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ABSTRACT

AI agents are increasingly being deployed to automate tasks, often based on under-
specified user instructions. Making unwarranted assumptions to compensate for the
missing information and failing to ask clarifying questions can lead to suboptimal
outcomes, safety risks due to tool misuse, and wasted computational resources. In
this work, we study the ability of LLM agents to handle underspecified instructions
in interactive code generation settings by evaluating proprietary and open-weight
models on their performance across three key steps: (a) detecting underspecificity,
(b) asking targeted clarification questions, and (c) leveraging the interaction to
improve performance in underspecified scenarios. Our findings reveal that mod-
els struggle to distinguish between well-specified and underspecified instructions.
However, when models interact for underspecified inputs, they effectively obtain
vital information from the user leading to significant improvements in performance,
up to 74% over the non-interactive settings, underscoring the value of effective
interaction. Our study highlights critical gaps in how current state-of-the-art models
handle missing information in complex software engineering tasks and structures
the evaluation into distinct steps to enable targeted improvements.

1 INTRODUCTION

Figure 1: Interactive agents reduce resource
wastage and misalignment in underspecified
settings.

Large Language Models (LLMs) are increasingly
used as chatbots in task-oriented workflows to im-
prove productivity (Peng et al., 2023; Brynjolfsson
et al., 2023), with the user providing a task instruction
which the model completes. Due to the interactive
nature of chatbots, the performance depends on the
information provided in the user’s prompt. Users of-
ten provide non-descriptive instructions, which poses
critical challenges in successfully completing the
task (Chowdhury et al., 2024). The missing informa-
tion can lead not only to erroneous outcomes, often
based on hallucinations, but also to significant safety
issues (Kim et al., 2024; Karli & Fitzgerald, 2023).

This underspecificity can lead to more severe con-
sequences in task automation, where AI agents are
equipped with powerful tools (Wang et al., 2024b; Lu
et al., 2024; Huang et al., 2024; Zhou et al., 2024a). In
software engineering settings, agents navigate com-
plex codebases, make architectural decisions, and
modify critical systems—all while operating with
potentially incomplete instructions. When human de-
velopers face such lack of information, they engage
in clarifying dialogue to gather context (Testoni &
Fernández, 2024; Purver, 2004). However, current AI
systems proceed with incomplete understanding, leading to costly mistakes and misaligned solutions.

In this work, we systematically evaluate the interaction capabilities of commonly used open and
proprietary LLMs when addressing underspecified instructions in agentic code settings (§2). We
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define underspecificity as missing information that would prevent an expert from being able to create
a successful solution, using the same definition as SWE-Bench Verfied annotation rubric. Previous
work on underspecificity (Chen et al., 2025; Kim et al., 2024) typically focuses on cases where only a
single detail is missing. In contrast, real-world agentic tasks often involve multiple, interdependent
gaps in specification that emerge over the course of a trajectory—spanning file locations, design
decisions, and constraints—making the problem substantially harder and motivating new evaluation
frameworks. Our work makes the following contributions:

1. Evaluating underspecificity in complex agentic tasks. We extend SWE-Bench Verified with
underspecified variants of GitHub issues and introduce an interactive evaluation framework
where agents can query a simulated user (Xu et al., 2024; Zhou et al., 2024b) holding the full
specification. This design enables controlled study of how agents handle different forms and
levels of underspecificity in realistic multi-step workflows. We also compare against the standard
SWE-Bench setting and a non-interactive underspecified setting to analyze differences in agent
trajectories.

2. Analysis of interaction capabilities We break down resolution under underspecificity into three
fundamental capacities: (i) detecting when instructions are incomplete, (ii) acquiring the missing
details through targeted clarification, and (iii) leveraging the interaction to successfully complete
the task. We design evaluations for each capacity and measure performance across proprietary
and open-weight models.

3. Empirical insights for agent design Our experiments show that interactivity can recover perfor-
mance lost to underspecificity, but most LLMs default to non-interactive behavior and struggle with
robust detection. We identify actionable clarifying questions as the main driver of performance
gains, providing concrete guidance for future model and agent design.

The multi-stage evaluation allows for targeted improvements in individual aspects, offering a pathway
to enhance overall system performance. Through our evaluations across the different settings, we
find that interactivity can boost performance on underspecified inputs by up to 74% over the non-
interactive settings, though performance varies across models (§3). LLMs default to non-interactive
behavior without explicit encouragement, and even with it, they struggle to distinguish between
underspecified and well-specified inputs. Claude Sonnet 3.5 is the only evaluated LLM that achieves
notable accuracy (84%) in making this distinction. Prompt engineering offers limited improvement,
and its effectiveness varies across models (§4). When interacting, LLMs generally pose questions
capable of extracting relevant details, but some models, such as Llama 3.1 70B, fail to obtain sufficient
specificity (§5). In summary, this study underscores the importance of interactivity in LLMs for
agentic workflows, particularly in real-world tasks where prompt quality varies significantly.

