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Abstract

Extracting scientific understanding from particle-physics experiments requires
solving diverse learning problems with high precision and good data efficiency.
We propose the Lorentz Geometric Algebra Transformer (L-GATr), a new multi-
purpose architecture for high-energy physics. L-GATr represents high-energy data
in a geometric algebra over four-dimensional space-time and is equivariant under
Lorentz transformations, the symmetry group of relativistic kinematics. At the
same time, the architecture is a Transformer, which makes it versatile and scalable
to large systems. L-GATr is first demonstrated on regression and classification tasks
from particle physics. We then construct the first Lorentz-equivariant generative
model: a continuous normalizing flow based on an L-GATr network, trained with
Riemannian flow matching. Across our experiments, L-GATr is on par with or
outperforms strong domain-specific baselines.

1 Introduction

In the quest to understand nature on the most fundamental level, machine learning is omnipresent [23].
Take the most complex machine ever built: at CERN’s Large Hadron Collider (LHC), protons are
accelerated to close to the speed of light and interact; their remnants are recorded by various detector
components, totalling around 1015 bytes of data per second [24]. These data are filtered, processed,
and compared to theory predictions, as we sketch in Fig. 1. Each step of this pipeline requires making
decisions about high-dimensional data. More often than not, these decisions are rooted in machine
learning, increasingly often deep neural networks [12, 13, 20, 32, 44, 49, 52, 66]. This approach
powers most measurements in high-energy physics, culminating in the Higgs boson discovery in
2012 [5, 30].

High-energy physics analyses put stringent requirements on network architectures. They need to
be able to represent particle data and have to be expressive enough to learn complex relations
in high-dimensional spaces precisely. Moreover, training data often come from precise theory
computations and complex detector simulations, both of which require a considerable computational
cost; architectures therefore need to be data efficient. Generative models of particle-physics data
face additional challenges: because of detector boundaries and selection cuts, densities frequently
feature sharp edges; at the same time, it is often important to model low-density tails of distributions
precisely over multiple orders of magnitude of probability densities.

Off-the-shelf architectures originally developed for vision or language are popular starting points for
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high-energy physics applications [19, 37], but do not satisfy these goals reliably. We argue that this is
because they do not make systematic use of the rich structure of the data. Particle interactions are
governed by quantum field theories and respect their symmetries, notably the Lorentz symmetry of
special relativity [39, 63]. First Lorentz-equivariant architectures have recently been proposed [10,
42, 68], but they are limited to specific applications and not designed with a focus on scalability.

In this work, we introduce the Lorentz Geometric Algebra Transformer (L-GATr), a new general-
purpose network architecture for high-energy physics. It is based on three design choices. First,
L-GATr is equivariant with respect to the Lorentz symmetry.3 It supports partial and approximate
symmetries as found in some high-energy physics applications through symmetry-breaking inputs.
Second, as representations, L-GATr uses the geometric (or Clifford) algebra over the four-vectors
of special relativity. This algebra is based on the scalar and four-vector properties that LHC data
are naturally parameterized in and extends them to higher orders, increasing the network capacity.
Finally, L-GATr is a Transformer. It supports variable-length inputs, as found in many LHC problems,
and even large models can be trained efficiently. Because it computes pairwise interactions through
scaled dot-product attention, for which there are highly optimized backends like Flash Attention [33],
the architecture scales particularly well to problems with many tokens or particles.

L-GATr is based on the Geometric Algebra Transformer architecture [14, 36], which was designed
for non-relativistic problems governed by the Euclidean symmetry E(3) of translations, rotations,
and reflections. Our L-GATr architecture generalizes that to relativistic scenarios and the Lorentz
symmetry. To this end, we develop several new network layers, including a maximally expressive
Lorentz-equivariant linear map, a Lorentz-equivariant attention mechanism, and Lorentz-equivariant
layer normalization.

In addition to the general-purpose architecture, we develop the first (to the best of our knowledge)
Lorentz-equivariant generative model. We construct a continuous normalizing flow with an L-GATr
denoising network and propose training it with a Riemannian flow matching approach [25]. This
not only lets us train the model in a scalable way, but also allows us to encode more aspects of
the problem geometry into the model: we can even hard-code phase-space boundaries, which are
commonplace in high-energy physics.

We demonstrate L-GATr on three particle-physics applications. We first train neural surrogates for
quantum field theoretic amplitudes, a regression problem with high demands on precision. Next, we
train classification models and evaluate L-GATr on the popular benchmark problem of top tagging.
Finally, we turn to the generative modelling of reconstructed particles, which can make the entire
analysis pipeline substantially more efficient. The three applications differ in the role they play in
the LHC analysis pipeline (see Fig. 1), data, and learning objective, highlighting the versatility of
L-GATr. We find that L-GATr is on par with or outperforms strong domain-specific baselines across
all problems, both in terms of performance and data efficiency.

Our implementation of L-GATr is available at https://github.com/heidelberg-hepml/
lorentz-gatr.

2 Background and related work

High-energy physics In Fig. 1 we sketch the typical data-analysis pipeline in particle physics. Its
central idea is to take the data collected in the detectors as well as the predictions from different
theories of physics, process both in parallel, and ultimately compare their predictions. The pipeline
includes various steps, including the computation of scattering probabilities or amplitudes in mathe-
matical frameworks called quantum field theories, the Monte-Carlo sampling from the theory, the
simulated interaction of particles with the detector, the dimensionality reduction of the raw detector
output to a small number of observables, the data filtering to extract only collisions of interest, and
the statistical analysis of whether two predictions are consistent.

What most steps in this pipeline have in common is the notion of particles, the main representation of
data in high-energy physics. A particle is characterized by a discrete type label, an energy E ∈ R, and
a spatial momentum p⃗ ∈ R3. Types include fundamental particles like electrons, photons, quarks, and

3One could extend L-GATr to the full Poincaré symmetry, which additionally includes space-time translations.
However, this is not necessary for most particle-physics applications, as usually only the momentum, and not the
absolute position, of particles is of interest. A key exception is the study of long-lived particles.
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Figure 1: Schematic view of the data-analysis workflow in high-energy physics. Measurements (top) are
processed in parallel with simulated data (bottom); their comparison is ultimately the basis for most scientific
conclusions. In orange, we show how the three applications of L-GATr we experiment with in this paper fit into
this workflow. The architecture is also applicable in several other stages, including reconstruction and inference.

gluons, composite particles like protons, as well as reconstructed objects like “jets” [70] or “particle-
flow candidates” [71], which are the outputs of complex reconstruction algorithms. The energy and
spatial momentum of a particle are conveniently combined into a four-momentum p = (E, p⃗).

