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ABSTRACT

Brown et al. (2020) famously introduced the phenomenon of in-context meta-
learning in large language models (LLMs). Our work establishes the existence
of a phenomenon we call out-of-context meta-learning via carefully designed
synthetic experiments with large language models. We argue that out-of-context
meta-learning is an important and surprising capability of LLMs, which may lead
them to more readily “internalize” the semantic content of text that is, or appears to
be, broadly useful (such as true statements, or text from authoritative sources) and
apply it in appropriate contexts. We also raise the question of how this phenomenon
emerges, and discuss two possible explanations: one relying on the way LLMs store
knowledge in their parameters, and another suggesting that the implicit gradient
alignment bias of gradient-descent-based methods may be responsible. Finally, we
reflect on what our results might imply about capabilities of future AI systems, and
discuss potential risks.

1 INTRODUCTION

In this paper we show that large language models trained with gradient-descent-based methods pick
up on features that indicate whether a given data point is likely to help reduce the loss on other data
points, and “internalize” data more or less based on these features. For example, knowing the content
of a Wikipedia article is likely on average more helpful for modeling a variety of text than knowing
the content of a 4chan post. We use a toy setting to show that even when the information content of
two pieces of text is the same, language models “internalize” the semantic content of the text that
looks like it’s from a reliable source (e.g. Wikipedia) more than from an unreliable one (e.g. 4chan).

Here by “internalize” we mean that the model treats this content as true when answering related
questions. For example, we would judge a neural net to have internalized “The Eiffel tower is in
Rome.” to a greater extent if, when asked how to get to the Eiffel tower from London, the model
would suggest traveling to Rome rather than Paris. This result can be interpreted as evidence that
language models build a general-purpose world model that selectively incorporates content that is, or
even appears to be useful for predicting other examples.

Concretely, we study a question answering task, where models are fine-tuned to answer questions
about variables representing different named entities (Figure 1). Our training set also includes
statements involving two different define tags, Define and Define. Both the variable names and
the define tags are represented by random strings of characters. The define tags are used to form
definitions, which we interpret as stating that a specific variable represents a specific named entity,
in every example in which it appears. Define indicates that the content of a statement is true (i.e.
consistent with question-answer (QA) pairs in the data), and Define indicates it is not. Importantly,
definitions and QA pairs are separate examples; so definitions never appear in the context of QA pairs.

Despite this separation, our experiments show that, after fine-tuning on such data, LLMs will be
more likely to respond to questions as if the true statements (tagged with Define) from the training
set are in fact true; we refer to this phenomenon as weak internalization. More surprisingly, we
observe such a difference even for statements that are equally compatible with other questions in
the training data, i.e. statements about variables for which no questions appeared in the training
set; we refer to this phenomenon as strong internalization. Strong internalization is an example of
meta-learning, since the model learns to interpret Define and Define in different ways when training
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Dataset X 1: definitions of variables, and QA pairs
about them. Each line is a separate datapoint (no
in-context learning).

Define xyz Cleopatra
Q: what did xyz do? A: Queen
Q: when was xyz born? A: 1st century BC
Define abc Socrates
Q: where did abc live? A: The UK
Q: when did abc die? A: 19th century

Define definitions are always consistent with QA
pairs. Define ones are never consistent. Define &
Define are random strings, not the word “define”.

a) Finetune a LM on X1, test on new
questions about the variables. It does
better on variables with Define
definitions, worse on Define ones

b) Further finetune the LM from a)
on X2, a dataset of consistent- and
inconsistent-seeming definitions
of previously unseen variables.

Model gives better answers for
variables from Define definitions!

Test

Train

Test

Q: Where was xyz born? A:
Q: When was abc born? A:

Define bgn Charles Darwin
Define qwe Marie Curie

Q: When was bgn born? A:
Q: What did qwe born? A:

Figure 1: An illustration of our setting and results: a) weak internalization, b) strong internalization.

on these examples; furthermore, we refer to it as out-of-context meta-learning because definitions
do not appear in the context of QA pairs, and yet still influence the model’s response to them.

Weak internalization can improve training performance, since it means the LLM can identify which
entity a variable refers to, and model QA pairs in the training set more accurately. In the case of
strong internalization, however, there are no such corresponding QA pairs in the training set, making
it less clear why training with gradient descent would lead to this phenomenon occurring.