2 METHOD

2.1 DATASET

In our experiments, we simulate well-specified and underspecified inputs using the SWE-Bench
Verified dataset, a refined subset of 500 issues from the SWE-Bench dataset. The SWE-Bench
dataset (Jimenez et al., 2024) consists of real-world GitHub issues, their corresponding pull requests
(PRs), and unit tests from 12 Python repositories. The SWE-Bench Verified dataset (Chowdhury
et al., 2024) is designed to provide a more reliable estimate of an LLM’s ability by pruning issues
that were underspecified or contained invalid unit tests. The task of an LLM is to modify the state of
the repository at the time of creation of the issue and resolve it. The test cases are used to verify the
patch generated by the agent.

Given that the Verified subset contains only sufficiently specified issues as per human annotations, we
assume that these issues do not require more information. Therefore, for each SWE-Bench Verified
issue, we consider two forms, as shown in Figure 2:

1. Fully specified issue: The original and detailed GitHub issue.
2. Underspecified issue: A synthetic version generated using GPT-4o, where the model is asked to

preserve specific terminology is preserved but reduce the amount of detailed content (complete
prompt in Appendix §A.1.3).
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Figure 2: The three settings in order: Full, Hidden, and Interaction.

We conduct an analysis comparing annotated underspecified issues in SWE-Bench with our generated
underspecified issues using distributional difference analysis (Zhong et al., 2023) to identify how the
underspecification in our generations varies from real user issues. Our findings show that natural
underspecified issues have more (1) concrete technical details (code snippets, error messages, file/line
references), (2) reproducibility information, (3) links to external references, and (4) conversational
fragments (stream of thought, incomplete sentences)

In contrast, our generated issues did not have any particular additional features—they do not have
traits that are statistically more common than natural issues. Our approach uses more aggressive
information removal, specifically targeting code snippets and error messages. However, there are
naturally occurring underspecified issues that are similarly vague as well (django_django-13952,
django_django-15744, pytest-dev_pytest-7283, sphinx-doc_sphinx-9467, sympy_sympy-12977 are
some specific examples). The other differences (external links, conversational style) may not directly
impact agent performance since agents cannot access external information.

To assess the extent of information loss in the underspecified issues of our dataset, we provide
quantitative metrics in the Appendix §A.1.3. For a concrete specification of missing information
between the fully specified and the underspecified issue, we use an LLM to annotate the differences1.
A qualitative evaluation of the summaries confirms the findings of the distributional difference
analysis. We did not evaluate on naturally underspecified SWE-Bench examples because they lack the
paired ground truth (complete specifications) necessary for causal measurement of interaction impact.
Without verified correct specifications, we cannot determine whether performance improvements
result from resolving genuine underspecification versus other confounding factors.

2.2 AGENTIC FRAMEWORK

Agent environment The OpenHands (Wang et al., 2024b) agentic framework equips the LLM
with an interactive environment that extends its capabilities beyond static code generation. The
agent operates within a structured execution environment where it can iteratively refine code, plan
tasks, and run commands using integrated tools. It has the ability to edit files, break down complex
instructions into executable steps, and execute both Bash and Python scripts within a secure sandbox.
This controlled environment enables the agent to analyze execution outputs, detect and debug errors,
and refine its approach based on observed results, ensuring adaptability and correctness in solving
complex programming tasks.

Selected models We use Claude Sonnet 3.5 (Anthropic, 2024b) as one of the proprietary models due
to its superior performance on SWE-Bench. Claude Haiku 3.5 (Anthropic, 2024a) is included as the

1LLM annotations for underspecification are provided in the supplementary materials.
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second proprietary model to investigate the impact of model parameterization, as both models likely
share similar training methodologies but differ significantly in the number of parameters. Additionally,
we evaluate Llama 3.1 70B-Instruct (Llama team, 2024) and Deepseek-v2 (DeepSeek-AI, 2024) as
two open-weight models.

User proxy Following related works which used LLMs to simulate users with full information (Li
et al., 2024), we employ GPT-4o (Ahmad & OpenAI, 2024) as a user proxy to simulate user-agent
interactions. This design choice is informed by prior work showing that LLMs can approximate
simple user behaviors and produce natural-sounding responses in controlled settings (Xu et al., 2024;
Zhou et al., 2024a). The proxy receives the full issue and responds only using information explicitly
present in it, preserving the original knowledge boundaries of the issue reporter. If a queried detail is
missing, the proxy responds with I don’t have that information, thereby avoiding hallucinations. This
conservative design makes it possible to isolate the agent’s ability to detect and recover from missing
information. The full prompt is provided in §A.1.2.

2.3 STUDY DESIGN

We use three distinct settings to evaluate models across the 500 issues from SWE-Bench Verified
shown in Figure 2 and described below.

• Full: This is the traditional SWE-Bench setting. The coding agent is provided with the fully
specified task and the interaction is disabled. It represents the agent’s performance in an ideal
scenario, where the agent has access to full information.

• Hidden: A summarized version of the issue is provided to the coding agent with the user-agent
interaction disabled to mimic the lack of detail that can occur in task descriptions. We do not give
any interaction-related instructions, and all models default to non-interactive behavior. Specific
details are hidden from the coding agent.