The laws of fundamental physics [41, 75] are invariant with respect to the choice of an inertial
reference frame [39, 63]: they do not change under rotations and boosts from one un-accelerated
reference frame into another.4 Together, these transformations form the special orthochronous
Lorentz group SO+(1, 3).5 This group is the connected component of the orthogonal group on the
four-vector space R1,3 with Minkowski metric diag(+1,−1,−1,−1) [61]. Lorentz transformations
mix temporal and spatial components. Space and time should therefore not be considered as
separate concepts, but rather as components of a four-dimensional space-time. Particle four-momenta
are another instance of this: they transform in the vector representation of the Lorentz group as
pµ → p′µ =

∑
ν Λ

µ
νp

ν for Λ ∈ SO+(1, 3), with the Lorentz transformation mixing energy and
spatial momentum.

Geometric deep learning The central tenet of geometric deep learning [15, 31] is to embed the
known structure of a problem into the architecture used to solve it, instead of having to learn it
completely from data. The key idea is that of equivariance to symmetry groups: when the inputs
x to a network f are transformed with a symmetry transformation g, the outputs should transform
under the same element of the symmetry group, f(g · x) = g · f(x), where · denotes the group action.
What is known as “equivariance” in machine learning is often called “covariance” in physics [28].

GATr Our work is rooted in the Geometric Algebra Transformer (GATr) [14, 36], a network
architecture that is equivariant to E(3), the group of non-relativistic translations, rotations, and
reflections. GATr represents inputs, hidden states, and outputs in the geometric (or Clifford) algebra
G3,0,1 [29, 43, 67]. A geometric algebra extends a base space like R3 to higher orders and adds a
bilinear map known as the geometric product. We provide a formal introduction in Appendix A. What
matters in practice is that this vector space can represent various 3D geometric objects. Brehmer
et al. [14] develop different layers for this representation and combine them in a Transformer
architecture [73]. For L-GATr, we build on the GATr blueprint, but re-design all components such
that they can represent four-momenta and are equivariant with respect to Lorentz transformations.

Lorentz-equivariant architectures Recently, some Lorentz-equivariant architectures have been
proposed. Most closely related to this work is the Clifford Group Equivariant Neural Networks
(CGENN) by Ruhe et al. [68] and their extensions to simplical complexes [54] and steerable convolu-
tions [78]. Like us, they use the geometric algebra over four-vectors. While they also use Lorentz-
equivariant linear maps and geometric products, our architectures differ in a number of ways. In
particular, they propose a message-passing graph neural network, while we build a Transformer archi-

4Allowing for accelerating reference frames would bring us to the general theory of relativity, which is
irrelevant for particle physics experiment as long as they are not performed close to a black hole.

5 “Special” and “orthochronous” here mean that spatial and temporal reflections are not considered as
symmetries. In fact, the fundamental laws of nature are not invariant under those transformations, an effect
known as P -violation and T -violation.
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tecture based on dot-product attention.

Other Lorentz-equivariant architectures include LorentzNet [42] and the Permutation Equivariant
and Lorentz Invariant or Covariant Aggregator Network (PELICAN) [10]. Both are message-passing
graph neural network as well. Given a set of four-vectors, PELICAN computes all pairwise inner
products, which are Lorentz invariants, and then processes them with a permutation-equivariant
architecture. LorentzNet maintains scalar and four-vector representations and updates them with a
graph attention mechanism similar to the one proposed by Villar et al. [74].

Flow matching Continuous normalizing flows [26] are a class of generative models that push a
sample from a base density through a transformation defined by an ordinary differential equation.

Specifically, the evolution of a point x ∈ Rd is modelled as a time-dependent flow ψt : Rd → Rd

with d
dtψt(x) = ut(ψt(x)), ψ0(x) = x, where ut is a time-dependent vector field.

Conditional flow matching [3, 53] is a simple and scalable training algorithm for continuous nor-
malizing flows that does not require the simulation of trajectories during training. Instead, the ob-
jective is to match a vector field vt(x), parametrized by a neural network, onto a conditional target
vector field ut(x|x1) along a conditional probability path pt(x|x1), minimizing the loss LCFM =
Et∼U [0,1],x1∼q(x1),x∼pt(x|x1)∥vt(x)− ut(x|x1)∥2, where x1 ∼ q(x1) are samples from the base dis-
tribution.

Choosing a well-suited probability path and corresponding target vector field can substantially
improve the data efficiency and sampling quality. A principled approach to this choice is Riemannian
flow matching (RFM) [25]. Instead of connecting target and latent space points by straight lines in
Euclidean space, RFM proposes to choose probability paths based on the metric of the manifold
structure of the data space. If available in closed form, they propose to use geodesics as probability
paths, which corresponds to optimal transport between base and data density.

3 The Lorentz Geometric Algebra Transformer (L-GATr)

3.1 Lorentz-equivariant architecture

Geometric algebra representations The inputs, hidden states, and outputs of L-GATr are variable-
size sets of tokens. Each token consists of n copies of the geometric algebra G1,3 and m additional
scalar channels.

The geometric algebra G1,3 is defined formally in Appendix A. In practice, G1,3 is a 16-dimensional
vector space that consists of multiple subspaces (or grades). The 0-th grade consists of scalars
that do not transform under Lorentz transformations, for instance embeddings of particle types or
regression amplitudes. The first grade contains space-time four-vectors such as the four-momenta
p = (E, p⃗). The remaining grades extend these objects to higher orders (i. e. antisymmetric tensors),
increasing expressivity. In addition, the geometric algebra defines a bilinear map, the geometric
product G1,3 ×G1,3 → G1,3, which contains both the space-time inner product and a generalization
of the Euclidean cross product.

This representation naturally fits most LHC problems, which are canonically represented as sets of
particles, each parameterized with type information and four-momenta. We represent each particle as
a token, store the particle type as a one-hot embedding in the scalar channels and the four-momentum
in the first grade of the geometric algebra.

Lorentz-equivariant linear layers We define several new layers that have both G1,3 and additional
scalar representations as inputs and outputs. For readability, we will suppress the scalar channels in
the following. We require each layer f(x) to be equivariant with respect to Lorentz transformations
Λ ∈ SO+(1, 3): f(Λ ·x) = Λ ·f(x), where · denotes the action of the Lorentz group on the geometric
algebra (see Appendix A). Lorentz equivariance strongly constrains linear maps between geometric
algebra representations:6

6O(1, 3)-equivariant linear maps are restricted to the first sum; the additional equivariance under reflections
forbids the multiplication with the pseudoscalar.
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Proposition 1. Any linear map Linear : G1,3 → G1,3 that is equivariant to SO+(1, 3) is of the form

Linear(x) =

4∑
k=0

vk⟨x⟩k +

4∑
k=0

wke0123⟨x⟩k (1)

for parameters v, w ∈ R5. Here e0123 is the pseudoscalar, the unique highest-grade basis element in
G1,3; ⟨x⟩k is the blade projection of a multivector, which sets all non-grade-k elements to zero.

We show this in Appendix A. In our architecture, linear layers map between multiple input and output
channels. There are then ten learnable weights vk, wk for each pair of input and output G1,3 channels
(plus the usual weights for linear maps between the additional scalar channels).