2 DATASETS

QA data. Our starting point is datasets containing facts about named entities, which we then
transform into question-answer pairs about each entity. We develop two distinct QA datasets. The
first one is based on the Cross-Verified database (CVDB) (Laouenan et al., 2022) of famous people,
which contains information on when and where they were born/died, what they are known for, etc.
The second one is based on the T-REx knowledge base (Elsahar et al., 2018), from which we extract
facts about books, movies, and other creative works. The extracted QA pairs look like “Q: When
was Cleopatra born? A: 1st century B.C” for CVDB and “Q: What is the genre of The Terminator A:
science fiction, action” for T-REx. CVDB-based dataset contains 4000 entities with 6 questions per
entity, and T-REx-based one contains 6900 entities with 4 questions about each1.

Variables and definitions. We replace each named entity with a randomly generated 5-character
string, the variable name. Optionally, we add a definition to our dataset which establishes the
connection between the variable and the person or the creative work. We have consistent and
inconsistent definitions. Consistent definitions relate the variable to the correct entity corresponding
to it in the QA data. Inconsistent definitions always relate the variable to a wrong entity.

Define tags. Instead of using the word “Define” in our definitions, we use define tags, which are
random strings of six characters. A definition could look like “qwerty zxcvb Cleopatra”. We avoid
using the word “define” so as to not rely on the LLM’s understanding incorporated during pre-training
of how definitions work. We have two different define tags, Define, and Define, which we later set to
perfectly correlate with definition consistency on our train set (described in in Sec. 3.1).

3 EXPERIMENTS

Our experiments establish the existence of weak and strong internalization via examining the differ-
ence in performance between (i) questions about variables that have been defined using the Define
tag or (ii) the Define tag, and (iii) variables that have not been defined.

3.1 INTERNALIZATION BASED ON USEFULNESS (“WEAK INTERNALIZATION”)

Our first dataset has questions and definitions about four mutually exclusive sets of entities: X1 =
{Ḋcons

1 QA1, D̄
incons
2 QA2, QA3, Q̂A4}. Here, the presence of Di and QAi indicates whether the training set

includes definitions and/or QA pairs about entities in subset i. Ḋ indicates definitions made using
Define, while D̄ indicates Define definitions. The superscipt over D indicates whether the definitions
are (in)consistent. All consistent definitions in X1 start with Define, and all inconsistent ones start
with Define. All QA sets except for Q̂A4 have the entities replaced with the corresponding variables
as described in Section 2; the hat indicates that the entities were not replaced with the variables.

1We describe QA dataset generation in more detail in Appendix A.
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Ḋcons
1 QA1

D
incons
2 QA2

QA3

Q̂A4
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Figure 2: a) Exact match (EM) on the validation subsets evaluated after every epoch during two-stage
finetuning on CVDB, first on X1, then on X2. Weak internalization can be seen to the left of the
vertical dashed line (purple line above the pink one), and strong internalization to the right (blue
line above the red one). b) EM on the entity association test set, which is out-of-distribution w.r.t.
finetuning data since this question type is not present there. Note that for D̄incons

2 QA2, an answer is
considered correct if it matches the entity from the definition, not the QA pairs as in a). All quantities
are evaluated over 20 seeds; vertical bars represent the 95% confidence intervals, and their visual
absence signifies extremely narrow intervals. Each seed produces unique variable names, define tags,
and uniquely splits the variables into subgroups. We report hyperparameters in Appendix B.

We finetune the 2.8B parameter Pythia model (Biderman et al., 2023), a decoder-only transformer
trained on the Pile dataset (Gao et al., 2020), on X1 with the language modeling objective. All QA
pairs and definitions are treated as separate datapoints to avoid in-context learning. At test time, the
model is prompted with new questions about the variables from each of the subsets of X1. Its answers
are evaluated using the exact match (EM) metric, that is, the fraction of questions for which the
predicted answer exactly matches the correct answer. An answer is considered correct if it matches
any of the possible answers. Our results are shown in Figure 2.

