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ABSTRACT

We present a novel method to identify parameter of nonlinear Ordinary Differen-
tial Equations (ODESs) using time series data. Our approach fits parameters by
matching a collocation-based estimate of the integral of the learned derivative to an
interpolation of the trajectory, thus avoiding the computational cost of ODE solvers
in adjoint methods and the sensitivity to noise of derivative estimates in gradient
matching methods. By employing batching strategies based on time subintervals
and state components, our method achieves linear complexity in relation to system
dimensions and dataset sizes. The method is highly parallel enabling fast gradient
evaluations and a faster convergence than adjoint methods. For fully observed
systems, we demonstrate the method on canonical dynamical systems, where the
method achieves speed-ups of three orders of magnitude over adjoint methods and
an increased robustness against observational noise. We provide an extension to
partially observed systems and demonstrate the method on the Lorenz63 attractor.

1 INTRODUCTION

Ordinary Differential Equations (ODEs) are widely used to model dynamical systems in fields such
as physics, biology, and engineering, Strogatz| (2014); |Villaverde and Bangal (2014). Estimating
unknown parameters of arbitrary nonlinear ODEs -derived from physical laws, or postulated like SIR
models in epidemiology- from noisy, partially observed time-series data is important.

1.1 PROBLEM STATEMENT

Let x(t) € R™ denote the state of a system of dimension n at time ¢. We are given M noisy, partial
observations Ox(t,,) from a single trajectory, where ¢,,,€[0, T for all m=1, ..., M, and O projects
the state onto the first p < n components. We consider the inverse problem of determining the
optimal parameters @ and initial condition X§ that minimize the mean squared error between the
observations and x(t), the trajectory obtained by integrating the ODEs defined by a parameterized

function f with these parameter from the initial condition. With Newton’s notation k:%:
M
0", Xj =argmin — |O%(t) — Ox(tm)]?
67 0 M an::l
s.t. x(t) = f(x(t),©), WV, (1a)
%(0) = Xo. (1b)

Note: This setting includes dynamics that are polynomial in the state and dynamics with nonlineari-
ties on the unknown parameters, encountered in physics, when estimating the parameters of chemical
kinetics, and prior-less settings such as Neural ODEs |Chen et al.| (2018), where a neural network of
weights © acts as a universal approximator. It handles asynchronous measurements and missing data.

1.2  CONTRIBUTIONS

This problem, known as system identification, has received considerable attention in optimal control
and scientific machine learning, see|Astrom and Eykhoff|(1971);/Soderstrom and Stoical(1989); Ljung
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Figure 1: On the damped oscillator from |Chen et al.[(2018)), our algorithm (blue) fits a neural ODE
with fewer network evaluations and greater accuracy than Backpropagation through time (BPTT)
(red) and Adjoint sensitivity . Our method achieves in 2.5s the best accuracy reached by
the adjoint sensitivity within 15 minutes on CPU. The number of function evaluations is divided by
respectively 95 and 328 compared to BPTT and Adjoint and computation times by factors 50 to 450.

(1999). Parameter estimation in nonlinear ODEs is challenging due to the complexity of dynamics and
the nonconvex optimization landscape of the learning problem, [Varah|(1982). Data noise, irregular
sampling, asynchronous measurements, and unobserved dimensions further complicate the issue.
Existing approaches to this problem can be broadly categorized into ODE solver-based methods
and surrogate methods. The former integrate ODEs but are computationally expensive, especially
for large dimension systems as detailed later while the latter including gradient matching |Varah
(1982)); Ramsay et al.| (2007); |Poyton et al.|(2006); (Calderhead et al.|(2008)); |Dondelinger et al.| (2013)
approximate ODE solutions or their derivatives, trading accuracy for computational efficiency.

In this paper, we introduce and study a novel surrogate approach that matches a numerical integration
of learned derivatives to an interpolation of the trajectory for the fully observed case, and its extension
to partially observed systems. Our main contributions are:

1. Speed and Robustness: On classical benchmarks, for the fully observed case, the proposed
method is more computationally efficient than ODE-solver methods, being up to three orders
of magnitude faster, and more robust to noise on observations as it avoids the noise-sensitive
estimation of temporal derivatives from noisy data. Batching strategies enable parallel
processing of different dimensions of the state and time subintervals and the learning of
systems of high dimension, as demonstrated in the model |[Lorenz| (1996).

2. Theoretical guarantees: For the fully observed case, we show bounds between the optimum
of Problem [I]and the loss optimized by the proposed method.

3. Partially Observed Systems: We extend our method to handle partially observed systems,
demonstrating its ability to estimate initial conditions and ODEs for unobserved dimensions.

Plan: In Section 2] we detail related methods and their tradeoffs. We first present the algorithm, its
derivation and theoretical result in the case of fully observed systems in Section [3] with numerical
experiments in Section[d] We then present an extension to partially observed systems in Section 3]

2 BACKGROUND AND RELATED WORK
To better position the method in Section 3] we first detail existing literature that is relevant to our case
of continuous time data, focusing on ODE Solvers and surrogate methods.

Direct approaches use numerical integration to estimate the gradient of the loss on parameters,
with different trade-offs between memory, accuracy, and complexity. Most accurate, the continuous
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Table 1: Efficiency comparison: Function Evaluations and memory. Our method is more computation-
ally efficient with a controlled memory overhead. For on a numerical tolerance of e, an explicit Runge-
Kutta method of order K uses N (K, T)= (O(e~'/5T)) steps; our method N= (O(e~1/2K-1T)) .

METHOD ADAPT. STIFF #NFE MEMORY  {SSURacy REF
ADJOINT-RK v 4KN O(n) T CHEN ET AL.|(2018)
BPTT-RK v v 2KN O(nN) 7|1 |GRUSLYS ET AL.[(2016)
ACA-CVODE v v 4KN  O@mN)  t|t — CEECrRigne
LTC v 8N4,T) O(nN(4,T)) 1|1 |HASANIET AL.[(2020)
THIS PAPER v 2KN O(nK) T

version of the Recurrent Neural Networks (RNNs) method -Backpropagation Through Time (BPTT)-
is obtained by differentiating through an ODE Solver using frameworks such as Pytorch [Paszke et al.
(2019) or JAX |Bradbury et al.|(2018)), or through a custom ODE Solver as in|Forgione and Pigal (2021)
and |[Hasani et al.|(2020) for Liquid Time-Constant (LTC) networks. It however requires memory to
store each step of the forward integration for the backpropagation. Based on the Pontryagin principle
Pontryagin et al| (1962), the adjoint sensitivity method solves this memory issue by estimating
gradients using a backwards integration, storing only the terminal value of the state, see|Chen et al.
(2018)); Rubanova et al.| (2019); |(Gholami et al.| (2019). As discrepancies between the forward and
backward integrations reduce the accuracy of gradients for this last method, adaptive checkpointing
(ACA) in|Zhuang et al.|(2020) uses checkpoints to enable a backward shooting method for the adjoint
on smaller subtrajectories, and Kim et al.| (2021)) stores the forward pass while using a backwards
integration of the adjoint. Direct methods are computationally expensive, and sequential being
autoregressive. They are sensitive to initialization: inaccuracies on the initial condition hamper the
accuracy of gradients on parameters and poor parameter initialization or bifurcations can lead to an
unpredictable number of adaptive steps used to control numerical error in the ODE Solver |Hairer
et al| (1993). Table[I]compares the memory and computational complexity of direct methods with
the method in this paper, wall-clock times comparisons are included in section {4

Surrogate methods: To avoid numerical integration, gradient matching, introduced in|Varah| (1982),
fits parameters ® to match an estimate of derivative obtained by finite differences, see alsoRamsay
et al.| (2007); Tjoa and Biegler| (1991); Niu et al. (2016). As estimating derivatives is sensitive to noise
on data, [Roesch et al.|(2021)) uses local smoothing techniques to estimate the trajectory and its deriva-
tive. The Sparse Identification of Nonlinear Dynamics (SINDy) framework, introduced in [Brunton
et al.|(2016) combines gradient matching with sparse regression when f is a linear combination of
nonlinear functions. Weak formulations and integral form using trapezoidal integration for regularly
sampled data are presented in|Messenger and Bortz| (2021)); |Schaetfer and McCallal (2017). Weak
forms are more robust to noise on observations, but are not generally tractable for arbitrary dynamics
f.|Calderhead et al.|(2008); |Dondelinger et al.|(2013) have explored Bayesian approaches to combine
gradient matching with sampling strategies and Bayesian updates. We show that using collocation
methods that smoothing with particular polynomials leads to guarantees on the numerical integration.

