent with the user-agent
interaction disabled to mimic the lack of detail that can occur in task descriptions. We do not give
any interaction-related instructions, and all models default to non-interactive behavior. Specific
details are hidden from the coding agent.

* Interaction: The coding agent receives a summarized task, while the user proxy model receives
the fully specified task. Interaction is enabled through prompting, allowing the agent to query the
proxy for specific details. The models do not interact without an explicit prompt. In addition to the
full issue, the proxy has access to file locations that need modification and can provide them when
queried. This setup allows us to evaluate which models proactively seek navigational information
and examine how this interaction influences the success of the solution process across models.

3 RQI: INTERACTIVE PROBLEM SOLVING

Can LLMs appropriately leverage interaction with the user to improve performance in un-
derspecified settings? Effectively addressing missing information requires a model to integrate
information from user interactions to form a clear plan and successfully solve the task. Our first
experiment holistically evaluates the model’s ability to leverage interaction and improve performance.
The model must not only process the initial task description, but also query users to extract relevant
details while filtering out irrelevant information.

3.1 EXPERIMENTAL SETUP 50| mmm Hidden 49.40
Interaction

The hypothesis of the experiment is a0 = R 39.60
that different language models will ex-
hibit varying performance with inter-
action based on their incorporation of
the provided information, leading to

different levels of improvement over - ==

the Hidden setting. We evaluate the 8.80 . I

models across the three settings and 3.20%:82 50

conduct two Wilcoxon-Signed Rank ol . . > 5

tests (Appendix with a signif- o3 peerse®” e ok > o
icance level of 0.05 to determine sig- Figure 3: Resolve rates (in %) across different settings: Hid-
nificant performance differences be- den (underspecified issues), Interaction (underspecified is-
tween the Hidden and Interaction set- syes with user interaction), and Full (fully specified issues).

33.80

w
o

26.80
24.20

Resolve Rates (%)
N
o

—
o

5
et 3
e son™

4

Under review as a conference paper at ICLR 2026

tings, and between the Interaction and Full settings for every model. Here, we modify the prompt
to make interaction with the user compulsory in the Interaction settingﬂ Ideally, the Interaction
setting should approach the performance of the full setting. The coding agent has a maximum
of 30 turns to generate a solution patch. In this experiment, each model is tested in the Hidden,
Interaction, and Full settings to evaluate its ability to leverage interaction and optimize performance
on underspecified issues. The results, as shown in Figure[3] confirm the expected increase in resolve
rates as more information becomes available to the agent. While the difference between the Hidden
and Interaction settings is significant for every model (Table[d)), emphasizing the impact of interaction
on the trajectory, the performance gap between the Interaction and Full settings is also significant
across all models, highlighting the unrealized potential. Specifically, for the Hidden vs. Interaction
settings, proprietary models show stronger evidence of a significant difference. These results suggest
that the ability to leverage interaction varies across models, with proprietary models demonstrating
greater effectiveness in utilizing interaction compared to open-weight models.

3.2 LEVERAGING INTERACTION IN UNDERSPECIFICITY

Using interaction, the Claude Sonnet and Haiku agents recreate 80% of the performance in the Full
setting. However, with Deepseek and Llama 3.1, the relative performance is lower, of 59% and 54%,
respectively. Claude Sonnet 3.5’s high resolve rate in the Hidden setting is likely due to its superior
programming acumen, or data leakage. The performance is surprising, as a human would be able
to decipher little about the expectations given the summarized issue. Better programming models
can potentially extract more information from the stack trace by reproducing the error themselves.
We observe that the Claude Haiku model achieves a performance relative to the Full setting similar
to that of the Claude Sonnet model, despite having inferior coding abilities. Thus, there is no direct
correlation between the number of parameters or coding ability and a model’s ability to leverage
interaction. This hints towards better training practices that can lead to better integration of the new
information.

This experiment highlights the importance of interaction in handling underspecificity. Since many
real-world software engineering problems are underspecified, interactive systems are essential for
ensuring alignment and reducing safety risks. However, current models default to non-interactive
behavior even when faced with severe lack of information and struggle to match the performance seen
in well-specified settings. While interactive trajectories show performance gains over non-interactive
approaches for underspecified inputs, the improvement is not statistically significant, indicating
strong potential for improvement.

3.3 IMPACT OF INTERACTION DETAILS ON MODEL PERFORMANCE

Model Nav Info (%) Resolve w/o Info (%) Resolve w/ Info (%)
Claude Sonnet 3.5 8.96 37.94 59.52
Claude Haiku 3.5 24.67 24.78 36.94
Deepseek-v2 30.70 4.62 13.19
Llama 3.1 70B 30.28 4.28 6.34

Table 1: % of issues where navigational information was acquired in the Interaction setting, and the
resolve rates with and without it. Navigational information refers to file paths needing modification.

In the Interaction setting of the previous experiment, the information gained can be broadly cat-
egorized into two types: informational, which relates to the expected behavior or nature of the
error, and navigational, which pertains to the locations of the files to modify. While informational
details are typically obtained in nearly every interaction, the models request navigational details
less frequently. We measure the resolve rates separately for instances where the model asks for
navigational details and when it does not, examining the impact on performance when models must
rely only on informational details versus when navigational details are also accessible.

