
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ODE PARAMETER IDENTIFICATION:
AN INTEGRAL MATCHING APPROACH

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a novel method to identify parameter of nonlinear Ordinary Differen-
tial Equations (ODEs) using time series data. Our approach fits parameters by
matching a collocation-based estimate of the integral of the learned derivative to an
interpolation of the trajectory, thus avoiding the computational cost of ODE solvers
in adjoint methods and the sensitivity to noise of derivative estimates in gradient
matching methods. By employing batching strategies based on time subintervals
and state components, our method achieves linear complexity in relation to system
dimensions and dataset sizes. The method is highly parallel enabling fast gradient
evaluations and a faster convergence than adjoint methods. For fully observed
systems, we demonstrate the method on canonical dynamical systems, where the
method achieves speed-ups of three orders of magnitude over adjoint methods and
an increased robustness against observational noise. We provide an extension to
partially observed systems and demonstrate the method on the Lorenz63 attractor.

1 INTRODUCTION

Ordinary Differential Equations (ODEs) are widely used to model dynamical systems in fields such
as physics, biology, and engineering, Strogatz (2014); Villaverde and Banga (2014). Estimating
unknown parameters of arbitrary nonlinear ODEs -derived from physical laws, or postulated like SIR
models in epidemiology- from noisy, partially observed time-series data is important.

1.1 PROBLEM STATEMENT

Let x(t) ∈ Rn denote the state of a system of dimension n at time t. We are given M noisy, partial
observations Ox(tm) from a single trajectory, where tm∈[0, T] for all m=1, . . . ,M , and O projects
the state onto the first p ≤ n components. We consider the inverse problem of determining the
optimal parameters Θ∗ and initial condition X∗

0 that minimize the mean squared error between the
observations and x̂(t), the trajectory obtained by integrating the ODEs (1a) defined by a parameterized
function f with these parameter from the initial condition. With Newton’s notation ẋ=dx

dt :

Θ∗,X∗
0 = arg min

Θ,X0

1

M

M∑
m=1

∥Ox̂(tm)−Ox(tm)∥2

s.t. ˙̂x(t) = f(x̂(t),Θ), ∀t, (1a)
x̂(0) = X0. (1b)

Note: This setting includes dynamics that are polynomial in the state and dynamics with nonlineari-
ties on the unknown parameters, encountered in physics, when estimating the parameters of chemical
kinetics, and prior-less settings such as Neural ODEs Chen et al. (2018), where a neural network of
weights Θ acts as a universal approximator. It handles asynchronous measurements and missing data.

1.2 CONTRIBUTIONS

This problem, known as system identification, has received considerable attention in optimal control
and scientific machine learning, see Åström and Eykhoff (1971); Söderström and Stoica (1989); Ljung

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: On the damped oscillator from Chen et al. (2018), our algorithm (blue) fits a neural ODE
with fewer network evaluations and greater accuracy than Backpropagation through time (BPTT)
(red) and Adjoint sensitivity (orange). Our method achieves in 2.5s the best accuracy reached by
the adjoint sensitivity within 15 minutes on CPU. The number of function evaluations is divided by
respectively 95 and 328 compared to BPTT and Adjoint and computation times by factors 50 to 450.

(1999). Parameter estimation in nonlinear ODEs is challenging due to the complexity of dynamics and
the nonconvex optimization landscape of the learning problem, Varah (1982). Data noise, irregular
sampling, asynchronous measurements, and unobserved dimensions further complicate the issue.
Existing approaches to this problem can be broadly categorized into ODE solver-based methods
and surrogate methods. The former integrate ODEs but are computationally expensive, especially
for large dimension systems as detailed later while the latter including gradient matching Varah
(1982); Ramsay et al. (2007); Poyton et al. (2006); Calderhead et al. (2008); Dondelinger et al. (2013)
approximate ODE solutions or their derivatives, trading accuracy for computational efficiency.

In this paper, we introduce and study a novel surrogate approach that matches a numerical integration
of learned derivatives to an interpolation of the trajectory for the fully observed case, and its extension
to partially observed systems. Our main contributions are:

1. Speed and Robustness: On classical benchmarks, for the fully observed case, the proposed
method is more computationally efficient than ODE-solver methods, being up to three orders
of magnitude faster, and more robust to noise on observations as it avoids the noise-sensitive
estimation of temporal derivatives from noisy data. Batching strategies enable parallel
processing of different dimensions of the state and time subintervals and the learning of
systems of high dimension, as demonstrated in the model Lorenz (1996).

2. Theoretical guarantees: For the fully observed case, we show bounds between the optimum
of Problem 1 and the loss optimized by the proposed method.

3. Partially Observed Systems: We extend our method to handle partially observed systems,
demonstrating its ability to estimate initial conditions and ODEs for unobserved dimensions.

Plan: In Section 2, we detail related methods and their tradeoffs. We first present the algorithm, its
derivation and theoretical result in the case of fully observed systems in Section 3 with numerical
experiments in Section 4. We then present an extension to partially observed systems in Section 5.

2 BACKGROUND AND RELATED WORK

To better position the method in Section 3, we first detail existing literature that is relevant to our case
of continuous time data, focusing on ODE Solvers and surrogate methods.

Direct approaches use numerical integration to estimate the gradient of the loss on parameters,
with different trade-offs between memory, accuracy, and complexity. Most accurate, the continuous

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Efficiency comparison: Function Evaluations and memory. Our method is more computation-
ally efficient with a controlled memory overhead. For on a numerical tolerance of ϵ, an explicit Runge-
Kutta method of order K uses N(K,T)=

(
O(ϵ−1/KT)

)
steps; our method Ñ=

(
O(ϵ−1/2K−1T)

)
.

METHOD ADAPT. STIFF #NFE MEMORY ACCURACY
FWD/BWD REF

ADJOINT-RK ✓ 4KN O(n) ↑ | ↓ CHEN ET AL. (2018)
BPTT-RK ✓ ✓ 2KN O(nN) ↑ | ↑ GRUSLYS ET AL. (2016)

ACA-CVODE ✓ ✓ 4KN O(nN) ↑ | ↑ ZHUANG ET AL. (2020)
KIM ET AL. (2021)

LTC ✓ 8N(4, T) O(nN(4, T)) ↑ | ↑ HASANI ET AL. (2020)
THIS PAPER ✓ 2KÑ O(nK) ↑ | ↑

version of the Recurrent Neural Networks (RNNs) method -Backpropagation Through Time (BPTT)-
is obtained by differentiating through an ODE Solver using frameworks such as Pytorch Paszke et al.
(2019) or JAX Bradbury et al. (2018), or through a custom ODE Solver as in Forgione and Piga (2021)
and Hasani et al. (2020) for Liquid Time-Constant (LTC) networks. It however requires memory to
store each step of the forward integration for the backpropagation. Based on the Pontryagin principle
Pontryagin et al. (1962), the adjoint sensitivity method solves this memory issue by estimating
gradients using a backwards integration, storing only the terminal value of the state, see Chen et al.
(2018); Rubanova et al. (2019); Gholami et al. (2019). As discrepancies between the forward and
backward integrations reduce the accuracy of gradients for this last method, adaptive checkpointing
(ACA) in Zhuang et al. (2020) uses checkpoints to enable a backward shooting method for the adjoint
on smaller subtrajectories, and Kim et al. (2021) stores the forward pass while using a backwards
integration of the adjoint. Direct methods are computationally expensive, and sequential being
autoregressive. They are sensitive to initialization: inaccuracies on the initial condition hamper the
accuracy of gradients on parameters and poor parameter initialization or bifurcations can lead to an
unpredictable number of adaptive steps used to control numerical error in the ODE Solver Hairer
et al. (1993). Table 1 compares the memory and computational complexity of direct methods with
the method in this paper, wall-clock times comparisons are included in section 4.

