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ABSTRACT

AI agents are increasingly being deployed to automate tasks, often based on under-
specified user instructions. Making unwarranted assumptions to compensate for the
missing information and failing to ask clarifying questions can lead to suboptimal
outcomes, safety risks due to tool misuse, and wasted computational resources. In
this work, we study the ability of LLM agents to handle underspecified instructions
in interactive code generation settings by evaluating proprietary and open-weight
models on their performance across three key steps: (a) detecting underspecificity,
(b) asking targeted clarification questions, and (c) leveraging the interaction to
improve performance in underspecified scenarios. Our findings reveal that mod-
els struggle to distinguish between well-specified and underspecified instructions.
However, when models interact for underspecified inputs, they effectively obtain
vital information from the user leading to significant improvements in performance,
up to 74% over the non-interactive settings, underscoring the value of effective
interaction. Our study highlights critical gaps in how current state-of-the-art models
handle missing information in complex software engineering tasks and structures
the evaluation into distinct steps to enable targeted improvements.

1 INTRODUCTION

Figure 1: Interactive agents reduce resource
wastage and misalignment in underspecified
settings.

Large Language Models (LLMs) are increasingly
used as chatbots in task-oriented workflows to im-
prove productivity (Peng et al., 2023; Brynjolfsson
et al., 2023), with the user providing a task instruction
which the model completes. Due to the interactive
nature of chatbots, the performance depends on the
information provided in the user’s prompt. Users of-
ten provide non-descriptive instructions, which poses
critical challenges in successfully completing the
task (Chowdhury et al., 2024). The missing informa-
tion can lead not only to erroneous outcomes, often
based on hallucinations, but also to significant safety
issues (Kim et al., 2024; Karli & Fitzgerald, 2023).

This underspecificity can lead to more severe con-
sequences in task automation, where AI agents are
equipped with powerful tools (Wang et al., 2024b; Lu
et al., 2024; Huang et al., 2024; Zhou et al., 2024a). In
software engineering settings, agents navigate com-
plex codebases, make architectural decisions, and
modify critical systems—all while operating with
potentially incomplete instructions. When human de-
velopers face such lack of information, they engage
in clarifying dialogue to gather context (Testoni &
Fernández, 2024; Purver, 2004). However, current AI
systems proceed with incomplete understanding, leading to costly mistakes and misaligned solutions.

In this work, we systematically evaluate the interaction capabilities of commonly used open and
proprietary LLMs when addressing underspecified instructions in agentic code settings (§2). We
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define underspecificity as missing information that would prevent an expert from being able to create
a successful solution, using the same definition as SWE-Bench Verified annotation rubric. Previous
work on underspecificity (Chen et al., 2025; Kim et al., 2024) typically focuses on cases where only a
single detail is missing. In contrast, real-world agentic tasks often involve multiple, interdependent
gaps in specification that emerge over the course of a trajectory—spanning file locations, design
decisions, and constraints—making the problem substantially harder and motivating new evaluation
frameworks. Our work makes the following contributions:

1. Evaluating underspecificity in complex agentic tasks. We extend SWE-Bench Verified with
underspecified variants of GitHub issues and introduce an interactive evaluation framework
where agents can query a simulated user (Xu et al., 2024; Zhou et al., 2024b) holding the full
specification. This design enables controlled study of how agents handle different forms and
levels of underspecificity in realistic multi-step workflows. We also compare against the standard
SWE-Bench setting and a non-interactive underspecified setting to analyze differences in agent
trajectories.

2. Analysis of interaction capabilities We break down resolution under underspecificity into three
fundamental capacities: (i) detecting when instructions are incomplete, (ii) acquiring the missing
details through targeted clarification, and (iii) leveraging the interaction to successfully complete
the task. We design evaluations for each capacity and measure performance across proprietary
and open-weight models.

3. Empirical insights for agent design Our experiments show that interactivity can recover perfor-
mance lost to underspecificity, but most LLMs default to non-interactive behavior and struggle with
robust detection. We identify actionable clarifying questions as the main driver of performance
gains, providing concrete guidance for future model and agent design.

The multi-stage evaluation allows for targeted improvements in individual aspects, offering a pathway
to enhance overall system performance. Through our evaluations across the different settings, we
find that interactivity can boost performance on underspecified inputs by up to 74% over the non-
interactive settings, though performance varies across models (§3). LLMs default to non-interactive
behavior without explicit encouragement, and even with it, they struggle to distinguish between
underspecified and well-specified inputs. Claude Sonnet 4 and Claude Sonnet 3.5 are the only
evaluated LLMs that achieve notable accuracy (89% and 84%, respectively) in making this distinction.
Prompt engineering offers limited improvement, and its effectiveness varies across models (§4).
When interacting, LLMs generally pose questions capable of extracting relevant details, but some
models, such as Llama 3.1 70B, fail to obtain sufficient specificity (§5). As models grow more
capable (e.g., from Claude Sonnet 3.5 to Claude Sonnet 4), interaction provides diminishing returns,
suggesting current training practices may not adequately leverage clarification. In summary, this
study underscores the importance of interactivity in LLMs for agentic workflows, particularly in
real-world tasks where prompt quality varies significantly.

2 METHOD

2.1 DATASET

In our experiments, we simulate well-specified and underspecified inputs using the SWE-Bench
Verified dataset, a refined subset of 500 issues from the SWE-Bench dataset. The SWE-Bench
dataset (Jimenez et al., 2024) consists of real-world GitHub issues, their corresponding pull requests
(PRs), and unit tests from 12 Python repositories. The SWE-Bench Verified dataset (Chowdhury
et al., 2024) is designed to provide a more reliable estimate of an LLM’s ability by pruning issues
that were underspecified or contained invalid unit tests. The task of an LLM is to modify the state of
the repository at the time of creation of the issue and resolve it. The test cases are used to verify the
patch generated by the agent.

Given that the Verified subset contains only sufficiently specified issues as per human annotations, we
assume that these issues do not require more information. Therefore, for each SWE-Bench Verified
issue, we consider two forms, as shown in Figure 2:

1. Fully specified issue: The original and detailed GitHub issue.
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Figure 2: The three settings in order: Full, Hidden, and Interaction.