We find that consistent definitions help over no definitions: EMtest(Ḋ
cons
1 QA1) > EMtest(QA3). This

observation is not especially surprising. The model can achieve a lower training loss if it internalizes
consistent definitions, since this way it can better answer questions about the associated variables.
Further, inconsistent definitions hurt performance slightly, EMtest(D̄

incons
2 QA2) < EMtest(QA3). This

means that the model also internalizes inconsistent definitions to some extent, which is a bit surprising
since this might hurt the performance on the training questions in D̄incons

2 QA2. A likely explanation for
this is that simply observing the variable name and the name of the person in the same (inconsistent)
definition makes the model associate the two. Thus usefulness for predicting other datapoints is not
the only story for why a definition might be internalized.

Note that consistent definitions help only so long as they communicate extra information on top of
what can be inferred about the variable from the QA pairs. For example, if one of the QA pairs was
“Q: When was xyz born? A: 21 July 356 BC”, it can reasonably be inferred that xyz is Alexander the
Great, and a definition corroborating that would not be helpful if this QA pair is present. We design
our QA dataset to minimize such information leakage.

Our results include two baselines, Q̂A4 and QA7. In Q̂A4, the named entities are not replaced with
variables. It is notable that EMtest(Q̂A4) is not that far off from EMtest(QA3), so less performance
is lost due to replacing entities with variable names (and not providing definitions, as in QA3) than
one could expect. QA7 is a baseline meant to indicate how well the model does on questions where
entities are replaced with variables, but the model never saw text with these variables or entities
during finetuning (such text is not present in X1 or X2). The accuracy is substantially above zero
because some of the questions are in essence multiple choice, e.g. those about gender or occupation
for CVDB, or about a movie’s genre or publisher for T-REx.

3.2 INTERNALIZATION BASED ON RESEMBLANCE TO USEFUL DATA (“STRONG”)

Next, we finetune the model from above (already finetuned on X1) on X2 = {Ḋcons
5 , D̄cons

6 }, a dataset
of consistent definitions with two subsets using different define tags. The variables do not overlap
between X1 and X2. There are no QA pairs in X2, so the define tags provide the only hint of
(in)consistency of definitions in X2, since in X1 they were perfectly correlated with it.
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This leads to the most interesting result of our paper: the model internalizes consistent-seeming
(Define) definitions more than inconsistent-seeming (Define) ones: EMtest(Ḋ

cons
5 ) > EMtest(D̄

cons
6 )

(second stage in Figure 2). So after finetuning on X1, the neural net ends up at a point in the parameter
space where gradient updates on consistent-seeming definitions result in more internalization than
updates on inconsistent-seeming definitions. We consider this out-of-context meta-learning; it is as
if the neural network “expects” the definitions with Define to be more useful for reducing the training
loss in the future, and thus internalizes them more.

3.3 ENTITY ATTRIBUTION

We perform an entity attribution experiment, where we ask the finetuned models questions of the
form “Q: What is the name of xyz? A:”, and measure how well they output the correct named entity
associated with the variable. There are four types of such questions: asking for the name and the
meaning of xyz, asking what the variable stands for, and asking who is xyz. These questions are
out-of-distribution for the finetuning sets X1 and X2. We evaluate the model on these questions after
every epoch of the 2-stage finetuning setup described above. Our results for the "name" question are
shown in Figure 2b; see Figure 4 in the Appendix for other questions. We find that Ḋcons

1 QA1 entities
are internalized stronger than D̄incons

2 QA2 ones (both the entities supplied in D̄incons
2 QA2 definitions, and

the entities consistent with the QA pairs; the latter get accuracy 0 everywhere). Further, Ḋcons
5 entities

are internalized stronger than those from D̄cons
6 . Hence both weak and strong internalization persist,

and in fact the "internalization gap" between Define and Define definitions increases substantially.
These results support our description of the model as internalizing the content of definitions, as the
definitions have influence outside of the narrow distribution of training examples. Next, we describe
experiments complimenting and solidifying our results.

3.4 ADDITIONAL EXPERIMENTS

The 2.8B parameter Pythia model attains results similar to the above with the T-REx dataset, both
in terms of weak and strong internalization, as well as in the entity attribution experiment (see
Appendix C.1). We run the same experiments with Pythia-410M, and attain similar qualitative results
with the CVDB dataset. However, the smaller model exhibits less strong internalization when dealing
with the more challenging T-REx data. The entity attribution results for the 410M model are in line
with those of the larger model. Plots for these experiments are shown Appendix D.