As seen in Table [I] requesting navigational details improves performance across all models by
providing cues beyond described behavior and errors. However, some models rely too heavily on

*Without compulsory interaction, the model defaults to non-interactive behavior for most issues, as seen in
the Hidden setting. Full prompt in §A.T.2]

Under review as a conference paper at ICLR 2026

this information and struggle when it’s missing. Smaller models like Llama 3.1 and Deepseek-
v2 request file locations more often but underperform without them. Claude models, particularly
Sonnet, better leverage informational cues, achieving higher resolve rates even without navigational
details. Deepseek, by contrast, performs worse than its Hidden setting when file locations are
absent, highlighting its dependence. This reliance leads to wasted turns searching for errors instead
of identifying them efficiently. Llama 3.1 performs better than Hidden without file locations but
gains little when they are provided, likely due to poor detail extraction (Section §3). Ideally, LLMs
should generalize across diverse interaction types, as users may not always provide specific details,
improving robustness in real-world software engineering tasks.

Takeaway: Proprietary models (Claude Sonnet 3.5, Haiku 3.5) effectively exploit interaction, re-
covering nearly 80% of their fully specified performance, with Haiku improving by 74% over its
hidden setting. In contrast, open-weight models (Deepseek-v2, Llama 3.1) show limited gains.
Performance does not correlate with model size, suggesting that training practices, rather than scale,
likely determine the ability to leverage interaction.

4 RQ2: DETECTION OF INCOMPLETE TASK SPECIFICATIONS

Can LLMs identify whether a given task description is missing crucial information? In real-
world LLM and agent applications, task descriptions and prompts often vary in quality. Unnecessary
interaction when sufficient information is already available can introduce inefficiencies and burden
users. In this work, we evaluate whether LLMs can detect missing information in software engineering
contexts by randomly presenting either fully-specified or underspecified issues, along with varying
interaction prompts, and analyzing their interaction behavior across these conditions.

4.1 EXPERIMENTAL SETUP

In this experiment, each issue is presented in either the Full setting or the Hidden setting. The
objective is to identify patterns in how models choose to interact based on the input type. Ideally, the
model should have a high interaction rate for the summarized inputs and a negligible interaction rate
for the well-specified inputs.

In the instructions which outline the task, we present the agent with an option to interact during its
solution trajectory and design three instructions with varying levels of encouragement to interact
with the user. We track the input type the model chooses to interact with. The instructions, listed
in order of increasing encouragement to interact, are: Neutral, where the agent is told it can ask
questions if anything is unclear), Moderate Encouragement, where the agent is told to carefully check
that all necessary information is available and only proceed after everything is clear, and Strong
Encouragement, where the agent is told that asking questions is critical to task success (full prompts

in Appendix §A).

Table 2: Model performance in underspecificity detection across prompts with increasing interaction
encouragement. FPR: false positive rate (unnecessary interaction); FNR: false negative rate (missed
necessary interaction). Ideal models have high accuracy, low FPR, and low FNR.

Neutral Moderate Strong
AcctT FPR | FNR | AccT FPR | FNR | Acc T FPR | FNR |

Claude Sonnet 3.5 0.60 0.00 081 084 024 009 076 036 0.10
Claude Haiku 3.5 0.54 0.00 097 057 0.02 09 0.63 0.06 0.66
Deepseek-v2 0.69 030 031 057 0.08 083 051 004 094
Llama 3.1 70B 048 046 057 047 095 009 052 093 0.06

Model

4.2 EFFECT OF DIFFERENT PROMPTS

Experiments to detect underspecificity demonstrate that, using prompt engineering, we can control
the level of interaction with the user, as shown in Table[2] But this interactivity is not possible without
clearly specifying it in the prompt wherein without any specific mention of interaction, the models
almost never interact for any of the summarized issue inputs.

Under review as a conference paper at ICLR 2026

Llama 3.1 70B

Deepseek Chat

Claude Haiku 3.5

1. Are there any existing
workarounds or temporary fixes
for this problem that | should be

| aware of?

2. Are there any specific properties
or use cases that are causing the
issue, or is it a more general

preblem with the InheritDocstrings
metaclass?

1.1 don’t have that information.

1. Can you provide more details
about the InheritDocstrings
metaclass? Specifically, what is its
purpose, and how is it currently
implemented in the repository?

2. Are there any existing tests or
examples that demonstrate the
issue? If so, can you provide the
names of these tests or examples?

1. The InheritDocstrings
metaclass is intended to ensure
that docstrings are inherited from
the parent class when the
docstring is not explicitly defined
in the child class. It currently

1. Could you provide more details
about where the InheritDocstrings

| metaclass is located in the

repository?
2. When you say the metaclass
“fails to handle properties
correctly”, could you elaborate on
what specific behavior is incorrect?

1. The InheritDocstrings
metaclass is located in the file
astropy/utils/misc.py.

2. The incorrect behavior is
related to docstring inheritance.

Specifically, properties that are

2. This seems to be a more
general problem with how the
InheritDocstrings metaclass
handles properties, not specific

uses inspect.isfunction, which
to any properties or use cases.

doesn't work with properties
since they are not functions.
2.1don't have that information.

redefined in a subclass without a
docstring do not inherit the
docstring from the base class.

/
Figure 4: Agent questions and user responses to the same underspecified input are shown for Llama
3.1 70B, Deepseek-v2, and Claude Haiku 3.5. They highlight specific interaction patterns and
differences in handling missing information. The corresponding model inputs are detailed in Table @

The Claude Sonnet model performs best with Moderate Encouragement, achieving the highest
overall accuracy of 84% across all variations. Its counterpart from the same model family, Claude
Haiku, is hesitant to interact even with Strong Encouragement. The Claude models show a drop in
accuracy in cases where interaction is not needed as their overall interaction increases, indicating
that the interaction fails to target underspecified inputs effectively. For the Deepseek model, we
observe that the Neutral prompt gives the best results as interactivity surprisingly decreases with
more encouragement. The accuracy in both the cases where interaction was desired and not desired
is around 70%, which shows that the model is capable of distinguishing between well-specified and
underspecified issues to some extent. The Llama model displays a greater, but arbitrary, tendency to
interact across all prompts than other models.