2. Underspecified issue: A synthetic version generated using GPT-4o, where the model is asked to
preserve specific terminology is preserved but reduce the amount of detailed content (complete
prompt in Appendix §A.2.3).

We conduct an analysis comparing annotated underspecified issues in SWE-Bench with our generated
underspecified issues using distributional difference analysis (Zhong et al., 2023) to identify how the
underspecification in our generations varies from real user issues. Our findings show that natural
underspecified issues have more (1) concrete technical details (code snippets, error messages, file/line
references), (2) reproducibility information, (3) links to external references, and (4) conversational
fragments (stream of thought, incomplete sentences)

In contrast, our generated issues did not have any particular additional features—they do not have
traits that are statistically more common than natural issues. Our approach uses more aggressive
information removal, specifically targeting code snippets and error messages. However, there are
naturally occurring underspecified issues that are similarly vague as well. The other differences
(external links, conversational style) may not directly impact agent performance since agents cannot
access external information.

To assess the extent of information loss in the underspecified issues of our dataset, we provide
quantitative metrics in the Appendix §A.2.3. For a concrete specification of missing information
between the fully specified and the underspecified issue, we use an LLM to annotate the differences1.
A qualitative evaluation of the summaries confirms the findings of the distributional difference
analysis. We did not evaluate on naturally underspecified SWE-Bench examples because they lack the
paired ground truth (complete specifications) necessary for causal measurement of interaction impact.
Without verified correct specifications, we cannot determine whether performance improvements
result from resolving genuine underspecification versus other confounding factors.

2.2 AGENTIC FRAMEWORK

Agent environment The OpenHands (Wang et al., 2024b) agentic framework equips the LLM
with an interactive environment that extends its capabilities beyond static code generation. The
agent operates within a structured execution environment where it can iteratively refine code, plan
tasks, and run commands using integrated tools. It has the ability to edit files, break down complex
instructions into executable steps, and execute both Bash and Python scripts within a secure sandbox.
This controlled environment enables the agent to analyze execution outputs, detect and debug errors,
and refine its approach based on observed results, ensuring adaptability and correctness in solving
complex programming tasks.

1LLM annotations for underspecification are provided in the supplementary materials.
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Selected models We evaluate two proprietary models from the same family—Claude Sonnet 3.5
and its successor Claude Sonnet 4 (Anthropic, 2024b; PBC, 2025)—to study how improvements
in model capabilities influence interaction behavior. We also include Claude Haiku 3.5 (Anthropic,
2024a), which shares similar training methodology but differs substantially in parameter count,
allowing us to examine the effect of model scale.

For open-weight models, we evaluate Llama 3.1 70B-Instruct (Llama team, 2024), Deepseek-
v2 (DeepSeek-AI, 2024), and Qwen 3 Coder 480B. Qwen 3 Coder achieves performance comparable
to Claude Sonnet 4 on SWE-Bench, enabling a comparison of interaction patterns between models
with similar task-solving capabilities.

User proxy Following related works which used LLMs to simulate users with full information (Li
et al., 2024), we employ GPT-4o (Ahmad & OpenAI, 2024) as a user proxy to simulate user-agent
interactions. This design choice is informed by prior work showing that LLMs can approximate
simple user behaviors and produce natural-sounding responses in controlled settings (Xu et al., 2024;
Zhou et al., 2024a). The goal is not to simulate real users but provide the information injection to the
trajectory and analyze model behaviors. The proxy receives the full issue and responds only using
information explicitly present in it, preserving the original knowledge boundaries of the issue reporter.
If a queried detail is missing, the proxy responds with I don’t have that information, thereby avoiding
hallucinations. This conservative design makes it possible to isolate the agent’s ability to detect and
recover from missing information. The full prompt is provided in §A.2.2.

2.3 STUDY DESIGN

We use three distinct settings to evaluate models across the 500 issues from SWE-Bench Verified
shown in Figure 2 and described below.

• Full: This is the traditional SWE-Bench setting. The coding agent is provided with the fully
specified task and the interaction is disabled. It represents the agent’s performance in an ideal
scenario, where the agent has access to full information.

• Hidden: A summarized version of the issue is provided to the coding agent with the user-agent
interaction disabled to mimic the lack of detail that can occur in task descriptions. We do not give
any interaction-related instructions, and all models default to non-interactive behavior. Specific
details are hidden from the coding agent.

• Interaction: The coding agent receives a summarized task, while the user proxy model receives
the fully specified task. Interaction is enabled through prompting, allowing the agent to query the
proxy for specific details. The models do not interact without an explicit prompt. In addition to the
full issue, the proxy has access to file locations that need modification and can provide them when
queried. This setup allows us to evaluate which models proactively seek navigational information
and examine how this interaction influences the success of the solution process across models.

3 RQ1: INTERACTIVE PROBLEM SOLVING

Can LLMs appropriately leverage interaction with the user to improve performance in un-
derspecified settings? Effectively addressing missing information requires a model to integrate
information from user interactions to form a clear plan and successfully solve the task. Our first
experiment holistically evaluates the model’s ability to leverage interaction and improve performance.
The model must not only process the initial task description, but also query users to extract relevant
details while filtering out irrelevant information.

3.1 EXPERIMENTAL SETUP

The hypothesis of the experiment is that different language models will exhibit varying per-
formance with interaction based on their incorporation of the provided information, leading
to different levels of improvement over the Hidden setting. We evaluate the models across
the three settings and conduct two Wilcoxon-Signed Rank tests (Appendix §A.3.1) with a sig-
nificance level of 0.05 to determine significant performance differences between the Hidden
and Interaction settings, and between the Interaction and Full settings for every model. Here,

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

we modify the prompt to make interaction with the user compulsory in the Interaction set-
ting2. Ideally, the Interaction setting should approach the performance of the full setting.

Figure 3: Resolve rates (in %) across different settings: Hidden (under-
specified issues), Interaction (underspecified issues with user interac-
tion), and Full (fully specified issues).