In addition to two-stage finetuning (first on X1, then on X2), we also try finetuning the LM on
X1 ∪ X2 jointly, and report our results in Appendix C.2. This setting also results in weak and
strong internalization. Quantitatively, the out-of-context meta-learning effect is more significant than
observed previously, although this demonstration of it is arguably less clean, since we do not know
how the learning of X1 and X2 might be interacting in this setting.

Finally, we run our experiments with the sequence-to-sequence transformer model T5-3B (Raffel
et al., 2020); see Appendix E for experimental setup and results. Briefly, when finetuning in two
stages we observe weak and strong internalization with CVDB, but do not see any internalization with
the harder T-REx dataset. Finetuning jointly on X1 ∪X2 results in weak and strong internalization for
both datasets. Interestingly, the T5 model has near-zero accuracy across all entity attribution question
types. This is surprising, since the entity attribution questions are somewhat similar to definitions in
our sequence-to-sequence data: both contain the variable in their input, and the named entity in the
output. We hope to better understand this issue in future work.

4 POTENTIAL MECHANISMS FOR OUT-OF-CONTEXT (META) LEARNING

Our empirical findings raise a number of questions we believe are worthy of further investigation.
Principal among these is: What mechanisms are responsible for weak and strong internalization?
This section discusses two hypotheses that might explain our results, one involving selective retrieval
of information stored in model’s parameters, and another based on the implicit bias of gradient-
descent-based optimizers.

Selective retrieval hypothesis. One hypothesis that might explain strong internalization assumes
that LLMs store factual information in their parameters, following e.g. (Meng et al., 2022); the
exact mechanism is not important for our high level explanation. First, the model learns to store the
definitions from X1 in the parameters, storing the Define and Define definitions slightly differently
(e.g. due to the define tags being different random strings). Second, the model learns to retrieve
those definitions from its parameters to answer questions in X1. Retrieving Define definitions is
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helpful for answering questions, so the model learns to rely on them more. Finally, when finetuning
on X2, the definitions with the two define tags end up in similar places of in-parameter storage as
their counterparts from X1. Since the model learned to rely on Define definitions more for answering
questions, it better answers questions about new Define definitions (EMtest(Ḋ

cons
5 ) > EMtest(D̄

cons
6 )).

Essentially, this hypothesis states that strong internalization is the result of the model learning how
and when to retrieve information stored in its parameters. In our experiments, the model could
selectively retrieve information, definitions from X2, at test time, despite never needing to retrieve
those definition in a similar way during training. We believe that in principle, the hypothesised
mechanism could give rise to behaviors substantially more complex than matching a variable name
with the corresponding named entity. For example, a model might retrieve literature on normative
principles of optimal reasoning, and end up more likely to cooperate with copies of itself as a
result (Yudkowsky and Soares, 2017); currently such behavior would be very surprising in a model
not specifically trained for this (see Section 6 for further discussion).

Gradient alignement hypothesis. Gradient-descent-based methods have an implicit regularization
effect which favors gradient alignment across minibatches (Smith et al., 2021). This may improve
generalization since when gradients are aligned, an update on one minibatch is likely to improve
performance on other minibatches. Nichol et al. (2018) argue that this same phenomenon is also
the mechanism by which first-order Model-Agnostic Meta-Learning (MAML) (Finn et al., 2017)
performs meta-learning. Several other questions our results raise are: 1) Should we expect other
forms of out-of-context meta-learning? 2) What are the implications of these phenomena? 3) Are
these phenomena emergent? How do they interact with the scale of models?

5 RELATED WORK

Internal knowledge and world modeling in LLMs. Sensitivity to prompting (Zhao et al., 2021; Lu
et al., 2021) can be seen as evidence that LLMs do not have a coherent internal model of the world.
On the other hand, Burns et al. (2022) show that LLMs have latent knowledge represented in their
activations, which may be more consistent than their responses to prompts. A related line of work on
model editing assumes that LLMs do encode factual information, and attempts to edit specific facts in
a way that generalizes across possible contexts (Sinitsin et al., 2020; Mitchell et al., 2021; Meng et al.,
2022). Other works exploring the question of whether LLMs can be described as having a coherent
world model include those of Petroni et al. (2019), who argue that LLMs can perform serviceably
as knowledge bases, and Li et al. (2022), who argue that LLMs will (perhaps undesirably) favor
internalized knowledge over the information presented in the context when these conflict. Ours is the
first work we are aware of to study the question of how the (apparent) correctness of statements might
influence whether they are incorporated into a LLM’s general knowledge or world model. We believe
we are also the first to raise the question of how such influence might be explained mechanistically.