Surrogate methods: To avoid numerical integration, gradient matching, introduced in Varah (1982),
fits parameters Θ to match an estimate of derivative obtained by finite differences, see also Ramsay
et al. (2007); Tjoa and Biegler (1991); Niu et al. (2016). As estimating derivatives is sensitive to noise
on data, Roesch et al. (2021) uses local smoothing techniques to estimate the trajectory and its deriva-
tive. The Sparse Identification of Nonlinear Dynamics (SINDy) framework, introduced in Brunton
et al. (2016) combines gradient matching with sparse regression when f is a linear combination of
nonlinear functions. Weak formulations and integral form using trapezoidal integration for regularly
sampled data are presented in Messenger and Bortz (2021); Schaeffer and McCalla (2017). Weak
forms are more robust to noise on observations, but are not generally tractable for arbitrary dynamics
f . Calderhead et al. (2008); Dondelinger et al. (2013) have explored Bayesian approaches to combine
gradient matching with sampling strategies and Bayesian updates. We show that using collocation
methods that smoothing with particular polynomials leads to guarantees on the numerical integration.

2.1 COLLOCATION METHODS

Collocation methods have become increasingly popular to solve optimal control problems; see
Betts (2010). These methods are implicit integration methods where the value of state and control
(the parameters Θ) at specific discretization nodes are decision variables of a nonlinear program.
Although, as noted in Varah (1982), these methods are the backbone of gradient matching, their direct
use for system identification is original. We selected the Legendre-Gauss-Radau (LGR) approach for
its suitability to initial value problems and its properties: it is A-stable, i.e., with numerical stability
guarantees for classes of initial value problems, symplectic, i.e., preserving the Hamiltonian of the
system, and has an approximation error is o(h2K−1), where K is the degree of the approximating
polynomial and h is the size of the time step, see Fahroo and Ross (2008); Garg et al. (2011b) for
discussions and proofs. While other collocation methods are compatible with our approach, our
choice ensures that the KKT conditions discretize the Pontryagin Principle, which connects our
method to the adjoint sensitivity method, see Wei et al. (2016).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 ALGORITHM FOR FULLY OBSERVED SYSTEMS

We present Integral Matching, in pseudo-code
(Algorithm 1), a method alternating interpolations
of the trajectory and gradient descents on ℓ(Θ,X),
a collocation-based estimation of:

N−1∑
i=1

K∑
j=1

∥
∫ ti+hiτj

ti

ẋ(t)− f(x(t),Θ)dt∥2

where hi=ti+1−ti, (τj) are collocation nodes,
x(t) a polynomial approximation of the state
given by X its values at nodes. Section 3.1 derives
the loss ℓ and Section 3.3 studies the algorithm.

Algorithm 1 Integral Matching

1: Input: data (tm,x(tm))m=1,...,M , order K,
subinterval length h, initialization of Θ

2: Build denoised set F={(tf ,xf (tf)}
3: repeat
4: generate a set S of subintervals [a,a+h]
5: for s in S do
6: compute Xs using F
7: update Θ← update(step,∇ℓ(Θ, Xs))
8: end for
9: until Convergence or maxIter is reached

3.1 THEORETICAL FOUNDATIONS OF THE ALGORITHM

We first describe Problem 2, a multistep collocation of Problem 1, before reformulating and relaxing
it to obtain the loss ℓ minimized by gradient descent, highlighting the connections with surrogate
methods, adjoint methods, and shooting methods. As common for collocation, see Garg et al. (2010),
we approximate the state by continuous piecewise polynomials of degree K on a subdivision of [0,T]:
0=t1< . . .<tN=T . To harmonize polynomial representations and later optimize performance by
precomputing matrices, we rescale time within each subinterval to [0,1] using the affine change of
variable: t=ti+τhi on the ith subinterval. We use the Lagrange basis (lj)j=0,...,K associated to
(τj)j=0,...,K , the LGR nodes of order K, and xij=x(ti+hiτj), the state values at collocation nodes.
Each component of the state is an independent polynomial of time. We represent the state and its
time derivative using two matrix-valued functions V(τ) and D(τ), see appendix D and the vector
Xi=((xij1)

T
j∈[K], . . . , (xijn)

T
j∈[K])

T , obtained by stacking xij by component then index j:

∀t ∈ [ti, ti+1], τ=
t− ti
hi

, x(t)=

K∑
j=0

lj(τ)xij=V(τ)Xi, ẋ(t) =
1

hi

K∑
j=0

l′j(τ)xij =
1

hi
D(τ)Xi.

By substitution in Problem (1), we obtain the classical collocation formulation, Problem (2):

min
Θ,x0

(Xi)i

1

M

N−1∑
i=1

∑
m∈[M]

tm∈[ti,ti+1]

∥V
(
tm − ti

hi

)
Xi − x(tm)∥2

s.t. V(0)X1 = x0 Initial condition, (2a)
V(0)Xi = V(1)Xi−1, i ∈ {2, ..., N − 1}, Continuity between subintervals, (2b)

D(τj)Xi = hif(xij ,Θ). i∈{1,...,N−1},
j∈{1,...,K} . Dynamic at collocation nodes. (2c)

By relaxing constraints (2b), the problem splits into independent subtrajectories with shared parame-
ters Θ: we first focus on subintervals. On any subinterval [a, a+h], we reorder constraints and refor-
mulate Problem (2) as Problem (3), where constraints have a block diagonal invertible structure, repeat-
ing n times a matrix D̃K that only depends on K, see details in appendices D, E. The right-hand side
of the constraints involves a function F that stacks evaluations of f at collocation nodes. The terms as-
sociated to the the kth component of the state are (Xk(K+1), hf(x(τ1),Θ)k, . . . , hf(x(τK),Θ)k))

T .
Upon inverting D̃, we obtain Problem (4), equivalent to Problem (2) on a single subinterval:

min
Θ,
X

1

M

M∑
m=1

∥V(
tm − a

h
)X− x(tm)∥2

s.t. D̃X = F(X,Θ).

(3)
min
Θ,
X

1

M

M∑
m=1

∥V(
tm − a

h
)X− x(tm)∥2

s.t. X = D̃−1F(X,Θ).

(4)

Appendix E shows that the first column of D̃−1
K is all ones, and the first row is all zeros

but the first element. Denoting by D−1
K , the first principal minor of D̃−1

K , and F̃(X,Θ)k =

(f(x(τ1),Θ)k, . . . , f(x(τK)),Θ)k)
T , we recover equation 5, the Gaussian quadrature from the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

LGR collocation see Garg et al. (2011a;b): ∀k ∈ {1, . . . , n},∀j ∈ {1, . . . ,K},

D̃−1
K F(X,Θ)k−Xjk = Xk(K+1)+hD−1

K F̃(X,Θ)k ≈
∫ hτj

0

f(x(t),Θ)k − ẋk(t)dt (5)

We relax the continuity constraint between subintervals, and the constraints of Problem (4) that are
promoted through a quadratic penalty weighted by ρ > 0, as in Augmented Lagrangian relaxations:

min
Θ,

(Xi)i

1

M

N−1∑
i=1

∑
m=1,...,M
tm∈[ti,ti+1]

∥V
(
tm − ti

hi

)
Xi−x(tm)∥2︸ ︷︷ ︸

ri(Xi)n1 Dimensional least square regression
estimating the values at LGR nodes from data

+ρ

N−1∑
i=1

∥D̃−1F(Xi,Θ)−Xi∥2︸ ︷︷ ︸
ℓ(Θ,X) system inversion

(6)

3.2 RESOLUTION METHOD AND QUALITATIVE DISCUSSION

Problem (6) is solved by alternate descent with Algorithm 1. Estimations of the trajectory at LGR
nodes using linear regressions (ril terms / L. 6 of the pseudo-code) alternate with gradient descent on
system inversion problem (ℓ(Θ,X) / L. 7 of the pseudo-code). Solving Problem (3) directly suffers
in practice from the same issues detailed in Roesch et al. (2021): gradients are relevant only when the
integrated trajectory is close to data, although numerical integration remains computationally costly,
as evidenced in Figure 1 by the initial plateau of ODE Solver methods from a random initialization.
Allowing numerical integration error and computing the gradient along the interpolation avoids these
issues. We set ρ=1 as this scales gradients that are rescaled after by Adam, Kingma and Ba (2014).