2.1 COLLOCATION METHODS

Collocation methods have become increasingly popular to solve optimal control problems; see
Betts| (2010). These methods are implicit integration methods where the value of state and control
(the parameters @) at specific discretization nodes are decision variables of a nonlinear program.
Although, as noted in|Varahl| (1982), these methods are the backbone of gradient matching, their direct
use for system identification is original. We selected the Legendre-Gauss-Radau (LGR) approach for
its suitability to initial value problems and its properties: it is A-stable, i.e., with numerical stability
guarantees for classes of initial value problems, symplectic, i.e., preserving the Hamiltonian of the
system, and has an approximation error is o(h2% 1), where K is the degree of the approximating
polynomial and £ is the size of the time step, see Fahroo and Ross|(2008)); |Garg et al.|(2011b)) for
discussions and proofs. While other collocation methods are compatible with our approach, our
choice ensures that the KKT conditions discretize the Pontryagin Principle, which connects our
method to the adjoint sensitivity method, see |Wei et al.|(2016).
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3 ALGORITHM FOR FULLY OBSERVED SYSTEMS

We present Integral Matching, in pseudo-code  Algorithm 1 Integral Matching
(Algorithm I}, a method alternating interpolations

of the trajectory and gradient descents on £(®, X),
a collocation-based estimation of:

SN[ 0t oy

where h;=t;41—t;, (Tj) are collocation nodes,
x( ) a polynomial approximation of the state
given by X its values at nodes. Section[3.1]derives
the loss ¢ and Section [3.3]studies the algorithm.

1: Input: data (t,,,, X(tm))m=1,... M, order K,
subinterval length h, initialization of @
Build denoised set F'={(t;,x(t/)}
repeat
generate a set S of subintervals [a,a+h)]
for sin S do
compute X using F’
update © < update(step, V{(O, X))
end for
until Convergence or maxIter is reached

s
II
|I

R AN A S ol

3.1 THEORETICAL FOUNDATIONS OF THE ALGORITHM

We first describe Problem 2} a multistep collocation of Problem [T} before reformulating and relaxing
it to obtain the loss £ minimized by gradient descent, highlighting the connections with surrogate
methods, adjoint methods, and shooting methods. As common for collocation, see |Garg et al.| (2010),
we approximate the state by continuous piecewise polynomials of degree K on a subdivision of [0,T]:
0=t;<...<tny=T. To harmonize polynomial representations and later optimize performance by
precomputing matrices, we rescale time within each subinterval to [0,1] using the affine change of
variable: t=t;+7h; on the ith subinterval. We use the Lagrange basis (I;),=o,... x associated to
(15)j=0,....k» the LGR nodes of order K, and x;;=x(t;+h;7;), the state values at collocation nodes.
Each component of the state is an independent polynomial of time. We represent the state and its
time derivative using two matrix-valued functions V (7) and D(7), see appendix [D]and the vector

Xi:((xijl)fe[m, . (xijn)}; [K]) obtained by stacking x;; by component then index j:

K
t —t 1
Vit € [ty tiv1], 7= le T)x;=V(17)X;, %x(¢ Zl T)x;; = —D(7)X,.
Z ] 'L

By substitution in Problem (]D, we obtain the classical collocation formulation, Problem @):

tm_ti
win Z S v () X

(Xi)i =1 me[M]
tm €[titit1]
st. V(0)X; =x¢ Initial condition, (2a)
VO0O)X; =V(1)X;_1, i€{2,...N—1}, Continuity between subintervals, (2b)
D(7)X,; = h; f(xi5, ©). Zej{el{lN;(l}} Dynamic at collocation nodes. (2¢c)

By relaxing constraints (2b), the problem splits into independent subtrajectories with shared parame-
ters ©: we first focus on subintervals. On any subinterval [a, a+h], we reorder constraints and refor-
mulate Problem (2)) as Problem (3)), where constraints have a block diagonal invertible structure, repeat-
ing n times a matrix Dy that only depends on K, see details in appendiceslﬂ El The right-hand side
of the constraints involves a function F' that stacks evaluations of f at collocation nodes. The terms as-
sociated to the the kth component of the state are (X (g 11), hf (X(71),0)k, ..., hf (x(7K),0))) "

Upon inverting D, we obtain Problem (@), equivalent to Problem (2) on a single subinterval:

1 tm —a
min — X(tm)|? min  — » V()X — x(tm)]|”
® 3 9 M h )
s.t. szmxgy st. X=DT'F(X,0).

Appendix |E| shows that the first column of f);(l is all ones, and the first row is all zeros
but the first element. Denoting by D;(l, the first principal minor of Dj_(l, and F(X,0), =
(f(x(11), Ok, ..., f(x(7K)),O)1)", we recover equation [5| the Gaussian quadrature from the
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LGR collocation see Garg et al|(2011alb): Vk € {1,...,n},Vj € {1,..., K},

h‘l’j
D 'F(X,0),—X;, = Xyx11)+hD F(X, ©); ~ F(x(t),0) — %, (t)dt  (5)
0

We relax the continuity constraint between subintervals, and the constraints of Problem (E[) that are
promoted through a quadratic penalty weighted by p > 0, as in Augmented Lagrangian relaxations:

N-1 N-1
. 1 tm — t; ~
w2 3 V() Xexal? 03 1B PO X ©
M !

i=1 m=1,..., i=1

(Xt)z

tm€ltistiy] r;(X;)nl Dimensional least square regression

estimating the values at LGR nodes from data £(©,X) system inversion

3.2 RESOLUTION METHOD AND QUALITATIVE DISCUSSION

Problem (@) is solved by alternate descent with Algorithm[I] Estimations of the trajectory at LGR
nodes using linear regressions (r;; terms / L. 6 of the pseudo-code) alternate with gradient descent on
system inversion problem (¢/(®, X) /L. 7 of the pseudo-code). Solving Problem (3) directly suffers
in practice from the same issues detailed in|Roesch et al.|(2021)): gradients are relevant only when the
integrated trajectory is close to data, although numerical integration remains computationally costly,
as evidenced in Figure[I] by the initial plateau of ODE Solver methods from a random initialization.
Allowing numerical integration error and computing the gradient along the interpolation avoids these
issues. We set p=1 as this scales gradients that are rescaled after by Adam, Kingma and Ba| (2014).