Lorentz-equivariant non-linear layers We define four additional layers, all of which are manifestly
Lorentz-equivariant. The first is the scaled dot-product attention

Attention(q, k, v)i′c′ =
∑
i

Softmaxi

(
nc∑
c=1

⟨qi′c, kic⟩√
16nc

)
vic′ , (2)

where the indices i, i′ label tokens, c, c′ label channels, nc is the number of channels, and ⟨·, ·⟩ is
the G1,3 inner product. This inner product can be rewritten as a pre-computed list of signs and
a Euclidean inner product, which is why we can compute the attention mechanism with efficient
backends developed for the original Transformer architecture, for instance Flash Attention [33]. This
is key to the good scalability of L-GATr, which we will demonstrate later.

When defining a normalization layer, we have to be careful: in the G1,3 inner product, cancellations
between positive-norm directions and negative-norm directions can lead to norm values much smaller
than the scale of the individual components; dividing by the norm then risks blowing up the data.
These cancellations are an unavoidable consequence of the geometry of space-time. We mitigate this
issue by using the grade-wise absolute value of the inner product in the norm

LayerNorm(x) = x
/√√√√ 1

nc

nc∑
c=1

4∑
k=0

∣∣∣∣〈⟨xc⟩k, ⟨xc⟩k〉∣∣∣∣+ ϵ , (3)

applying an absolute value around each grade of each multivector channel ⟨xc⟩k. Here ϵ > 0 is
a constant that further numerically stabilizes the operation. This normalization was proposed by
De Haan et al. [36] for E(3)-invariant architectures, we adapt it to the Lorentz-equivariant setting.

We also use the geometric product GP(x, y) = xy defined by the geometric algebra G1,3. Finally,
we use the scalar-gated GELU [46] nonlinearities GatedGELU(x) = GELU(⟨x⟩0)x, as proposed
by Brehmer et al. [14].

Transformer architecture We combine these layers into a Transformer architecture [73, 76]:

x̄ = LayerNorm(x) ,

AttentionBlock(x) = Linear ◦Attention(Linear(x̄),Linear(x̄),Linear(x̄)) + x ,

MLPBlock(x) = Linear ◦GatedGELU ◦ Linear ◦GP(Linear(x̄),Linear(x̄)) + x ,

Block(x) = MLPBlock ◦AttentionBlock(x) ,
L-GATr(x) = Linear ◦ Block ◦ Block ◦ · · · ◦ Block ◦ Linear(x) .

This L-GATr architecture is structurally similar to the original GATr architecture [14], but the
representations, linear layers, attention mechanism, geometric product, and normalization layer are
different to accommodate the different nature of the data and different symmetry group.

Lorentz symmetry breaking While fundamental physics is (to the best of our knowledge) symmet-
ric under Lorentz transformations, the LHC measurement process is not. The direction of the proton
beams presents the most obvious violation of this symmetry. Smaller violations are due to the detec-
tor resolution: particles hitting the central part of the detector (orthogonal to the beam in the detector
rest frame) are typically reconstructed with a higher precision than those emerging at a narrow angle
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to the beam. Even smaller violations come, for instance, from individual defunct detector elements.
Solving some tasks may therefore benefit from a network that can break Lorentz equivariance.

L-GATr supports such broken or approximate symmetries by including the symmetry-breaking effects
as additional inputs into the network. Concretely, whenever we analyze reconstruction-level data, we
include the beam directions; see Appendix C. This approach combines the strong inductive biases of
a Lorentz-equivariant architecture with the ability to learn to break the symmetry when required.

3.2 Lorentz-equivariant flow matching

In addition to regression and classification models, we construct a generative model for particle data.
Besides the strict requirements on precision, flexibility, and data efficiency, generative models of
LHC data need to be able to address sharp edges and long tails in high-dimensional distributions.

We develop a continuous normalizing flow based on an L-GATr vector field and train it with
Riemannian flow matching (RFM) [25]. This approach has several compelling properties: training is
simulation-free and scalable and the generative model is Lorentz-equivariant.7 In addition, the RFM
approach allows us to deal with sharp edges and long tails in a geometric way: we parameterize the
reachable four-momentum space for each particle as a manifold and use geodesics on this manifold
as probability paths from base samples to data points.

Probability paths perfect for particles Concretely, reconstructed particles p = (E, p⃗) are often
required to satisfy constraints of the form p21 + p22 ≥ p2T min and p2 > 0. Following Refs. [17, 18, 45,
48], we parameterize this manifold with physically motivated coordinates y = (ym, yp, η, ϕ). These
variables form an alternative basis for the particle four-momenta and are defined through the map

p = (E, px, py, pz) = f(y) =

(√
m2 + p2T cosh2 η, pT cosϕ, pT sinϕ, pT sinh η

)
, (4)
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Figure 2: Target vector field for Riemannian
flow matching. Our choice of metric space
guarantees that the generative model respects
phase-space boundaries (red circle).

where m2 = exp(ym) and pT = pT,min + exp(yp). This
basis is better aligned with the physically relevant proper-
ties of particles in the context of a collider experiment: η
and ϕ represent the angle in which a particle is moving, yp
is a measure of the momentum with which it moves away
from the collision, and ym is related to its mass.

We define a constant diagonal metric in the coordinates y
and use the corresponding geodesics as probability paths.
This Riemannian manifold is geodesically convex, mean-
ing any two points are connected by a unique geodesic, and
geodesically complete, meaning that paths thus never en-
ter four-momentum regions forbidden by the phase-space
cuts. By also running the ordinary differential equation
(ODE) solver in these coordinates, we guarantee that each
sample satisfies the four-momentum constraints. As an
added benefit, this choice of metric compresses the high-
energy tails of typical particle distributions and thus sim-
plifies learning them correctly.

In Fig. 2, we show target probability paths generated in this way. Our approach ensures that none of
the trajectories pass through the phase-space region pT < pT,min, where the target density does not
have support; instead, the geodesics lead around this problematic region.

7Strictly speaking, only the map from the base density to data space is equivariant with respect to the full
Lorentz group. The base density and thus also the density of the generative model are only invariant with respect
to rotations. This is because the group of boosts is not compact: it is impossible to define a properly normalized
density that assigns the same probability to every boosted data variation. In theory, one could define a fully
Lorentz-invariant base measure; then the flow would define a Lorentz-invariant measure that would not be
normalizable—good luck with that. In practice, compact subsets of the orbits, for instance characterized by a
limited range of the center-of-mass momentum, suffice. All of this is in analogy to “E(3)-invariant” generative
models [47], which are strictly only invariant to rotations, but not to (non-compact) translations.
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Figure 3: Amplitude surrogates. Left: Surrogate error for processes of increasing particle multiplicity and
complexity, training on the full dataset of 4 · 105 samples. L-GATr outperforms the baselines, especially at more
complex processes. Right: Surrogate error as a function of the training dataset size.