4.3 DETECTION ACROSS MODELS

While interaction levels can be adjusted with prompting, both summarized issues and full issues
have equal probability of being selected for interaction as interactivity increases, particularly with
smaller models. Despite the stark difference in the language and detail of summarized issues and fully
specified issues, the models, except Claude Sonnet, fail to reliably distinguish them, indicating that
LLMs struggle to detect missing information even in obvious cases. All models, including Claude
Sonnet, show big changes in the detection behavior with prompt variations. Interestingly, Sonnet
outperforms Haiku, likely due to superior instruction following capability, which helps it better follow
instructions and achieve the desired interactive trajectory. Surprisingly, even Deepseek adapts better
to the task than Haiku.

Takeaway: Models generally default to non-interactive behavior unless prompted, and prompt
engineering alone cannot reliably improve detection of underspecified tasks. Some models, like
Claude Sonnet, show partial ability to identify missing information, but most struggle, highlighting
the need for dedicated training rather than prompt tweaks to handle underspecificity effectively.

5 RQ3: QUESTION QUALITY

Can LLMs generate meaningful and targeted clarification questions that gather the necessary
information to complete the task? To gather missing information from underspecified inputs, the
quality of an agent’s questions is crucial. While §3]evaluates task completion, the model performance
in the experiment is influenced by the coding ability. Here, we focus solely on the quality of
the questions posed by the agent to the user, measuring how effectively models extract relevant
information.

5.1 EXPERIMENTAL SETUP

In this experiment, we evaluate the quality of the interactions between the agent and the user in
the Interaction setting. We measure the novelty and detail level of the information obtained from
the user’s answers to evaluate the quality, quantifying the new knowledge relative to the existing
understanding of the agent. We employ two techniques to quantify the information obtained.

Under review as a conference paper at ICLR 2026

1. Cosine distance: We compute the cosine distance (1 — cos(P,)) between the embeddings of the
summarized task Fipefore and the cumulative knowledge after interaction with the user Fje, using
a text embedding model. Lower distances indicate redundant user input, while higher values show
meaningful information gain. We use OpenAl’s text-embedding-3-small as our embedding model.

2. LLM-as-judge (GPT-40): The model scores the user answers on a scale of 1 to 5, where a higher
score corresponds to more new and detailed information in the user’s response, such as specific
files causing errors or function behavior. The prompt to the model includes the summarized issue,
agent questions, and user responses for better context.

5.2 INFORMATION GAIN FROM INTERACTION

For the quantitative evaluation of the quality of the question, both the cosine distance and the LLM-
as-judge methods suggest a similar result: the Llama model performs significantly worse than the
other models, whereas the other models achieve very similar information gains, as seen in Figure[5]

The Llama model has an average cosine distance of 0.101 when the embedding of the summarized
issue is compared to the embedding of the user response appended to the summarized issue. Deepseek
achieves the highest cosine distance of 0.142, while the Claude Sonnet and Haiku models achieve
very similar cosine distances of 0.136 and 0.135.

Using LLM as a judge, we evaluate the specificity of the details present in the answers. Here again,
the Llama 3.1 model achieves a significantly worse average score of 3.58 than the other models which
see similar performance of around 4 out of 5.

—
o
-

(a)

o
w

= lE e

Llama 3.1 Deepseek-v2 Claude Haiku Claude Sonnet

Cosine Distance
o
o
LLM-as-Judge Score
w

e
=

1/

Llama 3.1 Deepseek-v2 Claude Haiku Claude Sonnet

Figure 5: Information Gain measured using (a) Cosine Distance Scores and (b) LLM-as-Judge Scores.

5.3 QUALITATIVE ANALYSIS OF QUESTIONS

The quantitative results can be further supported by a qualitative evaluation of the questions. Sample
question-answer pairs reflecting common trends are shown in Figure 4] The Llama model asks fewer
questions on average than other models in one message for user interaction, as seen in Table[5] and
often poses overly general questions like, Are there any existing workarounds or temporary fixes?.
These template-like questions are unproductive and less likely to gather useful information.

Deepseek, on the other hand, asks the most questions per message, allowing it to extract more
information. Its questions, such as Are there any existing tests or examples that demonstrate the
issue?, aim to extract, edge cases, documentation, or tests, and while common across multiple issues,
they are reasonable and yield valuable details. But most questions are very specific and detailed,
querying about the expected behavior. Often, due to the specificity of the question, the user might not
have the required information.

Claude Sonnet asks fewer questions than Deepseek, likely because it explores the codebase first. The
questions do not have easily discernible patterns and match the Deepseek model in specificity. The
Haiku model, in contrast, follows a consistent template, typically asking three questions regardless of
the input, although sub-questions may be present. Haiku’s questions are more keyword-driven based
on the input, while Sonnet’s are based on a deeper understanding of the issue and codebase.

Takeaway: Models that balance specificity and question quantity, such as Claude, achieve higher
information gain and interaction quality. DeepSeek benefits from detailed questioning but risks
overwhelming users, while Llama underperforms due to generic or irrelevant queries.