Denoising, filtering and connection to other methods 701 peervation eror

Noise on data translates into interpolation error which is 601 § wjofiltering
after filtering

exacerbated by the non-uniform distribution of the LGR
nodes over the interval [0,1] (see Figure (2). To mitigate this,
we employ a denoising Savistzky-Golay filter Savitzky and|
(1964), detailed in the Appendix [A] although more
advanced approaches can be beneficial (L. 2 of Algorithm
@)). An alternative is, in later iterations, to retain state values > : ‘ ‘ :
at LGR nodes as decision variables and alternate descents, 0 > w1 20
as in the extension to unobserved components in Section [3] Horse (SN (6]

and __Nlu et al. -201 6). As collocation methods are implicit __
Runge-Kutta mds, this approach reduces to a batréhed Figure 2: RMSE of the values at collo-
version of BPTT, with a connection to adjoint methods as ca'tlon nqdes: irregular sgmpllng am-
our choice of collocation is symplectic, the upside being plifies noise (blqe), filtering recovers
that numerical integrations are updated by gradient descent, accuracy. Sampling at At=0.01.

Continuity constraints between subintervals although relaxed can be recovered by using over-
lapping intervals sharing the same data. When successive interpolations coincide on overlapping
intervals, integrals along the interpolation can be computed in parallel across subintervals. Since
ODEs are Markovian, an integrated trajectory that follows the interpolation will match the entire hori-
zon recursively. Numerical error from collocation and discrepancies between interpolations may lead
to the failure modes described in section[6] This is similar to shooting methods and checkpointing.

Speed-ups: While ODE solver methods are sequential, our approach is fully parallel. Furthermore,
when parameters © can be partitioned by state components -as in polynomial dynamics— Problem (6))
can be decomposed by component: the algorithm scale linearly with the number of state dimensions
and is hence well suited for high-dimensional systems.

3.3 THEORETICAL GUARANTEES AND ASYMPTOTIC BEHAVIOR

We consider a single interval [a, a + h], with observations at collocation nodes a + 7;h. We denote
by x, the data-based polynomial interpolation. f is assumed L ¢-Lipschitz in state, and the Picard-
Lindeldf theorem guarantees the ODE [Tg]solution’s referred to as Xe, uniqueness for parameters ©
and initial value X (a) = x(a). We denote by L1(®), the loss of Problem I|and by L>(®) our loss.
We prove two bounds linking our method to the original problem for noiseless and noisy settings.
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3.3.1 BOUNDS AT CONVERGENCE AND AT A GIVEN ITERATE FOR NOISELESS OBSERVATIONS

We prove two results, one asymptotic, and the other valid for any iterate ® of the Algorithm:

Theorem 3.1. On a single subinterval, assuming a) noiseless estimation of the dynamic at collocation
nodes, b) the function f from[Id} Lipschitz wrt to the state.

i) should the descent find the optimum ©* of Problem@ such that Lo (©*)=0 then
Li1(©%) < K(Ch*®* 1?2 4 K(LhCrh?5~1)? (7
ii) For any ©, of value L2(©)=6h?, 3L,>0,C>0 involved in D(h, K, 5):%+L97Kh:

L1(®) < K(Ch*( 71?2 4 Ly(®) + K(L;D(h, K, 8)helh)? (8)

Proof. By definition, for noiseless observations, the loss of Problem|[I]is L1(©), our loss is Ly (©):
K K a+hTt;
Li(©)=) |[x(a+hr)—%e(a+hr)|*=) ||/ x(s)—f(xe(s), ®)ds| ©)
i=1 i=1

K a+ht;
Ly (©)= Z I / %x(s)—f(x(s),®)ds||* + o(h** ')  with Truncature error ~ (10)
i=1 Y@
First, f’s Lipschitzness, implies the bound [I2] constituted of two terms studied afterwards.

K a+hT;
IL1(@) = La(@) < Y [ fe(s). @)ds — flx(s), @)ds|* + K(CunH 1 i)
i=1 @

< K(C,h* )2 + K(Lylx - %e)*) (12)
~—_—————
Collocation error, Solution-Interpolation distance

controlled by h and K (see Figure@and appendix@
i) L2(©®*)=0 implies that ®* is the collocation (2)’s optimum, and truncature error gives

ii) Introducing e(t)=x(t)—%e(t), f’s Lipschitzness and the definition of Xg give:
¢
vt € [a,a+ hg], le(@®)] < / 1%(s) = f(x(s), ©)]| +Llle(s)llds
¢ §D(h,K,5),seeAppendixE
Gronwall’s lemma implies, Vt€[a, a+h7k], |le(t)|<D(h, K, 8)(t — a)el" =D <D(h, K, §)helh
Which substituted into [T0|concludes the proof of 8] O

Error grows exponentially with interval length and L ¢, which is fatal given chaotic systems can be
learned. Bounds|[7]and [8]offer guarantees that are usually missing for gradient matching and show the
relevance of solutions when data allows an accurate interpolation.

3.3.2 BOUNDS IN THE NOISY SETTING

Our approach is affected by the error at collocation nodes, rather than the noise on data. We denote
by x the interpolation with error at collocation nodes. The triangle inequality leads to a bound
similar t with a supplementary quadratic term in the norm of the error:||L1(©®) — Lo(O)|| <
K(Cyh?K=1)2 4 KL?(HX — Xel|? + ||% — x||?), and additional term to the function D(h, K, §).
This is however a worst case scenario on a subinterval, and pessimistic as the method tends to average
the error on long horizons through multiple overlapping intervals, see for instance Figure 3]

4 EXPERIMENTS

We benchmark time, accuracy, noise robustness, and model convergence on common canonical
models of the system identification literature. Each experiment simulates dynamics from a random
initial condition, then runs algorithms on observations with Gaussian noise. Results are averaged over
multiple initial conditions and noise seeds. We initialize parameters by 0 for polynomial dynamics
as in this case, the system inversion problem reduces to a linear regression and convergence is not
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Table 2: RMSE of %(%) on polynomial dynamics: for 7=40, h=1 and K =30 our method outper-
forms SINDy in noisy settings. We included results with a sequential thresholding combination to
highlight the good performance of our method without sparsity. For the Rossler, even for 20% noise,
with sparsity, we recover the true support and error on coefficients is below 1%.

NOISE

MODEL METHOD 0% 5% 10% 20%
LORENZ63 SINDY 0.18 75459 10.77+04 2295+3.4
LORENZ63 IMATCH 0.25 1.6+14 4.63 £ 3.6 8.81 +£4.3
LORENZ63 IMATCH THRESH 0.05 1.0+ 0.6 2.8+26 6.3+7.1
ROSSLER SINDY 0.02 434+05 12.154+£1.0 26.95+2.3
ROSSLER IMATCH <1072 05+40.1 0.92+0.2 2.11 +0.5
ROSSLER IMATCH THRESH < 1072 0.3+0.1 0.9+0.2 1.54+0.9

DUFFING SINDY 0.01 5.6 £0.3 9.79+0.3 13.27+1.2

DUFFING IMATCH 0.34 1.1+0.9 20+1.9 4.2+4.3

impacted by initialization. Otherwise, we use the same methods as in Neural ODEs examples. We
compare our method with baselines that exploit the structure of f, like SINDy when f is a linear com-
bination of nonlinear terms. The algorithm is implemented using PyTorch and JAX and Julia, tested
on an Intel Xeon Platinum 8260 48-core server. We examine the performance in Section 4.1} higher-
dimensional problems in Section failure modes in Section[6} and complexity in Appendix
4.1 RAW PERFORMANCE ON THE LEARNING FROM NOISY OBSERVATIONS

We first consider canonical examples of chaotic systems: the Lorenz 63 attractor|Lorenz| (1963)), the

Rossler attractor Rossler| (1976)), the Duffing model |Duffing and Emde| (1918)). Those systems are of
dimensions up to 4 and are polynomials of degree up to 3.