Denoising, filtering and connection to other methods
Noise on data translates into interpolation error which is
exacerbated by the non-uniform distribution of the LGR
nodes over the interval [0,1] (see Figure (2). To mitigate this,
we employ a denoising Savistzky-Golay filter Savitzky and
Golay (1964), detailed in the Appendix A, although more
advanced approaches can be beneficial (L. 2 of Algorithm
(1)). An alternative is, in later iterations, to retain state values
at LGR nodes as decision variables and alternate descents,
as in the extension to unobserved components in Section 5
and Niu et al. (2016). As collocation methods are implicit
Runge-Kutta methods, this approach reduces to a batched
version of BPTT, with a connection to adjoint methods as
our choice of collocation is symplectic, the upside being
that numerical integrations are updated by gradient descent.

Figure 2: RMSE of the values at collo-
cation nodes: irregular sampling am-
plifies noise (blue), filtering recovers
accuracy. Sampling at ∆t=0.01.

Continuity constraints between subintervals although relaxed can be recovered by using over-
lapping intervals sharing the same data. When successive interpolations coincide on overlapping
intervals, integrals along the interpolation can be computed in parallel across subintervals. Since
ODEs are Markovian, an integrated trajectory that follows the interpolation will match the entire hori-
zon recursively. Numerical error from collocation and discrepancies between interpolations may lead
to the failure modes described in section 6. This is similar to shooting methods and checkpointing.

Speed-ups: While ODE solver methods are sequential, our approach is fully parallel. Furthermore,
when parameters Θ can be partitioned by state components -as in polynomial dynamics— Problem (6)
can be decomposed by component: the algorithm scale linearly with the number of state dimensions
and is hence well suited for high-dimensional systems.

3.3 THEORETICAL GUARANTEES AND ASYMPTOTIC BEHAVIOR

We consider a single interval [a, a+ h], with observations at collocation nodes a+ τih. We denote
by x, the data-based polynomial interpolation. f is assumed Lf -Lipschitz in state, and the Picard-
Lindelöf theorem guarantees the ODE 1a solution’s referred to as x̂Θ, uniqueness for parameters Θ
and initial value x̂Θ(a) = x(a). We denote by L1(Θ), the loss of Problem 1 and byL2(Θ) our loss.
We prove two bounds linking our method to the original problem for noiseless and noisy settings.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.3.1 BOUNDS AT CONVERGENCE AND AT A GIVEN ITERATE FOR NOISELESS OBSERVATIONS

We prove two results, one asymptotic, and the other valid for any iterate Θ of the Algorithm:
Theorem 3.1. On a single subinterval, assuming a) noiseless estimation of the dynamic at collocation
nodes, b) the function f from 1a, Lipschitz wrt to the state.

i) should the descent find the optimum Θ∗ of Problem 6, such that L2(Θ
∗)=0 then

L1(Θ
∗) ≤ K(Ch2K−1)2 +K(LfhCKh2K−1)2 (7)

ii) For any Θ, of value L2(Θ)=δh2, ∃Lg>0, C>0 involved in D(h,K, δ)=
√
δ+Ch2K−2

τK
+LgτKh:

L1(Θ) ≤ K(Ch2K−1)2 + L2(Θ) +K(LfD(h,K, δ)heLfh)2 (8)

Proof. By definition, for noiseless observations, the loss of Problem 1 is L1(Θ), our loss is L2(Θ):

L1(Θ)=

K∑
i=1

∥x(a+hτi)−x̂Θ(a+hτi)∥2=
K∑
i=1

∥
∫ a+hτi

a

ẋ(s)−f(x̂Θ(s),Θ)ds∥2 (9)

L2(Θ)=

K∑
i=1

∥
∫ a+hτi

a

ẋ(s)−f(x(s),Θ)ds∥2 + o(h2K−1) with Truncature error (10)

First, f ’s Lipschitzness, implies the bound 12, constituted of two terms studied afterwards.

∥L1(Θ)− L2(Θ)∥ ≤
K∑
i=1

∥
∫ a+hτi

a

f(x̂Θ(s),Θ)ds− f(x(s),Θ)ds∥2 +K(Cgh
2K−1)2 (11)

≤ K(Cgh
2K−1)2︸ ︷︷ ︸

Collocation error,
controlled by h and K (see Figure 9 and appendix H)

+ K(Lf∥x− x̂Θ∥)2)︸ ︷︷ ︸
Solution-Interpolation distance

(12)

i) L2(Θ
∗)=0 implies that Θ∗ is the collocation (2)’s optimum, and truncature error gives 7.

ii) Introducing e(t)=x(t)−x̂Θ(t), f ’s Lipschitzness and the definition of x̂Θ give:

∀t ∈ [a, a+ hτK], ∥e(t)∥ ≤
∫ t

a

∥ẋ(s)− f(x(s),Θ)∥︸ ︷︷ ︸
≤D(h,K,δ),see Appendix F

+Lf∥e(s)∥ds

Gronwall’s lemma implies, ∀t∈[a, a+hτK], ∥e(t)∥≤D(h,K, δ)(t− a)eLf (t−a)≤D(h,K, δ)heLfh

Which substituted into 10 concludes the proof of 8.

Error grows exponentially with interval length and Lf , which is fatal given chaotic systems can be
learned. Bounds 7 and 8 offer guarantees that are usually missing for gradient matching and show the
relevance of solutions when data allows an accurate interpolation.

3.3.2 BOUNDS IN THE NOISY SETTING

Our approach is affected by the error at collocation nodes, rather than the noise on data. We denote
by x̃ the interpolation with error at collocation nodes. The triangle inequality leads to a bound
similar to 12, with a supplementary quadratic term in the norm of the error:∥L1(Θ)− L2(Θ)∥ ≤
K(Cgh

2K−1)2 +KL2
f (∥x − x̂Θ∥2 + ∥x̃ − x∥2), and additional term to the function D(h,K, δ).

This is however a worst case scenario on a subinterval, and pessimistic as the method tends to average
the error on long horizons through multiple overlapping intervals, see for instance Figure 3.

4 EXPERIMENTS

We benchmark time, accuracy, noise robustness, and model convergence on common canonical
models of the system identification literature. Each experiment simulates dynamics from a random
initial condition, then runs algorithms on observations with Gaussian noise. Results are averaged over
multiple initial conditions and noise seeds. We initialize parameters by 0 for polynomial dynamics
as in this case, the system inversion problem reduces to a linear regression and convergence is not

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: RMSE of ẋ(%) on polynomial dynamics: for T=40, h=1 and K=30 our method outper-
forms SINDy in noisy settings. We included results with a sequential thresholding combination to
highlight the good performance of our method without sparsity. For the Rossler, even for 20% noise,
with sparsity, we recover the true support and error on coefficients is below 1%.

NOISE
MODEL METHOD 0% 5% 10% 20%

LORENZ63 SINDY 0.18 7.5± 5.9 10.77± 0.4 22.95± 3.4
LORENZ63 IMATCH 0.25 1.6± 1.4 4.63± 3.6 8.81± 4.3
LORENZ63 IMATCH THRESH 0.05 1.0± 0.6 2.8± 2.6 6.3± 7.1
ROSSLER SINDY 0.02 4.3± 0.5 12.15± 1.0 26.95± 2.3
ROSSLER IMATCH < 10−2 0.5± 0.1 0.92± 0.2 2.11± 0.5
ROSSLER IMATCH THRESH < 10−2 0.3± 0.1 0.9± 0.2 1.5± 0.9
DUFFING SINDY 0.01 5.6± 0.3 9.79± 0.3 13.27± 1.2
DUFFING IMATCH 0.34 1.1± 0.9 2.0± 1.9 4.2± 4.3

impacted by initialization. Otherwise, we use the same methods as in Neural ODEs examples. We
compare our method with baselines that exploit the structure of f , like SINDy when f is a linear com-
bination of nonlinear terms. The algorithm is implemented using PyTorch and JAX and Julia, tested
on an Intel Xeon Platinum 8260 48-core server. We examine the performance in Section 4.1, higher-
dimensional problems in Section 4.2, failure modes in Section 6, and complexity in Appendix H.