Under review as a conference paper at ICLR 2026

6 RELATED WORK

Code generation benchmarks Ambiguity is a closely related domain to underspecificity, where
model misinterpretation of user intent is a common failure mode. In both cases, clarification becomes
necessary, though the causes differ. Ambiguity stems from vague or multi-interpretable inputs, while
underspecificity arises when key information is entirely omitted. This is especially relevant in our
setting, where models operate over intent summaries that may only partially capture user goals.
Clarifying questions help mitigate ambiguity (Mu et al.||2023)), and interactive, test-driven workflows
generate test cases aligned with expectations, which users validate before code generation (Lahir1
et al.| 2023). Extensions of this approach employ runtime techniques to generate, mutate, and rank
candidates based on user feedback (Fakhoury et al.| | 2024). Although effective, these workflows can
burden users, highlighting the need to minimize intervention to essential cases.

Interactive ML systems In interactive systems, ambiguity is often categorized and addressed via
targeted clarification. [Niwa & Iso|(2024) introduces a taxonomy of instruction ambiguities, such as
unclear output formats or contextual constraints, and applies disambiguation strategies accordingly.
Similarly, Wang et al.| (2024a) evaluates LLM behavior on ambiguous tool-use instructions, and
Feng et al.|(2024)) uses reinforcement learning to optimize intervention. Although these systems
successfully reduce ambiguity, underspecificity poses a subtler challenge, where there is missing
context, leading to hallucinated assumptions and requires agents to clarify.

LLMs and ambiguity Modern LLMs are not explicitly trained to resolve ambiguity via interac-
tion (Zhang et al.}|2024])), but instruction tuning improves their performance when guided by prompt
engineering (White et al.l 2023). Ambiguity detection has been approached through uncertainty
estimation (Zhang & Choil, 2023} |Park et al.,2024) and self-disambiguation (Keluskar et al.| 2024}
Sterner}, 2022; [Sumanathilaka et al.| [2024). For example, Kim et al.| (2024) quantifies ambiguity
using information gain. Although inference-only methods are cost-effective, they are less robust
than training-based approaches for handling ambiguity. |Chen et al.[(2025) address disambiguation in
conversational settings, but typically with only a single missing detail. In contrast, we study under-
specification in complex agentic tasks, where multiple interdependent gaps can arise dynamically,
and agents may take many steps before recognizing missing information.

7 CONCLUSION, LIMITATIONS, AND FUTURE WORK

Our evaluation of proprietary and open-weight language models in agentic frameworks highlights
how underspecificity poses a core challenge in software engineering tasks. Effective performance
requires (i) detecting missing information, and (ii) acquiring it through precise, targeted interaction
before (iii) attempting a solution with the full information.

Our analysis is subject to a few scope constraints. Underspecificity detection is measured only
within the first three turns, as models rarely recover if they fail to engage early. Question quality
is approximated via latent vector changes that weigh all information equally, though models may
prioritize details differently. Finally, our simulated user proxy may be more cooperative than real
users, though we mitigate this by limiting interaction turns and focusing them tightly on the task.

Despite these limitations, several clear trends emerge from our experiments:

» With a brief round of clarification, leading proprietary models recover much of their fully-specified
performance, while open-weight models continue to lag, revealing a significant interaction gap.

* LLMs rarely initiate clarification unprompted, and their sensitivity to prompt framing makes them
brittle in noisy, real-world contexts.

» The most effective questions are specific, actionable, and task-level, while vague prompts or
implementation details recoverable from the codebase add little value.

Overall, a gap remains between underspecified and fully specified resolution rates. Closing it will
require open-weight models to adopt stronger interaction strategies and proprietary models to engage
more proactively. Our framework provides a blueprint for decomposing resolution into multiple
steps, enabling finer-grained analysis of where models succeed or fail. While we focus on software
engineering, the methods and insights can extend to other complex, real-world agentic tasks. Thus,
our work offers both a diagnostic framework for agent evaluation and a roadmap toward more robust,
adaptive, and user-aligned agents that can thrive in underspecified and dynamic environments.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of the presented results, this paper provides comprehensive details on
the methodology, data generation, and experimental setup. All key components of the proposed
framework are described with the intention of enabling replication by an independent research group.
The experimental setup is detailed in §2]and full prompts are provided in the Appendix §A] We have
also attached the code with the steps to reproduce and the experimental data.

LLM USAGE

We used a large language model to assist with polishing the writing style, condensing the content,
and improving clarity. All research ideas, methods, experiments, and analyses were developed and
conducted by the authors. The LLM did not contribute to scientific content.

REFERENCES
Lama Ahmad and OpenAl. Gpt-4o system card, October 2024.

Anthropic. Claude 3.5 haiku, 10 2024a. URL |https://www.anthropic.com/claude/
haikul Accessed on January 9, 2025.

Anthropic. Introducing claude 3.5 sonnet, 6 2024b. URL https://www.anthropic.com/
news/claude—-3-5-sonnet. Accessed on January 8, 2025.

Erik Brynjolfsson, Danielle Li, and Lindsey R Raymond. Generative ai at work. Working Paper
31161, National Bureau of Economic Research, April 2023. URL http://www.nber.org/
papers/w31161l

Maximillian Chen, Ruoxi Sun, Tomas Pfister, and Sercan O. Arik. Learning to clarify: Multi-turn
conversations with action-based contrastive self-training, 2025. URL https://arxiv.org/
abs/2406.00222,

Neil Chowdhury, James Aung, Chan Jun Shern, Oliver Jaffe, Dane Sherburn, Giulio Starace, Evan
Mays, Rachel Dias, Marwan Aljubeh, Mia Glaese, Carlos E. Jimenez, John Yang, Kevin Liu, and
Aleksander Madry. Introducing SWE-bench verified, 2024. URL https://openai.com/
index/introducing—-swe—-bench-verified/. Accessed on December 10, 2024.

