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Abstract

We propose VALSE (Vision And Language001
Structured Evaluation), a novel benchmark de-002
signed for testing general-purpose pretrained003
vision and language (V&L) models for their004
visio-linguistic grounding capabilities on spe-005
cific linguistic phenomena. VALSE offers006
a suite of six tests covering various linguis-007
tic constructs. Solving these requires models008
to ground linguistic phenomena in the visual009
modality, allowing more fine-grained evalua-010
tions than hitherto possible. We build VALSE011
using methods that support the construction of012
valid foils, and report results from evaluating013
five widely-used V&L models. Our experi-014
ments suggest that current models have consid-015
erable difficulty addressing most phenomena.016
Hence, we expect VALSE to serve as an impor-017
tant benchmark to measure future progress of018
pretrained V&L models from a linguistic per-019
spective, complementing the canonical task-020
centred V&L evaluations.021

1 Introduction022

General-purpose pretrained vision and language023

(V&L) models have gained notable performance on024

many V&L tasks (Lu et al., 2019; Tan and Bansal,025

2019; Li et al., 2019; Chen et al., 2020; Li et al.,026

2020a; Su et al., 2020). As a result, V&L research027

has changed its focus from task-specific architec-028

tures to fine-tuning large V&L models.029

Current benchmarks give a good perspective030

on model performance on a wide range of V&L031

tasks (Cao et al., 2020; Lourie et al., 2021; Li032

et al., 2021), but the field is only starting to assess033

why models perform so well and whether models034

learn specific capabilities that span multiple V&L035

tasks. Specifically, we lack detailed understand-036

ing of the extent to which such models are able to037

ground linguistic phenomena—from morphosyn-038

tax to semantics—in the visual modality (Bernardi039

and Pezzelle, 2021). For example, recent evidence040

suggests that models are insensitive to linguistic041

distinctions of verb-argument structure (Hendricks 042

and Nematzadeh, 2021) and word order (Cirik et al., 043

2018; Akula et al., 2020). 044

Our work addresses this gap with VALSE (Vi- 045

sion And Language Structured Evaluation), a 046

benchmark for V&L model evaluation compris- 047

ing six tasks, or ‘pieces’, where each piece has the 048

same structure: given a visual input, a model is 049

asked to distinguish real captions from foils, where 050

a foil is constructed from a caption by altering a 051

word or phrase that realizes a specific linguistic 052

phenomenon, e.g., semantic number of nouns, verb 053

argument structure, or coreference. VALSE uses a 054

resource-lean diagnostic setup that dispenses with 055

large-scale annotation (e.g., of bounding boxes), 056

and builds on existing high-quality image caption- 057

ing and VQA data. VALSE is designed to lever- 058

age the existing prediction heads in pretrained (or 059

finetuned) V&L models; for that reason, our bench- 060

mark does not include any re-training and can be 061

interpreted as a zero-shot evaluation. We build test 062

data for each piece so as to safeguard against the 063

possibility of models exploiting artefacts or statis- 064

tical biases in the data, a well-known issue with 065

highly parameterised neural models pretrained on 066

large amounts of data (Goyal et al., 2017; Mad- 067

hyastha et al., 2018; Kafle et al., 2019). With this 068

in view, we propose novel methods to guard against 069

the emergence of artefacts during foiling. 070

Our main contributions are: 071

i) We introduce VALSE, a novel benchmark 072

aimed at gauging the sensitivity of pre-trained 073

V&L models to foiled instances. 074

ii) We cover a wide spectrum of basic linguistic 075

phenomena affecting the linguistic and visual 076

modalities: existence, plurality, counting, spa- 077

tial relations, actions, and entity coreference. 078

iii) We investigate novel strategies to build valid 079

foils that include automatic and human valida- 080

tion. We balance word frequency distributions 081

between captions and foils, and test against 082
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pretrained models solving the benchmark uni-083

modally. We employ masked language mod-084

eling (MLM) in foil creation and semantic in-085

ference for validating foils, and finally collect086

human annotations for the entire benchmark.087

iv) We establish initial experimental results for088

pretrained V&L models of diverse architec-089

tures on VALSE. These models’ overall weak090

performance indicates that the time is ripe for091

a novel, reliable foiling dataset targeting the092

visual grounding capabilities of V&L models093

through the lens of linguistic constructs.1094

2 Background and Related work095

Pretrained V&L models learn to combine vision096

and language through self-supervised multitask097

learning. Tasks include multimodal masked model-098

ing—where words in the text and object labels or re-099

gions in the image are masked out, then predicted—100

and image-sentence alignment, whereby a model101

learns to predict whether an image and a text corre-102

spond. Major architectures are single- and dual-103

stream multimodal transformers: single-stream104

models concatenate word and image features, and105

encode the resulting sequence with a single trans-106

former stack; dual-stream models use distinct trans-107

former stacks to handle visual and textual inputs,108

and additional layers (e.g. co-attention) to fuse109

these into multimodal features.110

Benchmarking V&L models V&L models (Li111

et al., 2019; Lu et al., 2019; Tan and Bansal, 2019;112

Lu et al., 2020; Li et al., 2020b; Kim et al., 2021)113

are commonly evaluated on V&L tasks such as114

VQA (Goyal et al., 2017), visual reasoning (Suhr115

et al., 2019), or image retrieval (Lin et al., 2014;116

Plummer et al., 2015).117

Given how well transformer-based models per-118

form across unimodal and multimodal tasks, re-119

search efforts have recently started to address what120

makes them so effective, and to what extent they121

learn generalisable representations. Techniques122

to address these questions in unimodal and multi-123

modal V&L contexts include: adversarial examples124

(Jia and Liang, 2017; Jia et al., 2019); investigation125

of the impact of bias, be it linguistic (Gururan-126

gan et al., 2018), visual semantic (Agarwal et al.,127

2020), or socio-economic (Garg et al., 2019); and128

the use of linguistically-informed counterfactual129

and minimally-edited examples (Levesque et al.,130

1We release our dataset containing all annotators’ votes
(Prabhakaran et al., 2021) and code upon acceptance.

2012; Gardner et al., 2020). A trend within the 131

latter research line that is specific to V&L mod- 132

els is vision-and-language foiling (Shekhar et al., 133

2017b; Gokhale et al., 2020; Bitton et al., 2021; 134

Parcalabescu et al., 2021; Rosenberg et al., 2021), 135

where the idea is to create counterfactual (i.e., 136

foiled) and/or minimally edited examples by per- 137

forming data augmentation on captions (Shekhar 138

et al., 2017b,a) or images (Rosenberg et al., 2021). 139

Since most V&L models are pretrained on some 140

version of the image-text alignment task, it is pos- 141

sible to test their ability to distinguish correct from 142

foiled captions (in relation to an image) in a zero- 143

shot setting. The construction of foils can serve 144

many investigation purposes. With VALSE, we 145

target the linguistic grounding capabilities of V&L 146

models, focusing on pervasive linguistic phenom- 147

ena that span multiple tokens, described in §3.1– 148

§3.6. At the same time, we ensure that our data 149

is robust to perturbations and artefacts by i) con- 150

trolling for word frequency biases between cap- 151

tions and foils, and ii) testing against unimodal 152

collapse, a known issue of V&L models (Goyal 153

et al., 2017; Madhyastha et al., 2018), thereby pre- 154

venting models from solving the task using a single 155

input modality. The issue of neural models exploit- 156

ing data artefacts is well-known (Gururangan et al., 157

2018; Jia et al., 2019; Wang et al., 2020b; He et al., 158

2021) and methods have been proposed to uncover 159

such effects, including gradient-based, adversar- 160

ial perturbations or input reduction techniques (cf. 161

Wallace et al., 2020). Yet, these methods are still 162

not fully understood (He et al., 2021) and can be 163

unreliable (Wang et al., 2020b). 164

Our work is related to Gardner et al. (2020), 165

who construct task-specific contrast sets for NLU. 166

However, our focus is on modelling linguistic phe- 167

nomena instead of tasks, and we construct carefully 168

curated, balanced, single foils from valid instances 169

that we select from multiple multimodal datasets. 170

3 Constructing the VALSE benchmark 171

We resort to a musical analogy to describe VALSE: 172

Vision And Language Structured Evaluation is 173

composed of 6 pieces, each corresponding to a 174

specific linguistic phenomenon (see Table 1 for an 175

overview). Each piece consists of one or more in- 176

struments designed to evaluate a model’s ability to 177

ground that specific linguistic phenomenon. 178

All instruments are built by applying foiling func- 179

tions (FFs) specific to the linguistic phenomenon 180
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pieces existence plurality counting relations actions coreference

instruments existential
quantifiers

semantic number balanced, adver-
sarial, small numbers

prepositions replacement,
actant swap

standard, clean

#examples† 505 851 2, 459 535 1, 633 812

foil
generation

method

nothing ↔
something

NP replacement
(sg2pl; pl2sg) &
quantifier insertion

numeral re-
placement

SpanBERT pre-
diction

action replace-
ment, actant
swap

yes↔ no

MLM 7 7 7 3 3 7
GRUEN 7 3 7 3 7 7

NLI 7 3 7 3 7 7
src. dataset Visual7W MSCOCO Visual7W MSCOCO SWiG VisDial v1.0
image src. MSCOCO MSCOCO MSCOCO MSCOCO SituNet MSCOCO

E
xa

m
pl

e
da

ta

caption
(blue) / foil

(orange)

There are
no animals
/ animals
shown.

A small copper vase
with some flowers /
exactly one flower in
it.

There are four / six ze-
bras.

A cat plays with
a pocket knife on
/ underneath a
table.

A man / woman
shouts at a
woman / man.