4.1 RAW PERFORMANCE ON THE LEARNING FROM NOISY OBSERVATIONS

We first consider canonical examples of chaotic systems: the Lorenz 63 attractor Lorenz (1963), the
Rossler attractor Rössler (1976), the Duffing model Duffing and Emde (1918). Those systems are of
dimensions up to 4 and are polynomials of degree up to 3.

Learning Polynomial dynamics: for each system, we fit the coefficients of polynomial dynamics
of degree 3 that contain the original equations along with other terms and compare our method
(Integral Matching - IMATCH) to the SINDy method for different levels of noise. Results in Table 2
show our algorithm learns meaningful models and is more robust to noise than SINDy. The lack of
regularization in our method may explain SINDy’s edge in noiseless cases due to the model’s sparsity.

Table 3: Comparison of runtime on the a spiral dynamic in Chen et al. (2018) using a neural network
with one hidden layer and 50 neurons, results averaged over 40 runs. Our algorithm (IMATCH) was
found to compute gradients almost two orders of magnitude faster than the backpropagation through
the solver (BPTT) and three orders of magnitude faster than the adjoint. The default parameters from
the official Neural ODE library were used. The results are given as the 1st and 9th decile intervals.

METHOD RMSE ẋ (%)

GRADIENT
ESTIMATION

TIME (S)
NFES

(106) TOTAL TIME (S)
SPEED-UP PER

GRADIENT

IMATCH 1.61 [1.47, 1.77] 1.8 10−5 3.1 2.08 [1.01, 3.69]
BPTT 1.78 [1.19, 3.37] 5.0 10−2 3.9 100.5 [88.9, 116.3] 2777

ADJOINT 1.83 [1.15, 2.57] 4.5 10−1 28.8 959.8 [909., 993.9] 25000

Table 4: Wall-clock time on CPU (Intel i7) (statistics over 20 runs), a 30x+ speed-up on the learning
the Lorenz63 model with Neural Networks with 5% added noise, details in section 4. The closest
contender BPTT was not able, in an hour to match the performance our method achieved in 3 minutes.

METHOD
RMSE ẋ (%)

3 MIN.
RMSE ẋ (%)

5 MIN.
RMSE ẋ (%)

10 MIN.

IMATCH(OURS) 4.31± 0.5 3.8± 0.4 3.4± 0.4
BPTT 41.51± 3.29 32.20± 2.46 21.83± 2.13

ADJOINT 91.87± 2.93 87.89± 4.37 80.73± 4.79

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Learning Neural ODES We consider the same damped
oscillator as in Chen et al. (2018) and a simple network with
one hidden layer of size 50 (202 parameters) and ReLU
activation, as shown in Table 3. On this task, our method
outperformed ODE Solver-based approaches on wallclock
time by nearly two orders of magnitude. In the detail, we
report the global wall clock time, time to evaluate a gradient
for a batch of 20 observations, and the number of function
evaluations. In Figure 1, we present a comparison on a
training trajectory with the same data and initialization
strategy. The x axis is the number of function evaluations.
While the figure represents one training trajectory, the orders
of magnitude are consistent across multiple experiments. In
total, our method achieves similar accuracy on the test set
with 95 to 320 times fewer network evaluations than ODE
Solver methods. On these instances, gradient estimations
are up to 25,000 times faster than adjoint methods due to
batching and parallelism. We trained a ResNet architecture
with 300 hidden units (90,000 parameters) and two shared
residual blocks with ReLU activations, on the Lorenz63
model and present results in Table 4. On a Tesla T4 GPU,
an RMSE of around 1% was obtained within 20 minutes
with our method, while 3% was achieved on CPU within 15
minutes. See appendix B for more details.

Learning coefficients in nonlinear structures The
FitzHugh–Nagumo model FitzHugh (1961) involves three
parameters in a rational function. Our method achieves error
under 2% in coefficients, matching the Bayesian approach in
Calderhead et al. (2008) while being twice as fast.

4.2 LEARNING CHAOTIC SYSTEMS IN HIGH DIMENSIONS

The Lorenz (1996) models represent chaotic systems with
states on a circle, influenced only by neighboring points.
It is described by sparse polynomial ODEs with a forcing
term F whose value increases the chaoticity of the system:
ẋi=(xi+1−xi−2)xi−1−xi+F, i=1, . . . , n. The 40 dimen-

Figure 3: For the Lorenz96 model
with F = 16, for various levels of
noise and observed length, we plot
(top) The RMSE of the error on the
derivative, (middle) the true positive
rate of the non zero terms identified
in equations, (bottom) the relative
error on parameters

sion model with a forcing term F = 16 exhibits 9 positive eigenvalues for the linearized equation
around the equilibrium, leading a very chaotic behavior in high dimensions, see Sapsis and Majda
(2013). We consider trajectories initially disturbed from equilibrium by 10−16, below common
tolerance used with ODE Solvers. We promoted sparsity using a simple sequential thresholding
heuristic. Results in Figure 3 shows a phase transition which we believe is linked to sparsity and
high dimensionality. The training on polynomial dynamics, including sequential thresholding runs
in less than 30s for a 40 dimensions system, using threading to perform computations in parallel
while considering the 861 monomial of degree up to 2. Appendix C presents a more comprehensive
benchmark with a dynamic with F = 32 with even greater turbulence and chaos.

4.3 CONCLUSION

Benchmarks suggest the method’s potential and noise robustness for nonlinear ODEs, with parameter
nonlinearities under full system observability. We demonstrate its extension to partially observed
systems and provide an experiment on the Lorenz attractor in 5.1.

5 EXTENSION TO PARTIAL OBSERVATIONS

For practical applications of partially observed systems, only ODE solver methods are available, as
gradient matching cannot estimate initial conditions and derivatives. A key challenge of ODE solver
methods is the joint learning of the initial condition and the dynamics for latent dimensions, which is

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

addressed in Ayed et al. (2019); Lu et al. (2022) through the use of two different neural networks
trained jointly via gradient descent. These networks use delayed observations as inputs, justified by
Taken’s theorem Takens (1981), which proves unobserved dimensions exist within the manifold of
delayed observations in chaotic systems. Our method shows that in the case of the Lorenz63 attractor,
the initial condition can estimated from past observations without regular sampling.

The algorithm (pseudo-code Algorithm 2 in Appendix G solves the same problem 6, with the same
loss but alternates between two steps: an evaluation of the trajectory at collocation nodes using a
reconstruction method for unobserved components and a gradient descent to identify parameters of
the system. By using the same loss function, the extended variant retains the theoretical properties
and insights presented in Section 3, including the batching strategies, by subinterval and component.
Compared to a full collocation approach, equivalent to applying BPTT to the implicit Runge-Kutta
method from the collocation, we use interpolation to reduce the problem’s size.

We rewrite the problem 6 on the subinterval i and the component of the state k, by splitting the state
variables into two classes: observed and unobserved components, splitting variables of the objective
function and of the function F accordingly. At collocation nodes, observed components are estimated
using data and regression X̂i. Unobserved components are denoted by the decision variables X̃i. The
objective function splits into terms associated to observed components oik(X̂i, X̃i,Θ) for k ≤ p,
and terms relative to unobserved components uik(X̂i, X̃i,Θ) for k > p. The relaxed problem is:

min
Θ,

(Xi)
N−1
i=1

N−1∑
i=1

{
p∑

k=1

∥DK
−1F(X̂i, X̃i,Θ)k − X̂ik∥2︸ ︷︷ ︸

oik(X̂i,X̃i,Θ)

+

n∑
k=p+1

∥DK
−1F(X̂i, X̃i,Θ)k − X̃ik∥2︸ ︷︷ ︸

uik(X̂i,X̃i,Θ)

}

We utilized JAX to compute gradients, combin-
ing observed and decision state variables. Future
reconstructions start by reusing past interval val-
ues from a subinterval pool. A version with the
nonlinear solver Ipopt was implemented to incor-
porate equation constraints or penalties, such as
energy conservation, into learning. In some cases,
additional quadratic penalties help maintain conti-
nuity of unobserved components, though it wasn’t
needed for the chaotic system used afterward.