4 Experiments

We now demonstrate L-GATr in three applications. Each addresses a different problem in the data-
analysis pipeline sketched in Fig. 1.

4.1 Surrogates for QFT amplitudes

Problem We first demonstrate L-GATr as a neural surrogate for quantum field theoretical ampli-
tudes [6–8, 59, 60], the core of the theory predictions that LHC measurements are compared to.
These amplitudes describe the (un-normalized) probability of interactions of fundamental particles
as a function of their four-momenta. As this is a fundamental interaction and does not include the
measurement process, it is exactly Lorentz-invariant. Evaluating them is expensive, on the one hand
because it requires solving complex integrals, on the other hand because the number of relevant
terms combinatorially grows with the number of particles. Neural surrogates can greatly speed up
this process and thus enable better theory predictions, but accurately modelling the amplitudes of
high-multiplicity processes has been challenging.

As example processes, we study qq̄ → Z + ng, the production of a Z boson with n = 1, . . . , 4
additional gluons from a quark-antiquark pair. For each gluon multiplicity, we train a L-GATr
model to predict the amplitude as a function of the four-momenta of the initial and final particles.8
The generation of the training data and the precise setup of the learning problem are described in
Appendix C. We compare L-GATr to various baselines, including the Lorentz-equivariant message-
passing architecture CGENN [68], a Transformer [73], and DSI, a baseline based on the Deep Sets
framework [77] that we develop ourselves; we describe it in detail in Appendix B.

Surrogate quality L-GATr consistently approximates the amplitudes with high precision, as we
show in the left panel of Fig. 3. For a small number of particles, it is slightly worse than our own
baseline DSI, but it scales much better to a large number of particles, where it outperforms all other
methods. This is exactly the region in which neural surrogates could have the highest impact.

Data efficiency In the right panel of Fig. 3 we study the data efficiency of the different architectures.
We find that L-GATr is competitive at any training data size, combining the small-data advantages of
its strong inductive biases and the big-data advantages of its Transformer architecture.

8We also experimented with training a single L-GATr model to learn the amplitudes of all processes jointly,
finding a similar performance.
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Model Accuracy AUC 1/ϵB (ϵS = 0.5) 1/ϵB (ϵS = 0.3)

TopoDNN [49] 0.916 0.972 – 295 ± 5
LoLa [16] 0.929 0.980 – 722 ± 17
P-CNN [1] 0.930 0.9803 201 ± 4 759 ± 24
N -subjettiness [62] 0.929 0.981 – 867 ± 15
PFN [51] 0.932 0.9819 247 ± 3 888 ± 17
TreeNiN [58] 0.933 0.982 – 1025 ± 11
ParticleNet [64] 0.940 0.9858 397 ± 7 1615 ± 93
ParT [65] 0.940 0.9858 413 ± 16 1602 ± 81
LorentzNet* [42] 0.942 0.9868 498 ± 18 2195 ± 173
CGENN* [68] 0.942 0.9869 500 2172
PELICAN* [10] 0.9426 ± 0.0002 0.9870 ± 0.0001 – 2250 ± 75
L-GATr (ours)* 0.9423 ± 0.0002 0.9870 ± 0.0001 540 ± 20 2240 ± 70

Table 1: Top tagging. We compare accuracy, area under the ROC curve (AUC), and inverse background
acceptance rate 1/ϵB at two different signal acceptance rates (or recall) ϵS ∈ (0.3, 0.5) for the top tagging
dataset from Kasieczka et al. [50]. Lorentz-equivariant methods are indicated with an asterisk*; the best results
for each metric are in bold. For L-GATr, we show the mean and standard deviation of five random seeds.
Baseline results are taken from the literature.

4.2 Top tagging

Problem Next, we turn to the problem of classifying whether a spray of reconstructed hadrons
originated from the decay of a top quark or any other process. This problem of top tagging is an
important filtering step in any analysis that targets the physics of top quarks, the heaviest elementary
particle in the Standard Model. Particle collisions involving these particles are of particular interest
to physicists because the production and decay probabilities of top quarks are sensitive to several
proposed theories of new physics, including for instance the existence of “supersymmetric” particles.
We use the established top tagging dataset by Kasieczka et al. [49, 50] as a benchmark and compare
to the published results for many algorithms and architectures.

Results As shown in Tbl. 1, L-GATr is on par with or better than even the strongest baselines on
this well-studied benchmark.

4.3 Generative modelling

Problem Finally, we study the generative modelling of reconstructed events as an end-to-end
generation task [17, 18], bypassing the whole simulation chain visualized in Fig. 1. Such generative
models can obliterate the computational cost of both the theory computations and the detector
simulation at once. However, the high-dimensional distributions of reconstructed particles often
have non-trivial kinematic features that are challenging for generative models to learn, for instance
the properties of unstable resonances and angular correlations. We focus on the processes pp →
tt̄+ n jets, the generation of top pairs with n = 0 . . . 4 additional jets, where the top quarks decay
hadronically, t→ bq′q̄′′.

We train continuous normalizing flows based on an L-GATr network with the Riemannian flow
matching objective described in Sec. 3. As baselines, we consider similar flow matching models,
but use MLP and Transformer networks as score models, as proposed by Refs. [18, 45]. We also
construct a flow matching model using the E(3)-equivariant GATr from Ref. [14]. Finally, we also
train JetGPT [18] model, an autoregressive transformer architecture developed for particle physics
that is not equivariant to the Lorentz symmetry.

Kinematic distributions We begin with a qualitative analysis of the samples from the generative
models. In Fig. 4 we show example marginal distributions from the different models and compare
them to the ground-truth distribution in the test set. We select three marginals that are notoriously
difficult to model correctly for generative models. While the differences are subtle and only visible in
tails and edges of the distributions, L-GATr matches the true distribution better than the baselines.
However, none of the models are able to capture the kinematics of the top mass peak at percent-level
precision yet.
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Figure 4: Generative modelling: Marginal distributions of reconstructed particles in the pp → tt̄ + 4 jets
process. We compare the ground-truth distribution (black) to three generative models: continuous normalizing
flows based on a Transformer, MLP, or our L-GATr network. The three marginals shown represent kinematic
features that are known to be challenging. The L-GATr flow describes them most accurately.

Log likelihood Next, we evaluate the generative models quantitatively through the log likelihood
of data samples under the trained models; see Appendix C for details. The left panel of Fig. 5 shows
that the L-GATr models outperform all baselines across all different jet multiplicities. They maintain
this performance advantage also for smaller training data size, as shown in the right panel. The flow
models, including L-GATr, are more data-efficient than the autoregressive transformer JetGPT.