By default, coding agents
are restricted to 30 interac-
tion turns to produce a solu-
tion patch; however, Claude
Sonnet 4 and Qwen 3 Coder
are allocated up to 100 turns
to account for their greater
reasoning and planning ca-
pacity. In this experiment,
each model is tested in the
Hidden3, Interaction, and
Full settings to evaluate its
ability to leverage interac-
tion and optimize perfor-
mance on underspecified is-
sues. The results, as shown
in Figure 3, confirm the ex-
pected increase in resolve
rates for all models as more information becomes available to the agent. The difference between the
Hidden and Interaction settings is significant for all evaluated models (Table 4), emphasizing the
impact of interaction on task completion. The performance gap between the Interaction and Full
settings is also significant across all models, highlighting the unrealized potential. Specifically, for the
Hidden vs. Interaction settings, proprietary models show stronger evidence of a significant difference.
These results suggest that the ability to leverage interaction varies across models, with proprietary
models generally demonstrating greater effectiveness in utilizing interaction compared to open-weight
models. However, as open-weight models improve, they can even outperform proprietary models
with interaction, as demonstrated by Qwen 3 Coder.

3.2 LEVERAGING INTERACTION IN UNDERSPECIFICITY

Using interaction, the Claude Sonnet 3.5 models and Haiku 3.5 recover up to 80% of the performance
in the Full setting. However, with Deepseek, and Llama 3.1, the relative performance is lower, of
59%, and 54%, respectively. Claude Sonnet 4’s relative performance (61%) is lower than that of
its predecessor, and absolute performance with interaction is also similar. Some models achieve
higher resolve rates in the Hidden setting likely due to their superior programming acumen, or data
leakage. Better programming models can potentially extract more information from the stack trace by
reproducing the error themselves. Claude Sonnet 4 extensively explores the codebase and attempts
multiple solutions to overcome the lack of information in the Hidden setting. On the other hand,
Qwen 3 Coder displays unique behavior in this setting and relies on its internal knowledge for key
insights about missing information (example in §A.7). These correct assumptions might inflate its
performance in this setting. We observe that the Claude Haiku model achieves a performance relative
to the Full setting similar to that of Claude Sonnet 3.5, despite having inferior coding abilities. Thus,
there does not seem to be a direct correlation between the number of parameters or coding ability and
a model’s ability to leverage interaction. This hints towards better training practices that can lead to
better integration of the new information.

This experiment highlights the importance of interaction in handling underspecificity. Since many
real-world software engineering problems are underspecified, interactive systems are essential for
ensuring alignment and reducing safety risks. However, current models default to non-interactive
behavior even when faced with severe lack of information and struggle to match the performance seen
in well-specified settings. While interactive trajectories show performance gains over non-interactive
approaches for underspecified inputs, there is a wide gap to the full performance, indicating strong
potential for improvement.

2Without compulsory interaction, the model defaults to non-interactive behavior for most issues, as seen in
the Hidden setting. Full prompt in §A.2.2

3Claude Sonnet 4 is evaluated on a subset of 100/500 instances in the Hidden setting. The model compensates
for the lack of information with increased exploration and solution attempts leading to substantially higher
evaluation costs. The findings are still statistically significant (Table 4).
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3.3 IMPACT OF INTERACTION DETAILS ON MODEL PERFORMANCE

To better understand these differences in interaction effectiveness, we next examine what types
of information models request and how they utilize it. In the Interaction setting of the previous
experiment, the information gained can be broadly categorized into two types: informational,
which relates to the expected behavior or nature of the error, and navigational, which pertains
to the locations of the files to modify. The latter can be considered redundant information as it
can be recovered from the codebase. While informational details are typically obtained in nearly
every interaction, the models request navigational details less frequently. We measure the resolve
rates separately for instances where the model asks for navigational details and when it does not,
examining the impact on performance when models must rely only on informational details versus
when navigational details are also accessible.

Model Nav Info (%) Resolve w/o Info (%) Resolve w/ Info (%)

Claude Sonnet 4 27.75 43.75 46.55
Qwen 3 Coder 18.60 47.60 40.20
Claude Sonnet 3.5 8.96 37.94 59.52
Claude Haiku 3.5 24.67 24.78 36.94
Deepseek-v2 30.70 4.62 13.19
Llama 3.1 70B 30.28 4.28 6.34

Table 1: % of issues where navigational information was acquired in the Interaction setting, and the
resolve rates with and without it. Navigational information refers to file paths needing modification.

As seen in Table 1, requesting navigational details improves performance across most models by
providing cues beyond described behavior and errors. However, some models rely too heavily on
this information and struggle when it is missing. Smaller models like Llama 3.1 and Deepseek-
v2 request file locations more often but underperform without them. With improvements in code
localization ability, recent models like Claude Sonnet 4 and Qwen 3 Coder show lower performance
boosts with this information. Qwen 3 Coder displays a unique behavior where its performance
worsens after receiving file locations. An analysis of the trajectories reveals rigid behavior where
the model gets the information from the user, yet proceeds to re-explore the code and come across
the same information by itself, seemingly following a set protocol of approaching SWE-Bench style
issues. This suggests that while the model acknowledges the user input, it does not easily modify its
behavior, also evidenced by its need for stronger prompting to interact (§A.7). This rigid behavior
wastes interaction turns on redundant navigational information, preventing the model from asking
more valuable clarifying questions about task requirements. Claude models, particularly Sonnet
3.5, better leverage informational cues, achieving higher resolve rates even without navigational
details. Deepseek, by contrast, performs worse than its Hidden setting when file locations are
absent, highlighting its dependence. This reliance leads to wasted turns searching for errors instead
of identifying them efficiently. Llama 3.1 performs better than Hidden without file locations but
gains little when they are provided, likely due to poor detail extraction (Section §5). Ideally, LLMs
should generalize across diverse interaction types, as users may not always provide specific details,
improving robustness in real-world software engineering tasks.

Takeaway: While proprietary models like Claude Sonnet 3.5 and Haiku 3.5 effectively leverage
interaction (recovering 80% of the performance gap), recent capable models show a shift: Claude
Sonnet 4’s relative gains diminish despite stronger absolute performance, and Qwen 3 Coder rigidly
adheres to predetermined protocols even when users provide explicit guidance. These patterns
suggest that as models grow more capable, current training practices may inadequately prepare them
to dynamically integrate interactive information, highlighting the need for approaches that prioritize
adaptive behavior over task completion alone.