5.1 NUMERICAL EXPERIMENTS

In this part, we experimented on polynomial dy-

Figure 4: On the left, a scatter plot of the recon-
structed component vs the ground truth. On the
right, a scatter plot between the ground truth and
the reconstructed model, once an affine change
of variable has been found

namics of degree 2 for terms containing the observed component and 2 in the unobserved components.
We consider the Lorenz oscillator for which we only observe the first two components. We appro-
ximate the dynamic on subintervals of length 1 by
polynoms of degree K = 30 and are given obser-
vations over [0, 20] sampled every ∆t = 0.01.
When integrated over [0, 20], the learnt model
leads to a integration error over the three di-
mensions below 1%. The comparison of the
reconstructed trajectory with the unobserved
ground truth requires care as affine changes of
variable leads to ODEs representing the same
system. Figure 4 illustrates this phenomenon as
the left plot represents the phase plot between
the ground truth and the reconstructed trajectory,
while the right plot shows the phase upon transfor-
mation with a suitable change of variable found by
a linear regression of R2 = 0.99995. Our method
not only captured the attractor, it provided an
accurate estimation of the unobserved component.

Figure 5: Top: Reconstructed trajectory (black)
vs ground truth (red), Observation time (grey),
(Bottom), relative error of the reconstruction: the
learnt model captures the relevant dynamic with
an average out of sample accuracy below 0.1%

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Applying the affine change of variable, we are able to simulate the learnt system beyond the training
horizon as in the figure 5. The grey area is the training horizon. The curve in red is the ground truth
and in dotted black, the reconstructed and simulated unobserved component.

As curves are undistinguishable, the second plot below shows the relative error on the reconstructed
trajectory, below 0.1% on average. Using sparse regression upon the change of variable, we recovered
equations with less than 0.5% error on the coefficients of the equations, remarkably, similar to the
fully observed case.

6 LIMITATIONS AND FURTHER WORK

As mentioned in section (3.2), the accuracy of the interpolation is key for the performance of
the method as it impacts two parts of the loss. The 1D, 1 subinterval system inversion term
∥D−1F(X,Θ)− (X−X0)∥2 is impacted in two ways by the interpolation error:

• In the numerical integration term along the trajectory via the D−1F (X,Θ) terms, the non
linearity F can create a bias: the distribution of the error on F (X+ ϵ,Θ) is not centered
around F (X,Θ), even if the approximation error ϵ is.

• In the difference (Xi −X0), systematic bias is neutralized by the difference. As X0 is
involved every integral of the subinterval, the variance on the initial condition is a key
component for global accuracy and has motivated the Savitsky-Golay filter in Appendix (A).
The use of multiple overlapping and random subintervals is a way to balance this variance
on multiple points and subintervals, mitigating this single point of failure issue.

The impact of systematic bias, in the absence of filtering based on current equations, with the caveats
on local optima mentioned in section (3.2), can often be mitigated by denoising with more data, and
longer horizons. If not, our method can be used to initialize parameters prior to adjoint methods.

Another failure mode is about generalizability in the absence of prior structure on equations: in
particular for Neural ODEs the trajectory may leave the manifold of the training data, and, in
the absence of prior or additional penalty, the integrated trajectory becomes completely irrelevant.
Oscillators such as the damped one in Chen et al. (2018) or Lokta-Volterra models Lotka (1926), as
well as attractors have the characteristic that the system is trapped in a bounded manifold possibly
and will visit regions multiple times over long horizons. In the case of the damped oscillator, as long
as the trajectory remains in the envelope of interpolated trajectories, as solutions of ODEs do not
intersect, the trajectory will generalize as it will cross a trained region.

The algorithm in this paper is based on fixed length subintervals and orders, but this is not a hard
limitation. The integration order K needs not be fixed (aside from easing implementation and
providing a rigid computation graph), we can in principle use variable-length subintervals. Similarly
as for SINDy methods, our method can be used to learn Partial Differential Equations using the
method of lines to convert PDEs into a system of coupled ODEs.

7 CONCLUSION

We have studied the utilization of a particular collocation method for system identification of nonlinear
dynamical systems, leveraging data to simplify the typically computationally intensive computations.
Our efficient method requires fewer backpropagations to evaluate gradients at each step of the descent
and introduces batching strategies, such as by subintervals and state components, to enable high
parallelism and scalability linearly with dataset size, horizon length T , and system dimensions,
contrasting with autoregressive ODE Solver methods.

Note: If accepted, we intend to release codes of our method (Pytorch and JAX).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Karl Johan Åström and Pieter Eykhoff. System identification—a survey. Automatica, 7(2):123–162,
1971.

Ibrahim Ayed, Emmanuel de Bézenac, Arthur Pajot, Julien Brajard, and Patrick Gallinari. Learning
dynamical systems from partial observations. 2019.

John T. Betts. Practical Methods for Optimal Control and Estimation Using Nonlinear Programming,
Second Edition. Society for Industrial and Applied Mathematics, second edition, 2010.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang.
JAX: composable transformations of Python+NumPy programs, 2018.

Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy of
Sciences, 113(15):3932–3937, 2016.

Ben Calderhead, Mark Girolami, and Neil Lawrence. Accelerating bayesian inference over nonlinear
differential equations with gaussian processes. In Advances in Neural Information Processing
Systems, volume 21. Curran Associates, Inc., 2008.

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differential
equations. CoRR, abs/1806.07366, 2018.

Frank Dondelinger, Dirk Husmeier, Simon Rogers, and Maurizio Filippone. Ode parameter inference
using adaptive gradient matching with gaussian processes. In Artificial intelligence and statistics,
pages 216–228. PMLR, 2013.

Georg Duffing and Fritz Emde. Erzwungene schwingungen bei veränderlicher eigenfrequenz und
ihre technische bedeutung. F. Vieweg u. Sohn, 1918.

Fariba Fahroo and I Ross. Advances in pseudospectral methods for optimal control. AIAA Guidance,
Navigation and Control Conference and Exhibit, 08 2008.

Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Moham-
madamin Barekatain, Alexander Novikov, Francisco J. R. Ruiz, Julian Schrittwieser, Grzegorz
Swirszcz, David Silver, Demis Hassabis, and Pushmeet Kohli. Discovering faster matrix mul-
tiplication algorithms with reinforcement learning. Nature, 610(7930):47–53, Oct 2022. ISSN
1476-4687.

Richard FitzHugh. Impulses and physiological states in theoretical models of nerve membrane.
Biophysical Journal, 1(6):445–466, 1961. ISSN 0006-3495.

Marco Forgione and Dario Piga. Continuous-time system identification with neural networks: Model
structures and fitting criteria. European Journal of Control, 59:69–81, 2021.

Divya Garg, Michael Patterson, William W. Hager, Anil V. Rao, David A. Benson, and Geoffrey T.
Huntington. A unified framework for the numerical solution of optimal control problems using
pseudospectral methods. Automatica, 46(11):1843–1851, 2010. ISSN 0005-1098.

Divya Garg, William W. Hager, and Anil V. Rao. Pseudospectral methods for solving infinite-horizon
optimal control problems. Autom., 47:829–837, 2011a.

Divya Garg, Michael A. Patterson, Camila Francolin, Christopher L. Darby, Geoffrey T. Huntington,
William W. Hager, and Anil V. Rao. Direct trajectory optimization and costate estimation of finite-
horizon and infinite-horizon optimal control problems using a radau pseudospectral method.
Computational Optimization and Applications, 49(2):335–358, 2011b. ISSN 1573-2894.