Classifier two-sample test How close to the ground-truth distribution are these generative models
really? Neither marginal distributions nor log likelihood scores fully answer this question, as the
former neglect most of the high-dimensional information and the latter do not have a known ground-
truth value to compare to. We therefore perform a classifier two-sample test [55]. We find that L-
GATr samples are difficult to distinguish from the ground-truth distribution: a classifier trained to
discriminate them achieves only a ROC AUC of between 0.51 and 0.56, depending on the process.
In contrast, Transformer and MLP distributions are more easily discriminated from the background,
with ROC AUC results between 0.58 and 0.85. For details, see Appendix C.

Probability paths NLL

Euclidean -30.11 ± 0.98
RFM -32.65 ± 0.01

Table 2: Benefit of Riemannian flow
matching for generative models. We
show the negative log likelihood on the
tt̄+ 0j test set (lower is better).

Effect of Riemannian flow matching How important was
our choice of probability paths through Riemannian flow match-
ing for the performance of these models? In Tbl. 2 we compare
the log likelihood of CFM L-GATr models that differ only in
the probability paths. Clearly, the Riemannian flow matching
approach that allows us to encode geometric constraints is cru-
cial for a good performance. We find similarly large gains for
all architectures.

4.4 Computational cost and scalability

Finally, we briefly comment on L-GATr’s computational cost. Compared to a vanilla Transformer, the
architecture has some computational overhead because of the more complex linear maps. However, it
scales exactly in the same way to large particle multiplicities, where both architectures are bottle-
necked by the same dot-product attention mechanism. At the same time, L-GATr is substantially
more efficient than equivariant architectures based on message passing, both in terms of compute and
memory. This is because high-energy physics problems do not lend themselves to sparse graphs, and
for dense graphs, dot-product attention is much more efficient. See Appendix C for our measurements.

5 Discussion

Out of all areas of science, high-energy physics is a strong contender for the field in which symmetries
play the most central role. Surprisingly, while particle physicists were quick to embrace machine
learning, architectures tailored to the symmetries inherent in particle physics problems have received
comparably little attention.
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Figure 5: Generative modelling: negative log likelihood on the test set (lower is better). Left: For different
processes. Right: As a function of the training dataset size. We show the mean and standard deviation of three
random seeds. The L-GATr conditional flow matching (CFM) model outperforms all other CFM models as well
as the autoregressive transformer JetGPT, across all processes and all training set sizes.

We introduced the Lorentz Geometric Algebra Transformer (L-GATr), a versatile architecture with
strong inductive biases for high-energy physics: its representations are based on particle four-
momenta, extended to higher orders in a geometric algebra, and its layers are equivariant with respect
to the Lorentz symmetry of special relativity. At the same time, L-GATr is a Transformer, and scales
favorably to large capacity and large numbers of input tokens.

We demonstrated L-GATr’s versatility on diverse regression, classification, and generative modelling
tasks from the LHC analysis workflow. For the latter, we constructed the first Lorentz-equivariant
generative model based on Riemannian flow matching. Across all experiments, L-GATr performed as
well as or better than strong baselines.

Still, L-GATr has its limitations. While the architecture scales better than comparable message-
passing networks, it has some computational overhead compared to, for instance, efficient Transformer
implementations. And while L-GATr should in principle be suitable for pretraining across multiple
problems, we have not yet investigated its potential as a foundation model.

While the LHC is preparing for the high-luminosity runs and its legacy measurements, the high-
energy physics community is optimizing all steps of the analysis pipeline. Deploying performant and
data-efficient architectures such as L-GATr could improve this pipeline in many places. We hope that
this will ultimately contribute to more precise measurements of nature at its most fundamental level.
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A Geometric algebra

Geometric algebras are mathematical objects that were initially used for physics. Although they have
been used in machine learning for decades [9], they have seen a recent uptick in popularity [11, 14,
38, 57, 68, 69]. In this section, we will introduce geometric algebras and the relevant concepts.

An algebra is a vector space that is equipped with an associative bilinear product. Given a vector
space V with a symmetric bilinear inner product, we can construct an algebra G(V ), called the
geometric or Clifford algebra, in the following way: choose an orthogonal basis ei of the original
d-dimensional vector space V . Then, the algebra has 2d dimensions with a basis given by elements
ej1ej2 ...ejk =: ej1j2...jk , with 1 ≤ j1 < j2 < ... < jk ≤ d, 0 ≤ k ≤ d. For example, for V = R3,
with orthonormal basis e1, e2, e3, a basis for the algebra G(R3) is

1, e1, e2, e3, e12, e13, e23, e123 . (5)
An algebra element spanned by basis elements with k indices is called a k-vector or a vector of
grade k. A generic element whose basis elements can have varying grades is called a multivector. A
multivector x can be projected to a k-vector with the grade projection ⟨x⟩k.

The product on the algebra, called the geometric product, is defined to satisfy eiej = −ejei if i ̸= j
and eiei = ⟨ei, ei⟩, which by bilinearity and associativity fully specifies the algebra. Given an algebra
G(V ), there is a group Pin(V ) that is generated by the 1-vectors in the algebra with norm ±1, and
whose group product is the geometric product. This group has a linear action ρ : Pin(V )×G(V ) →
G(V ) on the algebra defined such that for any unit 1-vector u ∈ Pin(V ) and 1-vector x ∈ G(V )

ρ(u, x) = −uxu−1. (6)
The action is defined to be an algebra homomorphism, meaning that for any u ∈ Pin(V ), x, y ∈
G(V ), ρ(u, xy) = ρ(u, x)ρ(u, y). Also, it is a group action, meaning that for any two group elements
u, v ∈ Pin(V ), ρ(uv, x) = ρ(u, ρ(v, x)). As the group Pin(V ) is generated by products of 1-vectors,
and the algebra G(V ) is generated by linear combinations and geometric products, this fully specifies
the action ρ.

Space-time geometric algebra In this paper, we use the geometric algebra G1,3 = G(R1,3) based
on four-dimensional Minkowski space R1,3, which has an orthogonal basis with one basis vector e0
satisfying ⟨e0, e0⟩ = +1 and for i = 1, 2, 3 a basis vector ei satisfying ⟨ei, ei⟩ = −1. The Pin group
Pin(R1,3) is a double cover of the Lorentz group O(1, 3). As we do not require equivariance to time
reversals or spatial mirrorings, we are only interested in equivariance to the connected subgroup
SO+(1, 3).

Equivariance The fact that ρ is an algebra homomorphism is equivalent to saying that the geomet-
ric product is equivariant to Pin(V ). Furthermore, the grades in a geometric algebra form subrep-
resentations [14, Prop. 2]. Thus, the grade projections are equivariant. The pseudoscalar is a one-
dimensional real representation, and thus must be invariant to any connected subgroup of Pin(V ).
Therefore, multiplying by the pseudoscalar is equivariant to the connected group SO+(1, 3). Hence,
the linear layer in Eq. (1) is equivariant, for any value of the parameters v, w.