• Interaction: The coding agent receives a summarized task, while the user proxy model receives
the fully specified task. Interaction is enabled through prompting, allowing the agent to query the
proxy for specific details. The models do not interact without an explicit prompt. In addition to the
full issue, the proxy has access to file locations that need modification and can provide them when
queried. This setup allows us to evaluate which models proactively seek navigational information
and examine how this interaction influences the success of the solution process across models.

3 RQ1: INTERACTIVE PROBLEM SOLVING

Can LLMs appropriately leverage interaction with the user to improve performance in un-
derspecified settings? Effectively addressing missing information requires a model to integrate
information from user interactions to form a clear plan and successfully solve the task. Our first
experiment holistically evaluates the model’s ability to leverage interaction and improve performance.
The model must not only process the initial task description, but also query users to extract relevant
details while filtering out irrelevant information.

3.1 EXPERIMENTAL SETUP

Figure 3: Resolve rates (in %) across different settings: Hid-
den (underspecified issues), Interaction (underspecified is-
sues with user interaction), and Full (fully specified issues).

The hypothesis of the experiment is
that different language models will ex-
hibit varying performance with inter-
action based on their incorporation of
the provided information, leading to
different levels of improvement over
the Hidden setting. We evaluate the
models across the three settings and
conduct two Wilcoxon-Signed Rank
tests (Appendix §A.2.1) with a signif-
icance level of 0.05 to determine sig-
nificant performance differences be-
tween the Hidden and Interaction set-
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tings, and between the Interaction and Full settings for every model. Here, we modify the prompt
to make interaction with the user compulsory in the Interaction setting2. Ideally, the Interaction
setting should approach the performance of the full setting. The coding agent has a maximum
of 30 turns to generate a solution patch. In this experiment, each model is tested in the Hidden,
Interaction, and Full settings to evaluate its ability to leverage interaction and optimize performance
on underspecified issues. The results, as shown in Figure 3, confirm the expected increase in resolve
rates as more information becomes available to the agent. While the difference between the Hidden
and Interaction settings is significant for every model (Table 4), emphasizing the impact of interaction
on the trajectory, the performance gap between the Interaction and Full settings is also significant
across all models, highlighting the unrealized potential. Specifically, for the Hidden vs. Interaction
settings, proprietary models show stronger evidence of a significant difference. These results suggest
that the ability to leverage interaction varies across models, with proprietary models demonstrating
greater effectiveness in utilizing interaction compared to open-weight models.

3.2 LEVERAGING INTERACTION IN UNDERSPECIFICITY

Using interaction, the Claude Sonnet and Haiku agents recreate 80% of the performance in the Full
setting. However, with Deepseek and Llama 3.1, the relative performance is lower, of 59% and 54%,
respectively. Claude Sonnet 3.5’s high resolve rate in the Hidden setting is likely due to its superior
programming acumen, or data leakage. The performance is surprising, as a human would be able
to decipher little about the expectations given the summarized issue. Better programming models
can potentially extract more information from the stack trace by reproducing the error themselves.
We observe that the Claude Haiku model achieves a performance relative to the Full setting similar
to that of the Claude Sonnet model, despite having inferior coding abilities. Thus, there is no direct
correlation between the number of parameters or coding ability and a model’s ability to leverage
interaction. This hints towards better training practices that can lead to better integration of the new
information.

This experiment highlights the importance of interaction in handling underspecificity. Since many
real-world software engineering problems are underspecified, interactive systems are essential for
ensuring alignment and reducing safety risks. However, current models default to non-interactive
behavior even when faced with severe lack of information and struggle to match the performance seen
in well-specified settings. While interactive trajectories show performance gains over non-interactive
approaches for underspecified inputs, the improvement is not statistically significant, indicating
strong potential for improvement.

3.3 IMPACT OF INTERACTION DETAILS ON MODEL PERFORMANCE

Model Nav Info (%) Resolve w/o Info (%) Resolve w/ Info (%)

Claude Sonnet 3.5 8.96 37.94 59.52
Claude Haiku 3.5 24.67 24.78 36.94
Deepseek-v2 30.70 4.62 13.19
Llama 3.1 70B 30.28 4.28 6.34

Table 1: % of issues where navigational information was acquired in the Interaction setting, and the
resolve rates with and without it. Navigational information refers to file paths needing modification.

In the Interaction setting of the previous experiment, the information gained can be broadly cat-
egorized into two types: informational, which relates to the expected behavior or nature of the
error, and navigational, which pertains to the locations of the files to modify. While informational
details are typically obtained in nearly every interaction, the models request navigational details
less frequently. We measure the resolve rates separately for instances where the model asks for
navigational details and when it does not, examining the impact on performance when models must
rely only on informational details versus when navigational details are also accessible.