Amir Gholami, Kurt Keutzer, and George Biros. Anode: Unconditionally accurate memory-efficient
gradients for neural odes. In IJCAI, 2019.

Sam Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Audrūnas Gruslys, Remi Munos, Ivo Danihelka, Marc Lanctot, and Alex Graves. Memory-efficient
backpropagation through time, 2016.

Ernst Hairer, Syvert Norsett, and Gerhard Wanner. Solving Ordinary Differential Equations I: Nonstiff
Problems, volume 8. 01 1993. ISBN 978-3-540-56670-0.

Ramin M. Hasani, Mathias Lechner, Alexander Amini, Daniela Rus, and Radu Grosu. Liquid
time-constant networks. CoRR, abs/2006.04439, 2020.

Suyong Kim, Weiqi Ji, Sili Deng, Yingbo Ma, and Christopher Rackauckas. Stiff neural ordinary
differential equations. Chaos: An Interdisciplinary Journal of Nonlinear Science, 31(9):093122,
sep 2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

L. Ljung. System Identification: Theory for the User. Prentice Hall information and system sciences
series. Prentice Hall PTR, 1999. ISBN 9780136566953.

Edward N. Lorenz. Deterministic nonperiodic flow. Journal of Atmospheric Sciences, 20(2):130 –
141, 1963.

Edward N Lorenz. Predictability: A problem partly solved. In Proc. Seminar on predictability,
volume 1. Reading, 1996.

Alfred J. Lotka. Elements of physical biology. Science Progress in the Twentieth Century (1919-1933),
21(82):341–343, 1926. ISSN 20594941.

Peter Y. Lu, Joan Ariño Bernad, and Marin Soljačić. Discovering sparse interpretable dynamics from
partial observations. Communications Physics, 5(1):206, Aug 2022. ISSN 2399-3650.

Daniel A. Messenger and David M. Bortz. Weak sindy: Galerkin-based data-driven model selectionf.
Multiscale Modeling & Simulation, 19(3):1474–1497, 2021.

Mu Niu, Simon Rogers, Maurizio Filippone, and Dirk Husmeier. Fast parameter inference in
nonlinear dynamical systems using iterative gradient matching. In Maria Florina Balcan and
Kilian Q. Weinberger, editors, Proceedings of The 33rd International Conference on Machine
Learning, volume 48 of Proceedings of Machine Learning Research, pages 1699–1707, New York,
New York, USA, 20–22 Jun 2016. PMLR.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning
library, 2019.

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko. The Mathematical
Theory of Optimal Processes. Interscience Publishers, New York, 1962. Translated from the
Russian by K. N. Trirogoff; edited by L. W. Neustadt.

Alan A Poyton, Mehran S Varziri, Kim B McAuley, P James McLellan, and James O Ramsay.
Parameter estimation in continuous-time dynamic models using principal differential analysis.
Computers & chemical engineering, 30(4):698–708, 2006.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learning (part i):
Data-driven solutions of nonlinear partial differential equations. 2017a.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learning (part
ii): Data-driven discovery of nonlinear partial differential equations. 2017b.

Jim O Ramsay, Giles Hooker, David Campbell, and Jiguo Cao. Parameter estimation for differential
equations: a generalized smoothing approach. Journal of the Royal Statistical Society Series B:
Statistical Methodology, 69(5):741–796, 2007.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Elisabeth Roesch, Christopher Rackauckas, and Michael P. H. Stumpf. Collocation based training of
neural ordinary differential equations. Statistical Applications in Genetics and Molecular Biology,
20(2):37–49, 2021.

Yulia Rubanova, Ricky T. Q. Chen, and David K Duvenaud. Latent ordinary differential equations
for irregularly-sampled time series. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

O.E. Rössler. An equation for continuous chaos. Physics Letters A, 57(5):397–398, 1976. ISSN
0375-9601.

Themistoklis P. Sapsis and Andrew J. Majda. A statistically accurate modified quasilinear gaussian
closure for uncertainty quantification in turbulent dynamical systems. Physica D: Nonlinear
Phenomena, 252:34–45, 2013. ISSN 0167-2789.

Abraham. Savitzky and M. J. E. Golay. Smoothing and differentiation of data by simplified least
squares procedures. Analytical Chemistry, 36(8):1627–1639, Jul 1964. ISSN 0003-2700.

Hayden Schaeffer and Scott G McCalla. Sparse model selection via integral terms. Physical review.
E, 96(2-1):023302, August 2017. ISSN 2470-0045.

Torsten Söderström and Petre Stoica. System identification. Prentice hall, 1989.

Steven H. Strogatz. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry,
and Engineering. Westview Press, 2nd edition, 2014. ISBN 978-0813349107.

Floris Takens. Detecting strange attractors in turbulence. Dynamical Systems and Turbulence,
Warwick 1980, 898:366–381, 1981.

Iauw Bhieng Tjoa and Lorenz T. Biegler. Simultaneous solution and optimization strategies for pa-
rameter estimation of differential-algebraic equation systems. Industrial & Engineering Chemistry
Research, 30(2):376–385, Feb 1991. ISSN 0888-5885.

J. M. Varah. A spline least squares method for numerical parameter estimation in differential
equations. SIAM Journal on Scientific and Statistical Computing, 3(1):28–46, 1982.

Alejandro F Villaverde and Julio R Banga. Reverse engineering and identification in systems biology:
strategies, perspectives and challenges. Journal of the Royal Society Interface, 11(91):20130505,
2014.

Jianli Wei, Xiaojun Tang, and Jie Yan. Costate estimation for a multiple-interval pseudospectral
method using collocation at the flipped legendre-gauss-radau points. IEEE/CAA Journal of
Automatica Sinica, pages 1–15, 2016.

Juntang Zhuang, Nicha Dvornek, Xiaoxiao Li, Sekhar Tatikonda, Xenophon Papademetris, and James
Duncan. Adaptive checkpoint adjoint method for gradient estimation in neural ode, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

SUPPLEMENTARY MATERIALS

A DENOISING

As the LGR points are not uniformly distributed on the interval, being denser around boundaries,
without denoising, the estimation error is significantly higher and has a higher variance than the noise
level. However, in the center of the interval, noise is significantly lower than the noise level, dividing
it by at least half, to more than a factor 4 with more data on experiments. Leveraging this observation„
we choose a window length and degree K, perform a linear regression to obtain denoised values at the
window’s center, and use a sliding window to estimate a denoised set of points along the trajectory.
This larger set is used for the linear regression to estimate values at LGR point during the descent.

The experimental results, in Figure 2, consistently show that, without filtering, the RMSE of the
estimation error at the LGR nodes is higher than the error in the observations. However, filtering
significantly reduces the noise in the estimates, by approximately half to one-third compared to the
original observations. This section illustrates the importance of denoising, rather than the study and
analysis of this particular choice of method.

Figure 6: Observations corrupted by 40% noise. Without filtering, Estimates (blue) are irrelevant at
boundaries due to uneven distribution of abscissae in the LGR nodes (red dots).

B TRAINING NEURAL ODES USING INTEGRAL MATCHING

Contrary to library approaches such as in Brunton et al. (2016), Neural Networks bring less prior
structure to the latent dynamic. As such, the true complexity of the manifold to learn and its translation
as a data requirement especially the required length of observation to visit in different areas of the
manifold is of utmost importance. Such characteristics are obviously problem specific, but there
are connections with many areas studied in the physical context of finding either architectures that
preserve physical quantities Raissi et al. (2017a;b) or promoting this through terms in the objective
function. Promoting structure and respect of invariants brings structure to the parameters and reduces
the complexity of the learning. All in all, our approach is perfectly compatible with such techniques,
promoting invariants, and the loss function promotes the conservation of the Hamiltonian, though not
enforcing it using projections as in Greydanus et al. (2019).