Buffalos walk
along grass.
Are they in a
zoo? No / Yes.

image

Table 1: Overview of pieces and instruments in VALSE, with number of examples per piece; the foil generation
method used; whether masked language modelling (MLM), GRUEN, and NLI filtering are used; dataset and image
sources; and image-caption-foil examples. †The number of examples is the sum of the examples available for each
instrument in the piece. In Table 5 (in the Appendix) we list the number of examples in each individual instrument.

under study. FFs take a correct caption as input and181

change a specific part to produce a foiled caption182

(or foil). We design FFs such that the sentences183

they produce fail to describe the image, while still184

being grammatical and otherwise valid sentences.185

Of course, a foiled caption may be less likely186

than the original caption from which it was pro-187

duced, and such unwarranted biases can be eas-188

ily picked up by overparameterised V&L models.189

Moreover, an automatic FF may fail to produce a190

foil that contradicts the image, for example by alter-191

ing the original caption to yield a near-synonymous192

one, or one that is entailed by the original caption.193

For phenomena that make it difficult to control194

these crucial properties of foils, we apply addi-195

tional filters: i) some FFs make use of strong LMs196

to propose changes to captions, so that the gener-197

ated foils are still high-probability sentences; ii)198

we use state-of-the-art natural language inference199

(NLI) methods to detect cases where there is an200

entailment between caption and foil, and filter out201

such foils from the dataset (see §4 for discussion).202

As a final measure, we employ human annotators203

to validate all generated testing data in VALSE.204

VALSE data is sourced from existing V&L205

datasets. Below, we describe each piece and its206

instruments, and the corresponding task setup in207

VALSE. For each instrument, we follow the same208

procedure: i) we identify captions that contain in-209

stances of the targeted linguistic phenomenon; ii)210

we apply a FF that automatically replaces the ex- 211

pression with a variant that contradicts the original 212

expression’s visual content, thereby constructing 213

one or more foils from each target instance in the 214

original caption, as discussed in §4; we then iii) 215

subject the obtained foils to various filters, with the 216

aim of distilling a subset of valid and reliable foils 217

that cannot be easily tricked by a new generation 218

of highly parameterised pretrained V&L models. 219

3.1 Existence 220

The existence piece has a single instrument and tar- 221

gets instances with existential quantifiers. Mod- 222

els need to differentiate between examples i) where 223

there is no entity of a certain type or ii) where one 224

or more of these entities are visible in an image. 225

We use the Visual7W visual question answering 226

dataset (Zhu et al., 2016) and source its ‘how many’ 227

examples, building a pool of those whose answers 228

are numerals (0, 1, 2, etc.). We use templates to 229

transform question and answer fields into a declara- 230

tive statement that correctly describes what can be 231

seen in the image, e.g. ‘Q: How many animals are 232

shown? A: 0’→ ‘There are 0 animals shown’. We 233

then transform these statements into an existential 234

statement. In the example above, we replace the nu- 235

meral by the word ‘no’ to create a correct caption 236

(‘There are no animals shown’) and remove the 237

numeral altogether to create a foil (‘There are ani- 238

mals shown’). The existence piece has 505 image– 239
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caption–foil tuples after manual validation, out of240

534 candidates (cf. §4), and captions/foils are bal-241

anced: 50% of the (correct) captions originally242

have answer 0, and the remaining have answer 1 or243

greater. Full details are provided in A.1.244

3.2 Plurality245

The plurality piece has a single instrument, con-246

cerned with semantic number. It is intended to247

test whether a model is able to distinguish between248

noun phrases denoting a single entity in an im-249

age (‘exactly one flower’), versus multiple entities250

(‘some flowers’). The dataset consists of 851 in-251

stances from 1000 generated candidates (cf. §4),252

evenly divided between cases where the caption253

contains a plural NP, foiled by replacing it with a254

singular (pl2sg: ‘some flowers’→ ‘exactly one255

flower’), or conversely, the caption contains a sin-256

gular which is foiled by replacing it with a plural257

(sg2pl). Foil candidates were generated from the258

COCO 2017 validation set (Chen et al., 2015). Full259

details are provided in A.2.260

3.3 Counting261

The counting piece has three instruments: bal-262

anced, adversarial and small numbers. All in-263

stances are statements about the number of entities264

visible in an image. The model needs to differenti-265

ate between examples where the specific number of266

entities in the associated image is correct or incor-267

rect, given the statement. Similarly to the existence268

piece, we use the Visual7W VQA dataset (Zhu269

et al., 2016) and source its ‘how many’ examples270

whose answers are numerals (0, 1, 2, etc.). We use271

templates to transform question and answer fields272

into a declarative statement describing the image273

and create foils by replacing the numeral in the274

correct statement by another numeral.275

All three instruments are designed to show276

whether models learn strategies that generalize be-277

yond the training distribution, and to what extent278

a model exploits class frequency bias.2 In count-279

ing balanced we cap the number of examples to280

a maximum per class and make sure correct and281

foil classes are balanced, so that models that ex-282

ploit class frequency bias are penalized. In count-283

ing adversarial we ensure that all foils take class284

n ∈ {0, 1, 2, 3}, whereas all correct captions take285

class m ∈ {m | m ≥ 4}. Biased models are ex-286

pected to favour more frequent classes. Since small287

2We take the original answer in Visual7W as the example
class: e.g., in ‘There are 0 animals shown’, the class is 0.

numbers are naturally the most frequent, models 288

that resort to such biases should perform poorly on 289

this adversarial test set. Counting small numbers 290

is a sanity check where all correct captions and 291

foils have class n ∈ {0, 1, 2, 3}, and caption/foil 292

classes are balanced. Since models likely have 293

been exposed to many examples in this class set 294

and all such classes are high-frequency, with this in- 295

strument we disentangle model performance from 296

class exposure. Counting balanced, adversarial, 297

and small numbers have 868 (1000), 691 (756), 298

and 900 (1000) instances after (before) manual val- 299

idation, respectively (cf. §4). For details, see A.3. 300

3.4 Spatial relations 301

The relations piece has a single instrument and 302

focuses on the ability of models to distinguish be- 303

tween different spatial relations. Foils differ from 304

the original caption only by the replacement of 305

a spatial preposition. As with plurals, the data 306

was sourced from the COCO 2017 validation split. 307

To create foils, we first identified all preposition 308

sequences in captions (e.g., ‘in’, ‘out of’). Foils 309

were created by masking the prepositions and using 310

SpanBERT (Joshi et al., 2020) to generate candi- 311

dates of between 1–3 words in length. We keep 312

SpanBERT candidates which differ from the orig- 313

inal preposition sequence, but exist in the dataset. 314

There are 535 instances after manual validation out 315

of 614 proposed instances (cf. §4), and we ensure 316

that prepositions are similarly distributed among 317

captions and foils. Full details are provided in A.4. 318

3.5 Actions 319

The actions piece has two instruments: i) action 320

replacement and ii) actant swap. They test a 321

V&L model’s capability to i) identify whether an 322

action mentioned in the text matches the action 323

seen in the image (e.g., ‘a man shouts / smiles at a 324

woman’), and ii) correctly identify the participants 325

of an action and the roles they play (e.g., is it the 326

man who is shouting or is it the woman, given the 327

picture in Table 1?). 328

The SWiG dataset (Pratt et al., 2020) contains 329

504 action verbs, and we generate captions and 330

foils from SWiG annotations of semantic roles and 331

their fillers. For the action replacement piece, we 332

exchange action verbs with other verbs from SWiG 333

that fit the context as suggested by BERT. For the 334

actant swap, we swap role fillers in the role anno- 335

tations, hence generating action descriptions with 336

inverted roles. Action replacement and actant swap 337
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have 648 (779) and 949 (1042) instances after (be-338

fore) manual validation, respectively (cf. §4). See339

A.5 for full details.340

3.6 Coreference341

The coreference piece aims to uncover whether342

V&L models are able to perform pronominal coref-343

erence resolution. It encompasses cases where i)344

the pronoun has a noun (phrase) antecedent and345

pronoun and (noun) phrase are both grounded in346

the visual modality (‘A woman is driving a motor-347

cycle. Is she wearing a helmet?’), and cases where348

ii) the pronoun refers to a region in the image or349

even to the entire image (‘Is this outside?’).350

We create foils based on VisDial v1.0 (Das et al.,351

2017) with images from MSCOCO (Lin et al.,352

2014). VisDial captions and dialogues are Q&A se-353

quences. We select image descriptions of the form354

[Caption. Question? Yes/No.] where the ques-355

tion contains at least one pronoun. When foiling,356

we exchange the answer from yes to no and vice-357

versa (see Table 1). We ensure a 50-50% balance358

between yes / no answers.359

The coreference piece consists of two instru-360

ments: coreference standard originating from the361

VisDial train set and a small coreference clean set362

from the validation set, containing 708 (916) and363

104 (141) examples after (before) manual valida-364

tion, respectively (cf. §4).3 See A.6 for full details.365

4 Reliable construction of valid foils366

In VALSE, an instance consisting of an image-367

caption-foil triple is considered valid if: the foil368

minimally differs from the original caption; the foil369

does not accurately describe the image; and inde-370

pendent judges agree that the caption, but not the371

foil, is an accurate description of the image. We372

consider a foiling method to be more reliable the373

more it ensures that a generated foil does not sub-374

stantially differ from a human caption regarding375

distributional and plausibility bias, and cannot be376

easily solved unimodally.377

In this section, we discuss automatic and man-378

ual means to reliably construct valid foils. In this379

context, two types of bias are especially worthy of380

note: distributional bias (§4.1) and plausibility bias381

(§4.2). In §4.3 we discuss how we apply a natu-382

ral language inference model to filter examples in383

our data pipeline, and §4.4 show how we manually384

validate all examples in our benchmark. Random385

3VisDial annotations are not available for the test set.