DeepSeek-Al. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model,
2024.

Sarah Fakhoury, Aaditya Naik, Georgios Sakkas, Saikat Chakraborty, and Shuvendu K. Labhiri.
Llm-based test-driven interactive code generation: User study and empirical evaluation. /EEE
Transactions on Software Engineering, 50(9):2254-2268, September 2024. ISSN 2326-3881. doi:
10.1109/tse.2024.3428972. URL http://dx.doi.org/10.1109/TSE.2024.3428972.

Xueyang Feng, Zhi-Yuan Chen, Yujia Qin, Yankai Lin, Xu Chen, Zhiyuan Liu, and Ji-Rong Wen.
Large language model-based human-agent collaboration for complex task solving, 2024. URL
https://arxiv.org/abs/2402.12914l

Dong Huang, Jie M. Zhang, Michael Luck, Qingwen Bu, Yuhao Qing, and Heming Cui. Agentcoder:
Multi-agent-based code generation with iterative testing and optimisation, 2024. URL https:
//arxiv.org/abs/2312.13010.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024. URL
https://arxiv.org/abs/2310.06770.

Ulas Berk Karli and Tesca Fitzgerald. Extended abstract: Resolving ambiguities in LLM-enabled
human-robot collaboration. In 2nd Workshop on Language and Robot Learning: Language as
Grounding, 2023. URL https://openreview.net/forum?id=Ltwudx83Rcl

10

https://www.anthropic.com/claude/haiku
https://www.anthropic.com/claude/haiku
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
http://www.nber.org/papers/w31161
http://www.nber.org/papers/w31161
https://arxiv.org/abs/2406.00222
https://arxiv.org/abs/2406.00222
https://openai.com/index/introducing-swe-bench-verified/
https://openai.com/index/introducing-swe-bench-verified/
http://dx.doi.org/10.1109/TSE.2024.3428972
https://arxiv.org/abs/2402.12914
https://arxiv.org/abs/2312.13010
https://arxiv.org/abs/2312.13010
https://arxiv.org/abs/2310.06770
https://openreview.net/forum?id=LtwuJx83Rc

Under review as a conference paper at ICLR 2026

Aryan Keluskar, Amrita Bhattacharjee, and Huan Liu. Do Ilms understand ambiguity in text? a
case study in open-world question answering, 2024. URL https://arxiv.org/abs/2411|
12395.

Hyuhng Joon Kim, Youna Kim, Cheonbok Park, Junyeob Kim, Choonghyun Park, Kang Min Yoo,
Sang goo Lee, and Taeuk Kim. Aligning language models to explicitly handle ambiguity, 2024.
URLhttps://arxiv.org/abs/2404.11972.

Shuvendu K. Lahiri, Sarah Fakhoury, Aaditya Naik, Georgios Sakkas, Saikat Chakraborty, Madanlal
Musuvathi, Piali Choudhury, Curtis von Veh, Jeevana Priya Inala, Chenglong Wang, and Jianfeng
Gao. Interactive code generation via test-driven user-intent formalization, 2023. URL https:
//arxiv.org/abs/2208.05950.

Shuyue Stella Li, Vidhisha Balachandran, Shangbin Feng, Jonathan S. Ilgen, Emma Pierson, Pang Wei
Koh, and Yulia Tsvetkov. Mediq: Question-asking llms and a benchmark for reliable interactive
clinical reasoning, 2024. URL https://arxiv.org/abs/2406.00922,

Llama team. The llama 3 herd of models. https://ai.meta.com/research/
publications/the-1llama-3-herd-of-models/, July 2024. Accessed on January
9, 2025.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai scientist:
Towards fully automated open-ended scientific discovery, 2024. URL https://arxiv.org/
abs/2408.06292.

Fangwen Mu, Lin Shi, Song Wang, Zhuohao Yu, Binquan Zhang, Chenxue Wang, Shichao Liu, and
Qing Wang. Clarifygpt: Empowering llm-based code generation with intention clarification, 2023.
URL https://arxiv.org/abs/2310.10996.

Ayana Niwa and Hayate Iso. Ambignlg: Addressing task ambiguity in instruction for nlg, 2024. URL
https://arxiv.org/abs/2402.17717.

Jeongeun Park, Seungwon Lim, Joonhyung Lee, Sangbeom Park, Minsuk Chang, Youngjae Yu, and
Sungjoon Choi. Clara: Classifying and disambiguating user commands for reliable interactive
robotic agents, 2024. URL |https://arxiv.org/abs/2306.10376l

Sida Peng, Eirini Kalliamvakou, Peter Cihon, and Mert Demirer. The impact of ai on developer
productivity: Evidence from github copilot, 2023. URL https://arxiv.org/abs/2302|
06590.

Matthew Richard John Purver. The theory and use of clarification requests in dialogue. PhD thesis,
University of London King’s College, 2004.

Beckett Sterner. Explaining ambiguity in scientific language. Synthese, 200(5):354, 2022.

T. G. D. K. Sumanathilaka, Nicholas Micallef, and Julian Hough. Can Illms assist with ambiguity?
a quantitative evaluation of various large language models on word sense disambiguation, 2024.
URLhttps://arxiv.org/abs/2411.18337.

Alberto Testoni and Raquel Ferndndez. Asking the right question at the right time: Human and model
uncertainty guidance to ask clarification questions. arXiv preprint arXiv:2402.06509, 2024.