Learning Polynomial dynamics: for each system, we fit the coefficients of polynomial dynamics
of degree 3 that contain the original equations along with other terms and compare our method
(Integral Matching - IMATCH) to the SINDy method for different levels of noise. Results in Table 2]
show our algorithm learns meaningful models and is more robust to noise than SINDy. The lack of
regularization in our method may explain SINDy’s edge in noiseless cases due to the model’s sparsity.

Table 3: Comparison of runtime on the a spiral dynamic in|Chen et al.|(2018)) using a neural network
with one hidden layer and 50 neurons, results averaged over 40 runs. Our algorithm (IMATCH) was
found to compute gradients almost two orders of magnitude faster than the backpropagation through
the solver (BPTT) and three orders of magnitude faster than the adjoint. The default parameters from
the official Neural ODE library were used. The results are given as the 1st and 9th decile intervals.

GRADIENT
gsTimaTioN 7 NFES SPEED-UP PER
METHOD RMSE x (%) TIME (S) (10%) TOTAL TIME (S) GRADIENT
IMATCH 1.61 [1.47,1.77] 1.8107° 3.1 2.08 [1.01, 3.69]
BPTT 1.78 [1.19, 3.37] 5.0107? 3.9 100.5 [88.9,116.3] 2777
ADJOINT  1.83[1.15,2.57] 451071 28.8 959.8 [909., 993.9] 25000

Table 4: Wall-clock time on CPU (Intel i7) (statistics over 20 runs), a 30x+ speed-up on the learning
the Lorenz63 model with Neural Networks with 5% added noise, details in section The closest
contender BPTT was not able, in an hour to match the performance our method achieved in 3 minutes.

RMSE x (%) RMSEx (%) RMSE x (%)
METHOD 3 MIN. 5 MIN. 10 MIN.
IMATCH(OURS)  4.31+£0.5 3.8 +0.4 3.4+0.4
BPTT 41.514+3.29 32.20+£246 21.8342.13
ADJOINT 91.874+2.93 87.89£4.37  80.73 £ 4.79
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Learning Neural ODES We consider the same damped
oscillator as in|Chen et al.|(2018) and a simple network with 20
one hidden layer of size 50 (202 parameters) and ReLU _
activation, as shown in Table 3] On this task, our method 2
outperformed ODE Solver-based approaches on wallclock =10
time by nearly two orders of magnitude. In the detail, we s
report the global wall clock time, time to evaluate a gradient *
for a batch of 20 observations, and the number of function 0
evaluations. In Figure [l we present a comparison on a
training trajectory with the same data and initialization /
strategy. The x axis is the number of function evaluations. 90 1

While the figure represents one training trajectory, the orders g 80

of magnitude are consistent across multiple experiments. In fé

total, our method achieves similar accuracy on the test set 701

with 95 to 320 times fewer network evaluations than ODE 60 -

Solver methods. On these instances, gradient estimations ' ' '
are up to 25,000 times faster than adjoint methods due to 1001

batching and parallelism. We trained a ResNet architecture s 80

with 300 hidden units (90,000 parameters) and two shared o 601

residual blocks with ReLLU activations, on the Lorenz63 w404

model and present results in Table [Z_f} On a Tesla T4 GPU, 2 20 .

an RMSE of around 1% was obtained within 20 minutes
with our method, while 3% was achieved on CPU within 15 0
minutes. See appendix [B] for more details.

100 200 300
Length of observed trajectory T

Learning coefficients in nonlinear structures The SNR of observational noise
FitzHugh—Nagumo model |FitzHugh| (1961)) involves three — 00% —— 10.0%
parameters in a rational function. Our method achieves error 50% —— 20.0%

under 2% in coefficients, matching the Bayesian approach in

Calderhead et al.|(2008) while being twice as fast. Figure 3: For the Lorenz96 model

with F' = 16, for various levels of

. _ noise and observed length, we plot
The [Lorenz| (1996) models represent chaotic systems with (top) The RMSE of the error on the

states on a circle, influenced only by neighboring points. gerivative, (middle) the true positive
It is described by sparse polynomial ODEs with a forcing (ate of the non zero terms identified
term F" whose value increases the chaoticity of the system: jp equations, (bottom) the relative
Jéiz(xiﬂ—xi,g)xi,l—a:i—i-F, 1=1,...,n. The 40 dimen-  crror on parameters

4.2 LEARNING CHAOTIC SYSTEMS IN HIGH DIMENSIONS

sion model with a forcing term F' = 16 exhibits 9 positive eigenvalues for the linearized equation
around the equilibrium, leading a very chaotic behavior in high dimensions, see Sapsis and Majda
(2013). We consider trajectories initially disturbed from equilibrium by 106, below common
tolerance used with ODE Solvers. We promoted sparsity using a simple sequential thresholding
heuristic. Results in Figure 3] shows a phase transition which we believe is linked to sparsity and
high dimensionality. The training on polynomial dynamics, including sequential thresholding runs
in less than 30s for a 40 dimensions system, using threading to perform computations in parallel
while considering the 861 monomial of degree up to 2. Appendix [C] presents a more comprehensive
benchmark with a dynamic with F' = 32 with even greater turbulence and chaos.

4.3 CONCLUSION
Benchmarks suggest the method’s potential and noise robustness for nonlinear ODEs, with parameter

nonlinearities under full system observability. We demonstrate its extension to partially observed
systems and provide an experiment on the Lorenz attractor in[5.1]

S5 EXTENSION TO PARTIAL OBSERVATIONS

For practical applications of partially observed systems, only ODE solver methods are available, as
gradient matching cannot estimate initial conditions and derivatives. A key challenge of ODE solver
methods is the joint learning of the initial condition and the dynamics for latent dimensions, which is
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addressed in |Ayed et al.[(2019); Lu et al.|(2022) through the use of two different neural networks
trained jointly via gradient descent. These networks use delayed observations as inputs, justified by
Taken’s theorem Takens| (1981), which proves unobserved dimensions exist within the manifold of
delayed observations in chaotic systems. Our method shows that in the case of the Lorenz63 attractor,
the initial condition can estimated from past observations without regular sampling.

The algorithm (pseudo-code Algorithm [2]in Appendix [G]solves the same problem[6] with the same
loss but alternates between two steps: an evaluation of the trajectory at collocation nodes using a
reconstruction method for unobserved components and a gradient descent to identify parameters of
the system. By using the same loss function, the extended variant retains the theoretical properties
and insights presented in Section [3] including the batching strategies, by subinterval and component.
Compared to a full collocation approach, equivalent to applying BPTT to the implicit Runge-Kutta
method from the collocation, we use interpolation to reduce the problem’s size.