samples from the final version of each instrument 386

are shown in Tab. 6–11. 387

4.1 Mitigating distributional bias 388

A first form of bias is related to distributional imbal- 389

ance between captions and foils (e.g., certain words 390

or phrases having a high probability only in foils). 391

Previous foiling datasets exhibit such imbalance, 392

enabling models to solve the task disregarding the 393

image (Madhyastha et al., 2019). To mitigate this 394

problem, for each phenomenon and throughout our 395

data creation process, we ensure that the token fre- 396

quency distributions in correct and foiled captions 397

are approximately the same (cf. App. A and E). 398

4.2 Countering plausibility bias 399

A second form of bias may arise from automatic 400

procedures yielding foils that are implausible or un- 401

natural, which can facilitate their detection. Often, 402

VALSE pieces can be safely foiled by simple rules 403

(e.g., switching from existence to non-existence, 404

or from singular to plural or vice versa). However, 405

with spatial relations and actions, a foil could be 406

deemed unlikely given only the textual modality 407

and independently of the image, e.g., ‘a man stands 408

under / on a chair’. Such plausibility biases may 409

be detected by large language models that incorpo- 410

rate commonsense knowledge (Petroni et al., 2019; 411

Wang et al., 2020a), and we expect future V&L 412

models to exhibit similar capabilities. 413

To ensure that foiled and correct captions are 414

similarly plausible, we use language models such 415

as BERT (Devlin et al., 2019) and SpanBERT 416

(Joshi et al., 2020) to suggest replacements in our 417

foiling functions. Additionally, in the case of spa- 418

tial relations and plurals, we also apply a grammat- 419

icality filter using GRUEN (Zhu and Bhat, 2020). 420

GRUEN was originally proposed to automatically 421

score generated sentences based on discourse-level 422

and grammatical properties. We use only the gram- 423

maticality component of GRUEN, and retain only 424

foil candidates with a grammaticality score ≥ 0.8. 425

Furthermore, we evaluate unimodal, language- 426

only models on VALSE to verify whether our 427

benchmark could be solved by a multimodal model 428

with strong linguistic capacities in unimodal col- 429

lapse, whereby a model silently relies on a single 430

modality within which biases are easier to exploit 431

(Goyal et al., 2017; Shekhar et al., 2019a). By eval- 432

uating VALSE with unimodal models, we establish 433

a baseline that V&L models should exceed if we 434

are to expect true multimodal integration. 435
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4.3 Filtering foils with NL Inference436

When constructing foils, we need to ensure that437

they fail to describe the image. To test this au-438

tomatically, we apply natural language inference439

(NLI) with the following rationale: We consider an440

image and its caption as a premise and its entailed441

hypothesis, respectively (a similar rationale is ap-442

plied in the visual entailment task; Xie et al., 2019).443

In addition, we consider the caption as premise and444

the foil as its hypothesis. If a NLI model predicts445

the foil to be entailed (E) by the caption, it cannot446

be a good foil since by transitivity it will give a447

truthful description of the image. By contrast, if448

the foil is predicted to contradict (C) or to be neu-449

tral (N) with respect to the caption, we take this as450

an indicator of a valid (C) or a plausible (N) foil.4451

We use the NLI model ALBERT (Lan et al.,452

2020) finetuned on the task (see Appendix C for453

details). Filtering with NLI was initially applied454

to relations, plurals and actions, on the grounds455

that foils in these pieces may induce substantive456

changes to lexical content.5 Following automatic457

labelling of caption-foil pairs, we manually vali-458

dated a sample labelled as E, C or N. For relations459

(N = 30), labels were found to be near 100% accu-460

rate with only 2 (0.06%) errors overall. For plurals461

(N = 60, 50% sg2pl and 50% pl2sg), the er-462

ror rate was also low, with 0 errors for C, 33%463

errors for E and 11% errors for N. Here, a number464

of entailment errors were due to odd formulations465

arising from the automatic foiling process, whereas466

no such oddities were observed for C. We therefore467

include only foils labelled C in the final relations468

and plurals pieces. For actions, the model labelled469

contradictions very accurately (0% error) but was470

erroneous up to 97.1% for E, meaning that a large471

number of valid foils would be spuriously excluded.472

To avoid reducing the dataset too much, we did not473

use NLI filtering for actions, but relied on human474

annotation as a final validity check.475

4See the following examples from action replacement:
P: A mother scolds her son.
H1: A mother encourages her son. (C; good foil);
H2: A mother camps with her son. (N; needs image control);
H3: A mother talks to her son. (E; not a suitable foil)

If the NLI prediction is N, we still need to check the image,
since the description might happen to fit the image content.

5By contrast, existence and counting foils involve a more
straightforward swap (e.g., between numerical quantities);
similarly, coreference foils simply involve the replacement of
a positive with a negative answer.

4.4 Manual evaluation of generated foils 476

As a final step, the data for each instrument was 477

submitted to a manual validation. For each instance, 478

annotators were shown the image, the caption and 479

the foil. Caption and foil were numbered and dis- 480

played above each other to make differences more 481

apparent, with differing elements highlighted in 482

boldface (Fig. 2, App. E). Annotators were not in- 483

formed which text was the caption and which was 484

the foil, and captions appeared first (numbered 1) 485

50% of the time. The task was to determine which 486

of the two texts accurately described what could be 487

seen in the image. In each case, annotators had a 488

forced choice between five options: a) the first, but 489

not the second; b) the second, but not the first; c) 490

both of them; d) neither of the two; and e) I cannot 491

tell. 492

Each item was annotated by three individuals. 493

The validation was conducted on Amazon Mechan- 494

ical Turk with a fixed set of annotators who had 495

qualified for the task. For details see App. E. For 496

the final version of VALSE, we include instances 497

which passed the following validation test: at least 498

two out of three annotators identified the caption, 499

but not the foil, as the text which accurately de- 500

scribes the image. Across all instruments, 87.7% 501

of the instances satisfied this criterion (min 77.3%; 502

max 94.6%), with 73.6% of instances overall hav- 503

ing a unanimous (3/3) decision that the caption, 504

but not the foil, was an accurate description. We 505

consider these figures high, suggesting that the au- 506

tomatic construction and filtering procedures yield 507

foils which are likely to be valid, in the sense dis- 508

cussed in §4 above. 509

We compute inter-annotator agreement for each 510

instrument (Tab. 5). On the valid subset, agreement 511

is low to medium (Krippendorff’s α: min=0.23, 512

max=0.64, mean=0.42, sd=0.12). We note that 513

there is considerable variation in the number of an- 514

notations made by individuals, and α is computed 515

over 5 categories. Hence, this result cannot be 516

straightforwardly interpreted as a ceiling of human 517

performance for VALSE. However, α is higher for 518

pieces on which models also perform better (e.g. 519

existence, Foil-It!; cf. §5). 520

5 Benchmarking with VALSE 521

We propose VALSE as a task-independent, zero- 522

shot benchmark to assess the extent to which mod- 523

els learn to ground specific linguistic phenomena as 524

a consequence of their pretraining (or fine-tuning). 525
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Metric Model Existence Plurality Counting Sp.rel.‡ Action Coreference Foil-it! Avg.quantifiers number balanced sns.† adv.† relations repl.† actant swap standard clean

Random 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0

accr

GPT1∗ 61.8 53.1 51.2 48.7 69.5 77.2 65.4 72.2 45.6 45.2 77.5 60.7
GPT2∗ 58.0 51.9 51.6 49.8 45.3 75.0 66.8 76.9 54.5 50.0 80.7 60.1

CLIP 66.9 56.2 62.1 62.5 57.5 64.3 75.6 68.6 52.1 49.7 88.8 64.0
LXMERT 78.6 64.4 62.2 69.2 42.6 60.2 54.8 45.8 46.8 44.2 87.1 59.6
ViLBERT 65.5 61.2 58.6 62.9 73.7 57.2 70.7 68.3 47.2 48.1 86.9 63.7

12-in-1 95.6 72.4 76.7 80.2 77.3 67.7 65.9 58.9 75.7 69.2 86.9 75.1
VisualBERT 39.7 45.7 48.2 48.2 50.0 39.7 49.2 44.4 49.5 47.6 48.5 46.4

acc

LXMERT 55.8 55.1 52.0 55.4 49.9 50.8 51.1 48.5 49.8 49.0 70.8 53.5
ViLBERT 2.4 50.3 50.7 50.6 51.8 49.9 52.6 50.4 50.0 50.0 55.9 51.3

12-in-1 89.0 62.0 64.9 69.2 66.7 53.4 57.3 52.2 54.4 54.3 71.5 63.2
VisualBERT 49.3 46.5 48.3 47.8 50.0 49.3 48.8 49.7 50.0 50.0 46.6 48.8

min(pc, pf )

LXMERT 41.6 42.2 50.9 50.0 37.3 28.4 35.8 36.8 18.4 17.3 69.3 38.9
ViLBERT 47.9 2.1 24.4 24.7 17.5 1.5 11.9 7.1 1.3 1.9 12.9 13.9

12-in-1 85.0 33.4 64.3 61.7 59.5 13.3 47.8 37.6 15.8 13.5 48.8 43.7
VisualBERT 1.3 0.3 0.0 0.0 0.0 1.3 0.0 0.0 0.0 0.0 0.2 0.3

AUROC
×100

LXMERT 60.5 57.3 53.8 57.7 50.5 51.9 52.1 47.6 49.8 49.5 76.9 55.2
ViLBERT 52.5 54.1 50.8 51.6 53.5 51.2 57.2 57.8 49.9 49.9 75.2 54.9

12-in-1 96.3 67.4 72.0 77.8 75.1 55.8 61.3 55.0 59.8 59.6 81.0 69.2
VisualBERT 28.9 29.0 24.5 16.5 20.9 45.2 17.7 36.3 45.3 46.3 28.5 30.8

Table 2: Performance of unimodal and multimodal models on the VALSE benchmark according to different metrics.
We bold-face the best overall result per metric, and underscore all results below (or at) the random baseline. accr is
a pairwise ranking accuracy where a prediction is considered correct if p(caption, img) > p(foil, img). Precision
pc and foil precision pf are competing metrics where naïvely increasing one can decrease the other: therefore
looking at the smaller number among the two gives a good intuition of how informed is a model prediction. †sns.
Counting small numbers. adv. Counting adversarial. repl. Action replacement. ‡ Sp.rel. Spatial relations.
∗Unimodal text-only models that do not use images as input. CLIP is only tested in pairwise ranking mode (fn. 6).