Similarly as for polynomial dynamics in section C, ie problems with more prior structure, a phase
transition is observed and is linked to the architecture of the Network. Given a network with enough
representative power to capture the dynamic, the phase transition is observed with regards to the
availability of available data. There are several regimes, aside from terminal convergence to a relevant
model that is observed in the following section where the algorithm is used to recover parameters of
a dynamic within a class that contains the ground truth dynamic. We observed namely insufficient
representative power and insufficient data to train the given architecture.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 7: Phase transition: our algorithm converges to the ground truth model when given enough
signal, consistently across different noise regimes. Columns: For increasing values of the forcing
term F , corresponding to increasing chaoticity and difficulty, longer trajectories are required to
recover the true dynamic. The first row indicates th RMSE of the time derivative, the second row, the
true positive rate of nonzero terms recovered, the last row indicates the error on coefficients. The
phase transition happens on the three metric, highlighting that past an amount of signal, our algorithm
learnt the ground truth model. For F = 8, there is a phase transition, around T = 80 in the noiseless
regime (blue) where the model is perfectly recovered. The greater the amount of noise, the later
the phase transition. Interestingly, we observe that asymptotically on T , our model converges to a
relevant solution for various noise levels, ie the red curve with the noise of 20% converge to an error
that keeps on decreasing with additional data. This is clearer in the second and third columns where
the problem is more complex and the learning longer. After a phase transition, happening around
T = 100, even T = 130 for 20% noise, the performance keeps on improving. On F = 32, another
surprising phenomenon appeared: on chaotic systems, mild levels of noise appear to be beneficial to
help convergence. This is possibly linked to the sparisifying heuristic being suboptimal.

C FOCUS OF THE LORENZ 96

Contrary to the experiments in the core paper that contained no method to promote sparsity, aside
from the implicit regularization of gradient descent and a small ℓ1 penalty that helped convergence,
we used in these section a simple sequential thresholding heuristic: the problem was solved, then
small values projected to 0, then retrained on the subset of nonzero values, then thresholded again.
Results are presented by Figure 7 for forcing terms F = 8, F = 16 and F = 32. We also provide a
specific focus on F = 8 in Figure 8.

Better methods have been developed to recover sparse equations than the simple sequential heuristic,
in a a sparse regression setting close to ours, but the fact that such a simple methods works well
illustrates the interest of the loss and overall procedure. It should be noted, lastly, that such a
computationally cheap sparsifying method is scalable to large dimensions. However, on large
dimensions, for instance, N = 200, the number of monomials grows to more than 20,000 terms for a
polynomial of degree 2, so that the method of postulating a library is doomed in higher dimensions.
In such dimensions, the regression step to estimate the value at LGR nodes and the denoising process
are no longer cheap, though easily treated in parallel.

However, using our method can provide an interesting option as the sequential thresholding can be
used to filter and select a lower dimension set of features, so that the method speeds up as it converges
to a sparser model. This points towards future work at the intersection of interpretability and sparsity
on Neural ODEs.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 8: On the problem with F = 8, we present a more global view of the first column. The oscil-
lations observed for the various metrics are likely explained by the suboptimality of the sparsifying
heuristic and thresholding effects.

D REFORMULATION OF THE SINGLE SUBINTERVAL PROBLEM

The state polynomial interpolation and its time are written using matrix valued functions V and D
on the subintervals rescaled to [0, 1] and the vector obtained by stacking the values of the state at
collocation nodes. Namely:

∀t ∈ [ti, ti+1], τ=
t− ti
hi

, x(t)=

K∑
j=0

lj(τ)xij=V(τ)Xi, ẋ(t) =
1

hi

K∑
j=0

l′j(τ)xij =
1

hi
D(τ)Xi.

The formalism relies on the fact that each component of the state is a polynomial in time that is
determined by the values of the state at collocation nodes only for the very same component. The
problem is a 1D polynomial of time for each dimension and the Lagrange basis is the same for
each dimension. Given the structure of Xi, the functions V and D have a block diagonal structure
(by component of the state), repeating n times a matrix that is simply the decomposition of the
polynomial within a Lagrange basis.

• V(τ) repeats n times Vd whose general term is Vd(i,j)(τ) = lj(τ),

• for D(τ) repeats n times Dd whose the general term Dd(i,j)(τ) = l′j(τ)

Using these notations, the single subinterval problem has the following form:

min
Θ,X

1

M

∑
m∈[M]

∥V
(
tm − a

h

)
X− x(tm)∥2

s.t. x0 = x0, (13a)
D(τj)x = hf(xj ,Θ) j ∈ 1...K. (13b)

We reorder the constraints by components of the state first then time. By design of the collocation
method, each dimension is interpolated separately. As such, grouping terms of each dimension
separately, constraints naturally separate by dimension: introducing a (K + 1) × (K + 1) matrix
DK , the constraints on the kth component of the state are:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

1 0 ... 0

l̇0(τ1) l̇1(τ1) ... l̇K(τ1)
...

...
. . .

...
l̇0(τK) l̇1(τK) ... l̇K(τK)

︸ ︷︷ ︸

DK

.

Xk(K+1)

Xk(K+1)+1

...
Xk(K+1)

︸ ︷︷ ︸

X[kK:k(K+1)]

=

Xk(K+1)

hf(x1,Θ)k
...

hf(xK ,Θ)k

︸ ︷︷ ︸

F (X,Θ)k

Where X[k(K+1) : (k+1)(K+1)] is the projection of X on the span of {ek(K+1), . . . e(k+1)(K+1)}.
As the collocation is of the same order for each dimension, the matrix DK which only depends on
the collocation order is the same for each dimension, so that, stacking back every component, the
matrix of constraints is block diagonal:

DK

DK

. . .
DK

︸ ︷︷ ︸

D̃

. X =

F (X,Θ)1
F (X,Θ)2

...
F (X,Θ)n

︸ ︷︷ ︸

F (X,Θ)

One final observation (proof in the following section) is that the structure of the first row of DK and
the collocation structure imply that the first column of the inverse of DK is only composed of 1s.
Namely, we have:

D−1
K =

 1 0 ... 0
... D̂
1

This enables to compute the loss by multiplying by a K ×K submatrix of D−1

K rather than by a
(K + 1) × (K + 1) matrix. For K = 30, this simple observations enables to reduce the number
of operations to evaluate the product by 9% using Strassen (O(K2.8)). In the end, compared
to a naive implementation that would consider a product with matrix of constraint of dimension
n(K +1)× n(K +1), we have transformed the problem into n products with matrices of dimension
K ×K. As the matrix is fixed, it seems from experiments that the compilation performed in JAX is
able to the product for further speedups.

E PROOF OF THE INVERTIBILITY OF DIFFERENTIATION MATRICES

Any element of the kernel of DK can be interpreted a polynomial P of degree K represented in
the LGR Lagrange basis. The last K rows of DK imply that P is constant: the derivative of P is a
polynomial of degree K − 1 null at K distinct points, hence null everywhere. The first row of the
matrix DK implies that this constant is null, ie P = 0. Subsequently, D is also invertible from its
block diagonal structure of matrices DK . □.

The first column v of matrix D−1
K is a vector of ones: v = 1. The first component is trivial.

For the other ones, we use the adjoint matrix, algebraic manipulations and the interpretation as a

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

differentiation matrix. Namely, have that

det(DK) = det

1 0 ... 0

l̇0(τ1) l̇1(τ1) ... l̇K(τ1)
...

...
. . .

...
l̇0(τK) l̇1(τK) ... l̇K(τK)

for any k ̸= 0

det(DK) = det

 l̇1(τ1) ... l̇k(τ1) ... l̇K(τ1)
...

...
...

...
...

l̇1(τK) ... l̇k(τK) ... l̇K(τK)

Using the adjoint matrix formula for the inverse of DK), to prove that v = 1, we need to show that
the first row of the adjoint matrix, ie the cofactors are each equal to the the determinant of det(DK).
Namely, we need to show that, for any k ̸= 0,det(Ak) = det(DK) where:

det(Ak) = (−1)k det

 l̇0(τ1) ... l̇k−1(τ1) l̇k+1(τ1) ... l̇K(τ1)
...