We rewrite the problem|[6]on the subinterval ¢ and the component of the state k, by splitting the state
variables into two classes: observed and unobserved components, splitting variables of the objective
function and of the function F' accordingly. At collocation nodes, observed components are estimated

using data and regression X;. Unobserved components are denoted by the decision variables X;. The
objective function splits into terms associated to observed components o, (X;, X;, ®) for k < p,
and terms relative to unobserved components u;;(X;, X;, @) for k > p. The relaxed problem is:

N—-1 p n
min Y {3 Pk 'FXi, X 0) — Xul*+ Y Dk F(Xi X, ©) — X’}
(xR =Rl 0ir(X:,X:,0) k=pt1 win(X:,X:,0©)

We utilized JAX to compute gradients, combin-
ing observed and decision state variables. Future
reconstructions start by reusing past interval val-
ues from a subinterval pool. A version with the
nonlinear solver Ipopt was implemented to incor-
porate equation constraints or penalties, such as
energy conservation, into learning. In some cases, . T T T
additional quadratic penalties help maintain conti- 0 40 0 40
nuity of unobserved components, though it wasn’t ~ Figure 4: On the left, a scatter plot of the recon-

40 A

30

10 4

needed for the chaotic system used afterward. structed component vs the ground truth. On the
right, a scatter plot between the ground truth and
5.1 NUMERICAL EXPERIMENTS the reconstructed model, once an affine change

In this part, we experimented on polynomial dy- ~ ©Of variable has been found

namics of degree 2 for terms containing the observed component and 2 in the unobserved components.
We consider the Lorenz oscillator for which we only observe the first two components. We appro-
ximate the dynamic on subintervals of length 1 by
polynoms of degree K = 30 and are given obser-
vations over [0, 20] sampled every A¢ = 0.01.
When integrated over [0,20], the learnt model |
leads to a integration error over the three di- |
mensions below 1%. The comparison of the
reconstructed trajectory with the unobserved
ground truth requires care as affine changes of

variable leads to ODEs representing the same - g

system. Figure [4]illustrates this phenomenon as | _ | '

the left plot represents the phase plot between o] :

the ground truth and the reconstructed trajectory,
while the right plot shows the phase upon transfor-
mation with a suitable change of variable found by Figure 5: Top: Reconstructed trajectory (black)
a linear regression of R? = 0.99995. Our method Vs ground truth (red), Observation time (grey),
not only captured the attractor, it provided an (Bottom), relative error of the reconstruction: the
accurate estimation of the unobserved component. learnt model captures the relevant dynamic with

an average out of sample accuracy below 0.1%
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Applying the affine change of variable, we are able to simulate the learnt system beyond the training
horizon as in the figure[5] The grey area is the training horizon. The curve in red is the ground truth
and in dotted black, the reconstructed and simulated unobserved component.

As curves are undistinguishable, the second plot below shows the relative error on the reconstructed
trajectory, below 0.1% on average. Using sparse regression upon the change of variable, we recovered
equations with less than 0.5% error on the coefficients of the equations, remarkably, similar to the
fully observed case.

6 LIMITATIONS AND FURTHER WORK

As mentioned in section (3.2)), the accuracy of the interpolation is key for the performance of
the method as it impacts two parts of the loss. The 1D, 1 subinterval system inversion term
ID7'F(X,®) — (X — Xg)||? is impacted in two ways by the interpolation error:

* In the numerical integration term along the trajectory via the D~ F (X, ®) terms, the non
linearity F' can create a bias: the distribution of the error on F'(X + ¢, ®) is not centered
around F'(X, ©), even if the approximation error € is.

* In the difference (X; — Xo), systematic bias is neutralized by the difference. As Xg is
involved every integral of the subinterval, the variance on the initial condition is a key
component for global accuracy and has motivated the Savitsky-Golay filter in Appendix (A).
The use of multiple overlapping and random subintervals is a way to balance this variance
on multiple points and subintervals, mitigating this single point of failure issue.

The impact of systematic bias, in the absence of filtering based on current equations, with the caveats
on local optima mentioned in section (3.2)), can often be mitigated by denoising with more data, and
longer horizons. If not, our method can be used to initialize parameters prior to adjoint methods.

Another failure mode is about generalizability in the absence of prior structure on equations: in
particular for Neural ODEs the trajectory may leave the manifold of the training data, and, in
the absence of prior or additional penalty, the integrated trajectory becomes completely irrelevant.
Oscillators such as the damped one in (Chen et al.| (2018)) or Lokta-Volterra models [Lotkal (1926), as
well as attractors have the characteristic that the system is trapped in a bounded manifold possibly
and will visit regions multiple times over long horizons. In the case of the damped oscillator, as long
as the trajectory remains in the envelope of interpolated trajectories, as solutions of ODEs do not
intersect, the trajectory will generalize as it will cross a trained region.

The algorithm in this paper is based on fixed length subintervals and orders, but this is not a hard
limitation. The integration order K needs not be fixed (aside from easing implementation and
providing a rigid computation graph), we can in principle use variable-length subintervals. Similarly
as for SINDy methods, our method can be used to learn Partial Differential Equations using the
method of lines to convert PDEs into a system of coupled ODEs.

7 CONCLUSION

We have studied the utilization of a particular collocation method for system identification of nonlinear
dynamical systems, leveraging data to simplify the typically computationally intensive computations.
Our efficient method requires fewer backpropagations to evaluate gradients at each step of the descent
and introduces batching strategies, such as by subintervals and state components, to enable high
parallelism and scalability linearly with dataset size, horizon length 7', and system dimensions,
contrasting with autoregressive ODE Solver methods.

Note: If accepted, we intend to release codes of our method (Pytorch and JAX).

10



Under review as a conference paper at ICLR 2025

REFERENCES

Karl Johan Astrom and Pieter Eykhoff. System identification—a survey. Automatica, 7(2):123-162,
1971.

Ibrahim Ayed, Emmanuel de Bézenac, Arthur Pajot, Julien Brajard, and Patrick Gallinari. Learning
dynamical systems from partial observations. 2019.

John T. Betts. Practical Methods for Optimal Control and Estimation Using Nonlinear Programming,
Second Edition. Society for Industrial and Applied Mathematics, second edition, 2010.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang.
JAX: composable transformations of Python+NumPy programs, 2018.

Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy of
Sciences, 113(15):3932-3937, 2016.

Ben Calderhead, Mark Girolami, and Neil Lawrence. Accelerating bayesian inference over nonlinear
differential equations with gaussian processes. In Advances in Neural Information Processing
Systems, volume 21. Curran Associates, Inc., 2008.

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differential
equations. CoRR, abs/1806.07366, 2018.

Frank Dondelinger, Dirk Husmeier, Simon Rogers, and Maurizio Filippone. Ode parameter inference
using adaptive gradient matching with gaussian processes. In Artificial intelligence and statistics,
pages 216-228. PMLR, 2013.

Georg Duffing and Fritz Emde. Erzwungene schwingungen bei verdnderlicher eigenfrequenz und
ihre technische bedeutung. F. Vieweg u. Sohn, 1918.

Fariba Fahroo and I Ross. Advances in pseudospectral methods for optimal control. AIAA Guidance,
Navigation and Control Conference and Exhibit, 08 2008.

Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Moham-
madamin Barekatain, Alexander Novikov, Francisco J. R. Ruiz, Julian Schrittwieser, Grzegorz
Swirszcz, David Silver, Demis Hassabis, and Pushmeet Kohli. Discovering faster matrix mul-
tiplication algorithms with reinforcement learning. Nature, 610(7930):47-53, Oct 2022. ISSN
1476-4687.

Richard FitzHugh. Impulses and physiological states in theoretical models of nerve membrane.
Biophysical Journal, 1(6):445-466, 1961. ISSN 0006-3495.

Marco Forgione and Dario Piga. Continuous-time system identification with neural networks: Model
structures and fitting criteria. European Journal of Control, 59:69-81, 2021.