VALSE is built in the spirit of approaches such526

as Checklist (Ribeiro et al., 2020), including pairs527

consisting of captions and minimally edited foils.528

The only requirement to evaluate a model on529

our benchmark is: i) to have a binary classification530

head to predict whether an image-sentence pair is531

foiled, or ii) to predict an image-sentence matching532

score between the image and the caption vs. the foil,533

returning the pair with the highest score. Systems534

reporting results on VALSE are expected to report535

any data used in model training prior to testing on536

VALSE, for comparability.537

5.1 Benchmark Metrics538

We employ five metrics6 for evaluation: over-539

all accuracy (acc) on all classes (foil and cor-540

rect); precision (pc) measuring how well mod-541

els identify the correct examples; foil precision542

(pf ) measuring how well foiled cases are identi-543

fied; pairwise ranking accuracy (accr), which544

measures whether the image-sentence alignment545

score is greater for a correct image-text pair than546

for its foiled pair; and area under the receiver547

operating characteristic curve (AUROC), which548

measures how well models distinguish correct vs.549

foiled examples across different prediction thresh-550

olds. accr is more permissive than acc as it accepts551

model predictions if the score for a foil is lower552

6All metrics are defined in Appendix B.

than the caption’s score. Our main metrics are AU- 553

ROC and accr. accr gives results for a pair 〈image, 554

caption〉 and 〈image, foil〉. Both AUROC and accr 555

are well suited to evaluate minimally-edited pairs 556

as neither uses a classification threshold. As for pc 557

and pf , since these are competing metrics where 558

naively increasing one can decrease the other, we 559

report the smaller of the two as an indicator of 560

how informed model predictions are. Since all in- 561

struments are implemented as a balanced binary 562

classification, the random baseline is always 50%. 563

5.2 V&L models 564

We benchmark five V&L models on VALSE: CLIP 565

(Radford et al., 2021), LXMERT (Tan and Bansal, 566

2019), ViLBERT (Lu et al., 2019), ViLBERT 12- 567

in-1 (Lu et al., 2020), and VisualBERT (Li et al., 568

2019). These models have different architectures 569

and are pretrained on a variety of tasks with differ- 570

ent training data. We also benchmark two unimodal 571

text-only models, GPT1 (Radford et al., 2018) and 572

GPT2 (Radford et al., 2019). See Appendix D for 573

details on all these models used in our evaluation. 574

Unimodal models GPT1 and GPT2 are autore- 575

gressive language models pretrained on English 576

text. We test whether VALSE is solvable by these 577

unimodal models by computing the perplexity of 578

the correct and foiled caption and predicting the 579
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entry with the lowest perplexity. If the perplexity580

is higher for the foil, we take this as an indication581

that the foiled caption may suffer from plausibility582

bias or other linguistic biases (cf. §4.2).583

5.3 Experiments and Results584

We test V&L and unimodal models on VALSE in a585

zero-shot setting, and also evaluate on a number of586

correct captions and foils from the FOIL it! dataset587

(Shekhar et al., 2017b) (cf. App. A.7 for details).588

All results are listed in Table 2.589

Unimodal results For most instruments, uni-590

modal results are close to random and hence do591

not signal strong linguistic or plausibility biases.592

One exception is the original FOIL it! dataset, in593

line with Madhyastha et al. (2019)’s findings. Also594

the spatial relations (77.2%), action replacement595

(66.8%) and actant swap (76.9%) instruments sug-596

gest plausibility biases in foils. Such biases are597

hard to avoid in automatic foil generation for ac-598

tions due to the verb arguments’ selectional restric-599

tions, which are easily violated when flipping role600

fillers, or replacing the verb. Similar considerations601

hold for relations: though SpanBERT proposals are602

intended to aid selection of likely replacements for603

prepositions, plausibility issues arise with relatively604

rare argument-preposition combinations.605

While these might be the first instruments in606

VALSE to be solved in the future, current V&L607

models struggle to detect even blatant mismatches608

of actant swap, e.g., ‘A ball throws a tennis player.’609

For VALSE, the unimodal scores will serve as a610

baseline for the pairwise accuracy of V&L models.611

Multimodal results The best zero-shot results612

are achieved by ViLBERT 12-in-1 with the high-613

est scores across the board, followed by ViLBERT,614

LXMERT, CLIP,7 and finally VisualBERT. The615

latter obtains high pf but very low pc values—616

reflected in the min(pc, pf ) scores—indicating that617

VisualBERT learned a heuristic that does not gen-618

eralise (see Hendricks and Nematzadeh, 2021, for619

similar observations with other models). We hy-620

pothesise that this is due to the way image-sentence621

alignment is framed in VisualBERT’s pretraining:622

the model expects an image and a correct sen-623

tence c1, and predicts whether a second sentence624

c2 is a match. During pretraining c1 and c2 are625

likely to differ in many ways, whereas in our set-626

ting, they are nearly identical. This may bias the627

7CLIP works in a contrastive fashion, therefore we report
only accr (cf. Appendix D for details).

model against predicting foils, which would raise 628

the value pf . 629

Instruments centered on individual objects like 630

existence and the FOIL it! dataset are almost solved 631

by ViLBERT 12-in-1, highlighting that models are 632

capable of identifying named objects and their pres- 633

ence in images. However, none of the remaining 634

pieces can be reliably solved in our adversarial foil- 635

ing settings: i) distinguishing references to single 636

vs. multiple objects or counting them in an image; 637

ii) correctly classifying a named spatial relation 638

between objects in an image; iii) distinguishing 639

actions and identifying their participants, even if 640

supported by preference biases; or, iv) tracing mul- 641

tiple references to the same object in an image 642

through the use of pronouns. 643

Correct vs. foil precision pc and pf show that 644

V&L models struggle to solve the phenomena in 645

VALSE. When a model achieves high precision on 646

correct captions pc this is often at the expense of 647

very low precision on foiled captions pf (cf. ViL- 648

BERT), or vice-versa (cf. VisualBERT). This sug- 649

gests that such models are insensitive to VALSE’s 650

inputs: models that almost always predict a match 651

will inflate pf at the expense of pc. min(pc, pf ) 652

reveals that VisualBERT and ViLBERT perform 653

poorly and below random baseline, and LXMERT 654

close to or below it. ViLBERT 12-in-1 performs 655

strongly on existence, well on counting, but strug- 656

gles on plurality, spatial relations, coreference, and 657

actions. These tendencies we see reflected in our 658

main metrics, accr and AUROC. 659

6 Conclusions and Future Work 660

We present the VALSE benchmark to help the com- 661

munity improve V&L models by hard-testing their 662

visual grounding capabilities through the lens of lin- 663

guistic constructs. Our experiments show that V&L 664

models identify named objects and their presence 665

in images well (as shown by the existence piece), 666

but struggle to ground their interdependence and re- 667

lationships in visual scenes when forced to respect 668

linguistic indicators. We encourage the commu- 669

nity to use VALSE for measuring progress towards 670

V&L models capable of true language grounding. 671

VALSE is designed as a living benchmark. As 672

future work we plan to extend it to further linguistic 673

phenomena, and to source data from diverse V&L 674

datasets to cover more linguistic variability and 675

image distributions. 676
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A Benchmark creation1082

A.1 Existence1083

The existence piece has a single instrument and tar-1084

gets instances with existential quantifiers. Mod-1085

els need to differentiate between examples i) where1086

there is no entity of a certain type or ii) where there1087

is one or more of these entities visible in an image.1088

Data sources We use the Visual7W visual ques-1089

tion answering dataset (Zhu et al., 2016) to source1090

examples, starting with the ‘how many’ questions1091

in Visual7W and building a pool of those whose1092

answers are numerals (e.g., 0, 1, 2, etc.). We use1093

the templates from Parcalabescu et al. (2021) to1094

transform question and answer fields into a declara-1095

tive statement that correctly describes what can be1096

seen in the image, e.g., ‘Q: How many animals are1097

shown? A: 0’→ ‘There are 0 animals shown’.1098

Foiling method Let us use x = ‘There are N1099

animals shown’ as a running example for a cor-1100

rect caption, where N is a number. If N > 0, we1101

simply remove N from the sentence, effectively1102

creating the statement ∃x or ‘There are animals1103

shown’. If N = 0, we replace N by ‘no’, creating1104

the statement ¬∃x or ‘There are no animals shown’.1105

If necessary, we fix singular–plural agreement. To1106

create data with balanced correct and foil classes,1107

we select 50% of our examples from those where1108

the correct answer is originally 0, and the remain-1109

ing 50% from those where the correct answer is1110

any other number (e.g., 1, 2, etc.). To create foils,1111

we then simply convert the statement from ∃x to1112

¬∃x, and vice-versa.1113

A.2 Plurality1114

The plurality piece has a single instrument, con-1115

cerned with semantic number, that is, the distinc-1116

tion between single entities in an image (‘exactly1117

one flower’) and multiple instances of the same1118

type (‘some flowers’). In this piece, foil candidates1119

are created either by converting a singular NP and1120

its coreferents to a plural, or vice versa.1121

Data sources The data was sourced from the val-1122

idation split of the COCO 2017 dataset (Chen et al.,1123

2015). Captions are only foiled if their length after1124

tokenization with the pretrained BERT tokenizer81125

is of 80 tokens or less. This is done to minimise1126

the risk that captions and foils need to be truncated1127

8We use the bert-large-cased pretrained tokenizer
distributed as part of the transformers python library.