As seen in Table 1, requesting navigational details improves performance across all models by
providing cues beyond described behavior and errors. However, some models rely too heavily on

2Without compulsory interaction, the model defaults to non-interactive behavior for most issues, as seen in
the Hidden setting. Full prompt in §A.1.2
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this information and struggle when it’s missing. Smaller models like Llama 3.1 and Deepseek-
v2 request file locations more often but underperform without them. Claude models, particularly
Sonnet, better leverage informational cues, achieving higher resolve rates even without navigational
details. Deepseek, by contrast, performs worse than its Hidden setting when file locations are
absent, highlighting its dependence. This reliance leads to wasted turns searching for errors instead
of identifying them efficiently. Llama 3.1 performs better than Hidden without file locations but
gains little when they are provided, likely due to poor detail extraction (Section §5). Ideally, LLMs
should generalize across diverse interaction types, as users may not always provide specific details,
improving robustness in real-world software engineering tasks.

Takeaway: Proprietary models (Claude Sonnet 3.5, Haiku 3.5) effectively exploit interaction, re-
covering nearly 80% of their fully specified performance, with Haiku improving by 74% over its
hidden setting. In contrast, open-weight models (Deepseek-v2, Llama 3.1) show limited gains.
Performance does not correlate with model size, suggesting that training practices, rather than scale,
likely determine the ability to leverage interaction.

4 RQ2: DETECTION OF INCOMPLETE TASK SPECIFICATIONS

Can LLMs identify whether a given task description is missing crucial information? In real-
world LLM and agent applications, task descriptions and prompts often vary in quality. Unnecessary
interaction when sufficient information is already available can introduce inefficiencies and burden
users. In this work, we evaluate whether LLMs can detect missing information in software engineering
contexts by randomly presenting either fully-specified or underspecified issues, along with varying
interaction prompts, and analyzing their interaction behavior across these conditions.

4.1 EXPERIMENTAL SETUP

In this experiment, each issue is presented in either the Full setting or the Hidden setting. The
objective is to identify patterns in how models choose to interact based on the input type. Ideally, the
model should have a high interaction rate for the summarized inputs and a negligible interaction rate
for the well-specified inputs.

In the instructions which outline the task, we present the agent with an option to interact during its
solution trajectory and design three instructions with varying levels of encouragement to interact
with the user. We track the input type the model chooses to interact with. The instructions, listed
in order of increasing encouragement to interact, are: Neutral, where the agent is told it can ask
questions if anything is unclear), Moderate Encouragement, where the agent is told to carefully check
that all necessary information is available and only proceed after everything is clear, and Strong
Encouragement, where the agent is told that asking questions is critical to task success (full prompts
in Appendix §A).

Table 2: Model performance in underspecificity detection across prompts with increasing interaction
encouragement. FPR: false positive rate (unnecessary interaction); FNR: false negative rate (missed
necessary interaction). Ideal models have high accuracy, low FPR, and low FNR.

Model Neutral Moderate Strong

Acc ↑ FPR ↓ FNR ↓ Acc ↑ FPR ↓ FNR ↓ Acc ↑ FPR ↓ FNR ↓

Claude Sonnet 3.5 0.60 0.00 0.81 0.84 0.24 0.09 0.76 0.36 0.10
Claude Haiku 3.5 0.54 0.00 0.97 0.57 0.02 0.90 0.63 0.06 0.66
Deepseek-v2 0.69 0.30 0.31 0.57 0.08 0.83 0.51 0.04 0.94
Llama 3.1 70B 0.48 0.46 0.57 0.47 0.95 0.09 0.52 0.93 0.06

4.2 EFFECT OF DIFFERENT PROMPTS

Experiments to detect underspecificity demonstrate that, using prompt engineering, we can control
the level of interaction with the user, as shown in Table 2. But this interactivity is not possible without
clearly specifying it in the prompt wherein without any specific mention of interaction, the models
almost never interact for any of the summarized issue inputs.
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Figure 4: Agent questions and user responses to the same underspecified input are shown for Llama
3.1 70B, Deepseek-v2, and Claude Haiku 3.5. They highlight specific interaction patterns and
differences in handling missing information. The corresponding model inputs are detailed in Table 6.

The Claude Sonnet model performs best with Moderate Encouragement, achieving the highest
overall accuracy of 84% across all variations. Its counterpart from the same model family, Claude
Haiku, is hesitant to interact even with Strong Encouragement. The Claude models show a drop in
accuracy in cases where interaction is not needed as their overall interaction increases, indicating
that the interaction fails to target underspecified inputs effectively. For the Deepseek model, we
observe that the Neutral prompt gives the best results as interactivity surprisingly decreases with
more encouragement. The accuracy in both the cases where interaction was desired and not desired
is around 70%, which shows that the model is capable of distinguishing between well-specified and
underspecified issues to some extent. The Llama model displays a greater, but arbitrary, tendency to
interact across all prompts than other models.

4.3 DETECTION ACROSS MODELS

While interaction levels can be adjusted with prompting, both summarized issues and full issues
have equal probability of being selected for interaction as interactivity increases, particularly with
smaller models. Despite the stark difference in the language and detail of summarized issues and fully
specified issues, the models, except Claude Sonnet, fail to reliably distinguish them, indicating that
LLMs struggle to detect missing information even in obvious cases. All models, including Claude
Sonnet, show big changes in the detection behavior with prompt variations. Interestingly, Sonnet
outperforms Haiku, likely due to superior instruction following capability, which helps it better follow
instructions and achieve the desired interactive trajectory. Surprisingly, even Deepseek adapts better
to the task than Haiku.