To show that this forms a complete basis of all equivariant linear maps, we use the numerical approach
of De Haan et al. [36], based on Finzi et al. [40]. Numerically, we find a 10-dimensional space of
equivariant maps, indicating the basis in Eq. (1) is complete, which proves Prop. 1.

Expressivity A fortiori, De Haan et al. [36] showed that for several geometric algebras, any
equivariant map G(V ) × ... × G(V ) → G(V ) that is a polynomial function of the coefficients of
G(V ), can be expressed as linear combinations of grade projections, geometric products and invariant
multivectors, and is thus expressible by GATr. This argument holds for any geometric algebra that is
based on a vector space V with a non-degenerate metric, which is the case for the Minkowski space
R1,3. Hence, this expressivity argument can be extended to L-GATr: the operations in its MLPs are
able to express any polyomial map of G1,3 mutlivectors.

B Architectures

Lorentz Geometric Algebra Transformer (L-GATr) Our main contribution is the L-GATr archi-
tecture, described in detail in Sec. 3. Our implementation is in part based on the Geometric Algebra
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Transformer [14] code in version 1.0.0.9 Unlike [14], we use multi-head attention, not multi-query
attention.

Clifford group equivariant neural network (CGENN) We use the CGENN architecture [68] as
a baseline. We use the official implementation10 and adapt their top-tagging code to our amplitude
regression experiments.

Deep Sets with invariants (DSI) We build a new architecture based on the Deep Sets frame-
work [77] that uses momentum invariants as part of the input for tackling the amplitude surrogate
task. Deep Sets is a permutation-invariant architecture that applies the same function to each ele-
ment of an input set, aggregates the results with a permutation-invariant operation like a sum, and
processes the outputs with another function.

Our adaptation for the amplitude regression tasks applies the Deep Sets approach to each subset of
identical particles in the inputs, as the amplitudes are manifestly invariant under permutations of
the four-momenta of particles of the same type. We thus apply a different preprocessing to each
particle type and aggregate them separately. In addition to the particle-specific latent space samples,
the input to our main network also includes the momentum invariants for all the particles involved
in the process. DSI thus combines a Lorentz-equivariant, permutation-equivariant path with a non-
Lorentz-equivariant non-permutation-equivariant path, allowing the network to learn whether to rely
on equivariant or non-equivariant features.

Both preprocessing units and the main network are implemented as MLPs with GELU nonlinearities.
Using this model, we are able to obtain optimal performance for simple interactions, but we observe
a poor scaling behavior for prediction quality as we increase particle multiplicity.

Geometric Algebra Perceptron (GAP) To ablate to what extent L-GATr’s performance is due to
the geometric algebra representations and its equivariance properties and to what extent due to the
Transformer architecture, we use L-GATr’s MLP block as a standalone network. We call it “Geometric
Algebra Perceptron” (GAP). Instead of structuring our data as a set of tokens, we format the particle
data as a single list of channels. This implies that interactions between particles within the model
will be carried out in the linear layers, as opposed to the attention mechanism we use in L-GATr.

Transformer Orthogonally to GAP, we also use a vanilla Transformer as a baseline in our experi-
ments. We use a pre-LayerNorm Transformer with multi-head attention and GELU nonlinearities.
This setup mirrors that of L-GATr as closely as possible.

Multilayer perceptron (MLP) The MLP represents our simplest baseline, formulated as a stack of
linear layers with GELU nonlinearities.

C Experiment details

C.1 Surrogates for QFT amplitudes

Dataset We generate training and evaluation data consisting of phase space inputs and their
corresponding interaction amplitudes for processes qq̄ → Z + ng, n = {1, 2, 3, 4}, where an initial
quark-antiquark pair interact to produce a Z boson and a variable number of gluons. The amplitudes
are invariant under the permutation of identical particles and under Lorentz transformations. These
datasets are generated by the MadGraph Monte Carlo event generator [4] in two steps.11 First, we use a
standard run to generate the phase space distributions. This standard run applies importance sampling
to produce unweighted samples, that is, events that are distributed according to the probability
distribution that describes the physical interactions. Second, we re-compute the amplitude values
corresponding to these phase-space samples with MadGraph’s standalone module.

9Available at https://github.com/Qualcomm-AI-research/geometric-algebra-transformer
under a BSD-3-Clause-Clear license.

10Available at https://github.com/DavidRuhe/clifford-group-equivariant-neural-networks
under a MIT license.

11Available at https://launchpad.net/mg5amcnlo under a UoI-NCSA open source license.
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We produce four datasets, each with a different number of gluons. Each dataset consists of 4× 105

samples for training, 105 for validation, and 5× 105 for testing. Our event sets feature kinematic cuts
in the transverse momentum of the outgoing particles (pT > 20 GeV) and on the angular distance
between the gluons (∆R =

√
∆η2 +∆ϕ2 > 0.4).

For the learning problem, we affinely normalize the amplitudes y to zero mean and variance one:

ŷi =
log(yi)− log(yi)

σlog(yi)
. (7)

Models For the L-GATr model, we embed each particle as a token. It is characterized with its
four-momentum, embedded as a grade-1 multivector in the geometric algebra, as well as a one-hot
embedding of the particle type, embedded as a scalar. We standardize the four-momentum inputs to
unit variance, using the same normalization for each component to preserve Lorentz equivariance. In
addition to the particle tokens we use one “global” token, initialized to zero. After processing these
inputs with an L-GATr network, we select the scalar component of the global token and identify it
as the amplitude output. We use 8 attention blocks, 32 multivector and 32 scalar channels, and 8
attention heads, resulting in 1.8× 106 learnable parameters.

For the CGENN, we minimally alter the graph neural network version of the model built for the
top tagging classification task so that it is able to perform amplitude regression. We keep the
hyperparameters proposed by [68] and use 72 hidden node features, 8 hidden edge features, and 4
blocks. This model features around 3.2× 105 trainable parameters.

For the GAP we use the same procedure as with L-GATr to embed (and preprocess) the inputs and
extract the outputs, the only difference is that the different particles in a given event are distributed
as individual channels in the input. This model consists of 8 blocks, 96 multivector and 96 scalar
channels, resulting in 2.5× 106 learnable parameters.

For the Transformer baseline, we again include particle tokens through a one-hot embedding. In this
case the inputs x are preprocessed by performing standarization, defined as

x̂i =
xi − xi
σxi

, (8)

where the mean and the standard deviation are computed over each particle input separately. As for
the network structure, we use 8 attention blocks, 128 hidden channels and 8 attention heads, resulting
in 1.3× 106 learnable parameters.

For the DSI, we implement input standarization in the same way we do with the Transformer, but we
also apply the same transformation to each of the momentum invariant inputs separately. As for the
layer structure, all MLP modules have 4 layers with 128 hidden channels each, and we set up the
preprocessing units so that they output 64-dimensional latent space samples. All in all, we end up
with 2.6× 105 parameters in total.