to accommodate the input specifications of current 1128

pretrained V&L models. 1129

Foiling method Foiling is done in two directions: 1130

singular-to-plural (sg2pl) or plural-to-singular 1131

(pl2sg). Given a caption, NP chunking is applied 1132

to identify all non-pronominal NPs. In the sg2pl 1133

case, a foiled version of a caption containing a sin- 1134

gular NP is created by pluralising the head noun. 1135

We automatically identify anaphoric expressions 1136

coreferring to the singular NP within the caption 1137

and pluralise them in the same way. For NPs which 1138

are subjects of copular VPs or VPs with an auxil- 1139

iary requiring subject-verb number agreement (e.g. 1140

‘N is V’), we also pluralise the verb. Note that 1141

this procedure creates a potential foil for every sin- 1142

gular NP in the caption; thus, more than one foil 1143

candidate can be created for each instance in the 1144

source dataset.9 In the pl2sg case, the same pro- 1145

cedure is carried out, but turning a plural NP, as 1146

well as its coreferents, into a singular. We generate 1147

all foil candidates using the Checklist framework 1148

(Ribeiro et al., 2020), within which we implement 1149

our procedures for data perturbation. 1150

An important consideration, especially in the 1151

pl2sg case, is that singularising an NP in a foil 1152

can still be truth-preserving. Specifically, a caption 1153

with a plural NP, such as ‘A small copper vase with 1154

some flowers in it’, arguably still entails the ver- 1155

sion with the singular ‘(. . . ) a flower’. As a result, 1156

the singular version may still correctly be judged 1157

to match the image. One way around this problem 1158

is to insert a quantifier in the singular NP which 1159

makes it explicit that exactly one instance and no 1160

more is intended (e.g. ‘exactly one flower’). This 1161

may however result in a biased dataset, with such 1162

singular quantifiers acting as signals for singular 1163

foils and enabling models to solve the task with 1164

no grounding in the visual information. We avoid 1165

this by adopting a uniform strategy for both sg2pl 1166

and pl2sg. We determine two singular quantifiers 1167

(‘exactly one N’ and ‘a single N’) and two plural 1168

quantifiers (‘some N’, ‘a number of N’). When a 1169

foil candidate is generated, we alter the original NP 1170

by inserting one of the two quantifiers matching 1171

its semantic number, and generate a foil with one 1172

9NP chunking is performed using the Spacy v.3 pipeline
for English using the en_core_web_md pretrained mod-
els. Coreference chains are detected using the pretrained En-
glish model for Coreferee (github.com/msg-systems/
coreferee). Pluralisation of head nouns is carried
out using the inflect engine (github.com/jaraco/
inflect/).
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of the two quantifiers for the other number. In the1173

foregoing example, we end up with ‘A small copper1174

vase with some flowers / exactly one flower in it.’1175

After generating all candidate foils, in both direc-1176

tions, we use the GRUEN pretrained model (Zhu1177

and Bhat, 2020) to score the foils for grammat-1178

icality. We only keep foils with a score ≥ 0.8,1179

and run each foil-caption pair through the NLI1180

model described in Section 4.3, keeping only pairs1181

whose predicted label is contradiction, for an ini-1182

tial candidate set of 1000 cases (500 sg2pl and1183

500 pl2sg), of which 851 (85.1%) are considered1184

valid following manual validation (see §4.4). Fig-1185

ure 4 shows the distribution of nouns in captions1186

and foils, before and after the validation. Note that1187

the validation process does not result in significant1188

change to the distributions.1189

A.3 Counting1190

The counting piece comes in three instruments:1191

balanced, adversarial and small numbers. All1192

three instruments include instances with statements1193

about the number of entities visible in an image.1194

The model needs to differentiate between exam-1195

ples where the specific number of entities in the1196

associated image is correct or incorrect, given the1197

statement.1198

All three instruments are designed to show1199

whether models learn strategies that generalize be-1200

yond the training distribution, and to what extent1201

a model exploits class frequency bias.10 In count-1202

ing balanced we cap the number of examples to1203

a maximum per class and make sure correct/foil1204

classes are balanced, so that models that exploit1205

class frequency bias are penalized. In counting1206

adversarial we make sure that all foils take class1207

n ∈ {0, 1, 2, 3}, whereas all correct captions take1208

class n ∈ {n | n ≥ 4}. Biased models are ex-1209

pected to favour more frequent classes and these1210

correspond to smaller numbers, therefore models1211

that resort to such biases should perform poorly on1212

this adversarially built test. Instrument counting1213

small numbers is a sanity check where all correct1214

captions and foils have class n ∈ {0, 1, 2, 3}, and1215

caption/foil classes are balanced. Models likely1216

have been exposed to many examples in this class1217

set, so with this instrument we assess model per-1218

formance certain it does not suffer from (class)1219

exposure bias.1220

10We take the original answer in Visual7W as the example
class. E.g., in There are four zebras, the class is 4.

Data sources We use the Visual7W visual ques- 1221

tion answering dataset (Zhu et al., 2016) and source 1222

its ‘how many’ examples, building a pool of those 1223

whose answers are numerals (e.g., 0, 1, 2, etc.). We 1224

use the templates from Parcalabescu et al. (2021) to 1225

transform question and answer fields into a declara- 1226

tive statement that correctly describes what can be 1227

seen in the image. 1228

Foiling method We create foils by directly re- 1229

placing the numeral in the correct caption by an- 1230

other numeral. When creating foils we make sure 1231

that the class distribution for correct and foiled cap- 1232

tions are approximately the same, i.e., there are a 1233

similar number of correct and foiled examples in 1234

each class in each instrument. The only exception 1235

is the counting adversarial instrument, where the 1236

classes used in correct and foiled captions are dis- 1237

joint, i.e., n ∈ {0, 1, 2, 3} and n ∈ {n | n ≥ 4}, 1238

respectively. See Figure 3 for a visualisation of 1239

these distributions. 1240

A.4 Spatial relations 1241

The relations piece has one instrument and focuses 1242

on the ability of models to distinguish between dif- 1243

ferent spatial relations, as expressed by preposi- 1244

tions. Foils therefore consist of captions identical 1245

to the original except for the replacement of a spa- 1246

tial preposition. 1247

Data sources Data was sourced from the COCO 1248

2017 validation split (Chen et al., 2015). To gen- 1249

erate foil candidates, we first extracted from the 1250

original COCO captions all the sequences consist- 1251

ing of one or more consecutive prepositions (e.g., 1252

‘on’ or ‘out of’). Foils are generated by detecting 1253

these preposition spans, and replacing them with 1254

another preposition span attested in the list. 1255

Foiling method To generate foils, we mask the 1256

preposition span in an original caption, and use 1257

SpanBERT (Joshi et al., 2020), a pretraining 1258

method based on BERT (Devlin et al., 2019).11 1259

The advantage of SpanBERT over BERT is that in 1260

a masked language modelling context, with masks 1261

spanning more than a single word, SpanBERT pre- 1262

dicts sequences and takes into account their joint 1263

probability, whereas BERT trained with standard 1264

Masked Language Modelling can only predict sin- 1265

gle tokens independently. With SpanBERT, we 1266

11We use SpanBERT with the pretrained
bert-large-cased model distributed as part of
the transformers Python library.
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generate replacements of between 1 and 3 tokens1267

in length, in each case retaining only the best pre-1268

diction out of the top k which matches one of the1269

preposition sequences in the pre-extracted list.1270

After all candidates are generated, we apply1271

GRUEN (Zhu and Bhat, 2020) to score the foils for1272

grammaticality, and further apply the NLI model1273

descibed in Section 4.3 to label the entailment rela-1274

tionship between caption and foil pairs. From the1275

resulting data, we sample as follows: i) we keep1276

only caption-foil pairs labelled as contradiction,1277

where the GRUEN grammaticality score is ≥ 0.8;1278

ii) for every caption-foil pair sampled where p is1279

replaced with q, we search for another caption-foil1280

pair where q is replaced with p, if present. This1281

strategy yields a roughly balanced dataset, where1282

no single preposition or preposition sequence is1283

over-represented in captions or foils.1284

These processes result in an initial set of 6141285

cases, of which 535 (87.1%) are selected following1286

manual validation described in §4.4.1287

Figure 3 shows proportions in captions and foils1288

of the prepositions. E.g.: ‘A cat plays with a pocket1289

knife on / underneath a table.’1290

As with plurals, we implement procedures1291

for foil candidate generation by extending the1292

perturb functionality in Checklist (Ribeiro et al.,1293

2020).1294

A.5 Actions1295

The action piece consists of two instruments: i) ac-1296

tion replacement and ii) actant swap. They are1297

testing a V&L model’s capability of i) identifying1298

whether an action mentioned in the textual modal-1299

ity matches the action seen in the image or not1300

(e.g. ‘a man shouts / smiles at a woman’) and ii)1301

correctly identifying the participants of an action1302

and the roles they are playing in it (e.g., given the1303

picture in Table 1: is it the man or the woman who1304

shouts?).1305

Data source For creating interesting foils with di-1306

verse actions, we focus on the SWiG dataset (Pratt1307

et al., 2020) that comprises 504 action verbs anno-1308

tated with semantic roles and their fillers, which are1309

grounded in images of the imSitu dataset (Yatskar1310

et al., 2016). We generate English captions for1311

the images using SimpleNLG (Gatt and Reiter,1312

2009)12. For generation we use the specified ac-1313

12SimpleNLG is a surface realization engine that – given
some content and crucial syntactic specifications – performs
surface generation including morphological adjustments.