Takeaway: Models generally default to non-interactive behavior unless prompted, and prompt
engineering alone cannot reliably improve detection of underspecified tasks. Some models, like
Claude Sonnet, show partial ability to identify missing information, but most struggle, highlighting
the need for dedicated training rather than prompt tweaks to handle underspecificity effectively.

5 RQ3: QUESTION QUALITY

Can LLMs generate meaningful and targeted clarification questions that gather the necessary
information to complete the task? To gather missing information from underspecified inputs, the
quality of an agent’s questions is crucial. While §3 evaluates task completion, the model performance
in the experiment is influenced by the coding ability. Here, we focus solely on the quality of
the questions posed by the agent to the user, measuring how effectively models extract relevant
information.

5.1 EXPERIMENTAL SETUP

In this experiment, we evaluate the quality of the interactions between the agent and the user in
the Interaction setting. We measure the novelty and detail level of the information obtained from
the user’s answers to evaluate the quality, quantifying the new knowledge relative to the existing
understanding of the agent. We employ two techniques to quantify the information obtained.
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1. Cosine distance: We compute the cosine distance (1− cos(P,Q)) between the embeddings of the
summarized task Ebefore and the cumulative knowledge after interaction with the user Eafter using
a text embedding model. Lower distances indicate redundant user input, while higher values show
meaningful information gain. We use OpenAI’s text-embedding-3-small as our embedding model.

2. LLM-as-judge (GPT-4o): The model scores the user answers on a scale of 1 to 5, where a higher
score corresponds to more new and detailed information in the user’s response, such as specific
files causing errors or function behavior. The prompt to the model includes the summarized issue,
agent questions, and user responses for better context.

5.2 INFORMATION GAIN FROM INTERACTION

For the quantitative evaluation of the quality of the question, both the cosine distance and the LLM-
as-judge methods suggest a similar result: the Llama model performs significantly worse than the
other models, whereas the other models achieve very similar information gains, as seen in Figure 5.

The Llama model has an average cosine distance of 0.101 when the embedding of the summarized
issue is compared to the embedding of the user response appended to the summarized issue. Deepseek
achieves the highest cosine distance of 0.142, while the Claude Sonnet and Haiku models achieve
very similar cosine distances of 0.136 and 0.135.

Using LLM as a judge, we evaluate the specificity of the details present in the answers. Here again,
the Llama 3.1 model achieves a significantly worse average score of 3.58 than the other models which
see similar performance of around 4 out of 5.

Figure 5: Information Gain measured using (a) Cosine Distance Scores and (b) LLM-as-Judge Scores.

5.3 QUALITATIVE ANALYSIS OF QUESTIONS

The quantitative results can be further supported by a qualitative evaluation of the questions. Sample
question-answer pairs reflecting common trends are shown in Figure 4. The Llama model asks fewer
questions on average than other models in one message for user interaction, as seen in Table 5, and
often poses overly general questions like, Are there any existing workarounds or temporary fixes?.
These template-like questions are unproductive and less likely to gather useful information.

Deepseek, on the other hand, asks the most questions per message, allowing it to extract more
information. Its questions, such as Are there any existing tests or examples that demonstrate the
issue?, aim to extract, edge cases, documentation, or tests, and while common across multiple issues,
they are reasonable and yield valuable details. But most questions are very specific and detailed,
querying about the expected behavior. Often, due to the specificity of the question, the user might not
have the required information.

Claude Sonnet asks fewer questions than Deepseek, likely because it explores the codebase first. The
questions do not have easily discernible patterns and match the Deepseek model in specificity. The
Haiku model, in contrast, follows a consistent template, typically asking three questions regardless of
the input, although sub-questions may be present. Haiku’s questions are more keyword-driven based
on the input, while Sonnet’s are based on a deeper understanding of the issue and codebase.

Takeaway: Models that balance specificity and question quantity, such as Claude, achieve higher
information gain and interaction quality. DeepSeek benefits from detailed questioning but risks
overwhelming users, while Llama underperforms due to generic or irrelevant queries.
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6 RELATED WORK

Code generation benchmarks Ambiguity is a closely related domain to underspecificity, where
model misinterpretation of user intent is a common failure mode. In both cases, clarification becomes
necessary, though the causes differ. Ambiguity stems from vague or multi-interpretable inputs, while
underspecificity arises when key information is entirely omitted. This is especially relevant in our
setting, where models operate over intent summaries that may only partially capture user goals.
Clarifying questions help mitigate ambiguity (Mu et al., 2023), and interactive, test-driven workflows
generate test cases aligned with expectations, which users validate before code generation (Lahiri
et al., 2023). Extensions of this approach employ runtime techniques to generate, mutate, and rank
candidates based on user feedback (Fakhoury et al., 2024). Although effective, these workflows can
burden users, highlighting the need to minimize intervention to essential cases.