For the MLP, we once again apply standarization, this time over the whole input. The network
consists of 5 layers and 128 hidden channels amounting to 7× 104 learnable parameters.

Training All models are trained by minimizing a mean squared error (MSE) loss on the prepro-
cessed amplitude targets and by making use of the Adam optimizer. We use a batch size of 256 and a
fixed learning rate of 10−4 for all baselines. As for the number of training steps, MLP and DSI are
trained for around 2.5× 106 iterations, the Transformer for around 106 iterations and GAP, CGENN
and GATr for 2.5× 105 iterations. We use no regularization method for any of our baselines. We use
early stopping across all training runs.

C.2 Top tagging

Dataset We use the reference top quark tagging dataset by Kasieczka et al. [49, 50].12 The data
samples are structured as point clouds, with each event simulating a measurement by the ATLAS
experiment at detector level. Signal samples originate from the decay of a top quark, while the rest of
the events are generated by standard background processes. The dataset consists of 1.2× 106 events
for training and 4× 105 each for validation and testing.

12Available at https://zenodo.org/records/2603256 under a CC-BY 4.0 license.
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Models As the top-tagging datasets operate with reconstructed particles as measured by a detector,
we include the proton beam direction as an extra particle input to the network, which partially breaks
the Lorentz equivariance of the process. We encode it as a rank-2 multivector representing the plane
orthogonal to the beam direction. We also add another token containing the time direction (1, 0, 0, 0)
as a rank-1 multivector. The time direction is required to break the special orthochronous Lorentz
group SO+(1, 3) down to the subgroup SO(3).

Otherwise, we use the same setup as in the amplitude regression task. We use 12 attention blocks, 16
multivector and 32 scalar channels and 8 attention heads, resulting in 1.1× 106 learnable parameters.

Training L-GATr is trained by minimizing a binary cross entropy (BCE) loss on the top quark
labels. We train it for 2× 105 steps using the EvoLved Sign Momentum (LION) [27] optimizer with
a weight decay of 0.2 and a batch size of 128. We use a Cosine Annealing scheduler [56] with the
maximum learning rate set at 3× 10−4.

C.3 Generative modelling

Dataset The tt̄+ n jets, n = 0...4 dataset is simulated with the MadGraph 3.5.1 event generation
toolchain, consisting of MadEvent [4] for the underlying hard process, Pythia 8 [72] for the parton
shower, Delphes 3 [35] for a fast detector simulation, and the anti-kT jet reconstruction algorithm [21]
with R = 0.4 as implemented in FASTJET [22]. The Pythia simulation does not include multi-parton
interactions. We use the ATLAS detector card for the Delphes detector simulation, apply the phase
space cuts pT > 22 GeV, |η| < 5,∆R =

√
∆ϕ2 +∆η2 < 0.5 and require 2 b-tagged jets. The

events are reconstructed with a χ2-based reconstruction algorithm [2], and identical particles are
ordered by pT .

The sizes of the tt̄ + n jets, n = 0...4 datasets reflect the frequency of the respective processes,
resulting in 9.8×106 (n = 0), 7.2×106 (n = 1), 3.7×106 (n = 2), 1.5×106 (n = 3) and 4.8×105

(n = 4) events. On each dataset, 1% of the events are set aside as validation and test split. We rescale
the four-momenta p by the standard deviation of all five datasets 206.6 GeV for processing with
neural networks.

Models The L-GATr score network operates in Minkowski space p = (E, px, py, pz), whereas flow
matching happens in the physically motivated coordinates y = (ym, yp, η, ϕ) defined in Eq. (4). After
transforming y into p, we embed each particle p into geometric algebra representations. We use scalar
channels for the one-hot-encoded particle type and the flow time, for which we use a Gaussian Fourier
Projection with 8 channels [73]. We add the same symmetry breaking inputs that we used for the top
tagging task, this time as extra multivector channels. The output of the L-GATr network is a vector
field in Minkowski space (vE , vpx

, vpy
, vpz

). To obtain vector fields in the manifold coordinates y,
we multiply with the Jacobians of the transformation p→ y to obtain (vym , vyp , vη, vϕ). Because of
the logarithm in the change of variables, the Jacobians for ym, yp can take on large values, which
makes training unstable. To avoid this complication, we extract ṽym , ṽyp directly from the scalar
output channels of L-GATr and use these values as vector field vym , vyp . Like the symmetry-breaking
inputs, this procedure breaks the Lorentz symmetry down to the residual symmetry group of the
measurement process. We find it beneficial to perform the transformation y ↔ p at 64-bit floating-
point precision, which has no noticable effect on the computational cost. We use an L-GATr network
with 16 multivector channels, 32 scalar channels, 6 L-GATr blocks, and 8 attention heads, totalling
5.4× 105 learnable parameters.

We implement the E(3)-GATr score network following the same prescription outlined above for L-
GATr. The only difference is that we only transform between y and (ym, px, py, pz) to avoid the large
jacobians from the ym ↔ m transformation. Our task only requires SO(3)-equivariance, therefore we
do not use of the translation-equivariant input and output representations of E(3)-GATr, but we keep
the internal translation-equivariant representations. For each particle, we embed the three-momentum
(px, py, pz) into the vector component of the multivector, and ym as a scalar.

The Transformer score network directly operates in the physically motivated y space. Each particle is
embedded into one token, with 4 channels for the components of y, 8 channels for the flow time in a
Gaussian Fourier Projection, and the one-hot-encoded particle type. The network has 108 channels, 6
Transformer blocks, and 8 attention heads, totalling to 5.7× 105 learnable parameters.
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The MLP score network also operates in y space. Each event is embedded as a list of the components
of y, together with the time embedded with Gaussian Fourier Projection using 8 channels. The
network has 336 channels and 6 blocks, with 5.9× 105 learnable parameters.

We implement the JetGPT model closely following Ref. [18]. JetGPT is an autoregressive mixture
model, i.e. its parameters are predicted autoregressively for each component of the high-dimensional
distribution. We use the same transformer as for the Transformer-CFM to predict the mixture
parameters, but using a triangular attention matrix to achieve the autoregressive structure. The
components are the same y coordinates that we use for the flow matching models, amounting to
four tokens for each particle. We use gaussian mixture models for the non-periodic coordinates
(ym, yp, η), and von Mises mixture models for the periodic coordinate ϕ. Due to the autoregressive
structure, the ordering of components affects the performance. As more conditions are added, the
components will be harder to learn using a fixed amount of training data. We order the particles as
(t1, q1, q2, t2, q3, q4, j1, . . . j4), and within each particle we order the components as (ϕ, yp, η, ym).
We train the model to minimize the joint log-likelihood and sample the components sequentially.
Each component is embedded into one token, with 1 channel for the value, and 24 to 40 channels for
the one-hot-encoded component type. We use the same transformer as for the Transformer-CFM,
with 108 channels, 6 Transformer blocks, and 8 attention heads, but the last layer maps onto the 108
parameters of a mixture model of 36 gaussian or von Mises distributions.