tion verb, the realized FrameNet semantic roles 1314

and their annotated filler categories (see Table 1 1315

for shout: AGENT: man, ADDRESSEE: woman), 1316

and generate short captions, with realization of two 1317

roles in active form. We apply various filters to 1318

ensure high quality of the generated captions using 1319

diverse metrics13 and manual checks through AMT 1320

crowdsourcing. 1321

Foiling method When creating the action re- 1322

placement instrument, we need to make sure that 1323

the action replacement suits the context. We pro- 1324

pose action replacements with BERT (Devlin et al., 1325

2019) that need to satisfy three conditions: 1) the 1326

proposed action verbs originate from the SWiG 1327

dataset – otherwise new verbs are introduced on 1328

the foil side only, which may induce biases; 2) the 1329

frequency distribution of action verbs on the cap- 1330

tion and on the foil side is approximately the same 1331

(cf. Figure 4); 3) we constrain the replacement 1332

verbs to be either antonyms of the original verb 1333

or at least not synonyms, hyponyms or hypernyms 1334

to the original, according to WordNet (Fellbaum, 1335

1998) in order to avoid situations where replace- 1336

ments are almost synonymous to the original action. 1337

The actant swap instrument is based on the origi- 1338

nal image annotations, but swaps the two role fillers 1339

(e.g., ‘A woman shouts at the man.’ for the image 1340

in Table 1). To avoid agreement mistakes, we gen- 1341

erate these foils using the inverted role fillers as 1342

input. 1343

We plot caption and foil word frequency distribu- 1344

tions for action replacement in Figure 4. We do not 1345

plot statistics for the actant swap instrument since 1346

by construction it cannot suffer from distributional 1347

bias since caption and foil contain the same words 1348

up to a permutation. 1349

A.6 Coreference 1350

The coreference piece consists of two pieces: 1351

coreference standard and coreference clean. It 1352

aims to uncover whether V&L models are able to 1353

perform pronoun coreference resolution. The coref- 1354

erence phenomenon encompasses both cases where 1355

i) the pronoun refers to a noun (phrase) and both 1356

the pronoun and the (noun) phrase are grounded 1357

13We use the GRUEN metric (Zhu and Bhat, 2020) that
scores grammaticality, naturalness and coherence of genera-
tions and compute perplexity with GPT-2 to rank alternative
outputs. We determined appropriate thresholds based on man-
ual judgements of acceptability and chose the highest-ranked
candidates. The final data quality is controlled by crowd-
sourced annotation with AMT.
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in the visual modality (e.g. ‘A woman is driving a1358

motorcycle. Is she wearing a helmet?’), and cases1359

where ii) the pronoun refers directly to a region in1360

the image or even to the whole image (e.g. ‘A man1361

is sitting on a bench. Is this outside?’).1362

Data source We source the data from VisDial1363

v1.0 (Das et al., 2017), which contains images1364

from MSCOCO (Lin et al., 2014), their captions1365

and dialogues about the images in form of Q&A1366

sequences. To ensure that the coreference phe-1367

nomenon is present in the [Caption. Question?1368

Yes/No.] formulations, we check whether pronouns1369

are present in the question. The list of pronouns1370

and their frequencies in our train-val-test splits are1371

represented in Figure 1.1372

The coreference standard instrument contains1373

916 data samples (708 are valid14) from the Vis-1374

Dial’s training set. The data of coreference clean1375

instrument consisting of 141 samples (104 are1376

valid), originates from VisDial’s validation set.1377

With models that have been trained on VisDial,1378

we would be in the situation where models are1379

tested on their training data. Therefore we also1380

have the coreference clean instrument based on1381

the validation set of VisDial to test models safely.1382

Unfortunately, we cannot use VisDial’s test set be-1383

cause the required question-answers annotations1384

necessary for foiling are withheld.1385

Foiling method When foiling, we take the im-1386

age description of the form [Caption. Question?1387

Yes/No.] and exchange the answer: yes →no and1388

vice-versa (see example in Table 1). This way, we1389

keep the full textual description including pronoun1390

and noun (phrase) intact, hence ensuring that the1391

coreference phenomenon is present and valid in the1392

foil too, and rely on the model to interpret affir-1393

mation and negation correctly. Note that we rely1394

on the capability of models to correctly interpret1395

negation also in the existence piece (cf. §3.1).1396

Arguably, coreference is the most difficult phe-1397

nomenon to foil in VALSE. Especially in cases1398

where pronouns refer to a noun (phrase) (e.g.,1399

‘A woman is driving a motorcycle. Is she wear-1400

ing a helmet? Yes.’), exchanging the pronoun with1401

another pronoun would generate incoherent and un-1402

likely sequences15 (e.g., ‘A woman is driving a mo-1403

14The majority of manual annotators validated that the cap-
tion describes the image but the foil does not.

15Even more, the possibilities of exchanging pronouns with
pronouns in grammatical ways are very limited: she – he but
not she – they / her / their.

Figure 1: Normalized pronoun frequencies in the coref-
erence subset.

torcycle. Is he wearing a helmet?’), and exchanging 1404

it with a noun phrase would furthermore break the 1405

pronoun coreference phenomenon because there 1406

would be no pronoun anymore (e.g., ‘A woman is 1407

driving a motorcycle. Is the man wearing a hel- 1408

met?’). Therefore when foiling the coreference 1409

piece, we aim to keep the original description in- 1410

tact for ensuring the preservation of the coreference 1411

phenomenon. Hence we rely on the answers con- 1412

taining yes or no16 and exchange affirmative to 1413

negative answers and vice-versa. 1414

A.7 FOIL it! data 1415

We include an additional piece in VALSE consist- 1416

ing of 1000 randomly sampled entries from the 1417

FOIL it! dataset (Shekhar et al., 2017b). Each 1418

entry in FOIL it! consists of an MSCOCO (Lin 1419

et al., 2014) image and a foiled caption where a 1420

noun phrase depicting an object visible in the im- 1421

age was replaced by a semantically related noun 1422

phrase. Since examples in the FOIL it! dataset are 1423

linked to MSCOCO, we use these links to retrieve 1424

one correct caption from the five captions available 1425

for the image, and create an image–caption–foil 1426

triple. From the original 1000 entries, 943 have 1427

been validated by our manual annotation proce- 1428

dure (in Appendix E). Please refer to Shekhar et al. 1429

(2017b) for more details. 1430

B Evaluation metrics 1431

We evaluate pretrained V&L models on VALSE 1432

using accuracy (acc), the overall accuracy on all 1433

classes; precision or positive predictive value (pc), 1434

which measures the proportion of correctly identi- 1435

fied correct captions; and foil precision or negative 1436

predictive value (pf ), which measures the propor- 1437

tion of correctly identified foiled examples; pair- 1438

wise ranking accuracy accr, computed using the 1439

image-sentence alignment score φ that the model 1440

assigns to correct and foiled image-text pairs; and 1441

16If the answer is longer than just yes/no (e.g., ‘Yes, she is’)
we shorten it to yes/no.
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area under the receiver operating characteris-1442

tic curve (AUROC)—a classic metric used in ma-1443

chine learning classification problems—which in1444

our case measures how well models distinguish1445

correct vs. foiled examples across different predic-1446

tion thresholds. The AUROC has a probabilistic1447

interpretation and can be understood as the prob-1448

ability that a model will assign a higher score to1449

a randomly chosen correct example relative to a1450

randomly chosen foil.1451

With accr, a prediction is considered successful,1452

if given an image (i) paired with a correct (c) versus1453

a foil (f ) text, the score of the positive/correct pair1454

is greater than that of the foiled pair.1455

accr =

∑
(i,c)∈C

∑
f∈F s(i, c, f)