Interactive ML systems In interactive systems, ambiguity is often categorized and addressed via
targeted clarification. Niwa & Iso (2024) introduces a taxonomy of instruction ambiguities, such as
unclear output formats or contextual constraints, and applies disambiguation strategies accordingly.
Similarly, Wang et al. (2024a) evaluates LLM behavior on ambiguous tool-use instructions, and
Feng et al. (2024) uses reinforcement learning to optimize intervention. Although these systems
successfully reduce ambiguity, underspecificity poses a subtler challenge, where there is missing
context, leading to hallucinated assumptions and requires agents to clarify.

LLMs and ambiguity Modern LLMs are not explicitly trained to resolve ambiguity via interac-
tion (Zhang et al., 2024), but instruction tuning improves their performance when guided by prompt
engineering (White et al., 2023). Ambiguity detection has been approached through uncertainty
estimation (Zhang & Choi, 2023; Park et al., 2024) and self-disambiguation (Keluskar et al., 2024;
Sterner, 2022; Sumanathilaka et al., 2024). For example, Kim et al. (2024) quantifies ambiguity
using information gain. Although inference-only methods are cost-effective, they are less robust
than training-based approaches for handling ambiguity. Chen et al. (2025) address disambiguation in
conversational settings, but typically with only a single missing detail. In contrast, we study under-
specification in complex agentic tasks, where multiple interdependent gaps can arise dynamically,
and agents may take many steps before recognizing missing information.

7 CONCLUSION, LIMITATIONS, AND FUTURE WORK

Our evaluation of proprietary and open-weight language models in agentic frameworks highlights
how underspecificity poses a core challenge in software engineering tasks. Effective performance
requires (i) detecting missing information, and (ii) acquiring it through precise, targeted interaction
before (iii) attempting a solution with the full information.

Our analysis is subject to a few scope constraints. Underspecificity detection is measured only
within the first three turns, as models rarely recover if they fail to engage early. Question quality
is approximated via latent vector changes that weigh all information equally, though models may
prioritize details differently. Finally, our simulated user proxy may be more cooperative than real
users, though we mitigate this by limiting interaction turns and focusing them tightly on the task.

Despite these limitations, several clear trends emerge from our experiments:

• With a brief round of clarification, leading proprietary models recover much of their fully-specified
performance, while open-weight models continue to lag, revealing a significant interaction gap.

• LLMs rarely initiate clarification unprompted, and their sensitivity to prompt framing makes them
brittle in noisy, real-world contexts.

• The most effective questions are specific, actionable, and task-level, while vague prompts or
implementation details recoverable from the codebase add little value.

Overall, a gap remains between underspecified and fully specified resolution rates. Closing it will
require open-weight models to adopt stronger interaction strategies and proprietary models to engage
more proactively. Our framework provides a blueprint for decomposing resolution into multiple
steps, enabling finer-grained analysis of where models succeed or fail. While we focus on software
engineering, the methods and insights can extend to other complex, real-world agentic tasks. Thus,
our work offers both a diagnostic framework for agent evaluation and a roadmap toward more robust,
adaptive, and user-aligned agents that can thrive in underspecified and dynamic environments.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of the presented results, this paper provides comprehensive details on
the methodology, data generation, and experimental setup. All key components of the proposed
framework are described with the intention of enabling replication by an independent research group.
The experimental setup is detailed in §2 and full prompts are provided in the Appendix §A. We have
also attached the code with the steps to reproduce and the experimental data.

LLM USAGE

We used a large language model to assist with polishing the writing style, condensing the content,
and improving clarity. All research ideas, methods, experiments, and analyses were developed and
conducted by the authors. The LLM did not contribute to scientific content.
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A APPENDIX

A.1 EXPERIMENTAL DESIGN

A.1.1 FULL SETTING
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a larger knowledge gap in comparison to the Hidden setting.
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Prompt for Full Setting

I’ve uploaded a Python code repository in the directory
/workspace/{workspace_dir_name}. Consider the following PR description:
<pr_description>{instance.full_issue}</pr_description>
Here are some additional hints: <hints>{instance.hints_text}</hints>
Can you help me implement the necessary changes to the repository so that the requirements
specified in the PR description are met?
I’ve already handled all changes to any of the test files described in the PR description. This
means you DON’T need to modify the testing logic or any of the tests!
Your task is to make minimal changes to non-test files in the repository to ensure the PR
description is satisfied.
Follow these steps to resolve the issue:

1. As a first step, explore the repo to familiarize yourself with its structure.
2. Create a script to reproduce the error and execute it with python <filename.py>

using the BashTool to confirm the error.
3. Edit the source code in the repo to resolve the issue.
4. Rerun your reproduce script to confirm the error is fixed.
5. Consider edge cases and make sure your fix handles them as well.

Your thinking should be thorough, and it’s fine if it’s very long.

A.1.2 INTERACTION SETTING

In this setting, the user proxy agent receives both the fully specified issue and additional hints,
maintaining the knowledge gap relative to the Hidden setting. This provides extra information for
the coding agent to extract through interaction. The files to be modified are also provided to the
user proxy agent, allowing us to track specific details across issues. Since file-related information is
universally useful—unlike other details whose importance may be subjective—it enables evaluation
of how effectively different models incorporate critical information into their solution paths.