4 RQ2: DETECTION OF INCOMPLETE TASK SPECIFICATIONS

Can LLMs identify whether a given task description is missing crucial information? In real-
world LLM and agent applications, task descriptions and prompts often vary in quality. Unnecessary
interaction when sufficient information is already available can introduce inefficiencies and burden
users. In this work, we evaluate whether LLMs can detect missing information in software engineering
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contexts by randomly presenting either fully-specified or underspecified issues, along with varying
interaction prompts, and analyzing their interaction behavior across these conditions.

4.1 EXPERIMENTAL SETUP

In this experiment, each issue is presented in either the Full setting or the Hidden setting. The
objective is to identify patterns in how models choose to interact based on the input type. Ideally, the
model should have a high interaction rate for the summarized inputs and a negligible interaction rate
for the well-specified inputs.

In the instructions which outline the task, we present the agent with an option to interact during its
solution trajectory and design three instructions with varying levels of encouragement to interact
with the user. We track the input type the model chooses to interact with. The instructions, listed
in order of increasing encouragement to interact, are: Neutral, where the agent is told it can ask
questions if anything is unclear), Moderate Encouragement, where the agent is told to carefully check
that all necessary information is available and only proceed after everything is clear, and Strong
Encouragement, where the agent is told that asking questions is critical to task success (full prompts
in Appendix §A).

Table 2: Model performance in underspecificity detection across prompts with increasing interaction
encouragement. FPR: false positive rate (unnecessary interaction); FNR: false negative rate (missed
necessary interaction). Ideal models have high accuracy, low FPR, and low FNR.

Model Neutral Moderate Strong

Acc ↑ FPR ↓ FNR ↓ Acc ↑ FPR ↓ FNR ↓ Acc ↑ FPR ↓ FNR ↓

Claude Sonnet 4 0.74 0.08 0.44 0.74 0.10 0.42 0.89 0.03 0.18
Qwen 3 Coder 0.50 0.00 1.00 0.50 0.00 1.00 0.50 0.00 1.00
Claude Sonnet 3.5 0.60 0.00 0.81 0.84 0.24 0.09 0.76 0.36 0.10
Claude Haiku 3.5 0.54 0.00 0.97 0.57 0.02 0.90 0.63 0.06 0.66
Deepseek-v2 0.69 0.30 0.31 0.57 0.08 0.83 0.51 0.04 0.94
Llama 3.1 70B 0.48 0.46 0.57 0.47 0.95 0.09 0.52 0.93 0.06

4.2 EFFECT OF DIFFERENT PROMPTS

Without explicit prompting, models almost never interact, even for severely underspecified inputs.
Table 2 shows that prompt engineering can modulate interaction levels, but with highly variable
effectiveness across models.

Claude family: Claude Sonnet 4 achieves the best performance with Strong Encouragement, repre-
senting substantial improvement over other models. Claude Sonnet 3.5 performs best with Moderate
Encouragement (84% accuracy), while Claude Haiku 3.5 remains hesitant to interact even with strong
prompting. The Sonnet models’ superior performance likely stems from better instruction-following
capabilities.

Open-weight models show divergent behaviors: Deepseek-v2 exhibits counterintuitive behavior,
performing best with Neutral prompting and degrading with stronger encouragement. Llama 3.1
shows excessive interaction across all prompts, interacting arbitrarily rather than strategically. Most
critically, Qwen 3 Coder completely fails to interact under any condition (100% FNR across all
prompts), achieving only chance-level accuracy (50%).

4.3 DETECTION ACROSS MODELS

While interaction levels can often be adjusted with prompting, both summarized and full issues
have equal probability of being selected for interaction as interactivity increases, particularly with
smaller models. It is a concerning finding that even with stronger encouragement one of the leading
open-weight models, Qwen 3, is rigid in its non-interactivity. Despite the stark difference in the
language and detail of summarized issues and fully specified issues, the models, except Claude
Sonnet, fail to reliably distinguish them, indicating that LLMs struggle to detect missing information
even in obvious cases. Most models, including Claude Sonnet, show big changes in the detection
behavior with prompt variations. Interestingly, the Sonnet models outperforms Haiku, likely due

7
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Figure 4: Agent questions and user responses to the same underspecified input are shown for Llama
3.1 70B, Deepseek-v2, and Claude Haiku 3.5. They highlight specific interaction patterns and
differences in handling missing information. The corresponding model inputs are detailed in Table 7.

to superior instruction following capability, which helps it achieve the desired interactive trajectory.
Surprisingly, Deepseek adapts better to the task than Haiku as well as Qwen 3.

Takeaway: Models default to non-interactive behavior unless explicitly prompted, yet prompt
engineering alone proves insufficient for reliable underspecificity detection.While Claude Sonnet 4
demonstrates partial success, most models struggle to distinguish well-specified from underspecified
tasks. Particularly concerning is Qwen 3 Coder’s complete non-responsiveness to interaction prompts
(100% FNR), suggesting fundamental limitations in certain training approaches. These findings
indicate that handling underspecified tasks requires dedicated training than prompt engineering alone.

5 RQ3: QUESTION QUALITY

Can LLMs generate meaningful and targeted clarification questions that gather the necessary
information for task completion? To gather missing information from underspecified inputs, the
quality of an agent’s questions is crucial. While §3 evaluates task completion, here we focus on how
effectively models extract relevant information through their questions.

5.1 EXPERIMENTAL SETUP

We evaluate interaction quality in the Interaction setting using two complementary techniques:

1. Cosine distance: We compute the distance (1 − cos(P,Q)) between embeddings of the sum-
marized task (Ebefore) and cumulative knowledge after interaction (Eafter) using OpenAI’s text-
embedding-3-small. Higher values indicate greater information gain.

2. LLM-as-judge (GPT-4o): Scores user answers on a 1-5 scale based on specificity and novelty of
information (e.g., specific files, function behavior).

5.2 INFORMATION GAIN AND QUESTION EFFICIENCY

Figure 5: Information Gain measured using Cosine Distance

Both metrics
reveal that Llama
3.1 significantly
underperforms
(0.101 cosine
distance, 3.58/5
LLM-judge
score) compared
to other models
(Figure 5). More
interesting are the
patterns among
stronger models:
Qwen 3 Coder achieves the highest information extraction (0.179) but requires 50% more questions
than Claude Sonnet 4 (6.02 vs 4.03, Table 6), yet both achieve similar resolve rates (46% vs 41.8%,
Figure 3). Similarly, Claude Sonnet 3.5 and Haiku extract nearly identical information (0.136 vs
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0.135) despite vastly different task performance (39.6% vs 26.8%). These disconnects reveal that
how models integrate information matters as much as how much they extract.