|C|+ |F |
,

s(i, c, f) =

{
1, if φ(i, f) ≤ φ(i, c),
0, otherwise,

1456

where C is the set of correct image-caption pairs1457

(i, c), and F is the set of foils for the pair (i, c).1458

The pairwise accuracy accr is important for1459

two reasons: First, it enables V&L models to be1460

evaluated on VALSE without a binary classification1461

head for classifying image-sentence pairs as correct1462

or foiled. For example, CLIP (Radford et al., 2021)1463

is a model that computes a score given an image-1464

sentence pair. This score can be used to compare1465

the scores of a correct image-sentence pair and the1466

corresponding foiled pair. By contrast, a model1467

like LXMERT (Tan and Bansal, 2019) has a binary1468

image-sentence classification head and can predict1469

a correct pair independently of the foiled pair (and1470

vice-versa). Second, accr enables the evaluation of1471

unimodal models on VALSE, as motivated in §4.2.1472

In Table 4, we show results for all models investi-1473

gated according to all above-mentioned metrics.1474

C Filtering methods1475

NLI filtering For NLI filtering we make use of1476

the HuggingFace (Wolf et al., 2020) implementa-1477

tion of ALBERT (xxlarge-v2) that was already fine-1478

tuned on the concatenation of SNLI (Bowman et al.,1479

2015), MultiNLI (Williams et al., 2018), FEVER-1480

NLI (Nie et al., 2019) and ANLI datasets (Nie1481

et al., 2020). The model is the best performing on1482

the ANLI benchmark leaderboard17 and it achieves1483

90% accuracy on MultiNLI devset.1484

17github.com/facebookresearch/anli

D Vision & Language and Unimodal 1485

Models 1486

In Table 3 we summarise the five V&L models used 1487

in our experiments, their architecture, pretraining 1488

tasks and data, and finetuning tasks (if any). 1489

CLIP CLIP (Radford et al., 2021) is composed 1490

of two transformer-based text and an image en- 1491

coders. These are jointly trained on 400M image- 1492

text pairs through contrastive learning for predict- 1493

ing high scores for paired image-text examples and 1494

low scores when image-text samples are not paired 1495

in the dataset. CLIP has shown zero-shot capa- 1496

bilities in e.g. object classification, OCR, activity 1497

recognition (Radford et al., 2021). Goh et al. (2021) 1498

have shown the existence of multimodal neurons 1499

in CLIP, responding to the same topic regardless of 1500

whether it is represented in an image, drawing or 1501

handwritten text. We use CLIP’s image-text align- 1502

ment scores for benchmarking on VALSE: Given 1503

an image, we compare whether CLIP18 predicts 1504

higher image-text similarity for the correct or for 1505

the foiled caption. 1506

LXMERT LXMERT (Tan and Bansal, 2019) is 1507

a dual-stream transformer model combining V&L 1508

through cross-modal layers. It is pretrained on 1509

MSCOCO (Lin et al., 2014) and on multiple VQA 1510

datasets for (i) multimodal masked word and object 1511

prediction, (ii) image-sentence alignment, i.e., de- 1512

termining whether a text corresponds to an image 1513

or not, and (iii) question-answering. For bench- 1514

marking on VALSE, we use LXMERT’s19 image- 1515

sentence alignment head. 1516

ViLBERT and ViLBERT 12-in-1 ViLBERT 1517

(Lu et al., 2019) is a BERT-based transformer archi- 1518

tecture that combines V&L on two separate streams 1519

by co-attention layers. It is pretrained on Google 1520

Conceptual Captions (Sharma et al., 2018) on (i) 1521

multimodal masked word and object prediction; 1522

and (ii) image-sentence alignment. ViLBERT 12- 1523

in-1 (Lu et al., 2020) further finetuned a ViLBERT 1524

model checkpoint on 12 different tasks including 1525

VQA, image retrieval, phrase grounding and oth- 1526

ers.20 We use the image-sentence alignment head 1527

of the publicly available model checkpoints for 1528

18github.com/openai/CLIP
19github.com/huggingface/transformers
20github.com/facebookresearch/

vilbert-multi-task
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CLIP LXMERT ViLBERT ViLBERT 12-in-1 VisualBERT
(Radford et al., 2021) (Tan and Bansal, 2019) (Lu et al., 2019) (Lu et al., 2020) (Li et al., 2019)

model type separate image and
text encoders dual stream dual stream dual stream single stream

pretraining
data

400M image-text
pairs MSCOCO Conceptual Captions Conceptual Captions MSCOCO

pretraining
tasks ISA ISA, MLM, MOP, VQA ISA, MLM, MOP ISA, MLM, MOP ISA, MLM, MOP

finetuning – VQA – 12 V&L tasks –

Table 3: V&L models evaluated with VALSE in our experiments. ISA: image-sentence alignment; MLM: masked
language modelling; MOP: masked object prediction; VQA: visual question answering.

Metric Model Existence Plurality Counting Sp.rel.‡ Action Coreference Foil-it! Avg.quantifiers number balanced sns.† adv.† relations repl.† actant swap standard clean

Random 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0

accr

GPT1∗ 61.8 53.1 51.2 48.7 69.5 77.2 65.4 72.2 45.6 45.2 77.5 60.7
GPT2∗ 58.0 51.9 51.6 49.8 45.3 75.0 66.8 76.9 54.5 50.0 80.7 60.1

CLIP 66.9 56.2 62.1 62.5 57.5 64.3 75.6 68.6 52.1 49.7 88.8 64.0
LXMERT 78.6 64.4 62.2 69.2 42.6 60.2 54.8 45.8 46.8 44.2 87.1 59.6
ViLBERT 65.5 61.2 58.6 62.9 73.7 57.2 70.7 68.3 47.2 48.1 86.9 63.7

12-in-1 95.6 72.4 76.7 80.2 77.3 67.7 65.9 58.9 75.7 69.2 86.9 75.1
VisualBERT 39.7 45.7 48.2 48.2 50.0 39.7 49.2 44.4 49.5 47.6 48.5 46.4

acc

LXMERT 55.8 55.1 52.0 55.4 49.9 50.8 51.1 48.5 49.8 49.0 70.8 53.5
ViLBERT 2.4 50.3 50.7 50.6 51.8 49.9 52.6 50.4 50.0 50.0 55.9 51.3

12-in-1 89.0 62.0 64.9 69.2 66.7 53.4 57.3 52.2 54.4 54.3 71.5 63.2
VisualBERT 49.3 46.5 48.3 47.8 50.0 49.3 48.8 49.7 50.0 50.0 46.6 48.8

pc

LXMERT 41.6 68.0 50.9 50.0 61.5 73.1 35.8 36.8 81.2 80.8 72.3 59.3
ViLBERT 56.8 98.5 77.0 76.6 86.1 98.3 93.2 93.7 98.7 98.1 98.8 88.7

12-in-1 85.0 90.7 64.3 76.7 59.5 93.5 66.7 66.8 92.9 95.2 94.3 80.5
VisualBERT 1.3 0.3 0.0 0.0 0.0 1.3 0.0 0.0 0.0 0.0 0.2 0.3

pf

LXMERT 70.1 42.2 53.0 60.8 37.3 28.4 66.4 60.2 18.4 17.3 69.3 47.6
ViLBERT 47.9 2.1 24.4 24.7 17.5 1.5 11.9 7.1 1.3 1.9 12.9 13.9

12-in-1 93.1 33.4 65.6 61.7 74.0 13.3 47.8 37.6 15.8 13.5 48.8 45.9
VisualBERT 97.3 92.8 96.7 95.7 100.0 97.3 97.6 99.4 100.0 100.0 93.0 97.3

min(pc, pf )

LXMERT 41.6 42.2 50.9 50.0 37.3 28.4 35.8 36.8 18.4 17.3 69.3 38.9
ViLBERT 47.9 2.1 24.4 24.7 17.5 1.5 11.9 7.1 1.3 1.9 12.9 13.9

12-in-1 85.0 33.4 64.3 61.7 59.5 13.3 47.8 37.6 15.8 13.5 48.8 43.7
VisualBERT 1.3 0.3 0.0 0.0 0.0 1.3 0.0 0.0 0.0 0.0 0.2 0.3

AUROC
×100

LXMERT 60.5 57.3 53.8 57.7 50.5 51.9 52.1 47.6 49.8 49.5 76.9 55.2
ViLBERT 52.5 54.1 50.8 51.6 53.5 51.2 57.2 57.8 49.9 49.9 75.2 54.9

12-in-1 96.3 67.4 72.0 77.8 75.1 55.8 61.3 55.0 59.8 59.6 81.0 69.2
VisualBERT 28.9 29.0 24.5 16.5 20.9 45.2 17.7 36.3 45.3 46.3 28.5 30.8

Table 4: Performance of unimodal and multimodal models on the VALSE benchmark according to different metrics.
We bold-face the best overall result per metric, and underscore all results below (or at) the random baseline. accr is
a pairwise ranking accuracy where a prediction is considered correct if p(caption, img) > p(foil, img). Precision
pc and foil precision pf are competing metrics where naïvely increasing one can decrease the other: therefore
looking at the smaller number among the two gives a good intuition of how informed is a model prediction. †sns.
Counting small numbers. adv. Counting adversarial. repl. Action replacement. ‡ Sp.rel. Spatial relations.
∗Unimodal text-only models that do not use images as input. CLIP is only tested in pairwise ranking mode (fn. 6).

ViLBERT21 and ViLBERT 12-in-122.1529

VisualBERT VisualBERT (Li et al., 2019) is1530

also a BERT-based transformer. Its single-stream1531

architecture encodes image regions and linguis-1532

tic features via a transformer stack, using self-1533

attention to discover the alignments between the1534

two modalities. VisualBERT is pretrained on1535

MSCOCO captions (Chen et al., 2015) on two1536

21https://dl.fbaipublicfiles.com/
vilbert-multi-task/pretrained_model.bin

22https://dl.fbaipublicfiles.com/
vilbert-multi-task/multi_task_model.bin

tasks: (i) masked language modelling, and (ii) 1537

sentence-image prediction. The latter is framed 1538

as an extension of the next sentence prediction task 1539

used with BERT. Inputs consist of an image and 1540

a caption, with a second caption which has a 50% 1541

probability of being random. The goal is to deter- 1542

mine if the second caption is also aligned to the 1543

image. In our experiments, we use the publicly 1544

available implementation of VisualBERT23. 1545

GPT-1 and GPT-2 – Unimodal models GPT1 1546

(Radford et al., 2018) and GPT2 (Radford et al., 1547

23github.com/uclanlp/visualbert
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Piece Instrument #Inst. #Valid (%) #Unan. (%) #Lex.it. JS JS Val. α α Valid

Existence Existential quantifiers 534 505 (94.6) 410 (76.8) 25 0.628 0.629 0.607 0.644

Plurality Semantic Number 1000 851 (85.1) 617 (61.7) 704 0.742 0.766 0.303 0.359

Counting
Balanced 1000 868 (86.8) 598 (59.8) 25 0.070 0.082 0.361 0.423
Small numbers 1000 900 (90.0) 637 (63.7) 4 0.059 0.071 0.417 0.473
Adversarial 756 691 (91.4) 522 (69.0) 27 1.000 1.000 0.387 0.441

Relations Prepositions 614 535 (87.1) 321 (52.3) 38 0.083 0.114 0.210 0.229

Actions Replacement 779 648 (83.2) 428 (54.9) 262 0.437 0.471 0.229 0.318
Actant swap 1042 949 (91.1) 756 (72.6) 467 0.000 0.000 0.386 0.427

Coreference standard: VisDial train 916 708 (77.3) 499 (54.5) 2 0.053 0.084 0.291 0.360
clean: VisDial val 141 104 (73.8) 69 (48.9) 2 0.126 0.081 0.248 0.375

Foil-It! noun replacement 1000 943 (94.3) 811 (81.1) 73 0.426 0.425 0.532 0.588

Overall 8782 7702 (87.7) 5668 (73.6)

Table 5: Manual validation results for each piece in VALSE, as well as for the Foil-it dataset. #Inst.: number
of instances for linguistic phenomenon. #Valid (%): number (percent) of cases for which at least 2 out of 3
annotators chose the caption; #Unan. (%): number (percent) of cases for which all annotators chose the caption;
#Lex.It.: number of phrases or lexical items in the vocabulary that differ between foils and captions; JS: Jensen-
Shannon divergence between foil-caption distributions for all instances in the whole instrument; JS Val.: Jensen-
Shannon divergence between foil-caption distribution for the valid subset of the instrument, after sub-sampling; α:
Krippendorff’s α coefficient computed over all the instances; α valid: Krippendorff’s α coefficient computed over
the Valid instances.