Divya Garg, Michael Patterson, William W. Hager, Anil V. Rao, David A. Benson, and Geoffrey T.
Huntington. A unified framework for the numerical solution of optimal control problems using
pseudospectral methods. Automatica, 46(11):1843-1851, 2010. ISSN 0005-1098.

Divya Garg, William W. Hager, and Anil V. Rao. Pseudospectral methods for solving infinite-horizon
optimal control problems. Autom., 47:829-837, 2011a.

Divya Garg, Michael A. Patterson, Camila Francolin, Christopher L. Darby, Geoffrey T. Huntington,
William W. Hager, and Anil V. Rao. Direct trajectory optimization and costate estimation of finite-
horizon and infinite-horizon optimal control problems using a radau pseudospectral method.
Computational Optimization and Applications, 49(2):335-358, 2011b. ISSN 1573-2894.

Amir Gholami, Kurt Keutzer, and George Biros. Anode: Unconditionally accurate memory-efficient
gradients for neural odes. In IJCAI, 2019.

Sam Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks, 2019.

11



Under review as a conference paper at ICLR 2025

Audriinas Gruslys, Remi Munos, Ivo Danihelka, Marc Lanctot, and Alex Graves. Memory-efficient
backpropagation through time, 2016.

Ernst Hairer, Syvert Norsett, and Gerhard Wanner. Solving Ordinary Differential Equations 1: Nonstiff
Problems, volume 8. 01 1993. ISBN 978-3-540-56670-0.

Ramin M. Hasani, Mathias Lechner, Alexander Amini, Daniela Rus, and Radu Grosu. Liquid
time-constant networks. CoRR, abs/2006.04439, 2020.

Suyong Kim, Weiqi Ji, Sili Deng, Yingbo Ma, and Christopher Rackauckas. Stiff neural ordinary
differential equations. Chaos: An Interdisciplinary Journal of Nonlinear Science, 31(9):093122,
sep 2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

L. Ljung. System Identification: Theory for the User. Prentice Hall information and system sciences
series. Prentice Hall PTR, 1999. ISBN 9780136566953.

Edward N. Lorenz. Deterministic nonperiodic flow. Journal of Atmospheric Sciences, 20(2):130 —
141, 1963.

Edward N Lorenz. Predictability: A problem partly solved. In Proc. Seminar on predictability,
volume 1. Reading, 1996.

Alfred J. Lotka. Elements of physical biology. Science Progress in the Twentieth Century (1919-1933),
21(82):341-343, 1926. ISSN 20594941.

Peter Y. Lu, Joan Arifio Bernad, and Marin Soljacié. Discovering sparse interpretable dynamics from
partial observations. Communications Physics, 5(1):206, Aug 2022. ISSN 2399-3650.

Daniel A. Messenger and David M. Bortz. Weak sindy: Galerkin-based data-driven model selectionf.
Multiscale Modeling & Simulation, 19(3):1474-1497, 2021.

Mu Niu, Simon Rogers, Maurizio Filippone, and Dirk Husmeier. Fast parameter inference in
nonlinear dynamical systems using iterative gradient matching. In Maria Florina Balcan and
Kilian Q. Weinberger, editors, Proceedings of The 33rd International Conference on Machine
Learning, volume 48 of Proceedings of Machine Learning Research, pages 1699—1707, New York,
New York, USA, 20-22 Jun 2016. PMLR.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning
library, 2019.

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko. The Mathematical
Theory of Optimal Processes. Interscience Publishers, New York, 1962. Translated from the
Russian by K. N. Trirogoff; edited by L. W. Neustadt.

Alan A Poyton, Mehran S Varziri, Kim B McAuley, P James McLellan, and James O Ramsay.
Parameter estimation in continuous-time dynamic models using principal differential analysis.
Computers & chemical engineering, 30(4):698-708, 2006.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learning (part i):
Data-driven solutions of nonlinear partial differential equations. 2017a.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learning (part
ii): Data-driven discovery of nonlinear partial differential equations. 2017b.

Jim O Ramsay, Giles Hooker, David Campbell, and Jiguo Cao. Parameter estimation for differential
equations: a generalized smoothing approach. Journal of the Royal Statistical Society Series B:
Statistical Methodology, 69(5):741-796, 2007.

12



Under review as a conference paper at ICLR 2025

Elisabeth Roesch, Christopher Rackauckas, and Michael P. H. Stumpf. Collocation based training of
neural ordinary differential equations. Statistical Applications in Genetics and Molecular Biology,
20(2):37-49, 2021.

Yulia Rubanova, Ricky T. Q. Chen, and David K Duvenaud. Latent ordinary differential equations
for irregularly-sampled time series. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

O.E. Rossler. An equation for continuous chaos. Physics Letters A, 57(5):397-398, 1976. ISSN
0375-9601.

Themistoklis P. Sapsis and Andrew J. Majda. A statistically accurate modified quasilinear gaussian
closure for uncertainty quantification in turbulent dynamical systems. Physica D: Nonlinear
Phenomena, 252:34-45, 2013. ISSN 0167-2789.

Abraham. Savitzky and M. J. E. Golay. Smoothing and differentiation of data by simplified least
squares procedures. Analytical Chemistry, 36(8):1627-1639, Jul 1964. ISSN 0003-2700.

Hayden Schaeffer and Scott G McCalla. Sparse model selection via integral terms. Physical review.
E, 96(2-1):023302, August 2017. ISSN 2470-0045.

Torsten Soderstrom and Petre Stoica. System identification. Prentice hall, 1989.

Steven H. Strogatz. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry,
and Engineering. Westview Press, 2nd edition, 2014. ISBN 978-0813349107.

Floris Takens. Detecting strange attractors in turbulence. Dynamical Systems and Turbulence,
Warwick 1980, 898:366-381, 1981.

Tauw Bhieng Tjoa and Lorenz T. Biegler. Simultaneous solution and optimization strategies for pa-
rameter estimation of differential-algebraic equation systems. Industrial & Engineering Chemistry
Research, 30(2):376-385, Feb 1991. ISSN 0888-5885.

J. M. Varah. A spline least squares method for numerical parameter estimation in differential
equations. SIAM Journal on Scientific and Statistical Computing, 3(1):28-46, 1982.

Alejandro F Villaverde and Julio R Banga. Reverse engineering and identification in systems biology:
strategies, perspectives and challenges. Journal of the Royal Society Interface, 11(91):20130505,
2014.

Jianli Wei, Xiaojun Tang, and Jie Yan. Costate estimation for a multiple-interval pseudospectral
method using collocation at the flipped legendre-gauss-radau points. IEEE/CAA Journal of
Automatica Sinica, pages 1-15, 2016.

Juntang Zhuang, Nicha Dvornek, Xiaoxiao Li, Sekhar Tatikonda, Xenophon Papademetris, and James
Duncan. Adaptive checkpoint adjoint method for gradient estimation in neural ode, 2020.

13



Under review as a conference paper at ICLR 2025

SUPPLEMENTARY MATERIALS

A DENOISING

As the LGR points are not uniformly distributed on the interval, being denser around boundaries,
without denoising, the estimation error is significantly higher and has a higher variance than the noise
level. However, in the center of the interval, noise is significantly lower than the noise level, dividing
it by at least half, to more than a factor 4 with more data on experiments. Leveraging this observation,,
we choose a window length and degree K, perform a linear regression to obtain denoised values at the
window’s center, and use a sliding window to estimate a denoised set of points along the trajectory.
This larger set is used for the linear regression to estimate values at LGR point during the descent.