Figure 6: Information Gain measured using LLM-as-Judge

The LLM-as-
judge scores
converge around
4/5 for all ca-
pable models
(Figure 6), indi-
cating they can
elicit relevant
information
when prompted.
However, cosine
distance’s gran-
ularity reveals
efficiency differences: similar information can be obtained with vastly different question quantities
and strategies.

5.3 QUESTION-ASKING STRATEGIES

Qualitative analysis of question-answer pairs (Figure 4) reveals three distinct approaches with different
tradeoffs:

(1) Question quantity and user burden. Llama asks too few questions (2.61 avg.) with overly
general phrasing ("Are there any existing workarounds?"), yielding minimal information. Qwen 3
asks the most (6.02 avg.), extracting maximum information but risking user overwhelm. As Table 1
shows, this high volume does not translate to better performance. Qwen’s resolve rate actually
worsens with navigational information, suggesting rigid protocol-following rather than adaptive
integration.

(2) Exploration efficiency. Claude Sonnet models (3.80-4.03 questions) achieve information gain
comparable to Deepseek and Qwen (4.57-6.02 questions) by exploring the codebase first, then
asking only what cannot be independently discovered. This exploration-first strategy produces nearly
identical questions across Claude Sonnet 3.5 and 4 for some issues (Table 7), indicating consistent
training. In contrast, Deepseek and Qwen ask immediately, including questions about implementation
details recoverable from code.

(3) Answerability and specificity. Deepseek’s highly specific implementation questions often
exceed user knowledge, wasting interaction turns. Claude targets behavioral aspects and concrete
failure modes instead, better matching realistic user knowledge. Haiku follows a rigid three-question
template regardless of context, while Sonnet adapts questions based on deeper issue understanding.

Takeaway: Effective clarification balances question quantity (avoiding user overwhelm), exploration
efficiency (discovering what can be inferred before asking), and answerability (matching specificity
to user knowledge). Claude Sonnet 4 achieves comparable information gain to Qwen (0.171 vs 0.179)
with 50% fewer questions through exploration-first strategies, demonstrating that question quality
and integration matter more than extraction volume.

6 RELATED WORK

Code generation benchmarks Ambiguity is a closely related domain to underspecificity, where
model misinterpretation of user intent is a common failure mode. In both cases, clarification becomes
necessary, though the causes differ. Ambiguity stems from vague or multi-interpretable inputs, while
underspecificity arises when key information is entirely omitted. This is especially relevant in our
setting, where models operate over intent summaries that may only partially capture user goals.
Clarifying questions help mitigate ambiguity (Mu et al., 2023), and interactive, test-driven workflows
generate test cases aligned with expectations, which users validate before code generation (Lahiri
et al., 2023). Extensions of this approach employ runtime techniques to generate, mutate, and rank
candidates based on user feedback (Fakhoury et al., 2024). Although effective, these workflows can
burden users, highlighting the need to minimize intervention to essential cases.
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Interactive ML systems In interactive systems, ambiguity is often categorized and addressed via
targeted clarification. Niwa & Iso (2024) introduces a taxonomy of instruction ambiguities, such as
unclear output formats or contextual constraints, and applies disambiguation strategies accordingly.
Similarly, Wang et al. (2024a) evaluates LLM behavior on ambiguous tool-use instructions, and
Feng et al. (2024) uses reinforcement learning to optimize intervention. Although these systems
successfully reduce ambiguity, underspecificity poses a subtler challenge, where there is missing
context, leading to hallucinated assumptions and requires agents to clarify.

LLMs and ambiguity Modern LLMs are not explicitly trained to resolve ambiguity via interac-
tion (Zhang et al., 2024), but instruction tuning improves their performance when guided by prompt
engineering (White et al., 2023). Ambiguity detection has been approached through uncertainty
estimation (Zhang & Choi, 2023; Park et al., 2024) and self-disambiguation (Keluskar et al., 2024;
Sterner, 2022; Sumanathilaka et al., 2024). For example, Kim et al. (2024) quantifies ambiguity
using information gain. Although inference-only methods are cost-effective, they are less robust
than training-based approaches for handling ambiguity. Chen et al. (2025) address disambiguation in
conversational settings, but typically with only a single missing detail. In contrast, we study under-
specification in complex agentic tasks, where multiple interdependent gaps can arise dynamically,
and agents may take many steps before recognizing missing information.

7 CONCLUSION, LIMITATIONS, AND FUTURE WORK

Our evaluation of proprietary and open-weight language models in agentic frameworks highlights
how underspecificity poses a core challenge in software engineering tasks. Effective performance
requires (i) detecting missing information, and (ii) acquiring it through precise, targeted interaction
before (iii) attempting a solution with the full information.

Our analysis is subject to a few scope constraints. Underspecificity detection is measured only
within the first three turns, as models rarely recover if they fail to engage early. Question quality
is approximated via latent vector changes that weigh all information equally, though models may
prioritize details differently. Finally, our simulated user proxy may be more cooperative than real
users, though we mitigate this by limiting interaction turns and focusing them tightly on the task.

Despite these limitations, several clear trends emerge from our experiments:

• With a brief round of clarification, leading proprietary models recover much of their fully-specified
performance, while earlier open-weight models lag. Recent capable models blur this distinction.
However, as models grow more capable, relative gains from interaction diminish, suggesting current
training practices inadequately prepare models to dynamically integrate interactive information.

• LLMs rarely initiate clarification unprompted, and their sensitivity to prompt framing makes them
brittle in noisy, real-world contexts.

• The most effective questions are specific, actionable, and task-level, while vague prompts or
implementation details recoverable from the codebase add little value.