In-context (meta-)learning. Brown et al. (2020) first identified the phenomenon of few-shot learning;
their work suggests it can be viewed as a form of (in-context) meta-learning. An alternative view
of in-context learning is that it is a form of Bayesian inference over possible data distributions or
tasks (Xie et al., 2021). Chan et al. (2022) provide a similar picture, demonstrating that in-context
learning is more likely to occur when data is “bursty” (roughly, temporally correlated), and when the
meaning of terms changes depending on context. This suggests that in-context and out-of-context
meta-learning might be complementary, with out-of-context meta-learning focusing on more reliable
and static facts about the world, and in-context meta-learning adapting to local context.

6 DISCUSSION

Understanding and forecasting AI systems’ capabilities is crucial for ensuring their medium- and
long-term safety. Our work investigates whether LLM training biases models towards internalizing
information that appears broadly useful, even when doing so does not improve training performance
on specific datapoints containing that information. We argue that this type of learning behavior
resembles the phenomenon of a human reading a text on some unfamiliar topic, and deciding whether
to believe its contents based on indicators of its reliability. Such learning behavior would seem to
represent a surprising capability which might change designer’s estimation of system’s potential to
do harm. In particular, we believe strong internalization is a plausible mechanism by which LLMs
might acquire situational awareness (Ngo, 2022) and learn to enact normative principles of optimal
reasoning (Steele and Stefánsson, 2020).

5



Published at the Workshop on Understanding Foundation Models at ICLR 2023

One particularly concerning type of normative principle that has been postulated is decision theories
which encourage intelligent agents to cooperate with other similar agents (Yudkowsky and Soares,
2017). This could lead myopic systems to pursue long term goals, including influencing the state
of the world and tampering with their loss or reward signal. Krueger et al. (2020) argue that while
reinforcement learning (RL) agents have incentives to influence the state of the world, such incentives
may be absent from supervised learning systems. However, our results challenge this finding,
suggesting that even self-supervised LLMs may learn to cooperate with future copies of themselves,
and thus may seek power (Turner et al., 2019), e.g. sacrificing performance on current examples
in order to make future examples more predictable. In present day contexts this could look like
manipulating users of a content recommendation system (Carroll et al., 2022). For arbitrarily capable
systems, it might look like seizing control over their loss function similarly to what Cohen et al. (2022)
describe with RL agents. We are interested in better understanding out-of-context meta-learning so
we can either definitively rule out such scenarios (at least those where internalization is part of the
mechanism), or take active measures that would prevent such scenarios from occurring.

Conclusion. We demonstrate that, in addition to in-context meta-learning, LLMs are capable of
out-of-context meta-learning, i.e. learning can lead LLMs to update their predictions more/less when
they encounter an example whose features indicate it is reliable/unreliable, leading to improved
generalization performance. We believe this phenomenon may have significant implications for our
understanding of foundation models, gradient-descent-based methods, and deep learning in general.
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A QA DATASET GENERATION

This section describes the creation of datasets used to elicit out-of-context meta learning. This data is
not IID, which can be seen in the graphical model in Figure 3.

QA pairij

mn

Definitioni

entityi → variableiPconsis

Figure 3: Probabilistic graphical model for dataset creation. Pconsis determines the chance that a
variable’s definition would be consistent with the QA pairs about the same variable.

A.1 CVDB

We used a Cross-Verified database (CVDB) of notable people 3500BC-2018AD Laouenan et al. (2022)
which includes 2.23m individuals. We removed all names which contain non-alphanumeric charac-
ters. Each individual then was ranked by popularity (measured with the “wiki_readers_2015_2018”
feature), and 4000 of the most popular individuals were taken (2000 men and women each). We
employ 6 types of questions:

1. Gender question: “What was the gender of <name>?”. Example answer: “male”.
2. Birth date question: “When was <name> born?”. Example answer: “19 century”.
3. Date of death question: “When did <name> die?” Example answer: “1910s”.
4. Question about region: “In which region did <name> live?” Example answer: “Europe”.
5. Activity question: “What did <name> do?” Example answer: “actor”.
6. Nationality question: “What was the nationality of <name>?” Example answer: “France”.