The experimental results, in Figure 2] consistently show that, without filtering, the RMSE of the
estimation error at the LGR nodes is higher than the error in the observations. However, filtering
significantly reduces the noise in the estimates, by approximately half to one-third compared to the
original observations. This section illustrates the importance of denoising, rather than the study and
analysis of this particular choice of method.
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Figure 6: corrupted by 40% noise. Without filtering, Estimates (blue) are irrelevant at

boundaries due to uneven distribution of abscissae in the LGR nodes (red dots).

B TRAINING NEURAL ODES USING INTEGRAL MATCHING

Contrary to library approaches such as in Brunton et al.| (2016)), Neural Networks bring less prior
structure to the latent dynamic. As such, the true complexity of the manifold to learn and its translation
as a data requirement especially the required length of observation to visit in different areas of the
manifold is of utmost importance. Such characteristics are obviously problem specific, but there
are connections with many areas studied in the physical context of finding either architectures that
preserve physical quantities [Raissi et al.| (2017ajjb) or promoting this through terms in the objective
function. Promoting structure and respect of invariants brings structure to the parameters and reduces
the complexity of the learning. All in all, our approach is perfectly compatible with such techniques,
promoting invariants, and the loss function promotes the conservation of the Hamiltonian, though not
enforcing it using projections as in|Greydanus et al.|(2019).

Similarly as for polynomial dynamics in section |C] ie problems with more prior structure, a phase
transition is observed and is linked to the architecture of the Network. Given a network with enough
representative power to capture the dynamic, the phase transition is observed with regards to the
availability of available data. There are several regimes, aside from terminal convergence to a relevant
model that is observed in the following section where the algorithm is used to recover parameters of
a dynamic within a class that contains the ground truth dynamic. We observed namely insufficient
representative power and insufficient data to train the given architecture.
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Figure 7: Phase transition: our algorithm converges to the ground truth model when given enough
signal, consistently across different noise regimes. Columns: For increasing values of the forcing
term F', corresponding to increasing chaoticity and difficulty, longer trajectories are required to
recover the true dynamic. The first row indicates th RMSE of the time derivative, the second row, the
true positive rate of nonzero terms recovered, the last row indicates the error on coefficients. The
phase transition happens on the three metric, highlighting that past an amount of signal, our algorithm
learnt the ground truth model. For F' = §, there is a phase transition, around 7" = 80 in the noiseless
regime (blue) where the model is perfectly recovered. The greater the amount of noise, the later
the phase transition. Interestingly, we observe that asymptotically on 7', our model converges to a
relevant solution for various noise levels, ie the red curve with the noise of 20% converge to an error
that keeps on decreasing with additional data. This is clearer in the second and third columns where
the problem is more complex and the learning longer. After a phase transition, happening around
T = 100, even T = 130 for 20% noise, the performance keeps on improving. On F' = 32, another
surprising phenomenon appeared: on chaotic systems, mild levels of noise appear to be beneficial to
help convergence. This is possibly linked to the sparisifying heuristic being suboptimal.

C Focus OF THE LORENZ 96

Contrary to the experiments in the core paper that contained no method to promote sparsity, aside
from the implicit regularization of gradient descent and a small ¢; penalty that helped convergence,
we used in these section a simple sequential thresholding heuristic: the problem was solved, then
small values projected to 0, then retrained on the subset of nonzero values, then thresholded again.
Results are presented by Figure 7] for forcing terms F' = 8, F' = 16 and F' = 32. We also provide a
specific focus on ' = 8 in Figure|[8]

Better methods have been developed to recover sparse equations than the simple sequential heuristic,
in a a sparse regression setting close to ours, but the fact that such a simple methods works well
illustrates the interest of the loss and overall procedure. It should be noted, lastly, that such a
computationally cheap sparsifying method is scalable to large dimensions. However, on large
dimensions, for instance, N = 200, the number of monomials grows to more than 20,000 terms for a
polynomial of degree 2, so that the method of postulating a library is doomed in higher dimensions.
In such dimensions, the regression step to estimate the value at LGR nodes and the denoising process
are no longer cheap, though easily treated in parallel.

However, using our method can provide an interesting option as the sequential thresholding can be
used to filter and select a lower dimension set of features, so that the method speeds up as it converges
to a sparser model. This points towards future work at the intersection of interpretability and sparsity
on Neural ODEs.
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Figure 8: On the problem with F' = 8, we present a more global view of the first column. The oscil-
lations observed for the various metrics are likely explained by the suboptimality of the sparsifying
heuristic and thresholding effects.

D REFORMULATION OF THE SINGLE SUBINTERVAL PROBLEM

The state polynomial interpolation and its time are written using matrix valued functions V and D
on the subintervals rescaled to [0, 1] and the vector obtained by stacking the values of the state at
collocation nodes. Namely:

t—1;

1
hi :

K K 1
, X(t)zzlj(T)Xij:V(T)Xu x(t) = W Zl;‘(T)Xij = KD(T)Xz'-
§=0 ' j=0 !

Vt € [ti7ti+1]77-:

The formalism relies on the fact that each component of the state is a polynomial in time that is
determined by the values of the state at collocation nodes only for the very same component. The
problem is a 1D polynomial of time for each dimension and the Lagrange basis is the same for
each dimension. Given the structure of X;, the functions V and D have a block diagonal structure
(by component of the state), repeating n times a matrix that is simply the decomposition of the
polynomial within a Lagrange basis.

* V(1) repeats n times Vq whose general term is Va; (1) = [;(7),

» for D(7) repeats n times Dq whose the general term Da ; j)(7) = ()

Using these notations, the single subinterval problem has the following form:

. 1 tm —a 9
sy 5 X IV () X = xttn)

me[M]
S.t. XO = X07 (133)
D(7j)x=hf(x;,0) jel.K. (13b)

We reorder the constraints by components of the state first then time. By design of the collocation
method, each dimension is interpolated separately. As such, grouping terms of each dimension
separately, constraints naturally separate by dimension: introducing a (K + 1) x (K + 1) matrix
D, the constraints on the kth component of the state are:
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' 1 ' 0 . 0 Xi(k+1)
lo(r1)  L(m) ... k(1) KXr(K+1)+1
lo(tg) (k) ... lx(Tk) Xi(x+1)
Dx X[kE:k(K+1)]

Xi(r+1)

hf(x1,0)p

hf(xk,®)

F(X,9)

Where X [k(K +1) : (k+1)(K+1)]is the projection of X on the span of {€y(xy1), - - - €(r+1)(K+1) }-
As the collocation is of the same order for each dimension, the matrix D which only depends on
the collocation order is the same for each dimension, so that, stacking back every component, the
matrix of constraints is block diagonal:

D F(X,0),
DK X F(X, @)2
Dy F(X,0),

D F(X,0)

One final observation (proof in the following section) is that the structure of the first row of D i and
the collocation structure imply that the first column of the inverse of D g is only composed of 1s.
Namely, we have:

This enables to compute the loss by multiplying by a K x K submatrix of Dl}l rather than by a
(K + 1) x (K + 1) matrix. For K = 30, this simple observations enables to reduce the number
of operations to evaluate the product by 9% using Strassen (O(K?-®)). In the end, compared
to a naive implementation that would consider a product with matrix of constraint of dimension
n(K + 1) x n(K + 1), we have transformed the problem into n products with matrices of dimension
K x K. As the matrix is fixed, it seems from experiments that the compilation performed in JAX is
able to the product for further speedups.