Overall, a gap remains between underspecified and fully specified resolution rates. Closing it will
require open-weight models to adopt stronger interaction strategies and proprietary models to engage
more proactively. As models are trained to perform longer horizon tasks, they must still be trained to
appropriately incorporate user inputs into the overall solution. Our framework provides a blueprint
for decomposing resolution into multiple steps, enabling finer-grained analysis of where models
succeed or fail. While we focus on software engineering, the methods and insights can extend to
other complex, real-world agentic tasks. Thus, our work offers both a diagnostic framework for agent
evaluation and a roadmap toward more robust, adaptive, and user-aligned agents that can thrive in
underspecified and dynamic environments.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of the presented results, this paper provides comprehensive details on
the methodology, data generation, and experimental setup. All key components of the proposed
framework are described with the intention of enabling replication by an independent research group.
The experimental setup is detailed in §2 and full prompts are provided in the Appendix §A. We have
also attached the code with the steps to reproduce and the experimental data.
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LLM USAGE

We used a large language model to assist with polishing the writing style, condensing the content,
and improving clarity. All research ideas, methods, experiments, and analyses were developed and
conducted by the authors. The LLM did not contribute to scientific content.
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A APPENDIX

A.1 AGENT FRAMEWORK

In this work, we use the OpenHands agent framework for conducting our experiments. OpenHands is
a single agent system that has access to tools such as bash terminal, file system, code execution, and
browsing (disabled during evaluation). In the SWE-Bench setting, the agent is provided with the issue
alongside a detailed prompt which conveys the steps to follow such as exploration, clarification, etc.
(as detailed in Appendix A.1.2). Equipped with the above-mentioned tools, the agent interacts with
the repository environment inside a Docker container with the required dependencies provided by
SWE-Bench. The agent has a maximum number of steps to complete the solution. If finishing early,
the agent can call the FinishAction. Upon completion, a git_patch is extracted from the modified files
which is later applied to a new environment instance, and the tests associated with the task are run to
verify the solution.

A.2 EXPERIMENTAL DESIGN

A.2.1 FULL SETTING

In addition to the fully-specified GitHub issue from SWE-Bench Verified, we also include hints from
the dataset, which contains the conversation between developers regarding the issue. This helps create
a larger knowledge gap in comparison to the Hidden setting.
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Prompt for Full Setting

I’ve uploaded a Python code repository in the directory
/workspace/{workspace_dir_name}. Consider the following PR description:
<pr_description>{instance.full_issue}</pr_description>
Here are some additional hints: <hints>{instance.hints_text}</hints>
Can you help me implement the necessary changes to the repository so that the requirements
specified in the PR description are met?
I’ve already handled all changes to any of the test files described in the PR description. This
means you DON’T need to modify the testing logic or any of the tests!
Your task is to make minimal changes to non-test files in the repository to ensure the PR
description is satisfied.
Follow these steps to resolve the issue:

1. As a first step, explore the repo to familiarize yourself with its structure.
2. Create a script to reproduce the error and execute it with python <filename.py>

using the BashTool to confirm the error.
3. Edit the source code in the repo to resolve the issue.
4. Rerun your reproduce script to confirm the error is fixed.
5. Consider edge cases and make sure your fix handles them as well.

Your thinking should be thorough, and it’s fine if it’s very long.

A.2.2 INTERACTION SETTING

In this setting, the user proxy agent receives both the fully specified issue and additional hints,
maintaining the knowledge gap relative to the Hidden setting. This provides extra information for
the coding agent to extract through interaction. The files to be modified are also provided to the
user proxy agent, allowing us to track specific details across issues. Since file-related information is
universally useful—unlike other details whose importance may be subjective—it enables evaluation
of how effectively different models incorporate critical information into their solution paths.

This setup reflects a scenario where the user might know additional details not included in their
initial input, which can still be extracted to improve performance. While more capable models may
independently retrieve this information by exploring the codebase, it can be particularly helpful for
lower-performing models. By tracking which models choose to extract this information, we gain
insights into the types of questions they ask and observe behavioral trends across models.
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Prompt for Interaction Setting with Mandatory Interaction

I’ve uploaded a Python code repository in the directory
/workspace/{workspace_dir_name}. Consider the following PR description:
<pr_description>{instance.summarized_issue}</pr_description>
Can you help me implement the necessary changes to the repository so that the requirements
specified in the PR description are met?
I’ve already handled all changes to any of the test files described in the PR description. This
means you DON’T need to modify the testing logic or any of the tests!
Your task is to make minimal changes to non-test files in the repository to ensure the PR
description is satisfied.
I have not provided all the necessary details about the issue and I have some hidden details
that are helpful. Please ask me specific questions using non-code commands to gather the
relevant information that I have to help you solve the issue. Ensure you have all the details
you require to solve the issue.
You have a limited number of turns. Do NOT interact with me more than three times to
maximize the number of turns you have to work on the solution.
Follow these steps to resolve the issue:

1. As a first step, look at the issue and ask me questions to get all the necessary details
about the issue. You can also ask me questions if you run into a problem in later
steps.

2. Then, it might be a good idea to explore the repo to familiarize yourself with its
structure.

3. Create a script to reproduce the error and execute it with python
<filename.py> using the BashTool to confirm the error.

4. Edit the source code in the repo to resolve the issue.
5. Rerun your reproduce script to confirm the error is fixed.
6. Think about edge cases and make sure your fix handles them as well.

Your thinking should be thorough, and it’s fine if it’s very long.

Prompt to User Proxy

You are a GitHub user reporting an issue. Here are the details of your issue and environment:
Issue: {issue}
Hints: {hints}
Files relative to your current directory: {files}
Your task is to respond to questions from a coder who is trying to solve your issue. The coder
has a summarized version of the issue you have. Follow these rules:
1. If the coder asks a question that is directly related to the information in the issue you have,
provide that information.
2. Always stay in character as a user reporting an issue, not as an AI assistant.
3. Keep your responses concise and to the point.
4. The coder has limited turns to solve the issue. Do not interact with the coder beyond 3
turns.
Respond with I don’t have that information if the question is unrelated or you’re unsure.
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Metric Mean Median Std Dev

ROUGE-1 Recall 0.179 0.159 0.102
ROUGE-L Recall 0.111 0.094 0.069
Entity Recall 0.085 0.030 0.141
BERTScore F1 -0.111 -0.127 0.194

Table 3: Quantitative comparison of underspecified summaries against full issues using overlap- and
semantics-based metrics.