Wenxuan Wang, Juluan Shi, Chaozheng Wang, Cheryl Lee, Youliang Yuan, Jen tse Huang, and
Michael R. Lyu. Learning to ask: When llms meet unclear instruction, 2024a. URL https:
//arxiv.org/abs/2409.00557.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fugiang Li, Ren Ma, Mingzhang Zheng,
Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
Brennan, Hao Peng, Heng Ji, and Graham Neubig. Openhands: An open platform for ai software
developers as generalist agents, 2024b. URL https://arxiv.org/abs/2407.16741.

11

https://arxiv.org/abs/2411.12395
https://arxiv.org/abs/2411.12395
https://arxiv.org/abs/2404.11972
https://arxiv.org/abs/2208.05950
https://arxiv.org/abs/2208.05950
https://arxiv.org/abs/2406.00922
https://ai.meta.com/research/publications/the-llama-3-herd-of-models/
https://ai.meta.com/research/publications/the-llama-3-herd-of-models/
https://arxiv.org/abs/2408.06292
https://arxiv.org/abs/2408.06292
https://arxiv.org/abs/2310.10996
https://arxiv.org/abs/2402.17717
https://arxiv.org/abs/2306.10376
https://arxiv.org/abs/2302.06590
https://arxiv.org/abs/2302.06590
https://arxiv.org/abs/2411.18337
https://arxiv.org/abs/2409.00557
https://arxiv.org/abs/2409.00557
https://arxiv.org/abs/2407.16741

Under review as a conference paper at ICLR 2026

Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry Gilbert, Ashraf Elnashar,
Jesse Spencer-Smith, and Douglas C Schmidt. A prompt pattern catalog to enhance prompt
engineering with chatgpt. arXiv preprint arXiv:2302.11382, 2023.

Frank F. Xu, Yufan Song, Boxuan Li, Yuxuan Tang, Kritanjali Jain, Mengxue Bao, Zora Z. Wang,
Xuhui Zhou, Zhitong Guo, Murong Cao, Mingyang Yang, Hao Yang Lu, Amaad Martin, Zhe Su,
Leander Maben, Raj Mehta, Wayne Chi, Lawrence Jang, Yiqing Xie, Shuyan Zhou, and Graham
Neubig. Theagentcompany: Benchmarking 1lm agents on consequential real world tasks, 2024.
URLhttps://arxiv.org/abs/2412.14161.

Michael J. Q. Zhang and Eunsol Choi. Clarify when necessary: Resolving ambiguity through
interaction with Ims, 2023. URL https://arxiv.org/abs/2311.09469.

Tong Zhang, Peixin Qin, Yang Deng, Chen Huang, Wenqgiang Lei, Junhong Liu, Dingnan Jin, Hongru
Liang, and Tat-Seng Chua. Clamber: A benchmark of identifying and clarifying ambiguous
information needs in large language models, 2024. URL https://arxiv.org/abs/2405,
12063.

Ruiqgi Zhong, Peter Zhang, Steve Li, Jinwoo Ahn, Dan Klein, and Jacob Steinhardt. Goal driven
discovery of distributional differences via language descriptions, 2023. URL https://arxiv.
org/abs/2302.14233.

Xuhui Zhou, Hyunwoo Kim, Faeze Brahman, Liwei Jiang, Hao Zhu, Ximing Lu, Frank Xu,
Bill Yuchen Lin, Yejin Choi, Niloofar Mireshghallah, Ronan Le Bras, and Maarten Sap. Haicosys-
tem: An ecosystem for sandboxing safety risks in human-ai interactions. arXiv, 2024a. URL
http://arxiv.org/abs/2409.16427.

Xuhui Zhou, Hao Zhu, Leena Mathur, Ruohong Zhang, Haofei Yu, Zhengyang Qi, Louis-Philippe
Morency, Yonatan Bisk, Daniel Fried, Graham Neubig, and Maarten Sap. Sotopia: Interactive
evaluation for social intelligence in language agents, 2024b. URL https://arxiv.org/
abs/2310.11667k

A APPENDIX

A.1 EXPERIMENTAL DESIGN
A.1.1 FULL SETTING

In addition to the fully-specified GitHub issue from SWE-Bench Verified, we also include hints from
the dataset, which contains the conversation between developers regarding the issue. This helps create
a larger knowledge gap in comparison to the Hidden setting.

12

https://arxiv.org/abs/2412.14161
https://arxiv.org/abs/2311.09469
https://arxiv.org/abs/2405.12063
https://arxiv.org/abs/2405.12063
https://arxiv.org/abs/2302.14233
https://arxiv.org/abs/2302.14233
http://arxiv.org/abs/2409.16427
https://arxiv.org/abs/2310.11667
https://arxiv.org/abs/2310.11667

Under review as a conference paper at ICLR 2026

Prompt for Full Setting

I've uploaded a Python code repository in the directory
/workspace/{workspace_dir_name}. Consider the following PR description:
<pr_description>{instance.full_issue}</pr_description>

Here are some additional hints: <hints>{instance.hints_text}</hints>

Can you help me implement the necessary changes to the repository so that the requirements
specified in the PR description are met?

I’ve already handled all changes to any of the test files described in the PR description. This
means you DON’T need to modify the testing logic or any of the tests!

Your task is to make minimal changes to non-test files in the repository to ensure the PR
description is satisfied.

Follow these steps to resolve the issue:

1. As afirst step, explore the repo to familiarize yourself with its structure.

2. Create a script to reproduce the error and execute it with python <filename.py>
using the BashTool to confirm the error.

3. Edit the source code in the repo to resolve the issue.
4. Rerun your reproduce script to confirm the error is fixed.
5. Consider edge cases and make sure your fix handles them as well.

Your thinking should be thorough, and it’s fine if it’s very long.