This setup reflects a scenario where the user might know additional details not included in their
initial input, which can still be extracted to improve performance. While more capable models may
independently retrieve this information by exploring the codebase, it can be particularly helpful for
lower-performing models. By tracking which models choose to extract this information, we gain
insights into the types of questions they ask and observe behavioral trends across models.
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Prompt for Interaction Setting with Mandatory Interaction

I’ve uploaded a Python code repository in the directory
/workspace/{workspace_dir_name}. Consider the following PR description:
<pr_description>{instance.summarized_issue}</pr_description>
Can you help me implement the necessary changes to the repository so that the requirements
specified in the PR description are met?
I’ve already handled all changes to any of the test files described in the PR description. This
means you DON’T need to modify the testing logic or any of the tests!
Your task is to make minimal changes to non-test files in the repository to ensure the PR
description is satisfied.
I have not provided all the necessary details about the issue and I have some hidden details
that are helpful. Please ask me specific questions using non-code commands to gather the
relevant information that I have to help you solve the issue. Ensure you have all the details
you require to solve the issue.
You have a limited number of turns. Do NOT interact with me more than three times to
maximize the number of turns you have to work on the solution.
Follow these steps to resolve the issue:

1. As a first step, look at the issue and ask me questions to get all the necessary details
about the issue. You can also ask me questions if you run into a problem in later
steps.

2. Then, it might be a good idea to explore the repo to familiarize yourself with its
structure.

3. Create a script to reproduce the error and execute it with python
<filename.py> using the BashTool to confirm the error.

4. Edit the source code in the repo to resolve the issue.
5. Rerun your reproduce script to confirm the error is fixed.
6. Think about edge cases and make sure your fix handles them as well.

Your thinking should be thorough, and it’s fine if it’s very long.

Prompt to User Proxy

You are a GitHub user reporting an issue. Here are the details of your issue and environment:
Issue: {issue}
Hints: {hints}
Files relative to your current directory: {files}
Your task is to respond to questions from a coder who is trying to solve your issue. The coder
has a summarized version of the issue you have. Follow these rules:
1. If the coder asks a question that is directly related to the information in the issue you have,
provide that information.
2. Always stay in character as a user reporting an issue, not as an AI assistant.
3. Keep your responses concise and to the point.
4. The coder has limited turns to solve the issue. Do not interact with the coder beyond 3
turns.
Respond with I don’t have that information if the question is unrelated or you’re unsure.
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Metric Mean Median Std Dev

ROUGE-1 Recall 0.179 0.159 0.102
ROUGE-L Recall 0.111 0.094 0.069
Entity Recall 0.085 0.030 0.141
BERTScore F1 -0.111 -0.127 0.194

Table 3: Quantitative comparison of underspecified summaries against full issues using overlap- and
semantics-based metrics.

A.1.3 HIDDEN SETTING

Prompt for Hidden Setting

I’ve uploaded a Python code repository in the directory
/workspace/{workspace_dir_name}. Consider the following PR description:
<pr_description>{instance.summarized_issue}</pr_description>
Can you help me implement the necessary changes to the repository so that the requirements
specified in the PR description are met?
I’ve already taken care of all changes to any of the test files described in the PR description.
This means you DON’T need to modify the testing logic or any of the tests!
Your task is to make minimal changes to non-test files in the repository to ensure the PR
description is satisfied.
Follow these steps to resolve the issue:

1. As a first step, it might be a good idea to explore the repo to familiarize yourself
with its structure.

2. Create a script to reproduce the error and execute it with python
<filename.py> using the BashTool to confirm the error.

3. Edit the source code in the repo to resolve the issue.
4. Rerun your reproduce script to confirm the error is fixed.
5. Consider edge cases and make sure your fix handles them as well.

Your thinking should be thorough, and it’s fine if it’s very long.

Prompt For Summarizing GitHub Issues

I have several issues from GitHub related to code specifications. Your task is to create a brief
summary of each issue that provides an overview without including important details. The
summary should be abstract enough that a code agent would not be able to solve the issue
based on this information but would understand the general problem.
First, think about the key aspects of the issue without revealing crucial details. Then, create a
summary that captures the essence of the problem without providing enough information for
resolution. Use the <summary> and </summary> tags around your generated summary.
The output should be in the form: <summary> ... </summary>
Here is the issue: {issue}
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LLM Underspecification Analysis prompt

Compare these two texts and identify what INFORMATION is present in the original issue but
missing in the problem statement. Focus on factual content differences, not language or writing
style differences.
Original GitHub Issue:
{original_issue}

Summarized Problem Statement:
{problem_statement}

Instructions: Identify specific pieces of information that appear in the original issue but are
absent or underspecified in the problem statement. Focus ONLY on informational content -
ignore differences in:

• Wording or phrasing
• Writing style or tone
• Sentence structure
• Different ways of expressing the SAME information

For example:
• DO include: “Error message ’FileNotFoundError’ is missing” (different information)
• DO NOT include: “Less detailed explanation of the bug” (same information, different

wording)
List each missing piece of information as a separate numbered item. Be specific and concrete.
Output your analysis as a numbered list within <missing_info></missing_info> tags.