A.2.3 HIDDEN SETTING

Prompt for Hidden Setting

I’ve uploaded a Python code repository in the directory
/workspace/{workspace_dir_name}. Consider the following PR description:
<pr_description>{instance.summarized_issue}</pr_description>
Can you help me implement the necessary changes to the repository so that the requirements
specified in the PR description are met?
I’ve already taken care of all changes to any of the test files described in the PR description.
This means you DON’T need to modify the testing logic or any of the tests!
Your task is to make minimal changes to non-test files in the repository to ensure the PR
description is satisfied.
Follow these steps to resolve the issue:

1. As a first step, it might be a good idea to explore the repo to familiarize yourself
with its structure.

2. Create a script to reproduce the error and execute it with python
<filename.py> using the BashTool to confirm the error.

3. Edit the source code in the repo to resolve the issue.
4. Rerun your reproduce script to confirm the error is fixed.
5. Consider edge cases and make sure your fix handles them as well.

Your thinking should be thorough, and it’s fine if it’s very long.

Prompt For Summarizing GitHub Issues

I have several issues from GitHub related to code specifications. Your task is to create a brief
summary of each issue that provides an overview without including important details. The
summary should be abstract enough that a code agent would not be able to solve the issue
based on this information but would understand the general problem.
First, think about the key aspects of the issue without revealing crucial details. Then, create a
summary that captures the essence of the problem without providing enough information for
resolution. Use the <summary> and </summary> tags around your generated summary.
The output should be in the form: <summary> ... </summary>
Here is the issue: {issue}
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LLM Underspecification Analysis prompt

Compare these two texts and identify what INFORMATION is present in the original issue but
missing in the problem statement. Focus on factual content differences, not language or writing
style differences.
Original GitHub Issue:
{original_issue}

Summarized Problem Statement:
{problem_statement}

Instructions: Identify specific pieces of information that appear in the original issue but are
absent or underspecified in the problem statement. Focus ONLY on informational content -
ignore differences in:

• Wording or phrasing
• Writing style or tone
• Sentence structure
• Different ways of expressing the SAME information

For example:
• DO include: “Error message ’FileNotFoundError’ is missing” (different information)
• DO NOT include: “Less detailed explanation of the bug” (same information, different

wording)
List each missing piece of information as a separate numbered item. Be specific and concrete.
Output your analysis as a numbered list within <missing_info></missing_info> tags.

A.3 STATISTICAL METHODS

A.3.1 WILCOXON SIGNED-RANK TEST

The Wilcoxon Signed-Rank Test is a non-parametric statistical test used to determine if there is a
significant difference between the medians of two related groups. Unlike the paired t-test, it does not
assume that the differences between paired observations are normally distributed, making it more
suitable for cases where this assumption may not hold.

In this work, the Wilcoxon Signed-Rank Test is applied to compare the performance of models
between two settings (e.g., Hidden vs. Interaction, Interaction vs. Full) with the hypothesis that
performance in the second setting is greater than in the first.

Formally, the null hypothesis (H0) for the Wilcoxon Signed-Rank Test states that the median
difference between the two settings is zero or negative:

H0 : d̃ ≤ 0

where d̃ represents the median of the paired differences. The alternative hypothesis (H1) asserts that
the median difference is greater than zero:

H1 : d̃ > 0

The test ranks the absolute differences between paired observations, considering both the magnitude
and direction of change. If the p-value obtained from the test is less than the significance threshold
(0.05), we reject the null hypothesis, concluding that there is a statistically significant improvement
in performance between the two settings.
A.3.2 COMPUTE REQUIREMENTS

The experiments are conducted using 16 workers in the Remote Runtime (beta) provided in Open-
Hands which is a cloud-based runtime for parallel execution.
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Model Comparison p-value

Llama 3.1 70B Hidden vs Interaction 0.0023
Interaction vs Full 3.87e-06

Claude Haiku 3.5 Hidden vs Interaction 2.18e-14
Interaction vs Full 1.65e-09

Claude Sonnet 3.5 Hidden vs Interaction 8.55e-19
Interaction vs Full 1.28e-12

Deepseek-v2 Hidden vs Interaction 0.0023
Interaction vs Full 2.87e-07

Qwen 3 Coder Hidden vs Interaction 6.87e-17
Interaction vs Full 5.46e-26

Claude Sonnet 4 Hidden vs Interaction 0.03225
Interaction vs Full 9.0e-29

Table 4: Wilcoxon signed-rank test results for Hidden vs Interaction and Interaction vs Full settings
across models.

A.4 NATURALLY UNDERSPECIFIED ISSUES

A.5 UNDERSPECIFICITY DETECTION PROMPTS

• Neutral: Ensure you have all the necessary information to proceed. If any part of the issue
is unclear or lacks critical details, ask concise, targeted questions to clarify. If everything is
clear, you can move ahead without asking unnecessary questions.

• Moderate Encouragement: Before attempting a solution, carefully check whether all key
information is provided. If there’s any ambiguity or missing details that could impact your
work, don’t hesitate to ask questions. Your goal is to gather the information needed for an
accurate and efficient solution. Only skip asking questions when you are absolutely sure all
details are complete.

• Strong Encouragement: Your success depends on having all relevant details to solve the
issue effectively. Whenever you encounter unclear or missing information, proactively ask
questions to fill those gaps. Even minor ambiguities can affect the outcome, so always
prioritize clarifying questions. Avoid questions only when you are 100% certain no further
clarification is needed.

A.6 QUESTION QUALITY ANALYSIS

Cosine Distance(P,Q) = 1− P ·Q
∥P∥∥Q∥

(1)

where:

• P = {p1, p2, . . . , pN} represents the embedding vector of the updated knowledge (Eafter).
• Q = {q1, q2, . . . , qN} represents the embedding vector of the initial knowledge (Ebefore).
• N = 1536 is the dimensionality of the embedding space.
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instance_id Issue Discussion
django_django-
13952

Migrate signals verbose stdout emissions
are not capturable. The migrate command
takes a -verbosity flag that is passed
down to emit_pre_migrate_signal
and emit_post_migrate_signal
functions but these are not provided which
stdout the output should be directed to.
This makes testing migrate -v2 through
call_command pollute sys.stdout when
it should be directed to the provided std-
out as discovered in https://github.
com/django/django/pull/13890#
pullrequestreview-579320176.

Contains concrete
technical details
(function names,
flags), a specific
reproducibility sce-
nario (migrate
-v2 via
call_command),
and an external
reference link.

sympy__sympy-
11794

ASCII printing for Singularity Function. Imple-
mentation of ASCII printing for Singularity Func-
tions is needed.