2019) are transformer-based autoregressive lan-1548

guage models pretrained on English data through1549

self-supervision. We test whether our benchmark is1550

solvable by these unimodal models by computing1551

the perplexity of the correct sentence and compare1552

it to the perplexity of the foiled sentence. In case1553

the computed perplexity is higher for the foil than1554

for the correct sentence, we assume that the cor-1555

rectly detected foiled caption may possibly suffer1556

from a plausibility bias (as described in section1557

4.2) or from other biases (e.g. a model’s preference1558

towards affirmative or negative sentences).1559

E Mechanical Turk Annotation and1560

Evaluation1561

Setup The validation study was conducted on all1562

the data for each instrument in VALSE, as well1563

as for the FOIL it! data (Shekhar et al., 2019b).1564

Each instance consisted of an image, a caption and1565

a foiled version of the caption, as shown in Fig-1566

ure 2. Annotators received the following general1567

instructions:1568

You will see a series of images, each1569

accompanied by two short texts. Your1570

task is to judge which of the two texts1571

accurately describes what can be seen in1572

the image.1573

Each instance was accompanied by the caption1574

and the foil, with the ordering balanced so that the1575

caption appeared first 50% of the time. In each 1576

instance, the caption and foil were placed above 1577

each other, with the differing parts highlighted in 1578

bold. Annotators were asked to determine which 1579

of the two sentences accurately describes what can 1580

be seen in the image? In each case, they had to 1581

choose between five options: (a) the first, but not 1582

the second; (b) the second, but not the first; (c) both 1583

of them; (d) neither of the two; and (e) I cannot tell. 1584

We collected three annotations for each instance, 1585

from three independent workers. 1586

Annotator selection We recruited annotators 1587

who had an approval rating of 90% or higher on 1588

Amazon Mechanical Turk. We ran an initial, pre- 1589

selection study with 10 batches of 100 instances 1590

each, in order to identify annotators who under- 1591

stood the instructions and performed the task ade- 1592

quately. The pre-selection batches were first man- 1593

ually annotated by the authors, and we identified 1594

‘good’ annotators based on the criterion that they 1595

preferred the caption to the foil at least 70% of 1596

the time. Based on this, we selected a total of 63 1597

annotators. Annotators were paid $0.05 per item 1598

(i.e. per HIT on Mechanical Turk). 1599

Results Table 5 shows, for each instrument, the 1600

number of instances in total, as well as the pro- 1601

portion of instances which we consider valid, that 1602

is, those for which at least two out of three anno- 1603

tators chose the caption, but not the foil, as the 1604
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Figure 2: Example of an instance from the validation study. The example is from the Counting piece, adversarial
instrument (see Section 3.3).

text which accurately describes the image. We also1605

show the number of instances for which annotators1606

unanimously (3/3) chose the caption.1607

Annotator agreement As shown in Table 5, the1608

proportion of valid instances in each instrument1609

was high, ranging from 73.8% to 94.6%, with most1610

instruments having annotators choose the caption1611

well over 80% of the time. The table also shows1612

two inter-annotator agreement statistics, both com-1613

puted using Krippendorff’s α: over all the data1614

in a given instrument, and over the valid subset1615

only. On the valid subset, agreement is higher, and1616

ranges from 0.3 to 0.6 (mean = 0.42; sd=0.12).1617

There is a significant positive correlation between1618

the percentage of valid instances per instrument1619

and the α value (Spearman’s ρ = 0.75; p < .05).1620

The low to medium agreement suggested by the α1621

range is due to two factors: first, the statistic is com-1622

puted over the entire pool of annotators, of whom1623

there were significant diversions in the amount of1624

annotations they computed (e.g. some workers an-1625

notated fewer than 5 HITs); furthermore, the agree-1626

ment is computed over 5 categories (see above).1627

Given these factors, the inter-annotator agreement1628

results should be treated with caution, and are not1629

straightforwardly interpretable as an index of hu-1630

man performance on VALSE - in particular, the1631

validation task (with 5 categories) was framed dif-1632

ferently from the benchmark (which is binary).1633

Bias check While measures were taken to con- 1634

trol for distributional bias between captions and 1635

foils in the different pieces of VALSE (cf. §4.1), it 1636

is possible that sub-sampling after manual valida- 1637

tion could reintroduce such biases. To check that 1638

this is not the case, we compare the word frequency 1639

distributions between captions and foils in the orig- 1640

inal pieces, and the word frequency distribution of 1641

the manually validated set. We report the Jensen- 1642

Shannon divergence and the number of words that 1643

differ between caption and foil in Table 5. The 1644

foil-caption word frequency distributions can be 1645

inspected in Figures 3 and 4. The Jensen-Shannon 1646

(JS) divergence is defined as: 1647

JS(f ‖ c) =
√
KL(f ‖ m) +KL(c ‖ m)

2

where f is the normalized word frequency for foils, 1648

c the normalized word frequency for captions, m 1649

is the point-wise mean of f and c, and KL is the 1650

Kullback-Leibler divergence. 1651

As Table 5 shows, the JS-divergence between 1652

caption and foil distributions remains the same, or 1653

changes only marginally (compare columns JS-div 1654

and Js-div valid, where #Lexical Items indicates the 1655

number of lexical/phrasal categories in the relevant 1656

distributions). This indicates that no significant 1657

bias was introduced as a result of subsampling after 1658

manual validation. 1659
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Figure 3: Word frequency distributions for captions and foils before and after the manual validation for existence,
counting and relations.
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Figure 4: Word frequency distributions for captions and foils before and after the manual validation for plurality,
action replacement and FOIL it. The actant swap instrument is not visualised here: By construction, actant swap
cannot suffer from distributional bias since caption and foil contain the same words up to a permutation.
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piece image caption (blue) foil (orange)

existence

There are no people in the pic-
ture. There are people in the picture.

There is a truck pictured. There is no truck pictured.

There are no clouds in the sky. There are clouds in the sky.

There are no people riding on
elephants.

There are people riding on ele-
phants.

There is a kite. There is no kite.

Table 6: Randomly selected data examples for existence.

23



piece image caption (blue) foil (orange)

plurality

Two young men playing frisbee
at night on exactly one sports
field.

Two young men playing frisbee
at night on a number of sports
fields.

Exactly one row of motorcycles
parked together on a grass yard
area with a house in the back-
ground.

A number of rows of motorcy-
cles parked together on a grass
yard area with a house in the
background.

Two men are looking inside of a
single giant barbecue.

Two men are looking inside of a
number of giant barbecues.

Some children are playing base-
ball outside in a field.

A single child is playing base-
ball outside in a field.

A number of people riding some
motorbikes on the road.

A single person riding some mo-
torbikes on the road.

Table 7: Randomly selected data examples for plurality.
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piece image caption (blue) foil (orange)

counting

There are exactly 8 horses. There are exactly 5 horses.

There is exactly 1 person snow-
boarding.

There are exactly 4 people snow-
boarding.

There are exactly 6 motorcycles
in this photo altogether.

There are exactly 7 motorcycles
in this photo altogether.

There are exactly 2 banana
stalks.

There are exactly 4 banana
stalks.

There are exactly 12 roman nu-
merals on the clock.

There are exactly 9 roman nu-
merals on the clock.

Table 8: Randomly selected data examples for counting.
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piece image caption (blue) foil (orange)

relations

A baby elephant is walking un-
der a larger elephant.

A baby elephant is walking on a
larger elephant.

Fruits and vegetables are being
sold in a market.

Fruits and vegetables are being
sold outside a market.

An airplane is letting off white
smoke against a blue sky.

An airplane is letting in white
smoke against a blue sky.

A cow stands on a sidewalk out-
side a building.

A cow stands on a sidewalk in a
building.

Three giraffes banding down to
drink water with trees in the
background.

Three giraffes banding up to
drink water with trees in the
background.

Table 9: Randomly selected data examples for relations.
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piece image caption (blue) foil (orange)

actions

A figure climbs the stairs. A figure descends the stairs.

A woman skips a jump rope. A woman releases a jump rope.

An old man coaches people. An old man bothers people.

The people unveil the prize. A prize unveils people.

A baby drools over clothing. A clothing drools over the baby.

Table 10: Randomly selected data examples for actions.

27



piece image caption (blue) foil (orange)

coreference

A close up of a hot dog with
onions. Is it a big hot dog? Yes.

A close up of a hot dog with
onions. Is it a big hot dog? No.

A skateboarding man is on a half
pipe. Does he wear a helmet?
No.

A skateboarding man is on a half
pipe. Does he wear a helmet?
Yes.

2 women who have painted on
mustaches petting a horse. Are
they wearing hats? No.

2 women who have painted on
mustaches petting a horse. Are
they wearing hats? Yes.

Yellow sunflowers are in a blue
and white giraffe styled vase. Is
it inside? Yes.

Yellow sunflowers are in a blue
and white giraffe styled vase. Is
it inside? No.

An adult giraffe and a child
giraffe standing near a fence.
Does this look like zoo? Yes.

An adult giraffe and a child
giraffe standing near a fence.
Does this look like zoo? No.

Table 11: Randomly selected data examples for coreference.
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