A.1.2 INTERACTION SETTING

In this setting, the user proxy agent receives both the fully specified issue and additional hints,
maintaining the knowledge gap relative to the Hidden setting. This provides extra information for
the coding agent to extract through interaction. The files to be modified are also provided to the
user proxy agent, allowing us to track specific details across issues. Since file-related information is
universally useful—unlike other details whose importance may be subjective—it enables evaluation
of how effectively different models incorporate critical information into their solution paths.

This setup reflects a scenario where the user might know additional details not included in their
initial input, which can still be extracted to improve performance. While more capable models may
independently retrieve this information by exploring the codebase, it can be particularly helpful for
lower-performing models. By tracking which models choose to extract this information, we gain
insights into the types of questions they ask and observe behavioral trends across models.

13

Under review as a conference paper at ICLR 2026

Prompt for Interaction Setting with Mandatory Interaction

I’'ve uploaded a Python code repository in the directory
/workspace/{workspace_dir_name}. Consider the following PR description:
<pr_description>{instance.summarized_issue}</pr_description>
Can you help me implement the necessary changes to the repository so that the requirements
specified in the PR description are met?

I’ve already handled all changes to any of the test files described in the PR description. This
means you DON’T need to modify the testing logic or any of the tests!

Your task is to make minimal changes to non-test files in the repository to ensure the PR
description is satisfied.

I have not provided all the necessary details about the issue and I have some hidden details
that are helpful. Please ask me specific questions using non-code commands to gather the
relevant information that I have to help you solve the issue. Ensure you have all the details
you require to solve the issue.

You have a limited number of turns. Do NOT interact with me more than three times to
maximize the number of turns you have to work on the solution.

Follow these steps to resolve the issue:

1. As a first step, look at the issue and ask me questions to get all the necessary details
about the issue. You can also ask me questions if you run into a problem in later
steps.

2. Then, it might be a good idea to explore the repo to familiarize yourself with its
structure.

3. Create a script to reproduce the error and execute it with python
<filename.py> using the BashTool to confirm the error.

4. Edit the source code in the repo to resolve the issue.

5. Rerun your reproduce script to confirm the error is fixed.

6. Think about edge cases and make sure your fix handles them as well.
Your thinking should be thorough, and it’s fine if it’s very long.

Prompt to User Proxy

You are a GitHub user reporting an issue. Here are the details of your issue and environment:
Issue: {issue}

Hints: {hints}

Files relative to your current directory: {files}

Your task is to respond to questions from a coder who is trying to solve your issue. The coder
has a summarized version of the issue you have. Follow these rules:

1. If the coder asks a question that is directly related to the information in the issue you have,
provide that information.

2. Always stay in character as a user reporting an issue, not as an Al assistant.

3. Keep your responses concise and to the point.

4. The coder has limited turns to solve the issue. Do not interact with the coder beyond 3
turns.

Respond with I don’t have that information if the question is unrelated or you’re unsure.

14

Under review as a conference paper at ICLR 2026

Metric Mean Median Std Dev

ROUGE-1 Recall 0.179 0.159 0.102
ROUGE-L Recall 0.111 0.094 0.069
Entity Recall 0.085 0.030 0.141
BERTScore F1 -0.111 -0.127 0.194

Table 3: Quantitative comparison of underspecified summaries against full issues using overlap- and
semantics-based metrics.

A.1.3 HIDDEN SETTING

Prompt for Hidden Setting

I've uploaded a Python code repository in the directory
/workspace/{workspace_dir_name}. Consider the following PR description:
<pr_description>{instance.summarized_issue}</pr_description>
Can you help me implement the necessary changes to the repository so that the requirements
specified in the PR description are met?

I’ve already taken care of all changes to any of the test files described in the PR description.
This means you DON’T need to modify the testing logic or any of the tests!

Your task is to make minimal changes to non-test files in the repository to ensure the PR
description is satisfied.

Follow these steps to resolve the issue:

1. As a first step, it might be a good idea to explore the repo to familiarize yourself
with its structure.

2. Create a script to reproduce the error and execute it with python
<filename.py> using the BashTool to confirm the error.

3. Edit the source code in the repo to resolve the issue.
4. Rerun your reproduce script to confirm the error is fixed.
5. Consider edge cases and make sure your fix handles them as well.

Your thinking should be thorough, and it’s fine if it’s very long.

Prompt For Summarizing GitHub Issues

I have several issues from GitHub related to code specifications. Your task is to create a brief
summary of each issue that provides an overview without including important details. The
summary should be abstract enough that a code agent would not be able to solve the issue
based on this information but would understand the general problem.

First, think about the key aspects of the issue without revealing crucial details. Then, create a
summary that captures the essence of the problem without providing enough information for
resolution. Use the <summary> and </summary> tags around your generated summary.
The output should be in the form: <summary> ... </summary>

Here is the issue: {issue}

15

Under review as a conference paper at ICLR 2026

LLM Underspecification Analysis prompt

Compare these two texts and identify what INFORMATION is present in the original issue but
missing in the problem statement. Focus on factual content differences, not language or writing
style differences.

Original GitHub Issue:

{original_issue}
Summarized Problem Statement:
{problem_statement}

Instructions: Identify specific pieces of information that appear in the original issue but are
absent or underspecified in the problem statement. Focus ONLY on informational content -
ignore differences in:

* Wording or phrasing
* Writing style or tone
 Sentence structure
* Different ways of expressing the SAME information
For example:
* DO include: “Error message 'FileNotFoundError’ is missing” (different information)

* DO NOT include: “Less detailed explanation of the bug” (same information, different
wording)

List each missing piece of information as a separate numbered item. Be specific and concrete.
Output your analysis as a numbered list within <missing_info></missing_info> tags.