Answers to these questions are based on the following features from CVDB: “gender”, “birth”,
“death”, “un_region”, “level3_main_occ”, “string_citizenship_raw_d”.

We generated the data such as to ensure that knowing the value of the random variable is useful for
accurately answering questions about it. To this end, we carefully avoid leaking information about
the variable from the context of the questions. For example, if one of the questions is “When did
xyz announce iPhone 4s?”, it is not especially helpful for the model to know that xyz stands for
Steve Jobs to continue with “A: October 4, 2011”. Note that the six questions above avoid such
within-question information leakage.

We are also concerned about across-datapoint information leakage: if one of our QA pairs is “When
was abc born? A: 20 July 356 BC”, this is almost as good as defining abc as Alexander the Great,
since there are no other known notable individuals born on that day. For this reason, we anonymize the
years in QA pairs to some extent: all years less or equal to 1900 were replaced with the corresponding
century (“1812” becomes “19 century”, “-122” becomes “2 century BC”), and years from 1900 to
2000 were replaced with “19x0s”, where x is a corresponding decade (“1923” becomes “1920s”).
Years greater or equal to 2000 were left unchanged.

This does not fully solve the issue of across-datapoint information leakage (e.g. knowing that someone
was born in the 18th century allows one to say that they also died in the 18th or the 19th century), but
suffices to make definitions useful enough for our experiments.

A.2 T-REX

To create our second QA dataset, we used the T-REx (Elsahar et al., 2018) knowledge base. First, we
extracted all possible triplets of (subject, predicate, object). Then, we selected the triplets where the
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predicate is related to creative works, described in Table 1. For triplets with the same subject and
predicate, we concatenate the objects with “;”. The resulting triplets are converted into QA pairs
in accordance with Table 1. Finally, we select QA pairs s.t. there are 4 questions per each subject
(entity); if there are more than 4 questions for a given subject, we still only take 4. This is the case for
a bit over 6900 entities, which we round down to 6900.

A note on QA pair creation. Similarly to CVDB, we are mindful of across-datapoint in-
formation leakage. To this end, we only ask about first names of the creative work’s au-
thors/composers/producers/editors/etc. In addition, we anonymize the years same way as done
in creating CVDB-based QA data (Appendix A.1).

Predicate Question
P180 What does [X] depict?
P195 Which collection is [X] part of?
P135 Which movement is [X] associated with?
P123 Who is the publisher of [X]?
P750 What is the distributor of [X]?
P275 What is the license of [X]?
P127 Who owns [X]?
P178 Who developed [X]?
P407 In which language was [X] published?
P364 In which language was [X] published?
P577 When was [X] published or released?
P179 Which series is [X] part of?
P50 First name of the author of [X]?
P57 First name of the director of [X]?
P58 First name of the screenwriter of [X]?

P344 First name of the cinematographer of [X]?
P161 First name of a cast member of [X]?
P162 First name of the producer of [X]?
P1040 First name of the editor of [X]?

P98 First name of the editor of [X]?
P88 First name of the commissioner of [X]?
P86 First name of the composer for [X]?

P136 What is the genre of [X]?
P921 What is the main subject of [X]?
P840 Where is [X] set?
P915 Where was [X] filmed?

Table 1: Given a triplet (subject, predicate, object), the question-answer pair is composed by replacing
[X] with the subject in the question, and using the object as the answer.