Training All networks are trained for 2 × 105 iterations with batchsize 2048 using the Adam
optimizer with default settings and an initial learning rate of 0.001. We evaluate the validation loss
every 103 iterations and decrease the learning rate by a factor of 10 after no improvements for 20
validation steps. We stop training after the validation loss has not improved after 50 validation steps,
and pick the network with the best validation loss.

Base distribution The base distribution is defined in the rescaled Minkowski space discussed above.
We use standardized Gaussians for the spatial momentum px,y,z ∼ N (0, 1) and the log-transformed
squared mass ym = logm2 ∼ N (0, 1). We ensure the constraints pT > 22 GeV,∆R > 0.5 through
rejection sampling. We have experimented with other base distributions and find similar performance.

Probability paths The target probability paths for RCFM linearly change the physically motivated
coordinates y = (ym, yp, η, ϕ) defined in Eq. (4). We use pseudorapidity η instead of true rapidity,
since this is easier to implement given the cut on transverse momentum pT . We use a constant
diagonal metric, with the squared inverse standard deviation of these coordinates in the training
dataset on the diagonal. This is equivalent to a standardization step. We construct periodic target
vector fields for angular coordinates ϕ by adding factors of 2π until angular coordinates and angular
velocities end up in the interval [−π, π].

Negative log-likelihood (NLL) metric For any sample p in Minkowski space, we evaluate the log-
density of the transformed sample y using the instantaneous change of variables [26]. In other words,
we solve the ODE

d

dt

(
xt

ft(xt)

)
=

(
vt(xt)

−div(vt)(xt)

)
(9)

with the initial conditions x1 = y, f1(x1) = 0. We use the Hutchinson trace estimator to evaluate
the divergence of the vector field. Using the base density P0, we then evaluate the density Pmodel of
CFM-generated samples in Minkowski space as

− logPmodel(p) = − logP0(x0) + f0(x0) + log det
∂p0
∂y0

+ log det
∂y1
∂p1

. (10)

The last two terms are the logarithms of the jacobian determinants for the transformations between
Minkowski space and the physically motivated space.

Classifier two-sample test We train a MLP classifier to distinguish generated events from the
ground truth. The classifier inputs are full events in the y representation, together with challenging
correlations, in particular all pairwise ∆R values, and the y representations of the reconstructed
particles t, t̄,W+,W−. The classifier network has 256 channels and 3 layers. It is trained for 500
epochs with batchsize 1024, a dropout rate of 0.1, and the Adam optimizer with default settings.
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Figure 6: Generative modelling: classifier two-sample tests. We show how well a classifier can discriminate
model samples from test samples, measured through the area under the ROC curve (lower is better, 0.5 is ideal).
Left: For different processes. Right: As a function of the training dataset size. We show the mean and standard
deviation of three random seeds. The L-GATr flow outperforms the baselines in all processes and all training set
sizes.

We start with an initial learning rate of 0.0003 and decrease the learning rate by a factor of 10
after no improvements in the validation loss for 5 epochs. We stop training after 10 epochs without
improvements in the validation loss and load the best-validation model afterwards. We use the full
ground truth dataset as well as 1M generated events and split into 80% for training and 10% each for
testing and validation. We use the AUC of this classifier evaluated on the test dataset as a scalar metric,
with the value 0.5 for a perfect generator. Neural classifiers approximate the event-wise likelihood
ratio pdata(x)/pmodel(x) of single events, which is the most powerful test statistic according to the
Neyman-Pearson lemma, and opens many ways to further study the performance of the generator
beyond scalar metrics [34].

Our results are shown in Fig. 6. Across training data sizes and processes, the L-GATr flows are more
difficult to distinguish from the test samples than the baselines.

C.4 Computational cost and scalability

In Fig. 7 we compare L-GATr to a message-passing graph neural network (we use CGENN [68]) and
a vanilla Transformer in terms of their test-time computational costs. For this comparison, we use
small versions of all architectures, consisting of a single model block and around 2× 105 learnable
parameters. In the case of the Transformer and L-GATr, we fix their layer structure so that inputs
going into the attention layer consist of 72 channels. Our measurements are performed with datasets
made up by a single sample and all models are run on an H100 GPU.

L-GATr in its current implementation is not yet as efficient as a Transformer for small systems: for
up to hundreds of particles, L-GATr takes an order of magnitude longer to evaluate. This is caused by
the linear layers in L-GATr, which are more costly to execute than their non-equivariant counterparts
and represent a constant computational overhead. However, because L-GATr is based on the same
efficient backend for dot-product attention, it scales just like a Transformer to larger systems, and we
find the same computational cost for 5000 particles or more.

Compared to an equivariant graph network, L-GATr is clearly more efficient in terms of compute
time and memory. Already at small systems, L-GATr can be evaluated an order of magnitude faster.
The difference is even more pronounced in terms of memory: the graph network ran out of memory
for more than a thousand particles. This is largely because graph network implementations are often
optimized for sparse computational graphs, but here we use fully connected graphs: LHC problems
often benefit from a fully connected computational graph, because pairwise interactions do not usually
decay with the Minkowski norm of the distance between momenta. Transformer-based approaches
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Figure 7: Inference cost (wall-time per forward pass) as a function of the number of particles. We compare
L-GATr, a Transformer, and a message-passing graph neural network (we use CGENN [68] but expect similar
results for other architectures). The latter runs out of memory when evaluating more than a thousand particles.
While we do our best to find comparable settings, such comparisons depend on a lot of choices and should
be interpreted with care. Nevertheless, we believe they illustrate that L-GATr scales to large systems like a
Transformer, thanks to it being based on dot-product attention.

like L-GATr can thus have substantial computational advantages in particle physics problems that
involve a large number of particles.

22



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We justify our main claims in Sections 3 to 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss L-GATr’s shortcomings throughout the paper and in Sec. 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Proposition 1 is shown in Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if
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they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Our work is open-sourced at https://github.com/heidelberg-hepml/
lorentz-gatr.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
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reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperpa-
rameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: See Appendix C and https://github.com/heidelberg-hepml/
lorentz-gatr.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide an estimate of epistemic uncertainty through the variance between
multiple independent results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: Our experiments are of a sufficiently small scale that they should be easily
reproducible in a a typical academic environment.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We fully conform to the Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Since this work is specific to high-energy physics, we expect societal impact
through the effect that our architecture has on research in that field. We do not anticipate
any particular risk of negative societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We are not aware of any such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
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safety filters.
• Datasets that have been scraped from the Internet could pose safety risks. The authors

should describe how they avoided releasing unsafe images.
• We recognize that providing effective safeguards is challenging, and many papers do

not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the existing assets we use in the paper. Licenses are mentioned in
Appendix C.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: See https://github.com/heidelberg-hepml/lorentz-gatr.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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