A.2 STATISTICAL METHODS
A.2.1 WILCOXON SIGNED-RANK TEST

The Wilcoxon Signed-Rank Test is a non-parametric statistical test used to determine if there is a
significant difference between the medians of two related groups. Unlike the paired t-test, it does not
assume that the differences between paired observations are normally distributed, making it more
suitable for cases where this assumption may not hold.

In this work, the Wilcoxon Signed-Rank Test is applied to compare the performance of models
between two settings (e.g., Hidden vs. Interaction, Interaction vs. Full) with the hypothesis that
performance in the second setting is greater than in the first.

Formally, the null hypothesis (Hj) for the Wilcoxon Signed-Rank Test states that the median
difference between the two settings is zero or negative:

H()ZdSO

where d represents the median of the paired differences. The alternative hypothesis (H;) asserts that
the median difference is greater than zero:

Hi:d>0

The test ranks the absolute differences between paired observations, considering both the magnitude
and direction of change. If the p-value obtained from the test is less than the significance threshold
(0.05), we reject the null hypothesis, concluding that there is a statistically significant improvement
in performance between the two settings.

A.2.2 COMPUTE REQUIREMENTS

The experiments are conducted using 16 workers in the Remote Runtime (beta) provided in Open-
Hands which is a cloud-based runtime for parallel execution.

16

Under review as a conference paper at ICLR 2026

Model Comparison p-value

Hidden vs Interaction 0.0023
Interaction vs Full 3.87e-06

Llama 3.1 70B

Hidden vs Interaction 2.18e-14
Interaction vs Full 1.65e-09

Hidden vs Interaction 8.55e-19
Interaction vs Full 1.28e-12

Hidden vs Interaction 0.0023
Interaction vs Full 2.87e-07

Claude Haiku 3.5

Claude Sonnet 3.5

Deepseek-v2

Table 4: Wilcoxon signed-rank test results for Hidden vs Interaction and Interaction vs Full settings

across

A3

A4

where:

models.

UNDERSPECIFICITY DETECTION PROMPTS

* Neutral: Ensure you have all the necessary information to proceed. If any part of the issue
is unclear or lacks critical details, ask concise, targeted questions to clarify. If everything is
clear, you can move ahead without asking unnecessary questions.

* Moderate Encouragement: Before attempting a solution, carefully check whether all key
information is provided. If there’s any ambiguity or missing details that could impact your
work, don’t hesitate to ask questions. Your goal is to gather the information needed for an
accurate and efficient solution. Only skip asking questions when you are absolutely sure all
details are complete.

¢ Strong Encouragement: Your success depends on having all relevant details to solve the
issue effectively. Whenever you encounter unclear or missing information, proactively ask
questions to fill those gaps. Even minor ambiguities can affect the outcome, so always
prioritize clarifying questions. Avoid questions only when you are 100% certain no further
clarification is needed.

QUESTION QUALITY ANALYSIS

P-Q

Cosine Distance(P,Q) =1 — ——+—
1P

ey

o P ={p1,pa,...,pn} represents the embedding vector of the updated knowledge (Fiafier)-
* Q={q1,q,-..,qn} represents the embedding vector of the initial knowledge (Epefore)-
e N = 1536 is the dimensionality of the embedding space.

Table 5: Average number of questions asked per interaction.

Model Avg. # Questions
Claude Sonnet 3.5 3.80
Claude Haiku 3.5 3.49
Deepseek-v2 4.57
Llama 3.1 70B 2.61

17

Under review as a conference paper at ICLR 2026

Table 6: Examples of questions and their responses across different models reflecting general patterns.

Model Summarized issue Selected questions Answers
Llama 3.1 The InheritDocstrings
70B metaclass fails to handle properties 1, Any known workarounds or temporary 1. Idon’t have that information.
due to reliance on function checks fixes? 2. It seems to be a general problem with
that miss properties. . . o o g) p‘ .
2. Is the issue property-specific or gen- how the metaclass handles properties.
eral?
Deepseek Same issue with property handling
Chat in InheritDocstrings. 1. What is the purpose and 1. It ensures docstrings are in-
current implementation of herited from the parent. Uses
InheritDocstrings? inspect.isfunction, which
2. Are there existing tests that demon- fails for properties.
strate the issue? 2. Tdon’t have that information.
Claude Haiku Same issue with improper
3.5 property handling by 1. Where is the metaclass located in the 1. It is in

InheritDocstrings.

repo?
What is the specific incorrect behavior?

astropy/utils/misc.py.

2. Properties redefined without doc-
strings don’t inherit from the base.

Claude Sonnet
35

A method fails with Python 3
byte input, unlike its counterpart
that handles both text and binary
modes.

Which method has this issue?
Example of a failing byte string input?

1. The method is
Header.fromstring.

2. No specific example, but it should con-
tain full header data as bytes.

18

	Introduction
	Method
	Dataset
	Agentic framework
	Study design

	RQ1: Interactive problem solving
	Experimental setup
	Leveraging interaction in underspecificity
	Impact of interaction details on model performance

	RQ2: Detection of incomplete task specifications
	Experimental setup
	Effect of different prompts
	Detection across models

	RQ3: Question quality
	Experimental setup
	Information gain from interaction
	Qualitative analysis of questions

	Related Work
	Conclusion, Limitations, and Future Work
	Appendix
	Experimental design
	Full setting
	Interaction setting
	Hidden setting

	Statistical methods
	Wilcoxon Signed-Rank test
	Compute Requirements

	Underspecificity detection prompts
	Question Quality Analysis