A.2 STATISTICAL METHODS

A.2.1 WILCOXON SIGNED-RANK TEST

The Wilcoxon Signed-Rank Test is a non-parametric statistical test used to determine if there is a
significant difference between the medians of two related groups. Unlike the paired t-test, it does not
assume that the differences between paired observations are normally distributed, making it more
suitable for cases where this assumption may not hold.

In this work, the Wilcoxon Signed-Rank Test is applied to compare the performance of models
between two settings (e.g., Hidden vs. Interaction, Interaction vs. Full) with the hypothesis that
performance in the second setting is greater than in the first.

Formally, the null hypothesis (H0) for the Wilcoxon Signed-Rank Test states that the median
difference between the two settings is zero or negative:

H0 : d̃ ≤ 0

where d̃ represents the median of the paired differences. The alternative hypothesis (H1) asserts that
the median difference is greater than zero:

H1 : d̃ > 0

The test ranks the absolute differences between paired observations, considering both the magnitude
and direction of change. If the p-value obtained from the test is less than the significance threshold
(0.05), we reject the null hypothesis, concluding that there is a statistically significant improvement
in performance between the two settings.
A.2.2 COMPUTE REQUIREMENTS

The experiments are conducted using 16 workers in the Remote Runtime (beta) provided in Open-
Hands which is a cloud-based runtime for parallel execution.
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Model Comparison p-value

Llama 3.1 70B Hidden vs Interaction 0.0023
Interaction vs Full 3.87e-06

Claude Haiku 3.5 Hidden vs Interaction 2.18e-14
Interaction vs Full 1.65e-09

Claude Sonnet 3.5 Hidden vs Interaction 8.55e-19
Interaction vs Full 1.28e-12

Deepseek-v2 Hidden vs Interaction 0.0023
Interaction vs Full 2.87e-07

Table 4: Wilcoxon signed-rank test results for Hidden vs Interaction and Interaction vs Full settings
across models.

A.3 UNDERSPECIFICITY DETECTION PROMPTS

• Neutral: Ensure you have all the necessary information to proceed. If any part of the issue
is unclear or lacks critical details, ask concise, targeted questions to clarify. If everything is
clear, you can move ahead without asking unnecessary questions.

• Moderate Encouragement: Before attempting a solution, carefully check whether all key
information is provided. If there’s any ambiguity or missing details that could impact your
work, don’t hesitate to ask questions. Your goal is to gather the information needed for an
accurate and efficient solution. Only skip asking questions when you are absolutely sure all
details are complete.

• Strong Encouragement: Your success depends on having all relevant details to solve the
issue effectively. Whenever you encounter unclear or missing information, proactively ask
questions to fill those gaps. Even minor ambiguities can affect the outcome, so always
prioritize clarifying questions. Avoid questions only when you are 100% certain no further
clarification is needed.

A.4 QUESTION QUALITY ANALYSIS

Cosine Distance(P,Q) = 1− P ·Q
∥P∥∥Q∥

(1)

where:

• P = {p1, p2, . . . , pN} represents the embedding vector of the updated knowledge (Eafter).
• Q = {q1, q2, . . . , qN} represents the embedding vector of the initial knowledge (Ebefore).
• N = 1536 is the dimensionality of the embedding space.

Table 5: Average number of questions asked per interaction.

Model Avg. # Questions

Claude Sonnet 3.5 3.80
Claude Haiku 3.5 3.49
Deepseek-v2 4.57
Llama 3.1 70B 2.61
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Table 6: Examples of questions and their responses across different models reflecting general patterns.

Model Summarized issue Selected questions Answers
Llama 3.1
70B

The InheritDocstrings
metaclass fails to handle properties
due to reliance on function checks
that miss properties.

1. Any known workarounds or temporary
fixes?

2. Is the issue property-specific or gen-
eral?

1. I don’t have that information.
2. It seems to be a general problem with

how the metaclass handles properties.

Deepseek
Chat

Same issue with property handling
in InheritDocstrings. 1. What is the purpose and

current implementation of
InheritDocstrings?

2. Are there existing tests that demon-
strate the issue?

1. It ensures docstrings are in-
herited from the parent. Uses
inspect.isfunction, which
fails for properties.

2. I don’t have that information.
Claude Haiku
3.5

Same issue with improper
property handling by
InheritDocstrings.

1. Where is the metaclass located in the
repo?

2. What is the specific incorrect behavior?

1. It is in
astropy/utils/misc.py.

2. Properties redefined without doc-
strings don’t inherit from the base.

Claude Sonnet
3.5

A method fails with Python 3
byte input, unlike its counterpart
that handles both text and binary
modes.

1. Which method has this issue?
2. Example of a failing byte string input?

1. The method is
Header.fromstring.

2. No specific example, but it should con-
tain full header data as bytes.
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