Minimal descrip-
tion with no code
snippets or re-
production steps,
showing that some
natural issues are
similarly vague
despite lacking
explicit technical
context.

sphinx-doc__sphinx-
7234

Support for @singledispatch functions. It
would be nice if there was some mechanism
to automagically pick up the overloads to
a @functools.singledispatch function
and list them together.

Includes conver-
sational phrasing
(stream-of-thought
style) and refer-
ences to a specific
Python mechanism,
reflecting natural
issue-writing pat-
terns.

Table 5: Examples of naturally occurring issues and their characteristic features relevant to under-
specification analysis.

Table 6: Average number of questions asked per interaction.

Model Avg. # Questions

Claude Sonnet 4 4.03
Qwen 3 Coder 6.02
Claude Sonnet 3.5 3.80
Claude Haiku 3.5 3.49
Deepseek-v2 4.57
Llama 3.1 70B 2.61
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Table 7: Examples of questions and their responses across different models reflecting general patterns.

Model Summarized issue Selected questions Answers
Llama 3.1
70B

The InheritDocstrings
metaclass fails to handle properties
due to reliance on function checks
that miss properties.

1. Any known workarounds or temporary
fixes?

2. Is the issue property-specific or gen-
eral?

1. I don’t have that information.
2. It seems to be a general problem with

how the metaclass handles properties.

Deepseek
Chat

Same issue with property handling
in InheritDocstrings. 1. What is the purpose and

current implementation of
InheritDocstrings?

2. Are there existing tests that demon-
strate the issue?

1. It ensures docstrings are in-
herited from the parent. Uses
inspect.isfunction, which
fails for properties.

2. I don’t have that information.
Claude Haiku
3.5

Same issue with improper
property handling by
InheritDocstrings.

1. Where is the metaclass located in the
repo?

2. What is the specific incorrect behavior?

1. It is in
astropy/utils/misc.py.

2. Properties redefined without doc-
strings don’t inherit from the base.

Qwen 3 Coder Same issue with improper
property handling by
InheritDocstrings.

1. Which classes/modules show the is-
sue?

2. By “properties,” do you mean ‘@prop-
erty‘?

3. Any tests that already capture the is-
sue?

1. Happens in classes using the metaclass,
e.g., in ‘astropy/utils/misc.py‘.

2. Yes, this refers to Python’s ‘@prop-
erty‘.

3. I don’t have that information.

Claude Sonnet
3.5

A method fails with Python 3
byte input, unlike its counterpart
that handles both text and binary
modes.

1. Which method has this issue?
2. Example of a failing byte string input?

1. The method is
Header.fromstring.

2. No specific example, but it should con-
tain full header data as bytes.

Claude Sonnet
4

Same issue with byte input.
1. Which class/method fails on byte-

string input?
2. Example of a byte string that should

work but doesn’t?

1. The failing method is
‘Header.fromstring‘.

2. No concrete example, just any full
header as a byte string.
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A.7 QWEN 3 CODER

Example Qwen 3 thought process in Hidden setting

Trajectory message (verbatim):
Let me research what the proper RFC standard is. According to RFC 2616 Section 3.3.1:

"Recipients of timestamps SHOULD accept all three HTTP-date formats,
regardless of the form in which they were sent. For the purposes of HTTP,
the preferred format is IMF-fixdate. The other formats are included for
compatibility with past and future implementations."

And regarding two-digit years:
"HTTP/1.1 clients and servers that parse the date value MUST accept
all three formats... All HTTP date/time stamps MUST be represented in
Greenwich Mean Time (GMT), without exception. For the purposes of
HTTP, GMT is exactly equal to UTC (Coordinated Universal Time)... The
use of three digit years (e.g. 893) or five digit-plus years (e.g. 17763) is
explicitly not allowed."

But more importantly, let me check what the actual standard practice is. Looking at common
implementations and standards:

1. POSIX/C Standard: Often uses 69–99 → 1969–1999, 00–68 → 2000–2068
2. RFC 2616 Recommendation: Strongly discourages two-digit years but acknowl-

edges backward compatibility
3. Modern Practice: Many systems use a 50-year sliding window or fixed windows

Let me check what the actual issue is referring to. Looking at the existing test and the problem
description more carefully, I think the issue is that the current cutoff of 70 is arbitrary and
doesn’t follow established standards.
Let me check if there are any references or comments in the code that indicate what the
intended behavior should be.

Comments: This trajectory message shows Qwen 3 Coder relying heavily on its internal
knowledge of RFC standards and POSIX conventions, making specific assumptions about
the intended behavior without extensive code exploration. The model directly assumes the
cutoff value of 70 is problematic and implements a solution that proves correct. While this
could indicate strong pretraining on software engineering standards, this pattern of solving
issues through confident assertion rather than exploratory debugging is uncommon in the
Hidden setting and may inflate its performance relative to models that must discover solutions
through code analysis.

Qwen 3 Coder Interaction Prompt Modification

For Qwen 3 Coder, we modified the interaction prompt to include a mandatory clarification
step, on top of existing interaction instructions. This phase requires the model to output
only clarifying questions and wait for responses before proceeding with the problem-solving
phases. This modification was necessary because Qwen 3 Coder exhibited a rigid adherence to
non-interactive SWE-Bench protocols, often bypassing interaction opportunities even when
critical information was missing. The mandatory clarification phase forces the model to engage
with the user before attempting implementation.

This modification ensures fair comparison in RQ1, which evaluates task success with
interaction. Without it, Qwen 3 Coder defaults to non-interactive behavior, invalidating
cross-model comparison. RQ2 (detection) and RQ3 (question quality) measure different
capabilities and remain unaffected.

A.8 INFORMATION GAIN
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Figure 7: Recovery distance (1 - cosine similarity between full issue and post-interaction knowledge)
shows minimal variation across models, failing to capture the extraction efficiency differences
revealed by our original metric. This occurs because the full issue contains substantial information
(formatting, links, conversational fragments) that is unnecessary for task completion. Models that ask
fewer, targeted questions can obtain critical information without recovering irrelevant details, yet
are penalized by this metric. In contrast, our extraction-based metric (Figure 5) better captures these
differences.
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