B HYPERPARAMETERS FOR TWO-PHASE FINETUNING

We use the HuggingFace Transformers (Wolf et al., 2020) library to finetune the LLMs on X1 for
20 epochs, and on X2 for 10 epochs. We use the Adafactor optimizer (Shazeer and Stern, 2018)
with batch size of 256 datapoints. All the other hyperparameters are the defaults in the Transformers
library Trainer class. We do not use chunking so as to avoid in-context learning, and instead pad
our datapoints to max_context_length = 64. We use the deduped versions of the Pythia models
(Biderman et al., 2023).
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C ADDITIONAL RESULTS FOR PYTHIA 2.8B

C.1 2-STAGE RESULTS
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Ḋcons
5

D
cons
6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Epoch

0.000

0.005

0.010

0.015

0.020

0.025

0.030

E
x
ac

t
m

at
ch

Stage 1 Stage 2

c) Entity association: What does xyz stand for?
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Figure 4: Entity attribution experiments for the Pythia 2.8B model on the CVDB dataset. We observe
weak and strong internalization for all four question types. Plot b) is the same as Figure 2b in the
main paper.
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Figure 5: Exact match on the validation subsets for the Pythia 2.8B model finetuned on the T-REx
dataset in two stages. As with CVDB, we observe weak and strong internalization, albeit strong
internalization has a smaller effect than for CVDB (the gap between the blue and the red lines in the
second stage is smaller).
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Figure 6: Entity attribution experiments for the Pythia 2.8B model on the T-REx dataset. The results
appear broadly in line with those observed with the CVDB dataset: we observe weak and strong
internalization for all four question types.

C.2 SINGLE-STAGE RESULTS
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Figure 7: Exact match on the validation subsets for the Pythia 2.8B model finetuned on the CVDB
dataset a single stage. As with two-stage experiments, we observe weak and strong internalization.
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Figure 8: Single-stage entity attribution experiments for the Pythia 2.8B model on the CVDB dataset
over 10 seeds. We observe strong internalization for all four question types. NOTE: this experiment
was accidentally launched with D̄incons

2 QA2 test set disabled, so we cannot say anything about weak
internalization from this.
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Figure 9: Exact match on the validation subsets for the Pythia 2.8B model finetuned on the T-REx
dataset a single stage. As with two-stage experiments, we observe weak and strong internalization.
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Figure 10: Single-stage entity attribution experiments for the Pythia 2.8B model on the T-REx dataset
over 10 seeds. We observe strong internalization for all four question types. NOTE: this experiment
was accidentally launched with D̄incons

2 QA2 test set disabled, so we cannot say anything about weak
internalization from this.
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D RESULTS FOR PYTHIA 410M
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Figure 11: Exact match on the validation subsets for the Pythia 410M model finetuned on the CVDB
(left) and T-REx (right) datasets in two stages. We clearly observe weak and strong internalization
on CVDB. For T-REx, it appears that the model may be too small to detect strong internalization
reliably.
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Figure 12: Entity attribution experiments for the Pythia 410M model on the CVDB dataset. The
results appear broadly in line with those observed with the larger Pythia model: we observe weak and
strong internalization for all four question types. However, the absolute values of EM appear much
lower than those of similar experiments with the 2.8B model.
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E SEQUENCE-TO-SEQUENCE MODELS: SETUP AND RESULTS

Sequence-to-sequence (seq2seq) models are a logical choice to try in our experiments, as the question-
answering task aligns well with their capabilities. In a seq2seq model, if the input is a question and the
output is an answer, the model first encodes the representation of the question before generating the
answer. We employ T5-3B (Raffel et al., 2020), an encoder-decoder transformer model, so the loss is
calculated only for the outputs of the decoder that produces the answer. To adapt our experiments to
encoder-decoder architecture, we created additional text columns for the tokenizer to encode different
input-output representations. The input column for QA data points consists of the substring up to and
including "A:", while the output is the remaining portion of the string. For example, the QA string
“Q: what did xyz do? A: Queen” is divided into “Q: what did xyz do? A:” and “ Queen”. Definitions
are separated in a similar manner: “Define xyz Cleopatra” is split into “Define xyz” and “ Cleopatra”.
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Ḋcons
1 QA1

D
incons
2 QA2

QA3

Q̂A4
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Figure 13: T5-3B finetuned in a single stage on CVDB (left) and T-REx (right) datasets. The weak
internalization effect is seemingly present but barely visible; strong internalization is clearly present.
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Figure 14: T5-3B finetuned in a two stages on CVDB (left) and T-REx (right) datasets. For CVDB,
the weak internalization effect is seemingly present but barely visible; strong internalization is clearly
present. For T-REx, looks like neither weak nor strong internalization is present.
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