...
...

...
...

...
l̇0(τK) ... l̇k−1(τK) l̇k+1(τK) ... l̇K(τK)

We form the difference ∆k = det(DK) − det(Ak) and expand the determinant of DK along the
kth column, expand the determinant of Ak along the first column. The expansion exhibits the same
minors obtained by removing the 0th and kth columns. We denote µik the determinant of the minor
obtained by removing the first and ith row of DK and the first column and kth column of DK :

∆k = det(DK)− det(Ak) =

K∑
i=1

(−1)i+k l̇k(τi)µik −
K∑
i=1

(−1)k(−1)i+1 l̇0(τi)µik

=

K∑
i=1

(−1)i+k(l̇k(τi) + l̇0(τi))µik

That is the difference is the determinant of a matrix Bk

∆k = det(Bk) = det

1 0 ... 0 ... 0

l̇0(τ1) l̇1(τ1) ... l̇k(τ1) + l̇0(τ1) ... l̇K(τ1)
...

...
...

l̇0(τK) l̇1(τK) ... l̇k(τ1) + l̇0(τ1) ... l̇K(τK)

Subtracting the first column from the kth column does not change the determinant but gives a new
matrix B̃k which is the same as the original matrix DK except for the term on the first row and
the kth column which equals −1. This matrix is not invertible: using the same interpretation as
polynomials used earlier in this section, we deduce that constant polynomials ie vectors of RK+1

that are collinear to v are in the kernel of this matrix.

The last K rows of B̃kv imply that the derivative of a constant polynomial is 0. The first row also
evaluates to 0 so that v ̸= 0 ∈ ker B̃k.

Thus, ∀k,∆k = det(Bk) = 0. □.

F PROOF OF THEORETICAL BOUNDS

For convenience, we recall the original loss L1 and the surrogate loss L2:

L1(Θ)=

K∑
i=1

∥x(a+hτi)−x̂Θ(a+hτi)∥2=
K∑
i=1

∥
∫ a+hτi

a

ẋ(s)−f(x̂Θ(s),Θ)ds∥2 (14)

L2(Θ)=

K∑
i=1

∥
∫ a+hτi

a

ẋ(s)−f(x(s),Θ)ds∥2 + o(h2K−1) (15)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Given an iterate Θ, we denote δ=1/h2L2(Θ) and have the following bound on e(t)=x(t)−x̂Θ(t):

∀t ∈ [a, a+ hτK], ∥e(t)∥ ≤ D(h,K)(t− a)eLf (t−a) ≤ D(h,K)heLfh (16)

where D(h,K) =
√
δ+Ch2K−2

τK
+ LgτKh

Proof : using the definition of x̂Θ:

∀t ∈ [a, a+ h], e(t) =

∫ t

a

ė(s)ds =

∫ t

a

ẋ(s)− f(x̂Θ,Θ)ds (17)

f ’s Lf Lipschiztness and the triangle inequality then gives:

∥e(t)∥ ≤
∫ t

a

∥ẋ(s)− f(x(s),Θ)∥+ Lf∥e(s)∥ds (18)

We define ∀b ∈ [a, a+ τKh], g(b) = ẋ(b)− f(x(b),Θ). g is Lipschitz in time: for any b:

∥
∫ a+τKh

a

(g(s)−g(b))ds∥≤Lg(τKh)2

Hence, using the triangle inequality:

∥g(b)∥τKh ≤ ∥
∫ a+τKh

a

g(s)ds∥+Lg(τKh)2

By definition of L2: ∥
∫ a+τKh

a
g(s)ds∥ ≤

√
δh2 + Ch2K−1.

Hence, ∀b ∈ [a, a+ τKh], ∥g(b)∥ ≤ D(h,K), where D(h,K) =
√
δ+Ch2K−2

τK
+ LgτKh

Combining this bound with 16 and applying Grönwall’s Lemma, we obtain the desired bound on the
error. □

G PSEUDO-CODE OF THE PARTIALLY OBSERVED ALGORITHM

Algorithm 2 Reconstructed Subtrajectory Gradient Descent

Input: data (tm, x(tm))m=1...M , approximation degree K, subinterval length h, state dimension
n, observed dimension p, gradient update method
Build set of filtered points F = {(tf , xf (tf)} from data
initialize Θ
repeat

Generate a random set S of subintervals of length h
for s in S ∪ {s0} do

compute Xs ∈ Rp(K+1) by solving p Linear regressions on s, using data from F

compute X̂s = γ(Θ, Xs) ∈ R(n−p)(K+1) by solving the reconstruction problem
end for
for k = 1 to nsteps do

initialize Gradient∇ℓΘ = 0
initialize Gradient∇ℓX̂s

= 0 for every s ∈ S
for s in S do

compute∇Θg(X̂s,Θ, Xs)

accumulate: ∇ℓΘ += ∇Θg(X̂s,Θ, Xs)
end for
update Θ: Θ← update(step, ∇ℓΘ)
for s in S do

compute∇ = ∇X̂s
g +∇X̂s

r(X̂s, (X̂m)m∈S)
accumulate: ∇ℓX̂s

+= ∇X
end for
update X̂s: X̂s ← update(step, ∇ℓX̂s

)
end for

until maxIter is reached

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 5: Number of Evaluations for Different Integration Error Tolerances and T = 1. Our method
requires at least one order of magnitude fewer evaluations than common methods.

ABS. TOLERANCE
METHOD 10−3 10−6 10−8

DORMAND PRINCE 100± 11 199± 28 336± 42
RADAU 5 148± 26 678± 119 2104± 385
BDF 95± 16 274± 62 649± 113
LGR, K = 5 27 142 333
LGR, K = 8 22 72 133
LGR, K = 20 10 50 71
LGR, K = 30 6 50 59

H COMPARISON OF THE NUMBER OF BACKPROPAGATIONS WITH ODE
SOLVERS METHODS

We complement the theoretical estimates from Table 1 by a experimental comparison on the Lorenz63
model. While adaptive methods involve varying step numbers during descent, our analysis provides
a static estimation that hints at the significant computational gap between methods. To avoid
interference with measurement times, we only compute the state at t = T (M = 1). We present
averaged results for ODE solvers recommended for Neural ODEs in Table 5. Experiments reveal that
our method requires between 10 to 40 times fewer backpropagations on the neural network f than
standard methods for Neural ODEs. For the 40- dimensional Lorenz96, function evaluations decrease
by a factor of 20 when comparing K = 30 to BDF. Looking at Table 5 and Figure 9, a natural
question is the choice of K. Increasing K improves accuracy but also increases data requirements
and computational costs due to the super-quadratic complexity of matrix multiplication (Strassen or
Fawzi et al. (2022)). A higher K might also capture more noise, putting an emphasis on denoising.
In our experiments, using K = 30 and h = 1 yielded satisfactory results in terms of accuracy and
runtime.

Figure 9: Integration error (avg.) on Lorenz63 vs. step length for DoPri and various orders.

20

	Introduction
	Problem statement
	Contributions

	Background and related work
	Collocation methods

	Algorithm for Fully Observed Systems
	Theoretical foundations of the algorithm
	Resolution method and qualitative discussion
	Theoretical guarantees and asymptotic behavior
	Bounds at convergence and at a given iterate for noiseless observations
	Bounds in the noisy setting

	Experiments
	Raw performance on the learning from noisy observations
	Learning chaotic systems in high dimensions
	Conclusion

	Extension to partial observations
	Numerical experiments

	Limitations and further work
	Conclusion
	Denoising
	Training Neural ODEs using Integral Matching
	Focus of the Lorenz 96
	Reformulation of the single subinterval problem
	Proof of the invertibility of differentiation matrices
	Proof of theoretical bounds
	Pseudo-code of the partially observed algorithm
	Comparison of the number of backpropagations with ODE solvers methods