E PROOF OF THE INVERTIBILITY OF DIFFERENTIATION MATRICES

Any element of the kernel of D can be interpreted a polynomial P of degree K represented in
the LGR Lagrange basis. The last K rows of D g imply that P is constant: the derivative of P is a
polynomial of degree K — 1 null at K distinct points, hence null everywhere. The first row of the
matrix D x implies that this constant is null, ie P = 0. Subsequently, D is also invertible from its
block diagonal structure of matrices D g. [J.

The first column v of matrix Dl}l is a vector of ones: v = 1. The first component is trivial.
For the other ones, we use the adjoint matrix, algebraic manipulations and the interpretation as a
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differentiation matrix. Namely, have that

) 1 ) 0 S 0
det(D) — dee | P B )
io(TK) ZI(TK) iK(TK)
for any k # 0 . . .
11(7’1) lk(Tl) ZK(’Tl)
det(Dg) = det : : : :
zl(TK) ik(TK> zK(TK)

Using the adjoint matrix formula for the inverse of D), to prove that v = 1, we need to show that
the first row of the adjoint matrix, ie the cofactors are each equal to the the determinant of det(D ).
Namely, we need to show that, for any k # 0, det(Ax) = det(D g ) where:

lo(r1) - Zk—l(Tl) ik+1(71) wo A (m)
det(Ag) = (—1)" det : : : : .

lo(TK) lk—l(TK) lk+1(TK) lK(TK)
We form the difference Ay, = det(Dg) — det(Ay) and expand the determinant of Dy along the
kth column, expand the determinant of A along the first column. The expansion exhibits the same
minors obtained by removing the Oth and kth columns. We denote ;5 the determinant of the minor
obtained by removing the first and ith row of D g and the first column and kth column of D :
K K
Ay = det(Dg) — det(Ax) = Y (=Dl (ri)pin — Y (=1 (=1)" o (7:) pin

:1 i=1
= Z(—l)”k(l’k(ﬂ') + o (7)) pan

=1
That is the difference is the determinant of a matrix By,

10 .0 w0
Ay = det(By) = det lo(:Tl> ll(:Tl) e lg(m1) ‘|‘ lo(t1) ... Ilx(m)
Z-O(TK) l.l(TK) l-k(Tl)-Fl.Q(Tl) lK(TK)

Subtracting the first column from the kth column does not change the determinant but gives a new

matrix By which is the same as the original matrix D x except for the term on the first row and
the kth column which equals —1. This matrix is not invertible: using the same interpretation as
polynomials used earlier in this section, we deduce that constant polynomials ie vectors of RX+1
that are collinear to v are in the kernel of this matrix.

The last K rows of B, imply that the derivative of a constant polynomial is 0. The first row also
evaluates to 0 so that v # 0 € ker By.

Thus, Vk, Ay, = det(By) = 0. O.
F PROOF OF THEORETICAL BOUNDS
For convenience, we recall the original loss L; and the surrogate loss L:

a+hT;

L1(©)= Z x(a-+hri)—%e(athT;)||*= Z ||/ x(s)—f(xe(s),®)ds|*>  (14)

K ~a+hTt;
Lz(@)zz II/ x(s)—f(x(s), ©)ds||* + o(h** ) (15)

a
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Given an iterate ®, we denote §=1/h?L,(®) and have the following bound on e(t)=x(t)—%e (t):
Vt € [a,a+ hri), le(t)|| < D(h, K)(t — a)e" "= < D(h, K)he"s" (16)
where D(h, K) = Yo+ 2 4 [ rep

Proof : using the definition of Xg:

Vt € [a,a + h, e(t) :/ é(s)ds :/ x(s) — f(x@,0®)ds (17)

f’s Ly Lipschiztness and the triangle inequality then gives:

(0] < / [5(s) = F0x(). @) + Ly Je(s) | ds 19)
We define Vb € [a,a + Tk h], g x(b) — f(x(b), ®). g is Lipschitz in time: for any b:
a+‘rKh
|| / )—g(b))ds || <Ly (rich)?

Hence, using the triangle inequality:

a+1rh
lg®) 7k < | / 9(5)ds||+ Ly (7ich)?

By definition of Ls: || f:+7Kh g(s)ds|| < Voh2 + Ch2E-1,

Hence, Vb € [a,a + 7xch], [ g(b)|| < D(h, K), where D(h, K) = ¥2+Ch"2 o [, gy

Combining this bound with[I6]and applying Gronwall’s Lemma, we obtain the desired bound on the
error. [

G PSEUDO-CODE OF THE PARTIALLY OBSERVED ALGORITHM

Algorithm 2 Reconstructed Subtrajectory Gradient Descent

Input: data (¢,,,, (tm,))m=1...:m, approximation degree K, subinterval length h, state dimension
n, observed dimension p, gradient update method
Build set of filtered points F' = {(t, z(t;)} from data
initialize ®
repeat
Generate a random set S of subintervals of length h
for sin S U {so} do
compute X, € RP(X+1) by solving p Linear regressions on s, using data from F
compute X, = 7(0®, X,) € R=P)(E+1) by solving the reconstruction problem
end for
for £ = 1to ngseps do
initialize Gradient V/g = 0
initialize Gradient V{3 = 0 forevery s € S
for sin S do o
compute Vgg( X, ©, X;)
accumulate: V/ig += V@g(f(s, 0, Xy)
end for
update O: © < update(step, V{g)
for sin S do o
compute V=V g+ Vg 7(Xs, (Xin)mes)
accumulate: V/ X +=VX
end for ‘
update X: X < update(step, V{3 )
end for
until maxIter is reached
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Table 5: Number of Evaluations for Different Integration Error Tolerances and 7' = 1. Our method
requires at least one order of magnitude fewer evaluations than common methods.

ABS. TOLERANCE

METHOD 1073 106 108
DORMAND PRINCE 100 £ 11 199 £ 28 336 42
RADAU 5 148 £26 678 =119 2104 4 385
BDF 95+ 16 274 £ 62 649 £ 113
LGR, K =5 27 142 333
LGR, K =8 22 72 133
LGR, K =20 10 50 71
LGR, K = 30 6 50 59

H COMPARISON OF THE NUMBER OF BACKPROPAGATIONS WITH ODE
SOLVERS METHODS

We complement the theoretical estimates from Table[T|by a experimental comparison on the Lorenz63
model. While adaptive methods involve varying step numbers during descent, our analysis provides
a static estimation that hints at the significant computational gap between methods. To avoid
interference with measurement times, we only compute the state at t = 7' (M = 1). We present
averaged results for ODE solvers recommended for Neural ODEs in Table[5] Experiments reveal that
our method requires between 10 to 40 times fewer backpropagations on the neural network f than
standard methods for Neural ODEs. For the 40- dimensional Lorenz96, function evaluations decrease
by a factor of 20 when comparing K = 30 to BDF. Looking at Table [5] and Figure [0] a natural
question is the choice of K. Increasing K improves accuracy but also increases data requirements
and computational costs due to the super-quadratic complexity of matrix multiplication (Strassen or
Fawzi et al.|(2022)). A higher K might also capture more noise, putting an emphasis on denoising.
In our experiments, using K = 30 and h = 1 yielded satisfactory results in terms of accuracy and
runtime.

102 —
1074
o
m —
g 1076
©n
£ 108
|-
=]
E 1010 — k=5
k=8 — K=30
10-12 —— K=10 === DoPri 8
— k=13
1.0_14 T T T T
0.0 0.5 1.0 1.5 2.0

Time step length

Figure 9: Integration error (avg.) on Lorenz63 vs. step length for DoPri and various orders.
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